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S-FORCING, I. 
A "BLACK-BOX" THEOREM FOR MORASSES, 

WITH APPLICATIONS TO 
SUPER-SOUSLIN TREES 

BY 

S. SHELAH* AND L. STANLEY 

ABSTRACT 

We formulate, for regular p. > to, a "forcing principle" S~, which we show is 
equivalent to the existence of morasses, thus providing a new and systematic 
method for obtaining applications of morasses. Various examples are given, 
notably that for infinite K, if 2 ~ = K § and there exists a (K § 1)-morass, then there 
exists a K§ tree: a normal K *§ tree characterized by a highly 
absolute "posit ive" property, and which has a K§ subtree. As a 
consequence we show that CH + SI-I~ 2 :~, •2 is (inaccessible) L. 

w Introduction 

The first proofs of the existence of Souslin trees in L used forcing techniques. 

Then the formulation of ~ provided an alternative point of view, recapitulating 
in abstract combinatorial form the essence of the condensation arguments which 
make the forcing techniques work. This point of view quickly became predomin- 

ant and was pushed further and further by Jensen, arriving finally at the notion 
of morass, which, in a very real sense, is a repository of much of the 

combinatorial structure of L. In the meantime, there developed a widespread 
conviction, supported by ever more empirical evidence, and nicely summed up in 

popular heuristic observations of the sort: 

(*): "any combinatorial property which is provably consistent by forcing is 

already true in L (and conversely)". 

In this paper we formulate and prove a mathematically precise (and thus 

necessarily restrictive) version of this remark which reunites the "forcing point 

of view" and the "combinatorial principle point of view" which had seemed to 

* This author thanks the US-Israel  Binational Science Foundation for partial support of this 
research. 
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186 s. SHELAH AND L. STANLEY Isr. J. Math. 

part company in the post-<> era (for recent work in a similar vein, see [10], and, 

in a rather different vein, [1], corollary 5, p. 101). 

More precisely, for each regular/z > to, we define, in w a class of partial 

orders 5e~,. For P E 5e~, we introduce, also in w the notions of uniform dense 

subsets D _C P and ideals G which meet D uniformly, in terms of the defining 

properties of ~,,. These notions seek to formalize the intuitive notion of a 

"sufficiently-generic set", and the examples we give of our method show that it's 

a reasonable one. In the sequel to this paper we deal with strengthenings of this 

notion which correspond to stronger combinatorial properties. Shelah intro- 

duced the forcing principle: 

S~ : If P E 5e~, and ~ is a collection of _-< k~ uniform dense subsets of P, there is 

an ideal G meeting all members of ~ uniformly. 

In w167 we prove our main theorem: 

THEOREM 1. For all regular Iz > to, S~ iff there is a (l~, 1)-morass. 

Theorem 1 provides a new and systematic method for obtaining applications 

of morasses: first find a P ~ 5e,, which does the job, and then check that it suffices 

to have an ideal G which uniformly meets _-</~ uniform dense sets which 

provably exist. Aside from the intrinsic interest of Theorem 1 and the applica- 

tions we obtain, our hope is that Theorem 1 will prove to be a useful tool for 

the working set-theorist/model-theorist/combinatorist/general topologist whose 

daily fare includes forcing but who has hesitated to master morasses. 

Before introducing 6e~,, uniform dense sets and filters meeting them uniformly 

in the abstract setting, in w we give a motivating example, which will also 

provide the principal application of the method of Theorem 1. We present, for 

infinite cardinals K, r §247 trees and the conditions for adding these 

by forcing (both notions are due to Shelah). The bulk of w is devoted to proving 

for P the properties which, in w will figure in the definition of ,YK+, thus 

showing, by one direction of Theorem 1: 

(1) If 2 ~ = K § and there's a (x § 1)-morass there's a K+§ tree. 

Since a K §247 tree has a K +§ subtree (see (2.3)), (1) permits 

us to prove, in (2.16): 

THEOREM 2. C H + S I ' ~  ::)' N2 is (inaccessible) L. 

Theorem 2 should be compared with Corollary 4 and (4), below, and with an 

earlier result of Gregory [5]: 
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(2) CH + 2 "1 = I~2 + SH,~ ~ ~2 is (Mahlo) L. 

It is not known whether the hypotheses of (2) are consistent relative to, say, 

reasonable large cardinal hypotheses. 

w is devoted to further examples: the countable conditions for forcing V1,1, 

and a modification, due to Shelah, of Burgess's 2-gap-2-cardinal conditions of 

[2]. The former will also figure in w In w we prove the left-to-right implication 

of Theorem 1. We exhibit a P and a collection of =</z uniform dense subsets 

such that a filter meeting them uniformly guarantees the existence of a 

(/z, 1)-morass. The definition of P is due to D. Velleman. See the historical 

remarks (1.2) for more on this and the other connections between Velleman's 

work and ours. The right-to-left implication of Theorem 1 is proved in w The 

construction of the sufficiently generic set is inspired by Jensen's original 

construction (which it now subsumes, by w for regular/.~, from enough GCH 

and a (/z+, 1)-morass, of a (/z++,/z)-model of a T having a (A +§ A )-model for 

some infinite cardinal ;t. 

(1.1) Preliminaries 

This paper is divided into seven sections, each of which is divided into several 

subsections. The nth subsection of the mth section is referred to as (m. n). 

Our set theory is ZFC. CH is the continuum hypothesis. As usual, cardinals 

are initial ordinals, but when we wish to emphasize the "cardinal character" we 

use X's, while when we wish to emphasize the "ordinal character" we use to's. 

/z is always a regular uncountable cardinal, K is always a cardinal, usually 

infinite, A is always a limit ordinal, sometimes a cardinal, a,/3, y, & ~, v, ~, ~ and 

various decorations of these are always ordinals. SHK is the K-Souslin 

hypothesis: there are no K-SOuslin trees. 

The bulk of our notation and terminology is intended to be standard, or have a 

clear meaning (e.g. card X for the cardinality of X, o.t. X for the order-type of 

X, c fa  for the cofinality of a).  For cardinals A, K <~ is the weak power of K by 

h =~K,<~K ~'. 
The following list will hopefully cover all non-standard notation as well as our 

abuses of notation and language, and the places where we require certain 

notation to serve double-duty. 

A closed unbounded set is a club set. [X]" is the set of subsets of X having 

cardinality x. [X] <~, [X] "~ have the obvious meanings. If a is an ordinal, and if 

X is a set of ordinals, or if X has a natural well-ordering which is clear from 

context, we also use [X] ~, to refer to the set of subsets of X which have 
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order-type equal to a. Similarly for [X] <", [X] "~a. The intended meaning should 

be clear from the context. When we mean order-type, we shall happily confuse a 

set with its increasing enumeration, when it serves our purposes to do so. We use 

the usual interval notation for ordinals: thus e.g. [a,/3) = {y : a =< 1, </3}. 

a "  denotes ordinal exponentiation and not n-fold Cartesian product. For sets 

of ordinals a, b, a * denotes the set of limit points of a, and a ,~ b means that inf b 

is greater than all members of a. {a, b} has the strong A-property just in case 

there are e, a ' ,  b' such that a = e U a ' ,  b = e U b', e ,~ a ' ,  e ,~ b', and either 

a '  '~ b' or b' '~ a ' .  Assuming, say, that a ' .~  b' and that a ~  b, and letting s, s '  be 

the increasing enumerations of a, b respectively, there is 3/E dom s f3 dom s' 

such that s 1 3/= s '1% but s, < s'~, for all i E dom s. This 3/is denoted y(s, s') and 

is such that s, = inf a ', s-~ = inf b'. A set X of sets of ordinals is a strong A-system 

if a, b E X ~ {a, b} has the strong A-property. We heavily use the following 

standard result: 

(*) If/.~ is regular, if 2 <~ = ~ ,  if XC[ /z§  <" and c a r d X > / z  § 

there is X ' ~  [X] "+ which is a strong A-system. 

For sequences, s, lg s is the length of s, i.e. the order-type of dom s (since for 

us a sequence is a function whose domain has a natural well-ordering and usually 

is a set of ordinals). We also use lg in a conventional, but related, way. Lim is the 

class of limit ordinals, which we take not to contain 0, but in w167 6 Lira has 

another conventional meaning. No confusion should arise. By an increasing 

function we mean what is sometimes called monotone, or order-preserving, i.e. 

an ordinal-valued function f on a set of ordinals such that for a,/3 E dom/, 
a </3 ~ f ( o t ) < f ( / 3 ) ;  for non-decreasing, replace < by _-<. A regressive 

function on the other hand is, as usual, a function f such that for a C domf,  

f ( a )  < a. a, f3 are the same kind of ordinal itt a ~ Lira r E Lira and a = 0 iff 

/3 = 0. An ordinal-valued function f on a set of ordinals is nice just in case f is 

increasing, 0 E d o m f  and f(0) = 0, for )t E dora f, f(A) ~ Lira, and if a, a + 1 

dora f, then f (a  + 1)= f l a ) +  1. In most of the paper, S,, refers to the principle 

introduced in w However, in (1.3) and w S,, refers to a morass notion defined 

in (1.3). No confusion should result. 

When forcing, p > q means p gives more information than q; to emphasize 

this we write P = (P, > ) which is how we denote practically any and all partial 

orderings. Also, K-closed means " <  K-closed": i.e. any increasing sequence of 

length < K has an upper bound. D C P  is directed if p,q E D  ~ (3r  C D )  

(p, q =< r). P is K-directed-closed if any directed D _ P with card D < K has an 

upper bound. It is well-known and easy to prove: 
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(**) P is K-closed with least upper bounds ~ P is r-directed-closed ~ P is 

r-closed. Further, if P is ~l~-closed, then P is N~-directed-closed. 

(1.2) Historical Remarks and Acknowledgements 

It's impossible to discuss the evolution of this paper without discussing the 

close relationship between our work and work by D. Velleman which will appear 
in [14]. Accordingly, we shall attempt to discuss in parallel and in chronological 

order the evolution and mutual influences of these papers. This has the price of 

introducing an appearance of vagueness. For example the definitions of ~e,, and 

S, have evolved since we began work on this paper. Thus, at different stages of 

this evolution, Theorem 1 has had not only differing statements but differing 

contents. Nevertheless at each stage there was a clear analogue of Theorem 1. 

Accordingly, we shall refer to "something like Theorem 1" or "the analogue of 

the left-to-right implication of Theorem 1", etc . . . .  

This said, this paper grew out of the meeting of the two authors in Cambridge 
in 1978. At that time, Shelah had formulated a tentative version of 6e~ and S~, 

and suggested to Stanley the possibility of proving something like the right to left 

implication of Theorem 1. Shelah felt that this was essentially just a warm-up for 

proving an analogous result with a stronger version of S~ and morasses with 

built-in <>-principles (this material will appear in a sequel to this paper). 

Velleman, on the other hand, was interested from the beginning in finding a 

forcing principle equivalent to morasses without additional extra structure, and, 

influenced by our work, came later to morasses with built-in <>-principles. In the 
early stages both we and Velleman focused essentially on the special case/X = 1~11 
(though very early on Shelah envisaged applications for, say, inaccessible /X). 

Indeed, one of the main problems was to find the correct generalization of 
Nl-Closed, ~ll-closed having a certain number of "accidental" properties, and 
applying "accidentally" to certain partial orderings whose generalizations to/X 

are not even/x-closed. 
Stanley and Velleman become aware of each other's work and established 

contact in December 1978. At about the same time, Shelah, drawing on earlier 

work of Laver [9] and Devlin [4] on Souslin trees with ascent paths, hit upon the 

notion of super-Souslin trees, the conditions for adding them of w and the 

general approach to proving Theorem 2, modulo something like the right-to-left 

implication of Theorem 1. This provided Stanley with the impetus to prove, in 

February 1979, a statement which evolved into the right-to-left implication of 

Theorem 1 in the special case/X = Nt. Shortly thereafter the authors met again: 
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Stanley provided the missing piece of the argument for Theorem 2, confirming 
that for A _C o~1, there is an (N1, 1)-morass in L [A]. The authors turned to the 
question of something like the left-to-right implication of Theorem 1. Stanley hit 
upon the possibility of applying the principle analogous to S~1 first to the 
countable conditions for forcing D., (see w Example 1), to obtain a I-IN,- 
sequence C, and then to the Jensen partial-order for obtaining an (~I1, 1)-morass 
from C (see w of [11]). It was at this time that Shelah first realized the possibility 
of applying some version of a generalized Martin's Axiom to these orderings. 
This led to the results of [11], which were first announced and circulated with 

preliminary versions of this paper. 
By Spring 1979, Velleman was able to prove that the existence of an 

(~1, 1)-morass is equivalent to a certain forcing principle for N~. We realized that 
the right-to-left implication of Theorem 1 would generalize to arbitrary regular 
/Z > ~1 provided that the closure property of the analogue of S~ was/z-closed 
with least upper bounds, and Velleman realized that his proof for X~ yielded the 

analogous generalization. 
More importantly, in proving that his principle implies the existence of 

(N~, 1)-morasses, Velleman introduced a new partial order for adding morasses. 
This is essentially the order presented in w we thank Velleman for permitting 
us to present this here and in [12], [13]. The introduction of this order was 
essential for generalizing the left-to-right implication of Theorem 1 to higher 
cardinals. Stanley found the correct generalization in Autumn 1979, when he 
realized that (a suitable modification of) Velleman's order for/z was/z-directed 
closed, and that the proof of the right-to-left implication of Theorem 1 for /z  
goes through for/z-directed-closed orders. At the same time, Stanley realized 
that, by a theorem of Laver [8], this meant that supercompact cardinals can carry 
morasses; for this, and related developments, see [13]. 

The paper took its present form in January 1980, when Shelah, elaborating on 
an earlier idea, introduced the notion of uniform dense sets and ideals meeting 
them uniformly, thus permitting a more streamlined presentation of 5e~,. Finally, 
the paper underwent one last transformation in March 1981. These changes 

affect w and w and are touched upon there. 
In addition to the specific points cited above, we're indebted to Velleman and, 

by transitivity, his thesis advisor Kunen, for spotting many imprecisions and 
oversights, for suggesting improvements, and more generally for many helpful 
remarks. Laver first suggested to Stanley the possibility of forcing rq,, 1 with 
countable conditions: in addition to this he was a source of many helpful 

suggestions and criticisms. 
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(1.3) Morasses 
For the record, we give a complete definition of (/~, 1)-morass for regular 

/~ _->1~,. Nevertheless, the reader who has no or little prior knowledge of 

morasses, and who wishes to follow the arguments of w should consult [3], or 

[12] for a less compact, more instructive definition. 

DEFrNmOn. Let /x _--> ~1 be regular. A (/x, 1)-morass is a structure 

= (b ~, S ~ S 1, ~ ,  rr~v)~.~v 

with the following properties: 

(Mo): (a) 9~ is a set of ordered pairs of primitively-recursively closed ordinals 

such that if (a, v) ~ 5e, then a < v < / z  +, 

(b) if (a, v), (a ' ,  v') E 9' and ot < a '  then v < a ' ,  

(c) S ~  :(3v)((a,v)~6e)}, Sl={v:(3a)((a,v)eb~)}; for 

a E S ~ let S~ ={v :(a,  v ) ~  Sr (thus, by (a), (b), (S~:a E S ~ is a 

partition of $1); ~ = max S o = sup S O f3/z ; /z + = sup S ~ = sup S,,, 

(d) for a E S ~ S~ is closed as a subset of sup S~. 

(M1): (a) q is a tree on S ~ such that if ff ,-~ v then a~ < a~, 

(b) (~'~ :~-3  v) is a commutative system of increasing maps, 

"/r~ : 17 -"~ 1,, 

(c) ~r~ [a~ =id[~0, ~r~.(a0)=a., 
(d) Ir~ : S~ --> S~. ; 9 is minimal in S,0 if[ v is minimal in S,.; 9 is a 

limit in S,~ if[ v is a limit in S,. ; if 9 immediately succeeds ~ in S~, 

then v immediately succeeds 7r~ (~) in S~. 

(M2): if ~ -~ v, ~ E S~, ~- = ~'~. (~), then ~ ~ r and 7r~. = 7r~ 1~. 

(M3): {a~ : ~ *3 v} is closed in a~. 

(M4): If v is not maximal in S~, then {a~ : ~ ~ v} is unbounded in a~. 

(M5): If {a~ : ~ ~ v} is unbounded in a~, then v = I..)o.~v range 7r~.. 

(M6): If ~-3 v, P, v are limits in S~, S~ respectively, and if X = 

sup range 1r~ < v, then ~ ,-3 A and ~-~ = 1r~ (and so A E S~, by 

(M1)(c)). 

(M7): Suppose P ~ v, P, v are limits in S~, S~. respectively, and suppose 

range ~r~ is cofinal in v. Suppose further that P is the immediate 

-predecessor of v. Then there is no a ~ S o with a~ < a < av such 

that for all q ~ S~ N P, there ~s ~' ~ S, with ~- ~ ~" ~ ~'~ (q). 
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w Super-Souslin trees 

In this section we present a new class of trees, the super-Souslin trees, 

introduced by Shelah who was motivated by earlier work of Laver [9] and Devlin 

[4] on Souslin trees with ascent paths. Super-Souslin trees are characterized by a 

rather absolute positive property, and they have Souslin subtrees. 

Next, we shall present Shelah's conditions for adding such trees. In addition to 

their interest in their own right, these conditions will serve to motivate the 

general concept of S-forcing introduced in the next section. This is why we shall 

take the time to develop in some detail the properties of these conditions and 

prove results which give more information than really needed if we were merely 

interested in forcing with this partial order. Finally, modulo the right to left 

implication of Theorem 1, we prove Theorem 2 in (2.16). 

Throughout this section, K will be an infinite cardinal. 

(2.1) Let T = (T, < ) be a tree, )t = ht(T),  a = (a, : i < lga)  is a level sequence 

from T itI a is 1-1 and for some a < )t, for all i < lg a, a, E T~ ; in this case, we 

say a E T~ and a = l a l ,  by abuse of notation. Levo(T) is the set of level 

sequences a from T with lg a =/3. If a, b are level sequences from T, set a ~ b 

itI lg a = lg b and for all i < lg a, a, < b,. Let [Levo (T)] 2 = 

{(a, b) E Lev~ (T) : a ,-,3 b}. 

(2.2) DEFIr~mON. A K§ tree is a normal T = (T, < ) of height 

K §247 such that there is F : [Lev,(T)]2--* K § satisfying 

(*): if F ( a , b ) = F ( a , e )  there is i <  K such that b,, c, are comparable. 

(2.3) PROPOSITION. I[ T is r§247 T has a K§247 subtree 

which is also K++-super-Souslin. 

PROOF. At several points we'll use that T is normal. 

First note that if T is K §247 x ~ T, and Tx is the restriction of T 
to {y E T : x =<ry}, then Tx is r++-super-Souslin. 

Next, we prove: 

(*): If T is K§247 if A C_ T is an antichain of power K §247 and if 

Z = {x ~ T : card(A N Tx) = K §247 then Z has no antichain of power K. 

PROOF OF (*). If Z has an antichain of power K, then Z has a level sequence 

of length K, a = (at : ~: < K). Define by induction on ot < K ++, X ~ = (X~ : ~ < K), 

b ~ = (b~ : ~: < K) such that for a < K ++, ~ < K, at <rx~ < r b L  I b~l < I x~ +1 l, b~ a 
level sequence, x ~ E A. 
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This suffices for the sought-after contradiction, since then there is B C_ r ++ of 

power K §247 such that for ~,/3 E B, F(a, b ~) = F(a, b~), so that, if a </3, there is 

~ <  r such that b~<rb~. But then x~<rx~. The inductive construction can 

clearly be carried out, by cardinality considerations. 

Now let T be K+§ and let a = (ai : i < r )  be any antichain of 

cardinal r from T. For i < r, let T~ = T~,. If none of the Ti is x+§ there is 

(A~:i < r) such that each A, is an antichain of power r *§ in T ,  But then 

A = U~<KAi is an antichain of T and {ai : i < r} C Z (as above), which, by (*), is 

impossible. So some T~ is simultaneously r§ and K++-Souslin. 

Note that what we've really proved is: suppose A C_ T is an antichain. Then 

{a E A : Ta is not r § has cardinal < r. 

(2.4) LEMMA. Suppose V ' C V ,  V ' ~ Z F C ,  P(K)C_V', (r*§247 If 
T ~ V' and V ' ~ " T '  is K+*-super-Souslin '' then T is r§247 

PROOF. By the absoluteness properties assumed for V', a function F which 

witnesses super-Souslinity in V' witnesses super-Souslinity in V. 

(2.4) thus gives the "raison-d'6tre" of r§247 trees: they stay 

super-Souslin unless r § is collapsed or new subsets of r are introduced. We 

now present the conditions for adding a K§ tree. 

(2.5) DEFINITION. Let p ~ P iff p = (x, t,f) where: 

(i) x E [K**]<'*; if a > 0 and a E x, then a ~ Lim iff o.t. (x fq a )  E Lim, and if 

a E x is a successor, then the predecessor of a is in x, 

(ii) Let 0 = o.t. x and let (a, : i < 0) increasingly enumerate x;  t = (t, =< ) is a 

r-normal tree (i.e., distinct points on limit levels have distinct sets of predeces- 

sors and all points have r distinct successors on all higher levels) of ht(t) = 0, and 

for i < 0, t~ is a proper initial segment of [K § . a,, r § . (a, + 1)), 

(iii) f is a function, cardf  =< r, f : domf---~ r § d o m f  C [Lev, (t)] 2, and (*) of 

(2.2) holds, replacing " F "  by " f " ,  and requiring that there be r many i such that 

hi, ci are comparable. 

(x, t, f )  _>- (x', t ' ,  f ' )  iff x _D x', t '  is a subtree of t, f _D f ' .  

Set P = (P, => ). 

(2.6) LEMStA. P is K*-closed, with least upper bounds. 

PROOF. Clear, since the triple of unions of the co-ordinates is the lub. 

(2.7) PROPOSITION. If  (x ' , t ' , f ' )EP, (a,b)E[Lev~(t)]2\domf, then there is 
(x', t', f) ~ (x', t',f ') with (a, b) E dora f '  and f(a, b) ~. range f ' .  
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PROOF. Clear.  

The next propositions guarantee that conditions can be extended to add 

arbitrary levels and arbitrary points on an already present level. The proofs are 

obvious and will be omitted, except to say that the K-branching trees of (2.8) are 

used in the proofs of (2.10), (2.11) (as well as in (2.14)), and that in (2.11) (adding 

levels), sometimes more than ~ must be added to x' in order to respect the last 

clauses of (2.5)(i). 

(2.8) DEFINITION. A K-normal tree t is K-branching if, letting 0 = ht(t), 

there is a 1-1 function (b x : x E t) such that for x E t, x E b x is a branch of height 

0. Note that if t is K-branching then for all x not on the top level there are at 

least K branches of height 0 through x. 

(2.9) PROPOSITION. If (x, t, f )  E P, there's K-branching t' such that (x, t', f )  >= 

(x,t,f). 

(2.10) PROPOSITION. If (x, t, f )  ~ P, if;, < K ++, i/K + . a is the largest multiple of 
K which is <= v, and if a ~ x, then there is (x, t ' , f )  >= (x, t , f )  with 7: E t'. 

(2.11) PROPOSITION. If ( x , t , f ) E  P, ~ E K ++, there is (x',t',f)>= (x,t ,[) with 

~ E x ' .  

(2.12) We now begin to develop certain properties of P which will help to 

establish the K++-c.c., assuming 2*=  K +, and, as mentioned above, serve to 

motivate the general notion of S-forcing. We shall define "contractions"/~ of 

elements p E P. The set of contractions will have power K*, assuming 2* = K +. 

Two elements pl, p2 will have the same contraction just in case, roughly 

speaking, pl and p2 have the same underlying structure, and differ only in that, 

letting p~ = (x~, t', ~), the "sets of indices" x l, x2 are different (though part of the 

meaning of having the same underlying structure will be that o.t. Xl = o.t. x2). 

So, let p = (x, t, f )  E P. Let s = (a~ : i < 0) increasingly enumerate x. Let s = 0. 

Define o', on U,<0 [K + . a,, K + . (a, + 1)) by: 

((K +. ,7) = (K +. i ) +  n. 

Let o-,* be the extension of tr, to *[dom o-,] by pointwise images, i.e. tr*((~i : i < 

K ) ) = ( m ( ~ J : i < K ) .  Let i" be the normal tree isomorphic to t by o',. Let  

[ = [o (tr .)-1, i.e. f(o'*, (a), tr*, (b)) = f(a,  b). Then iff = (~, t, [ )  is the contraction 

of p. Since :~ = 0 < K +, set lgff = 0 and note that i E  [K + . (0 + 1)] <*+. Then it is 

clear that if 2* = K + then f f  = {p : p E P} has power K +. 
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(2.13) Our goal is to show that P has the K§ assuming 2 K = x +. Once this 

is done it is clear that in V P there is a X § tree. We will prove a 

very strong form of K§247 in the following way: we will show 

(*) (Amalgamation Property) If pl = (xl, t l , f l ) ,  p2 = (x2, t2,f2)~ P, if i0~ = #2 

and x~, x2 have the strong A-property, then pl, p2 are compatible. 

First, let's see that if 2 K = K + this gives K§247 Suppose A E [P]'§247 Then 

there is B ~ [A ]'++ such that all elements of B have the same contraction and 

{x ~ : p ~ B} forms a strong A-system, where for p ~ P, p = (x ~, tP, f ' ) .  But then 

by (*), the members of B are pairwise compatible and hence A was not an 

antichain. 

(2.14) We now turn to the proof of (*) of (2.13). Suppose p,, p2 are as in (*). 

Let i0, =/~2 = (0, t, f )  and let s ~ = (a~: j < 0) increasingly enumerate x~ (i = 1, 2). 

= 1 < 2 for j0 - j < 0. By (2.9) we Let jo < 0 be such that s 1 [ jo s 2 [ j0, but (say) a j a jo 

may clearly suppose that i and hence P, t 2 are x-branching (in fact, only t '  need 

be K-branching and only if 0 E Lim). 

The only problem is to respect (2.5) (iii) (and hence the "K-many" version of 

(2.2) (*)). The typical situation which could arise is that we have (a, b ) E  
[Lev~ (t 1)]2, (a, c) ~ [Lev, (t2)] 2, fl(a, b) = f2(a, c), range a C_ [K +. S 2, K +. (s] + 1)), 

range b _C [K +. s ~1, K +. (S ~, + 1)), range c C [x +. s ~, X +. (S ~ + 1)) where j < jo, 

/r162 > jo. Then, in weaving t 1, t 2 together, we must guarantee that for K many ~, 

b~ will precede c~. The approach is to run a height 0 branch through t ~ which 

contains b~, and appoint this branch to be the set of predecessors of de where de 
is the t 2 predecessor of c~ on level jo, 

J 

common 
part 

"tail" 
of tl 

I 

[ 

"tail" 
of t 2 

and to do this for K-many ~. 
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There are two things to notice first, to wit: 

(1) d is 1-1 (i.e. for ~#  ~', d~# d~,): this is because, since a ~2r and the level 

of a in t 2 (i .e. /)  is less than the level of d in t z (i.e./0), we must have a ~ 2 d and 

so d is 1-1. 
(2) For K-many ~ <  r, the set of t 2 predecessors of d~ C_the set of t l- 

predecessors of b~. This is argued as follows: let c' be "the replica of c "  in t 1, i.e. 

for s c < r, c~ = ~r,,(cr~-~(q)). Then /l(a, b ) =  fl(a, c'), so that for K-many s r < r, 

be, c'~ are comparable. Hence for x-many ~: < K, d~ is the t'-predecessor, on 

tLlevel/0, of b,, where d' is the replica in t '  of d. 

Finally, since there are only g-many situations of the sort outlined above, 

enumerate them in type r, with r repetitions of each situation. By (1), (2) above, 

by the fact that at any stage we've chosen < r branches so far, and the fact that 

t I was assumed to be r-branching, we can inductively choose ~'s and branches as 

desired, in a 1-1 manner. 

This means that all requirements stemming from the need to make f~ U f2 

satisfy (2.5) (iii) have been met. Now continue weaving together t 1, t 2 essentially 

arbitrarily. Add new points, and possibly new levels, and then rename points if 

necessary to guarantee that (2.5) (i), (ii) are satisfied. Call the resulting tree t and 

its set of levels x. Then (x, t,f~ U f2)>-p~,pz. 

(2.15) (a) Suppose z = (0, t, f )  E if, and s : 0 ~ r ++ is increasing, r "acts on"  s 

naturally to give p = (x, t, f )  ~ P, with x = range s and i6 = r (merely reverse the 

construction in (2.12)); p will be denoted by ~-(s). 
(b) Suppose p = ~'(s)>=q = r'(s'). Then, clearly we must have ranges _D 

ranges ' ;  i.e. there is a unique increasing g-lgs '---~lgs such that for i < l g s ' ,  

S'i = Sg(i). 

(c) (Indiscernibility Proper ty)Suppose  r(sL), r(s2), § §  and 

suppose that r(s  1) >= § Let g : lg gl ~ lg s i be as guaranteed by (b). It is then 

easy to verify that if: 

- -  2 (*): for all i <Igg2( = lgg~), g~ - s,(o, 

then 

(**): 

This says that from the point of view of ~-, $, the pair s ~, g~ is indiscernible from 

the pair s 2, g~, provided that the co-ordinates of g2 are distributed among the 

co-ordinates of s 2 in the same way that the co-ordinates of g~ are distributed 

among the co-ordinates of s l  
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(d) (Sufficiently Generic Sets) Suppose D is a dense subset of ~r (with the 

ordering_- > I ff). Set p E D "  ift p = r(s)  for some r E D  and increasing 

s : Ig ~- ~ K §247 A subset of P is uniform dense just in case it is D # for some dense 

D C f f .  
If D is a dense subset of f f  and G is an ideal in P then G meets D ~' uniformly 

if[ 

(,) O's [K+§ 
[ranges C ranges '  and l g s ' =  z and ~'(s')E G]. 

Note that if G meets D # uniformly, then G meets all the D~ = 

{z(s) E P : a E range s}. 

For a < r § 2 4 7  let /~=[K+.ot ,  r §  and if i < K §  let I ~ =  

[K§ Assuming 2 " = K  § let ((gi, h , ) : i<K § enumerate 

{(g,h):g,h : K---~ K § are 1-1}. If ot < K § let '~ y"~ x , be the K-sequences from I~ 

'.~ . )+ y~=(K+.a)+h, (~) .  defined by: xe =(K + a gi(~), 

For i<K +, if ~'=(0, t , T ) E f f ,  set r ~ D i  if[ for all ~ < 0 ,  I~C_t- and if 

< ~/ '< 0, then range x ~'~ U range y~"' C_ t, and if (x~",yi'~')E [Lev~ (i)] 2, then 

(x ~'~, y ~'~')E dom/~ Thus, in virtue of (2.6), (2.7), (2.10), (2.11), each D~ is a dense 

subset of ft. 

Assuming 2 ~ = K  +, G is sufficiently generic if G meets all the 

D :  uniformly, i < K +. 

The justification for this terminology is that, if G is sufficiently generic and if 

T = I~lp~o t p, F = I.Jp~6 fP, then T is K ++-super-Souslin with F as witness. This is 

argued as follows where, for p E P, p = (x~,tP,/P). 
Clearly T is a normal tree of height K ++ and for a < K ++. T~ = I~. We must see 

that if (a,b)E[Lev,(T)]  2 then (a ,b)EdomF.  So, let a </3 < K ++, i < K + be 

such that a = x ~, b = y~'~, choose s E [K+§ <'+ with a,/3 E range s, and let z E if, 

s 'E[K++] <'§ be such that ~" ED~, ~-(s') E G, ranges _Cranges'. Let p = ~-(s'). 

Clearly a, b are level sequences from t ~. Also, since (a, b ) ~  [Lev, (T)] ~, we must 

have that (a, b )~[Lev . ( tP) ]  ~ (since otherwise for some g < x, a~ is not the 

predecessor on level a of be in t ' ,  but then not in T either). But then, since 

p = ~-(s'), z ~ D~, by our choice of i, (a, b) ~ d o m f  ~ C_ domF.  

(2.16) It will be a consequence of the right to left implication of Theorem 1 

that if 2" = K + and there's a (K +, 1) morass then there is a sufficiently generic 

G C_P, and hence that there is a K§ tree. Further, assuming 

2 ~ = K +, and that K ++ is, in L, a successor cardinal, it is easy to find A _C K + such 

that ~(K)C_ L[A] (and hence Ix++]<'§ C L[A]), and K ++= (K++) t~A~. This argu- 

ment permits us to prove: 
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THEOREM 2. 2" = K § ^ SH,** f f  K §247 is (inaccessible)L. 

PROOF. It is well-known that in L[A] (A as above), there is a (K § 1)-morass 
(cf. [12]). By the absoluteness properties of L[A], a (K § 1)-morass in L[A] is 
actually a (K § 1)-morass in V (the morass properties are all absolute, modulo 
cardinality). 

Hence there is a K++-super-Souslin tree (in V) which has a K+§ 
subtree. In fact, if T is K§ in L[A ], T is K§247 

w S4orcing 

In this section, we present the general concept of S-forcing, of uniform dense 

sets and filters meeting them uniformly, appealing to the motivating example 
analyzed in w We prove a simple lemma about constructing conditions in 
S-forcing notions. This will serve in the proof of the right-to-left implication of 
Theorem 1. We also include some material which provides a translation between 
our principles S~ and Velleman's forcing principles [14]. 

Our original treatment of S-forcing differed in the following sense. The 
Restriction Property (3.8), below, was assumed, and the partial order was 
required to be/z-directed closed. 

In the course of providing the translation between our principles and 
Velleman's, Stanley realized that the Restriction Property could be dropped, but 
at the cost of a slight strengthening of /z-directed closure. He subsequently 
realized that in the presence of the other properties of S-forcing, the conjunction 
of the Restriction Property and /z-directed closure imply strong /z-directed 
closure (see (3.11), below). Accordingly, in the presentation below, the Restric- 
tion Property has been dropped and an S-forcing notion is required to be 
strongly-directed closed. 

Further, in w the proof of the right-to-left implication of Theorem 1 is a 
modification of our original proof, when we were assuming the Restriction 

Property, and incorporates an idea coming from Velleman's proof [14] of the 
equivalence between the existence of morasses and his forcing principles. We 
thank Velleman for permitting us to use this material here. 

(3.1) In what follows, we shall consider forcing notions P = (P, -> ) which we 
shall call ~z-special and which have the following properties: 

(a) The elements of P have the form ~'(s) where ~- E ~ is a "term", and s is an 
increasing sequence from /z+ of length lg ~-, an ordinal depending on z, with 
lg ~" < /z  ; further, all of the ~'(s) (~" E 8r, s E [/z+] ~g') are elements of P. (Remark: 
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if we're actually going to force with P it's natural to require that card ~r = / z ;  this 

usually amounts to assuming 2 <~ =/~. However,  this is not necessary for the 

principle S,. On the other hand, as in w we may need 2 <" = /z  to show that the 
required collection of uniform dense sets has small cardinality.) More succintly, 

viewing ~'(s) as the pair (~, s), there is a set f f  and a function lg, 

Ig: ff"->U such that P = 1.3 {z}x[/z+] 'g'. 
TE.ff" 

Further, exactly one term O~ has length 0; O~-(O) will be denoted by Op and 

will be the trivial condition. Intuitively, the terms z "operate  on" all increasing 

sequences from/. ,  § of a certain length, lg ~- </z,  appropriate for ~-, to give the 

elements of P. In w the terms are the "contractions" of conditions (cf. (2.12), 

(2.15) (a)), the length, lg ~-, of ~" is 0, where z = (0, t, f ) .  In the general setting as 

well, the term ~" may be thought of as I" (id I lg ~-) and hence as lying in P. We'll 

write z' > ~- for z'(id I lg(z')) > z(id I lg ~'). Also, for p E P, we'll write p = zP(sP). 

(b) ~"(s') >-_ z(s) ~ range s' D_ range s. 

Note that in w r § plays the role of/z .  

(3.2) REMARK (corresponds to (2.15)(c)). If P is /x-special, q = z(s), p = 
z'(s') E P and p ->_ q then there is a unique order-preserving g : lg r ~ Ig ~" 

(recall that l g ,  = lg s, Ig ~" = Ig s'), such that for i < lg % si = s~0). This is clear by 

(3.1)(b). 

(3.3) UmFORM DENSE SETS 

Suppose P is /~-special, D _C N is dense. Set p E D # iff p = r(s) for some 
r ~ D, and increasing s : lg z --~/~+. A dense subset of P is uniform if it is D *  for 

some dense D C_ J-. 
If D C ~r is dense and G is an ideal in P then G meets D *  uniformly if 

(,) (Vs 

[range s _C range s '  and lg s' = Ig r and ~-(s') ~ G]. 

Note that if G meets D ~' uniformly then G meets all of the /9, = 

{ z ( s ) E P : a  Granges},  a < / z  +. 

For the remainder of this section all P are Iz-special. 

(3.4) DEFINITION. P satisfies the Indiscernibility Property (cf. (2.15)(d)) iff 

whenever I"(sl), ,(s2), .~(~1), $ (g2)~p ,  if r (s l )> '~(~t) ,  if g :lg$---~lgl- is as 

guaranteed by (3.2) for ~'(sm), $(~) ,  and if: 
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2 (i.e., if the same g works), then: (*) for all i < Ig~ ,  g~= sst o 

(**): 

(3.5) REMARK. If P satisfies Indiscernibility, then P is completely determined 
by: (a) the function lg: ~---->/x, (b) a function K with d o m K =  ~ r x ~  and 
K(~', I") a (possibly empty) set of order-preserving functions from lg ~" to lg ~-' 

(K tells us all the possible functions g as in (3.2)). 

(3.6) DEFINITION. P satisfies the Amalgamation Property (cf. (2.13)(*)) if[ 
whenever  ~-(s), ~-(s') ~ P and (s, s') has the strong A-property then r(s) ,  r (s ' )  are 
compatible (r(s),  , ( s ' )  need not have a lub). 

(3.7) DEFINITION. P satisfies the Extension Property (cf. (2.11)) iff whenever  
p = ~-(s)E P and ~ < /x  +, there is r'(s')>-_p with ~ Grange  s'. 

(3.8) DEFINITION. P satisfies the Restriction Property if[ there is a function 

r : f f  x/X --> ff  such that: 
(a) if lg~--<_ r/</X, then r ( , , r / ) =  ~, 
(b) if r / <  lg ~', lg(r(~', ~/)) = r/, and for all s E [/x+]'g*, z(s) > r(r, ~?)(s [ r/), 

(c) r(% r/') = r(r(,, ~i), '1') for all 71, ~/'</X, 
(d) if r(s)_->?(g), let g be as guaranteed by (3.2); let ~</X,  and let 

r / =  sup g"O; then r(~', ~?)(s I ~7) --> r(?, ~)(g 1 4)- 

(3.9) DEFINITION. If p ~ P, set p = ~-P(sP). Suppose P is/x-special. Then P is 
strongly ~x-directed closed iff whenever  D E [P]<~ is directed, there is an upper  
bound p * for D with range(s p') = U ~ D  range(sP). Note that P of w is strongly 
/x-directed closed. 

(3.10) REMARK. Suppose P is/x-special  and indiscernible. 
(1) P is /x-directed closed if[ P satisfies the apparently weaker  property: 

(*) w h e n e v e r / 5  E [P]<~' is directed and for ~ E /5 ,  range(s p) C_/x, there's an 
upper  bound fo r /5 .  

This is argued as follows. Let D E [P]<~ be directed, and let s* be the 
increasing enumerat ion  of U ~ o  range(sp). Let 0 = lg s*. For p E D, let gP = 
(s*) -lo s p, so range ~P C_ 0 </x. Further,  /5 = {z~'(~P):p E D} is directed, by 

indiscernibility. So, /5 has an upper  bound /~*  = z'(g') and range ~ 'D 0. Let 
0'= o.t. ~', and let s '  be an increasing function with length 0' and such that 
s '  I 0 = s *. Then p '  = ~"(s') is an upper  bound for D, by indiscernibility, since 10 is 
an upper  bound fo r /5 .  
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The same argument shows that: 
(2) P is strongly/z-directed closed iff 

(**) whenever/5 E [P]<" is directed and for i0 E D, range s p C Ix, there's an 
upper bound/~* f o r / )  with range s r =  Up~D ranges p. 

Further, the argument of (1) can be used to show: 

(3) If P is Ix-directed closed with the Restriction Property then P is strongly 
/z-directed closed. 

The point is that the upper bound p'  obtained in (1) has the property that 
range s p' is an end-extension of range s*. Hence we can apply Restriction to 
conclude that r(z', 0)(s' I 0 )=  r(~",O)(s*) is an upper bound for D (by the 
monotonicity of the restriction operator). 

(3.11) DEFINITION. PGSe,, (P is a /z-S-forcing notion) iff P is Ix-special, 
satisfies Indiscernibility, Amalgamation, Extension and: 

P is strongly/z-directed closed. 

Give a Boolean algebraic characterization of {B(P):P E (3.12) QUESTION. 
~.}. 

0.13) PROPOSITION. Suppose P E 5e~, p = z(s) ~ P, range s _C ~: </Z. Then 
there is ~"(s') >= p with s' D_ id I ~. 

PROOF. Using Extension, and just r-closure, it's easy to produce such ~"(s'). 

(3.14) A Translation Between S~ and Velleman's Forcing Principle for tx 
The basic notion in Velleman's forcing principle, [14], is that of an indiscerni- 

ble family of dense open sets. So, let Ix > to be regular, P a partial ordering, 
= (D~:a </Z+) a family of Ix+ dense open sets. For p ~ P, let realm of 

p = r l m p = { a  :pED, ,} .  For t~>/z § let P, ={p : r lmp Cot} and let P * =  
U~<.Pa. So P*C_P,.. 

is Ix-indiscernible itt: 
(I1) P* ~ O and (Va </Z)(D~ f3 e*)  is dense open in P* = (P*, =< ). 
(12) (rot < IX)P~ = (P,, =< ) is Ix-directed closed. 
(13) For all increasing [ : a ~ 1/with a < Ix, 3' < Ix § there's order-preserving 

oi : P~ ~ P,, such that: 
(14) (Vp E P~ ) (rim o'I (P) = [" rim p). 

(15) (Amalgamation) If y < Ix, if /3 < t~, [ I/3 = id I/3, [(/3) -> or, then p and 
o'I (P) are compatible in P*. 
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(16) (Commutativity) (fl:al---~a2, fz:az'-'~% al, a2<ix, 'y<ix+,  fl, f~ 
increasing) ~ 00i~or = 00f2 ~ 00i,. 

Velleman introduces weakenings and strengthenings of this notion. The 

weakening is obtained by not requiring the D~ to be open dense (though still 

requiring (I1)), and by modifying (I3) so as to require the existence of o~ only for 

nice functions f (which Velleman calls "SLOP" functions). In this case (D~ : a < 

IX § is called almost Ix-indiscernible. 

(3.14.1) The strengthening is obtained by imposing additional requirements 

(I7)-(I12); (I l l) ,  (112) will not be important for us here, so we won't  state them 
here: 

(I7) If D E [P]<~ is directed then D has a lower bound p* with r lmp * =  

Up~o rlmp. 

(18) (Vp E P)  card rim p < IX (so P* = P,,). 

(19) If f :a-- -~y is increasing, a <IX, 7<IX § and 00f(p)<=00f(q)then p <q .  
(I10) If p E P, there's unique q with rim q = a < IX and increasing f : a ~ IX § 

such that p = 00r (q). 

(3.14.2) PROPOSmON. (a) (P,@) satisfies (I1), (I3)-(I6), (18)-(110) iff P is 
Ix-special, Indiscernible satisfying Extension and Amalgamation, and for o~ < IX +, 
/9, = {p : a E range sP}. 

(b) Further, in the presence of (I1), (I3)-(I6), (18)-(110), (P, @ ) satisfies (I2) iffP 
is Ix-directed closed, and (P, @ ) satisfies (17) iff P is strongly IX -directed closed. 

PROOF. (a) The proof of the left-to-right implication, read backwards, proves 

the right-to-left implication, so we assume (P, 9 )  satisfies (I1), (I3)-(I6) and 

(I8)-(I10). Let ~r = {p E P* : r lmp ~ IX}, and for p U 5 r, let lgp = rim(p). If 

s :lgp-->ix + is o.p., let p(s)=00s(p). If there's more than one p E f t  with 
rlm p = 0, then throw away all but one; if there's none, add one. In either case 

call the one we now have 03.  The verifications are clear, and are left to the 
reader. 

(b) The proof of (b) is dear  from the above and from (3.10) (1), (2). 

(3.14.3) Velleman proves (Definition 1.1, Lemmas 1.2-1.5, Lemma 1.7 and 

Theorem 1.6 of Chapter II). 

LEMMA. Let (P ' ,~ ' )  be almost Ix-indiscernible and let (E~:~'<IX) be a 
sequence of sets dense in P'. Then there's (P, ~ )  which is Ix-indiscernible and 
satisfies (I7)-(I10) (as well as the additional properties (111), (I12)) with the 
property: I f  there's G which is P-generic / ~  then there's an ideal G' in P' which 
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meets all the D ' .  Further, if G is tz-complete, then so is G', and in this case G'  

also meets the E'o 

In his proof, Velleman assumes (12) holds for (P', ~ ' )  and concludes that the 

(P, ~ )  he constructs also satisfies (12) as well as (17). However,  examination of 

his proof shows that if we no longer require (I2), (17) for (P, ~ )  then only a rather 

weak closure property need be imposed on the P" (a </x) .  Further, the P~ 

(a < / z )  (and hence P, in the presence of (18)--(110)) inherit/z-strategic closure 

from the P ' .  This will be important in the sequel. The sets (E~: ~ < /~)  

correspond in a clear fashion to uniform dense sets in our treatment. 

Velleman's forcing principle is then: 

(*) Whenever (P, ~ ) are/.~ -indiscernible and also satisfy (I7)--(I12), there is a 

/~-complete ideal G which is P-generic/~. 

By the above, this translates to: 

(**) Whenever P is /x-special, Indiscernible, strongly /x-directed closed 

satisfying Extension and Amalgamation, there 's /z-complete  G which meets all 

the D~. 

w More examples 

EXAMPLE 1. Forcing a weak [-lK-principle with K-directed closed conditions o[ 

size < K 

(4.1) Let K > to, K regular. Consider the following weakened version of 

Jensen's principle [=L : 

weak [-I~ : there is a subset A C K + all of whose members are limit ordinals 

and which contains all a < K § with cf a = K, and a sequence (Ca : a E .4) such 

that for a E A, 

(i) C~ C a is club of order-type < K, 

(ii) if /3 is a limit point of C~ then/3 E A and C~ = C~ A ft. 

If we require that A consist of all the limit ordinals < K +, then we get back 

[]~. For K = N1, weak O~1 ~ F-~N 1 since off A we can fill in by supplying cofinal 

subsets of order-type to. It is easy to derive weak [ ~  directly from a (K, 1)- 

morass, so the following example, forcing weak O~ with conditions of size < K, is 

presented essentially for motivation, but will also figure in w 

(4.2) DEFINITION. p E/5  iff p = ( a , c ) ,  where a E[K+] <~, C = 

(c~ : a ~ Lim f~ a )  are such that: (i) a # 0 ~ there is a E Lim A a with cf a = K, 
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(ii) for o~ E Lim O a : c~ is a closed subset of a which is cofinal in a if cf a < K, 

and such that if/3 ~ c~ then/3 ~ a, and if/3 E c * then c~ = c~ N/3 ; further (iii) if 

cf a = K, then max ca = sup a O a. 

(a , c )<(a ' , c  ') iff a C a '  and for o~ E a ,  c" is an end-extension of ca. 

(4.3) PROPOSITION. P is K-closed with least upper bounds. 

PROOF. If ((a~,c~): i < 7)  is an increasing chain with 3~ < K, then set t~ = 

U~<,a  ~, and if a ~ L i m n a  ~, set 6~ = U~j<~c~.  If a ~ L i m n a  and c f a  =K, 

set 8~ = sup 6~ ; set 

a = ti U { ~  : a  ~Ea and c f a  = r}, 

and for a E Lim Nt i  and cf a = K, set c~. = ~ ,  c~ = c, U {8,}. Clearly (a,c) is 

the lub of the (a ~, c~). 

(4.4) PROPOSITION (Amalgamation Property). If (a, c), (a', c ' )~  P, if a, a' 
have the strong A-property and c, c' agree on Lim D a' then (a, c), (a', c') are 

compatible. 

PROOF. (a U a ' ,  c U c') is a condition, unless, letting (a \ a ' ) ~  (a ' \a )  and 

letting a '  = inf(a '  \ a),  a '  E Lim and cf a '  = K. In this case, simply add max a to 

(4.5) PROPOSITION (Extension Property). If (a, c) E P, /3 < a < K § and 
cf a = K there is (a', c') > (a, c) with a E a' and max c" >/3. 

PROOF. Clear. 

(4.6) DEFINITION. Let  X '  be the set of ordinals less than K § which are 

(ordinal) multiples of K and let X be the set of K-COfinal limit ordinals less than K 

(so X C_X'). a E[K+] <~ is nice ill ot E(a  N X ' ) \ X  ~ a E(a  D X )* ,  and a = 

U , ~ n x , ( a  n [ a , a  +K)). P = { ( a , c ) E P : a  is nice}. P =  (P,_->). 

(4.7) It's easy to see that (4.3)-(4.5) go through with P replacing P. To fnish 

this example, we shall content ourselves with briefly describing the set of terms, 

how terms act on sequences to give conditions, and which densities are covering 

systems. The indiscernibility property will be clear. 

Let  (a, c)  E P. Let  s = (a~ : i < o.t.(a O X))  increasingly enumerate  a n X. For 

i < o . t . ( a O X ) ,  let trZ~(a~)=the i th element of X, trZ~(0)=0, and if 

/3 E ( a n  X * ) \ X  (so, since a is nice, /3 E ( a n  X)*),  trZ~(/3) = 

sup~onxn~ o';~(~). Finally if 3' < K, c~ E a n X ' ,  crZ~(a + 3') = cr ; l (a)  + 3'. Then  

ti = trZ~[a] and for a ~ a, ~ ~ , )=  o'-;~[c,]. 
(ti, 6) is the contraction of (a,c) and ~, the set of terms, is just the set of 
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contractions which is the same as {(a, c) E P : a n X is an initial segment of X}. 

The action of terms on increasing sequences is obtained by reversing the 

preceding construction. 
If i < K, ~" = (fi, ~) E ~r, set z E D~ if (t~ E ti and cf a = K) ~ ~ has order-type 

i. Clearly each D~ is dense in f f  and if G is an ideal meeting each D ~  

uniformly, if A = l , . J p ~ o a  e, C,,=[,.J{c~:aEaP, p E G }  for a EA,  then A 

contains all points of cf r and (i) of (4.1) holds. It remains only to see that if 

a E A and cf a = r, then C~ is cofinal in a. Let /3 = sup C~. Clearly Ca has 

order-type r so that cf/3 = K. But then if/3 < or, there is (a, c) ~ G with/3, a ~ a, 

and so max c~ =>/3 which is impossible. 

EXAMPLE 2. Two-gap-two-cardinal models via forcing, fi la Burgess 

(4.8) The following is, again, essentially for motivation, as it furnishes a new 

proof of Jensen's two-gap--two-cardinal theorem from morasses, but no new 

result. Accordingly, we permit ourselves a certain latitude in passing over some 

details which the interested reader can verify easily enough. The forcing 

conditions presented below are due to Shelah. Burgess [2] first exploited similar 

conditions to add two-gap--two-cardinal models directly via forcing. D. Velleman 

has found a similar modification of Burgess's conditions. It would be helpful if 

the reader were familiar with Burgess's paper [2] or with the model theoretic 

lemmas involved in Jensen's proof of the two-gap theorem from morasses (see 

[3]). 

Let K be an infinite cardinal, and assume GCH.  Let T be a first-order theory, 

in countable language L~ which has a distinguished unary predicate symbol U0, 
such that for some infinite A, T has a (A +§ A) model. Add to ~ another unary 

predicate symbol UI and two binary predicate symbols, <J, E, and let T' be the 

complete theory Th(M),  where M = (H,.+, A, A § E , . . .  }, where A inter- 

pretes Uo, A § interpretes U~, <~ interpretes <i, E interpretes E, <1 is a well order 
of H,** in type A §247 which extends E and has A § as an initial segment, and where 

some (A ++, A ) model of T has been isomorphed onto (H, ++, A, . . .  ). Thus T'  D T. 

Suppose 92~T' .  Let U~=I921\U~,  and for bEI921,  let Yb= 

{a ~1921:a<ab}. Then, there is a unique c el921 such that for all b el921, 
bE~c r b E Ya. Further, for this c there is unique f E 1921 which is minimal in 

1-1 UI"  the sense of ~ a  for the property: 92 ~ " f : c  > . This [ gives rise in the 
obvious way to a 1-1 map of Y, into U~ which is 92-definable from a. 

Accordingly: 

(a) if 92 < ~ ,  92 ~ T' and U~ = U~, then ~ is an end-extension of 92 in the 

sense of < #  (and hence in the sense of E~). 
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(4.9) Let M, T' be as in (4.8). Since M ~ " R e f l e c t i o n  Scheme for ~ ' -  
formulas", we have for all 9.1 ~ T', all LP'-formulas q~(v): 

(a) 91 ~ ( V a ) ( 3 b ) ( a  <1 b ^ (Vv <1 b)(~o(v) r q~v~(v))), where ~pv~ is the re- 
lativization of ~ to Y~. 

Therefore, if 91 is saturated, if a 1911, then ES,  (w) = 
{(Vv <lw)(q~(v) r q~v-(v)) : q~(v) an ~'-formula} to {a ~w} is realized, i.e. {b E 

191 [: 91 [ Yb < 91} is cofinal in (1911, <#). Also, by saturation, K = card [911 is 

regular and K = cf(1911, ' ~ ) .  

Now suppose that 91~ES(b )  and that F(w) is a 1-type over 91 with < K 

constants, all from Yb. Then F(w) tO {w ~b} is also a 1-type over 91, as is easily 

seen applying (a) to (3w)(Oo(w)^  . . .  ^ O,-l(w)), where Oo, . . . ,O,_ lEF(w) .  
Hence F(w) tO{w,~b}  is realized in 91 and hence in 91[Yb: i.e. 911Yb is 

saturated. 

If 91 ~ T', card 1911 = K, then 91 is layered itt Uo ~ = K, U~ is an initial segment of 

K +, U~C{K+*\K+)XK +. For layered 91, let X ~ = { a < K + + : ( 3 / 3 < K  +) 
(a,/3) E U~)}, and let X~ = {a E X~ : a is a successor or cf a = K +}. 

91 is nicely layered iff 91 is layered, K+~ Xa and 

(i) a E X~ ~ (a, 0) E 1911, and if a > K +, then Yr,,o) = 

uP u{(a',/3)~1911:,~'< a}, and 91 ~ES((a ,0 ) ) ;  further, a ~X~\ J?~  ~ X~ is 
cofinal in a. 

(ii) Xa = X~ tO (X'a)*, so that, in particular, X~ is closed. 

Note that by (i), if (a' , /3'),  (a,/3) E [91 [ and a '  < a, then (a ' , /3 ')  " ~  (a,/3). 

(4.10) Now assume K > tO is regular. Fix 91o ~ T' of cardinal K, Uo ~~ = K, U~ ~ an 

initial segment of K +, 191o[ _C K +. 

DE~INmON. Set 91 ~ P iff 91 = 91o, or 91 ~ T' is saturated and nicely layered. 
For 91, ~ P ,  91=<~ iff 91 =91o or 91 < ~3. P =  (P,=>). Let P '  =e\{9io}. 

(4.11) Jensen's crucial model-theoretic lemma is (cf. [3], chapter 14, lemma 7, 

pp. 17%181, or [2], lemmas 1.2, 2.2, pp. 3, 4): 

LEraMA. Suppose g ~  T', 91 is Uo-saturated, card[911 = K, a ~ U~ and 
91 ~ ES  (a). Then there are 91', j such that 9.1' is Uo-saturated, card [ 91'1 = K, 

U~o = U~o" and: 
(i) j : 91 ~ 91' is an elementary embedding, j [ Y. = id[ Y., 
(ii) 91 < 91'[ Y/t-) (so that in particular x ~ [ 91 [ ~ x <! n' j(a)). 

Note that, since 9 1 ~ E S ( a )  and since j is elementary, 91'~ ES(j(a)) ,  so that 

91' [ Y/t,)< 91', whence 91 < 91', by (ii). 
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(4.12) We shall need the following consequence of (4.11). 

COROLLARY. Suppose f~ is layered and that (i) in the definition of nicely 
layered holds for ~ .  Suppose f~ < 9~, 9.1 is Uo-saturated, card =- K, Uo -- Uo -- 

K. Suppose ~ ~. x ~ ,  K + < a and ~ has the following properties : 

(i) (a ~ Lim ^ cI ~ < K) ~ (X~ A a)  is cofinal in a. 
(ii) (a a successor ordinal or c i a  = K) f f  o.t.(Xe tq a ) ~  Lira. 

Then there's layered, saturated ~ '  with c a r d l ~ ' l  = ~, U0 ~ ' =  K, ~ < ~ '  and such 

that (i) o[ the definition of  nicely-layered holds for ~'. Further, there is h : 9~ ~ ~ '  

an elementary embedding with h II = id II ~1. Finally, let 4 = sup X~. Then ~ '  

can be taken with X~ t_J {a} _C X~. C_ X~ t.; {a, a}. 

PROOF. Note that by our assumptions on a, if a > 4, then (c~ is a successor or 

c f a  = K) and 4 ~ X ~ .  Let / 3* - - in f (X~\a )  if t~ < a ;  otherwise, let /3*= 

inf(X~ \ r § + 1); set a = (/3", 0). 

Note that by (i) in the definition of nicely-layered, /3 * E X~. 

We'll apply (4.11) to 9~ and a to obtain 92, i as in (4.11). By U0-saturation of 

9.1', find 9.l", a saturated elementary extension of 92 of power K having the same 

/-7o. We'[i define h ' :  92"---> ~ '  an isomorphism. We'lI define h' by describing how 

to rename elements of I t"l in a 1-1 fashion. When t~ => 4 we'll have h'll l-- 
idl I 1, and we'll take h = h'. When a < 4, we'll have h'o j  i1 1 =idll l, and 

we'll take h = h'o ]. So, define k to be idll  lif --> 4, and k = j I I ~1 otherwise. 
So, h '  is the identity on U~, and we use the least available members of K § to 

rename the elements of ~" U~ \U~. We shall first say how to proceed when a => 4. 

Then, for the case when a < 4, we shall assume without loss of generality that 
4 E X~, since by what we'll have already proved, we could simply add ci first, 

and then proceed to add a. Before this division into cases, we make some 

definitions which hold in all cases. Let x E U a'z �9 There are two possibilities: 

(a) there are /3 E X ~ ,  y, y ' <  ~+, such that (/3, y)  <l~ (/3, y'), and x is a 

member of the half-open <l~-interval [k(/3, y), k(/3, 3")); le t /3(x)  = the unique 

such/3;  

(b) otherwise. 

Our treatment of (b) will differ, according to the cases, but if x falls under (a), 

we shall always rename x to be (/3(x), ~) for some ~: ~ r+ with (/3(x), ~ ) ~  I 1. 
The renaming will choose distinct ~'s for distinct x's. 

So, first suppose that a = 4 (so k = id I1 1). If x ~ U~" and falls under (b) 

above, then for all y ~ I ~1, Y <la" x. Rename all such x 's  to be (or, ~:) for some 
~: ~ r+;  the renaming will choose distinct ~:'s for distinct x's. 

Suppose now that a > 4 (by hypothesis, in this case, & ~ X~, and again 
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k = id [ [ ~3[). If x ~ U~" and falls under (b), we distinguish two further pos- 

sibilities: 
(bi) x <l~'j(a);  then rename x to be (4,~) for some ~ E K § such that 

(4, ~)~[~3J;  the renaming will choose distinct ~'s for distinct x's, 

(bii) j ( a )  = x or j (a) 'O~"x; then rename x to be (a, ~) for some ~ < r § and 

require that j ( a )  is renamed to be (a,0), as well as that distinct 

~'s be chosen for distinct x's. 

Now suppose that a < 6, and recall that we're assuming 4 E X~, and that 

k = j [[ ~3 [. The proof now divides, depending on whether a = sup (X~ N a).  If 

so, and if x ~ U~" and falls under (b), we distinguish the following possibilities: 

(bi') for all/3 E X~ N a, (/3, 0 ) .~"  x, but x ~ " j ( a ) ;  rename x to be (a, ~) for 

some ~, etc., . . . ,  
(bii') j (4,  0)<l~"x ; rename x to be (4, ~) for some ~ < r§ the ~'s are required 

to be distinct, and also be distinct from those ~'s chosen for y 's  falling under (a) 

with fl (y) = ~. 
Finally, if a < 4  and a > sup(X~ ~ a) ,  we distinguish the possibilities: 

(bi") x <~~ then rename x to be (a, ~), etc.; 

(bii") j ( 4 , 0 )<~ "x ;  rename x to be (4, ~), with the stipulations of (bii'). 

This completes the definition of h'  in all cases. The verifications are left to the 

reader. 

(4.13) As a result we have: 

LEMMA. P is K+-directed closed. 

PROOF. The union of a <-di rected system of size _-< K of Uo-saturated 

models of T' having the same interpretation of Uo is Uo-saturated by Chang's 

trick, which works in this context just as well as for chains. Call this union ~ .  We 

know that X ~ \ 3 ~ C ( X ~ ) * .  Let (ai : i  < 0) enumerate (3~)* \X~ ,  with ao = 

sup X~ if sup X~ g X~. Set ~o = ~ .  Using (4.12) at successors, and taking unions 

at limits, we build an elementary tower of Uo-saturated models of power K, 

( ~  : i -< 0) s.t. at E X~,+,, and Uo ~, = x. We let 91 = ~0 ; thus 9.1 is Uo-saturated, 

and clearly 9/ is layered, (i) in the definition of nicely-layered holds. By 

construction X~ = X~ t.J (X~)* and 3 ~  = 3 ~  ; so in fact 91 is nicely layered. It will 

then suffice to find saturated 91' of power K with U0 ~'= K, 91 < 91' and 91' nicely 

layered with X~, = X~. Clearly we can find 91" with all of these properties except 

being nicely layered and having X~. = X~. However,  having such an 91" we can 

obtain 91' - 91" which is nicely layered with X,,  = X by renaming elements of 91" 

along the lines of (4.12). The details are left to the reader. 
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(4.14) Now let's see that P is r+-special. Let X = {a < K++\K § : O~ is successor 

or cf a = K § and let (x, : i < K § be the increasing enumeration of X. If 92 E P', 

let (yi : i < 0~) be the increasing enumeratiorL of Xa and let s~ : Oa---~ K §247 be such 
that yi = xs~0) for i < 0~. Let It&, ~'a, ~ be such that 7r~:92~-~-,~, 1r~] U~= 

id [ U~, for i < 0~, TrY(y,)= x,, for y E (.Y~)*, 1r~(y)= supy,~,~,ny zr'(y'), and for 

(t~,/3)~ U~, 7r~(a,/3)=(zr~(a),/3). Then ff={~:92EP'}t.J{92o}, for 92~P' ,  

lg~ = 0a. Also, Ig92o = 0. For 92 ~ P', for s ~ [K++] 'ga, obtain ~(s)  by reversing 

the above construction and let 92o(~) = 920. The indi~cernibility property is clear. 

(4.15) LEMMA. P E ~ , * .  

PROOF. First note that P is strongly K-directed closed, since the upper bound 

92' constructed in (4.13) has the property that ,Y~, = I,.J~oX~. It remains to 

prove the Extension and Amalgamation Properties. These follow readily from 
(4.11) and the arguments of (4.12), or see [3], lemmas 6, 7, pp. 179-180, or [2], 
lemmas 2.5, 2.7. 

For K = to, use recursively-saturated and recursively-Uo-saturated models of 

Y' as in [2]. 

(4.16) The sufficiently generic sets here are particularly simple. Any ideal 

meeting all the D~ is sufficiently generic. Hence, Theorem l(b) and GCH yield a 

new proof of Jensen's 2-Gap--2-Cardinal Theorem. This is because any such G is 

a directed (for < ) system of models of T' all having the same interpretation of 
Uo. Hence I,.JG ~ T', U~ ~ = K, and for all s ~ [~+§ there is s ' ~  [~++]~+ with 

ranges Cranges '  and 92~ G with {x,,,:i <lgs '}=P~a.  But then clearly 

card(I I,.JG I)= ~++, and so the Le-reduct of ~ G  is a (~§ r)-model of T. 

w Adding morasses by S-forcing 

In this section we prove one direction of the main theorem by exhibiting, for 

each regular uncountable/~, a P ~ b~, which adds a (it, 1)-morass; in fact with the 
property that there are ~ uniform dense subsets of P which, if met uniformly, 
guarantee the existence of a (/z, 1)-morass. Thus, S, guarantees the existence of 

(tz, 1)-morasses. Fix/z regular and uncountable. 

(5.1) Our strategy for adding a (/z, 1)-morass is to add a simpler object which 

we then "thin" to obtain a (/x, 1)-morass. This approach is, essentially, due to 

Jensen and is basically that of [12]. The novelty here is that D. Velleman found a 

far simpler set of conditions which he has kindly permitted us to present here 

and in Stanley's articles [12], [13]. This material will also appear in [14]. 
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The basic difference is that rather than starting from a tree with maps along it 
which is provided by a rq~,-sequence, and then picking out a subtree (the Jensen 
method,  as in [ l l  D, Velleman's conditions leave us entirely free to assemble the 

tree and the maps. As a result, the conditions and the generic object have a more 
purely "combinatorial"  flavor, but more importantly, the conditions are /~- 
directed closed, whereas the Jensen conditions, involving as they do first forcing 
Kl~, are not even /z-closed, unless /z = N1. 

The same model-theoretic techniques as in [12] are used for the thinning, for 
which see [12]. We don' t  know whether  a similar simplification is to be had for 
forcing higher-gap morasses. 

(5.2) DEFINITION. A (/z, 1)-premorass is a triple (T, q ,fxy),-3y such that 
(i) (T, q ) is a tree; T C_ (/z + 1) x /z  § 

{/z} x/z§ C T, (dom T ) A / z  = / z ;  

(ii) for a E ( d o m T )  nlz ,  0 < T . = { ~ - : ( a , r )  E T } E / z ;  for x E T ,  set x =  
(l(x),o(x)) (warning: l(x) need not coincide with the level of x in (T, ~ )); if 
x ~ y  then l (x )< l (y ) ,  o(x), o(y) are the same kind of ordinal, and 
fxy : o ( x ) ' q o ( y )  is a nice map; further, if o ( x ) = a  +1,  o ( y ) = / 3  +1,  then 
fxy ( a ) = / 3  (thus we may conventionally set f,y (o(x))= o(y) and niceness is 

preserved); (f~y : x q y) is commutative;  
(iii) if x -) y, 7 /<o (x ) ,  w =(l(x),~/) ,  z =( l (y) , f~0?) ) ,  then w q z and 

=f,, 
(iv') {l(x) : x ~ y} is either empty or a coinitial segment of (dom T) n l(y), and 

is non-empty if l ( y ) E L i m  and there is r / > o ( y )  s.t. (l(y), ~?)E T; 
(v') if l (y )E  Lira and y is non-minimal in ~ ,  

(vi) if o(x) E Lim, x ~ y 

(l(y), A), x ~ z, f= = fxy. 

o(y)= U f,,"o(x); 
x ,...1 y 

and A =supfxy"o (x )<o(y )  then, setting z = 

(5.3) LEMMA (Jensen). I f  there is a (Ix, 1)-premorass, there is a (/z, 1)-morass. 

PROOF. By thinning. See [12]. 

(5.4) DEFINITION. p = (t, ~ , f x y ) x q y  E P iff 
(i): t _C (g + 1) x /z  § card t </z ,  t #  O ~ (/~,0)~ t and (dom t) n /~  is a suc- 

cessor ordinal, (t, ~ ) is a tree; 
(ii): (ii), (iii), (iv'), (vi) of (5.2) hold, replacing T by t (note that if l(y) = tz, in 

(iii) this means that (/-q fxy 07 ) )~  t, and in (vi) this means that (/z, A ) E  t); 
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(iii): (v') of (5.2) holds, with the additional restriction that l (y)</~ .  

If p E P, set p = (t p, d P, f~y)x -3,y, and define S~, and for ot E (dom t p) Iq ~, y~, 

by setting t ~ = ( U~<dom,p~n~{a} • y~) t9 {/z} x S p. Also, for a =</~, set t p ] a = 

{x ~ t p : l ( x ) <  a}, and set 

P I a = ( t  p I a,,.~ p l(t" [ Ol~),fxPy)xb~Py, l(y)<tx. 

Then, for p, q U P, set q =>p if[, setting ~ = max((dom t p) n / ~ ) +  1, 
(iv) p I s  = q tot, S',, C S~ and for x, y Et~,  if l(y) =/z, then x ,.~e y if[ x ,qq y 

and if x ~ p y, f~, = f~y. Set P = (P, => ). 

(5.5) DEFINrrION. Let X = {7/~ Lim fl/z + : cf ~ =/x}, and let 3~ be the set of 

multiples of /~ which are less than/~ +. Let S E [/z § S is acceptable if[ S is 

closed, for r / ~  S n X, S fq [rl, r / + / x )  is an initial segment of [~, ~1 + /z )  and 

s --- U{s  n [ n , n  n E s  n Z}; if ~ E S  n x  let A, = s u p S  N -q. 

The following proposition is now obvious. 

PRoPosmon. (a) Whenever A E [# +]<~, there is acceptable S ~ A.  
(b) I f  ~ is a family of  acceptable sets, directed under C_ and card 9 0 </z,  set 

g -= U b ~, and let S = S U {sup (S n 77): 77 ~ S n X} u {sup S}. Then S is the 
smallest acceptable set D_ S. 

(c) I f  S is acceptable, let S ' = S \ { A , : ~ E S N X } .  For ~ E S ,  let ~ =  
o.t.(S' n r/) and let f~ : 8~ ---> S' n ~1 be the increasing enumeration ; then f ,  is nice, 

if  11 E L i m \ X  then range f~ is cofinal in ~, if f , ( ~ ) =  ~' then ~ = 8~,, f~, =f~ ] ~, 
and if  rl ~ X ,  s'nx  = s ' n n ,  . 

(5.6) DEFINITION. If p ~ P, p is acceptable iff S~ is acceptable, and, letting 

S = S~, letting a = max((dom t~)f l /z) ,  and adopting the notation of (5.5), if 

~1 ~ S, then y~ = {& : n E S} and, for 7 /~  S, setting x = (c~, &),  y = (/z, r/), then 

x q ~ y and f~, = f , .  Let P '  = {p C P : p is acceptable}. P' = (P', => ). 

(5.7) LE~aVtA. Suppose p, q ~ P' and p [ = q [ Then Sg, have the 
strong A-property if[ p, q are compatible in P'. 

PROOF. If p [/z = q [/.~ and S q, S q have the strong A-property then: 

(*): whenever r / E  S~A S q and x ~ t p I/~ then, setting y = (/~., r~), x ~ P y  iff 

x q ~ y and if x ~ p y then f ~  = f~, (note further that (*) is necessary for p, q to be 

compatible). 

So suppose Sg, S q have the strong A-property. Suppose, e.g., that S~ = a t9 b, 

S~ = a t_J c, where a ,~ b ,g c. By (ii), (iv), (v) of (5.4) it is easy to see that if 

r/', ~" are the least elements of b, c, respectively, then r / ' ,~ l "~X.  Let 
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o" = max S~. Let S = S~ U {or + i : 1 =< i =< w} tO S~. Then, it's easy to see that S 

is acceptable and o" + to = )t~,,. 

Set t= t~ l l~U{(a+l ,&) : .qES} tO{( i . q~ l ) :~ l~S} ,  where a =  

max((dom t p) O/~), and for ~ /~  S, 6~ is as in (5.5). For x, y U t, set x -~ y iff: 

(i) for r~{p,q},  x -~ ' y ;  then L~ =[~,~, or 

(ii) for ~/US,  y = (/~,~/), x = ( a  + 1 , 6 , ) ;  then/,~ =f~ (as in (5.5)), or 

(iii) for ",7 US, rU{p,q}, y = ( a  + 1,&),  x ~ ' Y ' =  (> ,n) ;  then L, - -' 

o r  

(iv) y = (/~,o, +to) ,  x -3~y' = (/~, n"); then/,~ =L~'.  

Clearly r = (t, ~ , L ~ ) ~  U P '  and r >=p,q. 

(5 .8)  COROLLARY. P' has the/~+-c.c., assuming l~ <" = IX. 

PROOF. By the usual A-system argument. If A E [P']~+ there is A ' E  [A]~+ 

s.t. for p, q U A ' ,  P l / ~ = q l / ~ .  This is because if /~ <~=/~  then 

card{p I/-~ : P U P'} _-</~. But then there is A"  U [A ']~+ s.t. for p, q U A ", Sg, S~ 

have the A-property. So by (5.7), the elements of A"  are pairwise compatible. 

(5.9) LEMMA. P' is i~-directed closed. 

PROOF. Let D U [P']<~ be directed. For p U D, set a (p) = 

max((dom t p) n/L),  S(p)  = S~,, S '(p) = S'-in-the-sense-of-S(p). For 7/U S(p), 

6~, [ ~ =  &, f ,  in the sense of S(p)  and if ~ / ~ X ,  AP, = A~ in the sense of S(p). 
Finally, tr(p) = max S(p). 

Note that by (5.7), we may as well assume that A = { a ( p ) : p  U D} has no 

largest element, because if p U D is such that a (p) is max A then we easily see, 

since D is directed, and by (5.7), that p is the maximum element of D. 

So, let a = supp~ocz(p). Then ct < / , .  Let i =  U ~ o t  p Iiz. Define ~ on i b y :  
x ~ y iff for some p U D, x ~ p y. For x ~ y, let f~y = f~y where p is such that 

x ~ p y. This is clearly unambiguous, and for p U D, 

P It* = (i-I a ( P ) +  1, ~ I 0- I a ( p ) +  1) ,)~,) ,~, . , t , ,~, , ,  

where, naturally, t- [ a (p) + 1 = {y U i- : l(y) _<- o~ {p)}. 

Let S =  O ~ o S ( p ) .  If p E D  and 7 / E S ( p ) N X ,  set a~ = s u p g n r / ;  then 

clearly )t~ = supq~o~ A q~, where D e = {q U D : p _--- q }. Let S = 

g tO {A~ : r /U  g O X} tO {o'}, where or = sup S. Note that o- = s u p ~ o  r Then, 
by (5.5)(b), S is the smallest acceptable set _D_D.{. As in (5.5), let S ' =  

(S n o-)\{h~ : ~ E S n X}, and for n E S, let 6~ = o.t. S' n rl, f ,  : 6~ --* S'  n rl be 

the increasing enumeration; note that S' n o- = Up~o (S'(p) n ~). 
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Set t = t 'U{(a,  8 . ) :  n ~ S} U{(/~,~/): T/ES}.  For x ,y  Et ,  set x ~ y iff: 

(i) x, y E t and x ~ y ; then fxy =/~xy, or 

(ii) for some p E D ,  x, y Et  p, x ~Py ,  l ( y ) = / x ;  then fxy =f~y, or 

(iii) for some p ~ D ,  some ~ ~ S ( p ) N X ,  y = (/~,A.), x ~ P y '  = (~,~?); then 

f~y = f :y , ,  o r  
(iv) for some ~/E S, x = (a, 8.), y = (/~, ,7); then f.y = f . ,  or 

--10 (v) for some ~ E S, y = (a, 8.), l(x) < a, x -} y '  = (/~, 71); then f.y = fyy, f.y,. 

(5.9.1) The first thing to check is that the conjunction of (ii), (iii) cannot lead 

to ambiguities if 77 E g N X but h.  E S. So. suppose ~ E g n X, h. E S. We 

show that for all p ~ D  with h. =A~,  x ,qP(~ ,h . )  iff x ~ P ( ~ , r l )  and if 

x ~P (/z, ~7), then f~ . .~=f~AO. Clearly if x ~P (/z, a~) then x ~P (/z,h.) and 

f~o..~=f~A~. So, suppose x ~P (/~,h.). But then 8~=8~ .  and, setting y = 

( a ( p ) , ~ . ) ,  x = (a(p) ,~] . )  or x -]Py, since x ~P (/z,h.). By transitivity of ~v, 

x ,q~ (V,, 7/) since y ~ (g,, +/). 

Thus, in carrying out further verifications, when ~ /~  S ~ X, and h, ~ S, we 

know that we may suppose this is in virtue of (ii), or of (iii), as best suits our 

purposes. 

(5.9.2) Clearly x ~ y ~ l (x )< l (y ) .  Let 's check that ~ is a tree, and that 

(f,y), .~ r is commutative. First, let's see that ~ is transitive. Suppose x ~ y q z. 

It suffices to consider l(z) =/z, since if l(z) < a, this is by (i), and if l(z) = a and 

transitivity is proved when l(z) = g, let z ~ z '  with l(z') =/z. Then x ~ z', and 

by (vi) x ~ z. Similarly, we can reduce the verification that [x~ = fy~ o f~y to the 

case when l(z) = ~. So, suppose l(z) =/z. First, consider the case when o(z)  ~ S, 

say z ~ t p, where p ~ D. If l(y) < a, we may suppose that y q z in virtue of (ii), 

by (5.9.1), so let q ~ D p  be such that y ,qqz. Then x ~ q y  and so x ~qz, 
fL  = f~~ If l(y) = a, the only clause which gives y ~ z is (iv), and the only 
clause which gives x ,-] y is (v). Hence we must have x ~ z and f~y = f;~ o[~ ; i.e. 

[,~ =/y~ O/,y. Next consider the case where z = (tz,)t,) for some ~/~  S fq X and 

A ~  S. If l(y) = a, the only clause which gives y ~ z is (iv), and the only clause 

which gives x ~ y is (v); once again, we must have x q z and [~y = f;~ of,, ; i.e. 
fx, =/y~ o/~y. If l ( y ) <  a, since h , ~  S, then the only clause which gives y -~ z is 

(hi), and then y ~ z '  --- (/z, ~/), [y~ = [y~,. By what we've already proved, x ~ z '  

and f~,, =f,~,O/~y ; but then, by (iii), x ~ z and f~ =f~ ,  = fy~,of~y =fy~ o/,y. 
Finally, if z = (/z, a )  and ~rf~ S, there is nothing to verify since then y ~ z iff 

y = (a, 8,)  and in this case, y is minimal in ,-]. 

Next, let's see the set of ~ -predecessors of z is totally ordered by ~ .  Clearly, 

if l(z) = t~, there is exactly one ,q -predecessor y of z with l(y) = a, namely, if 
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z = (/~, r/), y = (a, 8~), and (v) then guarantees that if l(x) < a and x ,--3 z then 

x ,q v. If l(z) = a, then if x q z, y ~ z then l (x ) , l (y )<  a, and x ,-3z, y '-'3 z in 

virtue of (v); so if z = (a, 6,), then x ~ z ' ,  y ~ z '  where z ' =  (/z, t/). If l ( z ) <  a, 

and x ~ z, y ~ z, then this is in virtue of (i) and so the conclusion follows by 

looking inside an appropriate p E D. So it suffices to verify this when z = (/z, rl), 

l(x), l(y) < a. If 19 = h,, for r/' E S n X, and the conclusion holds for z '  = (/x, t/') 

then the conclusion holds for z, since, by (5.9.1), we can assume that x ~ z, 

y ~ z in virtue of (iii). So, finally suppose that z = (tz, r/), r / ~  S, x ~ z, y ~ z. 

Then this holds in virtue of (ii), so since D is directed, there is p E D with 

x ~Pz ,  y ~Pz.  But then clearly either x ~ P y  or y ~Px. 

This gives (5.4)(i), (5.2)(ii). By reductions as above it's easy to see that (5.2) (iii) 

holds. (5.2)(v') holds for l(y) = a by (5.9.6) below and in virtue of (iv), (v), and 

clearly holds, looking inside an appropriate p E D, if l ( y ) <  a. For (5.2)(vi), if 

l ( y ) = / x  and l ( x ) = a  then o ( y ) E X ,  and h = h ,  so that (5.2)(vi) holds by 

construction. If l ( y ) = / z  and l ( x ) <  or, then either x ~ y in virtue of (iii) which 

means that for r / E  S O X, y = (/~, ;t~), x -~ y '  = (/z, r/) in virtue of (ii), or x ~ y 

in virtue of (ii) directly. The conclusion then holds looking inside an appropriate 

p E D. Also, the conclusion follows in this manner if l(y) < a. Finally if l(y) = a 

then x -~ y holds in virtue of (v); going up to y ' =  (/z, rl) byfyy, where y = (a, 87) 

the conclusion holds for z '  = (/~, ,~') where A' = f, ,(A), by what we've already 

proved. 

Also, we've already proved in (5.5)(c), that z ,-.3 z ' ,  f , , ,=fy , lX.  By (5.9.2), 

x ~ z, since x ~ z ' ,  z , q z '  and l (x )< l (z ) .  Also, by (5.9.2), f=,=fzz ,of , ,  ; i.e. 

= - '  - f . , h , ,  f x z  - -  - 1  o _ _  - 1  0 - f~z ,  f,~, fzz,~ , = h , .  
It remains to verify (5.2)(iv'). If l ( y ) < a ,  this is by looking inside an 

appropriate p ~ D. Let 's verify (5.2)(iv') for l(y) =/x. First, in this case, y is 

non-minimal in 3 ,  since letting ~1 = o(y), (a, 8~) ~ y. Second, if ~1 = o '~  g then 

{a} is a co-initial segment of (dom t )n / z .  Third, suppose ~1 = A,, for some 

aT' E g n X, and set y '  = (/~, ~1'). If we know the conclusion for y', we know it for 

y since, by (iii), (iv) and the fact that 8, = 8,,, the ~-predecessors  of y are 

exactly the ,-3-predecessors of y'. So, we verify the conclusion for ~7 ~ S. 

Suppose x q y, l(x) < a '  < a. Then x ~ y in virtue of (ii) and so there's p ~ D 

with x q~y ,  a'<=ot(p). Then by (5.2)(iv') for p, there is x ~3Px ' ~ r y  with 

l(x') = a ' .  Finally, let's verify the conclusion for l ( y )=  a. First consider the 

possibility that y = (a, 6~) and o-~ S. Then y is ~ -minimal, but since t}~ is then 

the largest element of %, nothing is required by (5.2)(iv'). Otherwise, for some 

~7 ~ S, Y = (or, ~,) and the conclusion carries down to y from y '  = (/z, r/). Thus, 

r = (t, ~ , f , ~ ) , ~  ~ P. By construction S = S~ is acceptable, and r is strongly 
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acceptable. Then clearly r is an upper bound for D. We now finish by proving the 

technical details needed to prove (5.2)(iv') for l ( y )=  a. 

If p U D ,  77 U S ( p ) ,  let R,  = UqEop rangefL If ~ /UX,  and A, ES ,  let R~, = 

Rn. If or E S, set R~ = S' O o-. 

(5.9.3) PROPOSITION. (a) I f  ~ U S n X and An U S, then for some p U D, A,, 

r I U S (p) and whenever q U Dp, A n = A ~; (b) thus, even here, R, ,  = R, .  

PROOF. For (a), take any p U D with An, r /U  S(p) (such exists since D is 

directed and by hypothesis An, 7/U S). Note that for q U Dp, A ~ < h,,  so we can't 

have An U rangef~.  But then, for a unique "0'U S ( q ) n  X, An = A~, (otherwise, 

we'd have An U S'(q)  and then since An < 77, An U range f~). In fact, this 77' must 

be ~7, since ~/' < rt is absurd (because aq' > A ~, = An > )t ~) and ,7 < T/' is again 

absurd (because 77 > h, = A q,). 
For (b) first note that by (a), An ff Rn because if so then for some p U D, 

An US(p)C_S, and (a) guarantees that for no q UDp is An Urange /~ .  If 

r / 'E  R,~, let p U D  be such that An,~ / U S ( p )  and r / 'Urangef~. ,  and h, = h~ 

(once again, such exists since An, r /U  S, D is directed, and by (a)). Then f~ = f~, 
and so T/' U range f~. Starting with r/' U R, ,  the same argument makes it clear 

that -q' U R , .  

(5.9.4) PROPOSITION. For ~1 U S n X, 71' u S, An C- Rn,. 

PROOF. This is clear if 7/ '< 7/, or if r / ' =  or and orff S. If 7/ '= ~/, this is by 

(5.9.3). If r/' > r/ and r/' U S, choose p U D with 7/', r /U  S(p). If An U rangef~,,  

then A, U range/V,, which, by (5.9.3), is impossible. Finally, suppose 7/ '> r/, 

,/' C S and for some r/" U S n X, ~/' = h,,,. Then, by (5.9.3), R n, = Rn,,, and by 

what we've already proved, A, C Rn,,. 

(5.9.5) PROPOSITION. I f  or U S, then R~ = S' A or. 

PROOF. By (5.9.4), S' n or C_ R~. If 7/' u S'  n or, then clearly r/' U S. So, let 

p U D with or, ~ '  U S(p). Then clearly or = or(p) and if q U Dp, or = o-(q). Hence, 

we may suppose, without loss of generality, that ~/' U S'(p), since as we've noted, 

S ' A  or = Uq~o (S'(q)  n or). But then r/' Urangef", .  

(5.9.6) PROPOSITION. For 71 U S, R n = S'  n *1. 

PROOF. This is proved if r / =  or, so suppose r / <  or. By (5.9.4), R,  C_ S' n ~7. 

Suppose r / ' G s ' n r / .  If "oUS, once again, we find p U D  with r / 'US ' (p ) ,  

77 U S ( p )  and, as in (5.9.5), ~? 'Urangef~.  If ~ / g S  let 7/"U S n X be such that 
r / =  An,, (since r / <  or). Then R n = Rn,, by definition, and by what we've already 

proved, 77' U Rn,,. 
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(5.10) PROPOSITION (Extension Property). If  p ~ P', oL < ix, ~ < IX +, then 
there is q E P', q >--_ p, such that ~ E S~, a E dora t q. 

PROOF. Let S be acceptable, S D S~U{~}. First obtain acceptable q'>-_p 

with Sq,, ' =  S and tq'[ix = t p [IX U { ( a ' + l , 6 . ) :  ~ ES},  where a ' =  

max((domt ~)NIx). Then, if a ' + l < a ,  obtain q by setting t q =  

t q ' U { ( a " , 6 , ) : a + l < a " < a ,  t I E S  } and for t I E S ,  a ' + l < a " < = a ,  

( a ' +  1, 6.) ~q (a", 6.)  ,',3 q (IX, r/), f~,+~,8.),,.,,.e.) = id[ 6., f~,,,~.).,.,.) = f~,+,.8.>s...) "" , 
and, if 77 ~ X, the same holds with A. replacing 77. Of course the two operations 

could have been performed in opposite order first getting q' with a ~ d o m  t q', 

and then getting q with ~ E S~. 

(5.11) Now let's see that P' is Ix-special. We've already defined X and X in 
(5.5). Let (x. : a  <IX+) increasingly enumerate X, and for s ~[IX+]<~, let 
X. ={O}U{x,o):i<lgs},  and let 2~, =X,  U (X,)*. Let g = id[ Igs ,  let or, [X~ be 

the unique order-preserving map from X, onto X, and for/3 < IX, IX. a ~ X,, let 

((ix. = (ix. a ) + / 3 .  
Let ~r ={15 E P ' : X A  S~ is an initial segment of X}. Thus, if IX<~= IX, 

card ~r = Ix. Let lgi0 = o.t.(S~ O X). If s ~ [IX+]'*" define p = 1O(s) E P'  by 

p]ix =plix, , , ,  ~; thus, if rl ~ S ~  nix,  y = (ix,~), x-~Py, then x ~Py  

and f~, = [~,,  while if 77 ~ S ~ \ IX, y = (ix, n), x ~ ~ y, then, setting y ' =  (IX, o-~ 01)), 
x q ~ y '  and f~y, = t  r, of~,. 

If p E P',  let J = j e  = {j < ix+ : Xi E S~ O X}  and let s = s p be the increasing 

enumeration of J. Obtain ff ~ 8" by reversing the above construction. Then 

clearly p = if(s). It's now clear that P' is Ix-special. 

(5.12) We now see that P' E 5e,,. The Indiscernibility property is obvious. The 

Amalgamation property is by (5.8). So we have: 

LEMMA. P' E St,,. 

(5.13) Let i <  IX, ~0 ~ ~r. Set i0 E D~ iff i ~ d o m t  ~, and if r / ~  X'i~l,,~, then 

n + i ~ S L  
Now suppose G meets all of the D~" uniformly. Let (T, 3 )  = U p ~  (t p, ~P)  

and for p G G, x, y ~ t e, if x ,-~P y, let f,~ = f~ .  The only premorass property that 

requires verification is that if y G T, l(y) = IX, then o(y) = U ,  .~  range/,~. So let 
~7 < o(y). Since G meets all the D~ uniformly, there is p ~ G such that r I, ~/+ 1, 

o ( y ) E S ~ .  Let a = m a x ( ( d o m t e ) n i x ) ,  and let x = ( a ,  6~o~)), so that x ~Py. 

Since ~/+ 1 ~ S~, for no ~7'~ S~ is ~ = )t,,. Thus ~/~ r ange /~  = [,r. 

We now clearly have: 
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THEOREM 1 (left-to-right). S~ ~ there's a (Ix, 1)-morass. 

PROOF. By the immediately preceding material, if S, then there's a (IX, 1)- 

premorass. Hence, by (5.3), there is a (IX, 1)-morass. 

w The main theorem 

This section is devoted to proving the main theorem: 

(6.1) THEOREM 1 (right-to-left). For all regular Ix > hi1 if there is a (IX, 1)- 

morass, then S,.  

The proof is spread out over the remainder of this section. The basic set-up of 

the proof has not been modified, but in order to avoid the Restriction Property, 

we have incorporated, with his permission, Velleman's idea of "spreading-out" 

the ranges of the f~v by left-multiplying by "gap ordinals" (the y~ of (6.2)); this 

also necessitated the introduction of the p(a).  

As noted in the Introduction, this theorem was formulated by Shelah, who 

suggested that a proof along the lines of the proof of the two-gap--two-cardinal 

theorem in L might work; the theorem was proved by Stanley. 

Throughout the rest of this section, assume that ~ = (Se, S ~, S ~, -~, 7r~v)~ ~ is 

a (IX, 1)-morass. Assume that P C  b~ and that (D~ :i < IX) is a family of dense 

subsets of ~r. 

(6.2) For ot ~ S ~ let 0(or)= sup S,, if S~ has no largest element, while if S~ 

has v* as largest element, set O(a) = v* + a. For v ~ S~, set O(v) = O(t~). r  

denotes ordinal subtraction: if r < r then ~ ' - r  is the unique r such that 

+ ~" = s c'. We shall also set 6(v) = v + a. Note that O(a) = sup{6(v) : v E S~}, 

and that if a < a ' ,  then 0 (a)  < a ' .  
In what follows we shall assume that the tree maps rr~. preserve ordinal 

arithmetic, i.e. if ~, ~ < fi, and ~ = rr,, (~), ~ = ~r~. (~) then ~ + ~ = ~ .  (~ + if), 
~.  ~" = r r~ ( ( .  ( )  (note: this makes sense, by the p.r. closure of P, u). If the 

morass J / d o e s  not have this property, it can be "thinned" to obtain an ~ '  which 

does (cf. [12]). 
If 1 = q_< 3' <IX, ~ ~ v, let ~i = a~, oe = a. ,  and suppose t~ is such that 

~':"~" --- ,  6(v)  as follows. First, suppose ~,.O(~)<=~ < y ' a .  We  shall define fr,, .p  y" 

( <  ~, ~ < 7; let ~ = ~'~ (~): 

0 )  �9 + = ( v "  r  + 
Also, if ~ < r - (#/" ~) (ordinal subtraction), then: 

(2) '~",a - - f i ) +  = �9 v ) + ~ .  f~,~ ((Y s r (7 
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Our approach is as follows. We'll define by induction on a E s ~  

conditions p (a)  E P, and ordinals y (a),  p (a)  < /z  with the following properties. 

(3) (p(a)  : a E S O n /z ) ,  ( y ( a )  : a E S O n/x) ,  (p (a )  : a ~ S ~ n / z )  are increas- 

ing; ( y ( a ) :  a ~ S ~  is continuous; we'll also set y( /~)=/z .  

(4) p(a)  has the form/~(a)  (id I p(a)) ,  where/~(a)  E 9"; thus l g p ( a )  = p(a).  

(5) If/3, a ~ S~ and/3 < a then y(/3).  0(/3)_-<p(/3)< y ( a ) .  a. 
(6) I f 6 E S  O , ~ E S ~ ,  v E S ~  and ~ 7 ~ , , l e t  ~ = y ( 6 ) ,  y = y ( a ) , ~ = # ( 6 ) .  

We then define p(~, 1 , )=/~(a)  t'f~,r.~ (note that this makes sense, since by (5) 

we are in the presence of the hypotheses used to define f~;~.o). We shall abuse 

notation by setting f~ = r and taking it to be defined once we have defined J ~ , v  ' 

p ( 6 ), y(6) ,  p ( 6 ), even though, formally, the definition depends on y = y (a ) ,  and 
this will not be defined until later. 

(7) Under  the hypotheses of (6) and using the notation from (6), we shall 

require that if a </~, then p(~, z,)<-p(a). 

(6.3) We prove some technical lemmas which will serve in the construction. 

The reader may, if he's thus inclined, skip ahead to (6.4) and refer back to these 

lemmas when they arise. The first lemma is a basic consequence of the 

Indiscernibility Property and will be used again and again in what follows, in 

various circumstances. 

The second lemma is pure "morass-theory", and will be used in case (E2) of 

(6.6), rather than including this rather intricate morass argument in the construc- 
tion. 

(6.3.1) LEMMA. Suppose p = r(s), p' = C(s') E P, suppose p <= p', and sup- 

pose that s' = id I lg s'. Let g : lg s --* lg s' be increasing and such that s = s' o g. 
Then : 

(a) g = s ;  

(b) if h is an increasing function with dora h = lg s', then ~'(h o s ) <= C(h ). 

PROOF. (a) is clear, and (b) follows readily from (a) and the Indiscernibility 
Property. 

(6.3.2) Suppose that ~ is the immediate ~-predecessor  of ~,, that v is a limit in 

S~ (and hence ~ is a limit in S~), and that range 7r~ is cofinal in v (thus, we're in 

the situation of (M7), the second continuity property). Let (~, : i < h)  increas- 

ingly enumerate S~, n 17. For i < )t, define r/~ as follows: 

(1) Let ~-~ = r if i = 0, or i is a successor, let rt~ = ~'~, while if i ~ Lim, let 
~/~ = sup 7r"~ ; thus r/~ _-< ~,, but if i E Lim, possibly ~ < ~'~. In any case, we have, 

by (M2), and, if i E Lim and r/~ < ~ by (M6): 
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(2) ~, ~'q~, ~rn,,, = ~rn,,, = ~r,~ I ~ .  

It 's also clear that  

(3) if i < j then rt < ~7, ; fur ther  {'qi : i < A } is cofinal in v. Now define r/*, r * ,  

(4) 7/* is the least -3-predecessor of ~/~ which is > f/t; ~'* is the least 

-1 -predecessor of zi which is > ~i ; o~t = ot,:, a ~ = a,~, 

(M7) then asserts that I,.Ji<~ a't = a , .  It is clear that  the a'i are increasing; this 

can be seen using: 

' * such that  (5) if i< j ,  then ~-t~range~-,~,t; hence there is ~S~; t - l~"  s 

~'* -~ ~"i ~ r~. That  Tt ~rangeTr,~, t is clear, since ~'i ~ range 7r~"Cts = range 7r~,~, 

and range zr~,~ t _C range r Now ~"i may be (and must be) taken to be ~r,,.t-~(~-i), 

' < ' since * by (M2). We denote  this ~ as ri.*. But now it's clear that  a i =  as, r i was 

taken to be the least -~-predecessor of ~'i which is > ~, ;  thus ~-* q ~'i*, or 
t z* = z*.,.~. We'l l  see that ~-* ~ Z*.,.,, which will then guarantee  that  a ' , <  as. Note 

that  ~'i.* is a limit in ~ (by (M4), since ~'t* < * and * r ~, ~'ta ~ So.~). But  by definition 

~-* is an immediate  successor of ~t in -~. We now show that  similar conclusions 

hold for the ~/t, ai. 

LEMMA. (a) I[  i < j there's r/i* ~ S~, Cl '1 ~ such that 77 ~ "~ r/i.~' q r/t. 

(b) The ai's are increasing, continuous and l-,It<~a, = a , .  

PROOF. (a) We first note that,  as in (5), ri ~ range ~r,;~, since range zr~j,j C_ 

range 1r~j,  and 1r~j = ~r~j~, = 1r~v I~J. Let  Z' be such that  1r~i~j(~-') = ri. As usual, 

z '  ,--3 ~'i, Z' E S~j f'l * - [ r ' .  r / j ,  71"~,,~ - -  "tr,li,lt 

If ~'i = */i, then we conclude as in (5), and as in (5), we conclude that  ai 

( = o~) < aj. So, suppose that  i E Lim, that  r/i = sup 7r,v"~, = sup ~r~,.,"~, < ~',. Let  

K = { k  < i : k  = 0  or k is a successor}. Thus ~/t = I--Jk~Krk = I--Jk~rT/k, and, by 

what  we've already argued, for k E K, ~k ( =  ~'k)Erangelr,7~ c For k E K, let 

�9 /~=~rn;~ (7/k), so that  a T ~  ~/k, 7 r ~  = 7r~j [~/~. Let  T/ '= I..J,~rT/~. Thus 

,/'=<~". Le t  r/"=~r~Tv(~/" ). Thus ~I"~S~ and r/i=<~/"-_<zi. Also, as usual 

~/' q.~/", zr~,,. = ~r~7~ t [ ~/'. Thus 7r~,~,.(~/~) = ~/k, for k ~ K. But then 

sup range Trn,~. = ~ / ~  = ~/t. Thus, by (M6) applied to ~/', ~7", ~/' 'q ~i, zr,,~, = 

~r~,,.. We take ~k* =~/ ' .  

(b) F rom (a), we conclude as in (5) that  the a t ' s  are increasing. Their  

continuity follows f rom (M7). 

That  ~ i<x  at = a~ follows f rom the fact, remarked  in the proof of (a), that  if 

i = 0 or i is a successor ordinal,  then at = a~, and the fact that  such i are cofinal 

in h. 
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(6.4) We return to the main thread of the argument. Before actually giving the 

construction, in (6.6), we shall derive some consequences of the properties 

(1)--(7) of (6.2), which we shall be carrying as inductive hypotheses. We also 

develop additional aspects of the construction which can be removed from the 

induction. 

(6.4.1) PROPOSITION. Suppose a E S ~ and that (1)-(7) of (6.2) hold for all 

a ' E s ~  

(a) I f  u E S ~ ,  if ~ ~ u' q u, then p(~,u)<=p(u',u).  

(b) I f  u, r ~ S~, u < ~', if ~ ~ ,,, if r' ~ r, if u E range 7r,.~ and if a,. > a~, then 
p(~, v) <= p(r' ,  r). 

(c) Let S" = {u E S~ : u is a limit in ~ }, and suppose S" r Q. Thus S, = S ' ,  or 

S, = S ' U l m a x S o } ,  and maxS~ is nota  limit in ~ .  Then D = {p07, u): ff ~ u, 

u E S'} is directed. 

PROOF. (a) We use (6.3.1); we let p = p(~, u'), p '  = p(a,,), and we let h = f~,~ ; 

we need only remark that f~ = f~,~ of~,. 
(b) We let u' = ~';,~,(v), and, once again, we use (6.3.1); we let p = p(~, u'), 

and p ' =  p(a~,) ( =  p(a,,)); we let h = f,,,. This time, it's slightly more work to 

conclude that f~  = f,,, of~,. We use the facts that f~ = f~,~ of~,,, that range f~, _C 

~/(a~,). ~(u'), and that, since ~ ( u ' ) =  u'+a~,, since rr,,, l a~,=id]a~, ,  and since 

It,,, preserves ordinal arithmetic, f~,~ =f , , ,  I 3'(a~')" ~(u'). 

(c) This now follows from (a) and (b), since suppose u < r, u, r E S ' ,  P -] u, 

? - ]  ~-. Since ~- is a limit in ~ ,  we find r ' .- t  r with u Grange 7r,,,, a,,_---a~, 

a , , >  a~. But then p(r' ,  z ) ~  D and is a common extension of p(~, u), p(?, r). 

(6.4.2) In order to obtain an ideal meeting all the D~ uniformly, let 

(X~ : i < /~ )  be a partition of /z  into p. stationary sets. Having defined ~/(a), our 

strategy for constructing p (a),  p (a )  will be as follows: we'll first find an auxiliary 

condition p * ( a )  with the following properties: 

(1') p * ( a )  = /~*(a)  (id I fi(a)), where ~* E if, 3,(a)" O(a)<= ~(a),  

(2') if a ' E s ~  then p(a')<-_p*(a), 

(3') if "q ES~, ~ ~ 77, then p(~,ri)<=p*(a). 

We then let i < / z  be such that a ~ X~. We choose/~ (a )  ->/~ * (a),  15 (a )  E D~, and 

we let p ( a ) =  lgff(a)  (so p ( a ) =  > ~6(a)). Then p ( a ) =  if(a) ( id lp(a))>-p*(a) .  

(6.4.3) We describe briefly the way we shall obtain 3,(a). If a = i n f S  ~ 
T(a )  = 1. If a is a limit point in S ~ we take "y(a)=sup0esOn,'y(fl). Clearly 

property (5) of (6.2) is preserved. If a is an immediate successor in S ~ say of/3, 

we take 3 '(a)  to be the least 3' > 3'(/3) such that 3'" a > 3,(/3)" p(/3). 
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(6.5) We now verify that if the construction is carried out with properties 

(1)-(7) of (6.2), and following the recipe of (6.4.2), we obtain an ideal meeting all 

the D~ uniformly (in what follows we'll say a sufficiently-generic G). 

(6.5.1)  DEFINITION. L e t  

G = {p E P :(::Iv ~ S . ) ( 3 ~ ) ( ~  ~ v and p _-<p(~, v))}. 

(6.5.2) LEMMA. G is sufficiently generic and ~z-complete. 

PROOF. By construction G is downward closed. By (6.4.1)(c) the set D = 

{p(ff, v) : ~ -] v, v E S,,} which generates G is directed. Hence so is G. 

For sufficient genericity, let i < / z ,  let s E [/z+] <~. The crucial observation is 

that we can find v E S~, and ff ~ v with range s C_ range fsv and with as E X~. 

This is by (M3)-(M5). Let d = ot~. Then adopting the notation of (6.4.2), 

/~(6)E D,, and p ( 6 ) ( f ~ )  E G. 
That G is /z-complete is seen as follows: it clearly suffices to see that D is 

/z-directed, i.e. if D '  E [D] <~ then there's p E D with p '  -_< p for all p '  E D' .  So 

let D '  = {p(ff', v ')  : i </3}, where /3 </z.  We can clearly find v E S~, with 
i V t v => Ui<~ v ,  and -] v such that for all i </3, v i E range 1r~,~ and ot~, > as,. But 

then, by (6.4.1)(b), p(v ' ,  v)_->p(~ ', v'), and p(v ' ,  v ) E  G. 

(6.6) We now carry out the inductive construction of the p (a ) ,  y (a ) ,  p(a). 
Following (6.4.2), (6.4.3), we shall content ourselves with constructing/5*(a),  

since 7 ( a )  is obtained via (6.4.3), and/~(a),  p(a) are then obtained as in (6.4.2). 

Recall that we work by induction on a E S~ and that we are carrying 
properties (1)-(7) of (6.2), and their consequences, Proposition (6.4.1) (a), (b), (c) 

as induction hypotheses. The verifications of (1'), (2'), (3') of (6.4.2) for ,5 *(a) are 

left to the reader. Once made, these verifications mean that (1)-(7) of (6.2) will 

be preserved. As in (6.4.1)(c), let S" = {v E S~ : v is a limit in -] }. We distinguish 
the following cases: 

(A) S" = ~ ;  say S~ -- {v}. 

(A1) v is minimal in 7 ,  

(A2) v immediately succeeds ff in 7 .  

(B) Sa = S ' ~ # 0 .  

In all remaining cases S ' #  0 ,  Sa = S'~ U {v}. 

(C) v is minimal in ~ .  

(D) v is an immediate successor of ~ in 7 ,  and the immediate successor of r 

in S~ (so r = max  S ' ) .  
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(E) v is an immediate successor of ~ in ~ ,  and a limit point of S~ : 
(El)  ~r~ is not cofinal in v, 

(E2) lrr, is cofinal in v. 

In case (A), first let q = Op, if a = inf S~ if a immediately succeeds/3 in S ~ 

let q = p(/3) (so range s q = y(/3). 0(/3)), while if a is a limit in S ~ let q be an 

upper bound for {p(/3) :/3 E S o E/z} with range s q = UoEs0n, range s pt~) = 
UoEson~p(/3) = y(a ) .  (This is always possible by strong r-directed closure.) In 

case (A1) it suffices to extend q to obtain p * with y ( a ) -  O(a) C range s p'. This is 

always possible by (3.14). Then, if p * = p * (s p'), we set/~ * (a)  = ff *, p (a)  = lg/5 *. 

In case (A2) we use Indiscernibility and Amalgamation to guarantee that 
p * (a )  > p (17, v). Let ~ = a~. Note that q > p (6). Let p = p (~), p'  = q and apply 

(6.3.1) to p, p', where h is defined as follows: h l y ( 6  ). 0 ( a ) = / ~ ,  and for 

s r < l g q - y ( 6 ) .  0(ti) (ordinal subtraction), let h ( ( y ( 8 ) .  0 (~ ) )+~ : )=  

( y ( a ) .  v ) +  ~:. Then h I Y(a)" t~ = i d l y ( a  ) �9 ~, and h ( y ( 8 ) .  ~) = y ( a ) .  a. Thus, 
s ~, range h have the strong A-property, so, letting ~ E :3r be such that q = (l(Sq), 
we have, by Amalgamation, that q, ~(h)  are compatible. Let q' be a common 

extension. Then, as in (A1), extend q' to obtain p * with y ( a ) .  0 (a)  C_ s ~' ,  etc. 

In cases (B)-(E), we first note that since S ' ~  ~ ,  a is a limit in S ~ and so 

y ( a )  = U~sOn~ y(fl). We let O' = (max S~') + a, if S" has a largest element, and 

0' = sup S" if not. Thus, in case (B), 0' = O(a), in case (D), 0' = z + a, in case 

(E), 0'= 
In cases (B)-(E1), we start by taking q to be an upper bound for D = 

{p(~, 71) : { ~ ,/, rl E S~'}, with s q = id I y ( a ) "  0'; this is always possible by strong 
g-directed closure, since D is directed by (6.4.1)(c), and since U ~ o  range s p = 

y (a ) "  0' (this last is verified easily, because y ( a ) =  U~s0 ,~  y(/3)). 

Thus, if q ' >  q, then (2') holds when we replace p*(a) by q', and (3') holds for 
those 77 ~ 8~', when we replace p*(a) by q'. But this means that in case (B) we 

can simply take p*(a)= q. In case (C) we proceed as in case (A1). 

In cases (D), (El), we use (6.3.1) and Amalgamation. In case (D), recall that 

0' = r + a. Let t~ = ao. By (M1)(d), ~ is an immediate successor in S~, say of q. 

Again, by (M1)(d), 1rr~(?)=r, and so by (M2), q ~ r ,  ~r~, I? (whence, 

f~ I y(t~). ? = f ~  ] y(t~). ?). Also, p(~,r)=ff((t)(f~.~)<q = t](sq), and 
p(~,v)=/~(~)(f~.~). We shall define h : y ( a ) . O ' - ~ , y ( a ) . ( v + a )  such 
that h l y ( a ) . ( ~ ' + f f ) = i d l y ( a ) . ( ~ ' + t i ) ,  h ( y ( a ) ' ( z + ( ~ ) ) = y ( a ) . ( z + a ) ,  
hof~,=f~.  To define h, let t r = y ( a ) . %  ~b= i f - ? ,  o " = y ( a ) - ( ~ ' + ~ b ) ,  ~b'= 

0 ' -  o". Then, set h Itr = idl ~;  for ~<~, ,  r < y (a ) ,  let h ( ( y ( a ) .  (~" + if))+ ~') = 
( y ( a ) . ( ' r + ' t r r ~ ( f f ) ) ) + ~ r = ( y ( a ) - . r r ~ ( ? + ~ ) ) + ~ ' ;  finally, for ~ < r  set 

h ( o " +  ~ ) =  ( y ( a ) .  v ) +  ~:. So, by (6.3.1), (l(h)>p(~, v). By the Amalgamation 

Sh:112



Vol. 43, 1 9 8 2  MORASSES AND SUPER-SOUSLIN TREES 223 

Property q, ~(h)  are compatible, so let q' be a common extension. Then work as 

in (A1). 
In case (El), recall that 0 ' =  v. Let 6 = a~, and let A = suprange zr~. < v. So, 

by (M6), h E &,  ~ ~ A, 7r~ = ~r~ (and so f~ [ y (a )"  ~ = f ~  [ y ( 6 ) .  ~). Further, 
q = e] (s q ) _-> p (fi, h ) = ff (6) (f;,). We set p = p (~, h ), p '  = q and we apply (6.3.1) 

to h which we define as follows: h [ y ( a ) . h = i d  l y ( a ) . h ;  for $ <  

y ( a ) . ( v - h ) ,  h ( ( y ( a ) ' h ) + ~ ) = ( y ( a ) ' v ) + ~ .  Thus h of~ =f;~, and so by 

(6.3.1) ( l(h)>-p(~,v) .  Also, by construction 0', rangeh  have the strong 

A-property so by Amalgamation q, 4 (h)  are compatible. Let q' _-> q, ~(h);  work 

as in (A1). 
Case (E2) is by far the most subtle. Recall that 0' = v. We use (6.3.2), and we 

let ('7/i :i < h ) ,  (ri : i  < h ) ,  (7/~ :i  < h ) ,  (r/* : i < h ) ,  (a~ :i < h ) ,  (~k* :i  < j  < h )  

be as in (6.3.2). 
We shall construct an increasing chain of conditions (q~:i < A) where 

qi = p(ai)(hi).  Before defining hi, note that O ( a ) = v + a, O ( ai ) = ~ * + ai (since 

v, 77" are immediate successors in 7 ,  and so v = max &,  7/* = max &,). We 

shall have hi :p (a , ) - ->y(a) .O(a) .  In order to define h ,  let o - = y ( a i ) . ~ * ,  

~O = ~ - ~ ,  o " =  y(a i ) - ( r l*  + ~b), ~0' = p ( a i ) -  o". Then set hi [o" =fnb~, [o-; for 

< ~b, ~ < y(oti), set hi ((y (ai)" (~/*~ + ~)) + ~) = (y ( a ) .  r (fii + ~)) + ~; finally, 

for ~ <  C,  set h i ( a ' + ~ ) =  ( y ( a ) .  v )+~.  

We must show: 
(a) for i < j < h ,  p ( ~ , v ) < q i < q j ,  
(b) if r E S ' ,  ? ~ z, then for some i < A, p(?, z) < q,  

Assuming we've proved (a), (b), we note that Ui<A range hi = y ( a ) .  (v + a) .  
We take p *(a) to be an upper bound for the qi 's, and so clearly (1'), (2'), (3') of 
(6.4.2) hold. So, we turn to proving (a), (b). Our main tool is (6.3.1). 

For (a), let i < ] < A .  To see that p(~ ,v )<q~,  note that p(~li,~l*) = 
/~(6)(f~,,:) =< ff(ai) (id [ pi) = p(ai). However, by construction, hi o/~,,; = f~, so, 

= , " q i , j )  = by (6.3.1), p(fi, v)<-_~(ai)(h,)=q,. To see that qi<qi ,  note that p(n*  * < 
~(aj ) ( id[p j )=p(aj ) .  By construction, hj.of,7,~:.=h, so by (6.3.1), qi = 

ff(a,)(hi) <= p(a,)(h~) = q~. 
For (b), using (M5) and Lemma (6.3.2)(b), given ? ~ r, z ~ S ' ,  we can find a 

successor ordinal i such that ai > a~, r/i = ri > r, r ~ range ~'<~,. Let r '  be such 

that z r< , , ( r ' )= r .  So, by (M2), ~ r ' ~ r ,  Also p(ai)  = 
Also, rangef,,C_ y ( a i ) ' ( r ' + a , ) ,  and 

~ ,~ ,  [ ai = id] ai. Thus 

[,,, [ = t,:,. [ = h, I 
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This means that [~ =/~,o/~,, = h, o[ , , .  Thus, applying (6.3.1) to p =p(~',~"), 
p' = p(a~) and hi, we have p(?, r) =/~(6)(f~T) =< p(a,) (h, )  = q,. This completes 
the proof of (b), the treatment of case (E2) and the proof of (6.1). 
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