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§0. Introduction

Solovay, in his celebrated work [7], proves the consistency of “ZF+DC+
every set of reals is measurable and has the Baire property”. He started from a
model with an inaccessible cardinal, so CON(ZF) was not sufficient for his proof.
We prove that the inaccessible is necessary for the measurability; in fact, in
ZF + DC we can prove:

(a) if there is a set of N. reals, then there is a non-(Lebesgue)-measurable set

of reals.

* This work was partially supported by the NSF and the US-Israel Binational Science Foundation.
This paper appeared in 1980 as a preprint and was originally intended to appear in my book, Proper

Forcing, Lecture Notes in Math., No. 940, Springer-Verlag, Berlin-Heidelberg-New York, 1982,
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(b) If for some real a, Ni'*!' = R,, then some X: set of reals is not (Lebesgue)

measurable.

On the other hand, we show that for the Baire property the inaccessible is not
necessary (i.e., every model ZFC has a generic extension in which every set of
rcals definable with a real and an ordinal as parameters, has the Bairc property).
We also show the consistency of the uniformization property (which implies the
existence of an embedding; see Remark (2) after 8.1).

We also prove that adding a Cohen real, adding a Souslin tree, and much
more, guarantee a completeness theorem for L., . + Magidor-Malitz quantifier’;
however, adding a random real docs not guarantee this."

Lastly, we prove that the X5 in (a) above is best possible, i.e., every model of
ZFC has a generic extension in which every Al-sct of reals is Lcbesgue
measurable. For this we show that iteration of Borel forcing is nice.

For historical comments see Harrington and Shelah [1].

Note that §5 arises from the analysis on how the needed amalgamation of ccc
forcing may fail to satisfy the ccc, whereas §7 arises from analyzing why the
parallel to §5 fails, i.e., why the amalgamation of two copies of UM * UM over
Cohen generic reals ry, r; satisfy the ccc. -

Note that in §1, §2, §4, §5 we construct concrete (and not straightforwardly
defined) names, and in §7 we prove our iteration preserves a property (sweet-
ness) without proving that it is preserved by compositions. Those points may
have been an obstacle to previous attempts.

Note also that here mcasure and category are not dual, as usual.

§1. Adding a Souslin tree by Cohen forcing

1.1. THEOREM. If P is the forcing notion for adding a Cohen real, i.e., P
consists of all functions from some n to w, then in V" there is a Souslin tree.

Proor. We construct in V a name for the tree such that, interpreting the
name in V[P], we get a Souslin tree. The underlying set of the tree is w,, the ath
level in the tree is the interval [w-a, o - a +w)=T,. For every pEP we
construct a function =, from wi into {t,f,i}; intuitively =, (a, 8) =t means

' Added in fall 1983. If, in the principles (P) and (P*) (see Definition 2.8), we omit the “‘A-density™
requirement the resulting principles (P),, (P*), remain equivalent (see Lemma 2.9) and are provabie
in ZFC. Closely related construction principles are lemma 13 (14) of [4] and the simplified morass of
Velleman for R, and [6, §1].

" Whether it adds a Souslin tree is an open question.
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pFa<pB” =,(a,B)=f means pt“aXB” and =,(a,B)=i means
p ¥ “aX B.” Formally, the function =, will satisfy the following:
(A) If =, (e, 8)=t, g =p then =, (o, B)=t.
If =,(a,B)=f, g=p (q extends p) then =, (o, B)=1.

(A;) If =,(a.B)=1i then there is g Zp, =, (a,B)=t and there is g = p,

= (o, p)=t.

(A;) Forany p € P and finite A Cw, =T let a, < a; < - - - < a, be the levels

s.t. AC U su[w-ai w(a +1)): Then there is ¢ = p and finite BD A
sitting on the same levels s.t. {(a,B)Iéq (a, B) =t} defines a tree on B
which is in accordance with the levels, every point not in the last level has
at least two extensions in the next level and an extension at any level.
Note that this implies that forno B<a +w and pEP, =, (o, B)=Tt.

We associate with every p € P a function I, : w,— w, having the following
property:

B) If a<B, L(a)=1(B) then =,(a,B)=i or =, (e,B)=t; and ,(a)=

[,(B) implies a, B are not in the same level or are equal.

First we show how that gives a Souslin tree and then we show how to construct
=p L. In V[G] (where G is a generic subset of P over V) define the following
partial order: o =+ 8 © forsome p € G, =, (a, B) =t. We show that it is a tree
and then that it is Souslin.

(i) =y is well founded. Suppose a..( <ra,, then we can find y < y*, n € w-
st. a. €Ty, @, €T,-, and find pE G s.t. =, (@n, a,)=t; by (A;)
extend p to p' and find a finite tree where @..: < a., but then this tree is
not in accordance with the levels.

(ii) The other properties of the tree follow from the fact that the elements of
G are compatible and from a density argument using (A;). (It might be
that limit points in T have the same branch below them, but this does not
matter.)

(iii) The Main point: T is Souslin — suppose X C w, is a set of N, pairwise
<r-incompatible elements r € G, r I X is an uncountable set of pairwise
<y-incomparable elements”. Then find p € G s.t. Y ={a lp Fa € X} is
uncountable, p Z r and find @, 8 € Y s.t. [, () = ,(8); it follows from (B)
and (A;) thatforsome p' 2 p, =,.(a, ) =tso p'F a<; B, a contradiction.

The Construction

We first build the functions =,, I, on the first w-levels of the tree — U, ., T..
We will do this by increasing finite approximations w-many times, at each stage
defining the functions for finitely many conditions on a finite subset of U ,e., T,.
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1.2 DEFINITIONS. A finite approximation ¢

¢ consists of (a) a finite subset A¢ of U, T,, (b) a finite set of conditions
Q¢ C P which is closed under initial segments, (c) functions =,, /, for p € Q*
defined on A* satisfying (Ai.s) and (B) on their domain (for (As) restricting
ourselves to A C A®). So if p € Q° is maximal in QF then ={ determines the
partial order on A¥ completely. Let ¢* extend ¢, ¢ C ¢* has its natural
meaning.

We need the following lemmas to prove that an increasing sequence of finite
approximations can be defined on all of x€ U,¢, T, and P.

1.3. LemMA. If ¢ is a finite approximation, x € U,c, T,, then there is an
extension ¢ of ¢ s.t. x EA".

ProoF. Easy, by checking.

1.4, LEMMA. If ¢ is a finite approximation, p € P, then there is an extension ¢*
of ¢ s.t. pE Q.

ProOF. By induction on Dom p.

1.5 DErINITION AND LEMMA. If ¢ is a finite approximation, g a finite
one-to-one function from a subset of U <., T, to U, T.,, Dom g 2 A*, g keeps
the levels in their order (i.e., {g(x):x € A° N T,} C Tu), Where h is strictly
increasing), then ¢ = g(¢) is defined as follows:

Q®*=0Q° A’=g"A®
for pe Q¥ o, BEA*:
=5 (a,B)=x & =F (g(a), g(B)) = x for x €{f,1,i},
Ii@) =1 (f(a)).
Then ¢ is a finite approximation.

1.6. DupLICATION LEMMA.  If ¢ is a finite approximation, A C Ui Tk <n,
g is appropriate for ¢ (i.e., satisfying the definition and lemma above), g | U, T,
is the identity and,Vk =1 < n, g : Ty — T, then there is a finite approximation
extending ¢ and g(¢).

So let us define ¢; we shall later define Q* such that Q¢ U Q*“ C Q¥, we
define A¥ =A°UA®*“, For a, BEA" and p € Q° we define =} (o, B) by
cases:

Case I: p maximal
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@) =5 (a,B)==7(e,B) if a, BEA®;

(b) =p(a,B)=={"(a,B) if 5 BEA*,

© =(a,B)=i fa+tw=p
and for every y E A® N A,
=t (va)=tiff =¢(v,B)=t;

d) =y(a, B) =1 otherwise.

Case II: p not maximal
For x €{t,f}, =} (a, B) = x iff for every maximal r € Q°*,

rzp > =/(a,B)=x; otherwise =;(a,B)=i.

Lastly, for p € Q we let [} =15U15“.

It is easy to check that (A,), (B) hold (when p, ¢ € Q% p € Q° resp.), however
(A2), (As) do not necessarily hold. So for each maximal member p of Q¥, [ <2
and a, B € A* we shall choose an immediate successor qi,_,,‘g of p (in P) such that
Grap@ QF and qp, a,8, = G boayp, implies py = pa, a1 = az, B = Ba, I' = I>. Now we
let

Q' =0Q° U{gpap:p € Q° is maximal in Q° and [ =0,1}.

Then we define, for ¢ = q,..€ Q" — Q¥, I} as any one-to-one function from A*
into w. Lastly we shall define for any such g, =!; it determines a tree on A¥,
[P (@B ELE = =)(a, B)==((a, B1)] and  =((a,B)=t if 1=0,
=l(a,B)#f and =l(a, B)=Fif I =1, =l(a, B) #L.

Why can this be done? If =j(a,B)=1i, [ =0, by the definition of =},
necessarily for some vy in the last level of A* N A% =¢(y,a)=t. =5 (y,8) =
t so we can easily complete the tree as required. If =y (a, 8) =t, | =1 our tree is
easier as well as in the other cases.

Now ¢ is as required. Condition (B) holds. For p € Q* — Q¥, I} is one-to-one.
Suppose =p(a,B)=1f, a =B, p € Q*, I¥(a)=1%B), then the only non-trivial
case is a EA — A, BE ALY~ A°; then L(a)=1L(g ' (B)). If « =g7'(B)
case (c) above has to occur. Otherwise necessarily @, g'(8) are not in the same
level, and <! (a, g '(B)) #f or =5(g7'(B), @) #f (as p satisfies condition (B)),
hence for some ¢, maximal in A®, p=gq€Q’ ={(a,g '(B)=t or
=¢(g7'(B), a) =t, but this contradicts =¥(a, 8) =1 by (c) above.

Condition (A,) is immediate, and (As) holds by the choice of the q;...s. As for
(Az) let p € QY =(a,B)=1i, x E{t,f}, necessarily p€ Q°. If «, BE A for
somer,p=r € Q° =f(a, B) = x. So r is as required. If a, B € A% the proof is
similar. So suppose @ € A* — A*“ B € A*® — A° and x =t. By the definition
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of =y, necessarily some maximal r, p =r € Q¥ is as required in (c). Clearly
=!(a,B)=i. Now q..s will be as required. If x =f the proof is casier.

1.7 DEefINITION. Let 8§ € w, be limit. Suppose for p € P we have defined =,

LonTlé6= Uies T, satisfying (A 23), (B); we say
®={=,1(T18),,,1(T[8):p € P}
has the duplication property if:

(1) For any finite Q C P and A C T[ 8 there is a finite approximation ¢ C ®
s.t. A¥ D A, Q° 2 0. (We are redefining finite approximation allowing A* C
.)

(2) For any finite approximation ¢ C®, A* CU ., T.. k=n and a, <y <
8, there is f, Dom f D A, f preserves the levels (is appropriate) s.t. f [ UwT, =
identity, f'T, C(T18)—(T|vy) for k =1 =n such that f(¢)C ®.

Using the previous lemmas we can find ®., with the duplication property on
T w. We want to extend this on all of T ] w,. (Therc is a general theorem for
construction. See [4], [5], lemmas 13, 14.)

1.8. Facr. 1f @, (8 < o, a limit) is an increasing sequence of ®;’s having the
duplication property, then U ;.. ®s = @, has the duplication property for T [ e.

1.9. LEMMA. If ®; has the duplication property, then there is ®5.., D @5 with
the duplication property on T (8 + w).

ProoF. We will get ®;.,, as an increasing w-sequence of finite approximation
¢ s.t. o[ (T]8)C ®s and, moreover, if T,,..., T, arc the levelsof A¥ N(TT3),
then there is a function f, s.t. f (T, U---U T, ) is the identity and f(¢) = ¢ for
some finite approximation ¢ C®s s.t. ¢ (T (i, +1))= ¢ [ (T 8). We say that
such ¢ has source, in @5, and it is easy to extend such ¢’s.

§2. The principle (P), Magidor-Malitz quantifiers and adding a Cohen real

2.1. NotaTioN. S,(A)={B:BCA,|B|<A}; Lim={6<w :8 a limit
ordinal}.

Let s, t denote finite subsets of w;; s =t (s an initial segment of () if a E 5,
B <a, BELimplies B Es;

s<t ifsSy SEL

Let s <t mean (Va €Es)(VB Et)(a < B).
Val(s, t) is the following function f: if s ={ag,...,as 1}, 1 ={Bo,-...Bx 1}
(increasing), then
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2.2.

(A)

(B)

©)

2.3.
tion:
(D)

(E)

(F)

fFLK)=0 iff a = B,
flLk)=1 iffa < B
f(lLk)=2 iff x> B

DEeFINITION. A partial order P is a ccc-indiscernible forcing if
P={t.n(t):n.m<w tCw,|t|=n};, for pEP, Domp=1t if p=
Tnm (1), and o, 7 range over {7.. : n, m < w}; by writing 7(s) we mean | s |
is appropriate.

Indiscernibility. The truth value of 7(s)< (1) (in P)depends onlyon 7, o
and Val(s, 1) (hence |s |, |t] too).

P satisfies the cee (countable chain condition), equivalently for s <, < 1,
lt|=16], 7(s U ). 7(s Ut) are compatible.

DerFinimion. - We say P is a smooth ccc-indiscernible forcing if in addi-

If p. ¢ are compatible in P then they have an upper bound r, Domr =
Dom p U Dom g.
If pe P, t=Domp, s<{t then there is ¢ = p | s such that
(i) g=p.and
(i) g=r, (Domr)Nt =s, implies p and r are compatible.
7(s)= o (1) implies s C .

ReMaRk.  Note that (E) implies (C).

24.
(1)

(2)

2.5.
(A)

(B)
©)

DEFINITIONS.
D is an indiscernibility density function, if for any finite s Cw,, D(s)is a

dense subset of P, and the truth value of 7(1) € D(s) depends only on 7
and Val(s.1).

D is smooth if for cvery s and p € P there are ., qEP, p=r. g =,
q € D(s) and Domgqg = s.

DeriNTion. . We call E a A-density set if

for some n=n(E), it is a set whose members have the form
(T(sUL),...,7(sUL) 7)), s< 1, << <t T(sUL)ST*(*);
the indiscernibility condition is satisfied;

fsCs' t.Ctis<sUt.sNt, =0, s'<<s'Utls'Nt. =, Val(L,t)=
Val(ti,t), (s UL)=o(s'Ut), s <1, <t <:-- s'<t;<--- and Mint,
is limit, then there are o*(t), 7*(¢*) such that

(r(sUt).....,7(s U ), 7*(t*)H E E,
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and o(s'Ut)=co*(t) and 7*(t*)= o *(1).

2.6. DEFINITION.  We call a A-density set smooth if in (A) t* =s U U, «, and
in (C) t*=s"U U, 1. (so we can omit “Min ¢, is limit”).

2.7. DErFINITION.  Suppose P is a cce- indiscernible forcing, G C P is directed.

(1) G satisfies a density function D if for any s € Se(w,), G N D(s)#J.

(2) G satisfies a A-density set E if for any 7(s Ut)E G (i <w,) such that
s<t <t for i<j, |t|=]to| there are i(1)<---<i(n), n =n(E), and
7*(t*) € G such that (t(s U tiy)), ..., 7(s U tiwy), 7*(t*)) E E.

2.8. DEFINITIONS.

(1) The principle (P) holds iff for any ccc-indiscernible forcing P, and
countably many density functions and A-density sets, there is a directed
G C P satisfying them.

(2) The principle (P*) holds iff for any smooth ccc-indiscernible forcing P, and
countably many smooth density functions and smooth A-density sets,
there is a directed G C P satisfying them.

(3) We define the principles (P)., (P*). similarly, but restricting ourselves to
A-density sets E, n(E)=n.

2.9 LeEMMA.,
(1) The principles (P) and (P°) are equivalent.
(2) Also, (P). and (P%), are equivalent.

PrROOF. Trivially the principle (P) implies the principle (P*). So suppose the
principle (P°) holds, P is a ccc-indiscernible forcing, D; (I < w) are density
functions, and E; (I < w) A-density sets for it. Let To={r..:n <o} and
S ={8:6 < w, limit ordinal}.

First we can assume that in P, for every 7.(s), 72(t) € P which are compatible,
there is a least upper bound o(s U )= r1(s)U 7x(t) and 7(s)= o (t) implies
sCt

For this, let P’ ={(s,I'): s € Sx,(w:), ' a finite subset of P such that o(t)€E
P = tCs and I' has an upper bound}.

On P’ we define an order: (s,,I")) = (55, 1) if 5, C s, and ', CT. It is easy to
check that P is a ccc forcing, satisfying the above-mentioned conditions, and
it suffices to prove the principle (P) for it (i.e., we can translate the problem of
finding directed G C P to the problem of finding G’ C P’). Note

2.10. Facr. If p€ P, 8§ < w, is limit, then there is ¢ € P, Domq C §, such
that for every q', if ¢ =q'€ P, Domgq’' C 8 then q’' is compatible with p.
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ProOOF. Suppose not; let p=7(sUt) where s =(Domp)Né and t=
Dom p — 5. Now choose f; (i < ;) such that ; C[8 + iw,§ +iw + w)and || =1t
By the indiscernibility, and as we have assumed that p, 8 form a counterexample,
for each i < w, there is q; € P such that 7(s U ;)= g, Dom¢q: C 8§ + iw + w and
g: is incompatible with 7(s U t;.1). Clearly, by the indiscernibility for i < j, g; is
incompatible with 7(s Ut); but 7(s Ut)=gq; so the g’s are N, pairwise
incompatible members of P, a contradiction.

So for every p, 8 there is a condition q, Domq C 8, such that r=q Up
satisfies: ¢ =r, Dom q C §, and they satisfy: g’ = g, Domq’ C § implies q’, r are
compatible. For any r € P, let 8, be maximal § €Lim such that [§, w\]-
Dom r# &, and let r, = go U r be as above. Now let 8; < 8, be maximal such that
[61,80] —Domgq, # < and find suitable r, = q, U r;, Dom g, C §,, and continue.
Eventually, as the ordinals are well ordered, we find r* = r such that for every
limit ordinal, there is r*[ & such that ¢'=r*[ 8, Domgq’' C & implies q', r* are
compatible. (Why not only for § € {8, 81,...,}? By the indiscernibility.) Call the
set of such r*, P*. P* does not satisfy the indiscernibility condition (even
7(t) € P* does not), but when we replace w, by Lim, adding more terms, it will,
and it is a smooth ccc indiscernible forcing.

Now we have to “translate” the D,’s and E;’s and we are done.

It is quite obvious (see Magidor-Malitz [3]) that

2.11. THEOREM. The principle (P) is equivalent to the completeness theorem for
Lo (QY™, Q5™ ..., O™, ... Similarly for (P)s, Lu,.(Q¥™).

See [6] for how easy it is to use (an older variant of) (P) for many applications.
There are two differences between (P) and the principle from [6].
(a) More of the work of applying the principle is put into the principle there,
so it has less of the flavour of a combinatorial principle.
(b) The principle there is a little stronger.
But we could have used various variants of the two and everything is parallel
(except 2.11, where the logic has to be changed). Note

2.12. Concrusion. The principle (P°) follows from y,.

2.13. THEOREM. If we add to a universe of set theory a Cohen generic real, then
the resulting model satisfies the principle (P°).

PrROOF. We can use as Cohen forcing “”w with the order < (being initial
segment); we call this forcing notion Q. So we are given Q-names P, D,, E,
(n < w), which are forced to be as in Definition 2.8(2), and we have to construct
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a Q-name G of a directed subset of P satisfying D,, E, ; the problematic part is
satisfying E..

Note that we know the set of elements of P. For seeing what we need to satisfy
E,., let G” be a Q-name of a directed subset of P.

So suppose g € Q forces that E = E,, 7(s N t;) (i < w;) form a counterexam-
ple. Foreach i there is ¢ = q, g V7=, s =s, n(E)=n, t; = ”. But there
are only countably many g; € “”w, hence for some ¢*, g =q*for i €S, S C w,
uncountable. So ¢* s =s* and n(E) = n*” for some s*, n*; and it suffices to
guarantee the existence of ¢ = ¢q* and n, i(1)<---<i(n)in S, and

qi* "'Q “<T(S, !,'(1)), ey T(S, t,'(n)), T*(t*» S E and ’T*(E*) S GP”.

From now till the end of the proof of Theorem 2.13:

2.14. AssuMpPTION. P, D, E. are Q-names as in Definitions 2.3, 2.4(2) and 2.6
for |, e < w.

2.15. DeriNiTioN,  We shall define here what is a finite system. The finite
systems are approximations to a full system, which gives a name G” as required.
A finite system S is consistent with the following (when several systems are
discussed, S will have an additional superscript, or we use S(1), etc.):
(A) The domain: A finite subset W of w, and let n(x)=| W |, and a finite
subset ' of “"w closed under initial segments, and
(B) The “forcing relation”™: A function G, with domain ' such that for
n € Dom G, G(n) is a finite set of elements of the form 7(s), s C W and
n ko “in P, the set G(n) has an upper bound”.
(C) The local ignorance condition: For every n €1 there is k(1)< w and
there is a family H(7) of subsets of W such that
() A €H(n)implies |A |=k(n),
(i) if A, B € H(n)then A N B is an initial segment of A (and of B),
(iii) if 7(1)€ G(n) then, for some A € H(n), tC A,
(iv) if A, B € H(n), h the unique order preserving function from A
onto B, and a,,... € A, then

t{an, as,...DEG(n) iff r{h(ar), h(az),...}DE G(n).

Now a system consists of W, I', G, H, provided they are as mentioned above
and satisfy:

(D) Monotonicity of G, H: If v <{n are in I then G(v) C G(n), and for every
A €EH(v) there is BEH(n), ACB.
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2.16. SuBcLAIM. In Definition 2.15(B), instead of
1 ko “in P, the set G(n) has an upper bound”
it suffices to demand
1 ko “in P, the set G4 (1) has an upper bound for any (some) A € H(n)”
where
Ga(n)={r()EG(n):t C A}
Note that G(n)= U {Ga(n): A EH(n)}.

Proor. Easy by property (E) from Definition 2.3: We can define, by
induction on a € U e,y Dom p U {w,}, an upper bound for {p | a : p € G(n)}.

2.17. DEFINITION. A partial order < is defined on the set of finite aproxima-
tions,
S(H<SQ) if: WPC W@ 1°OCT*® for every nel™ H*Y(n)C
H*®(n), for A € H*®(n) Gi”(n)= Gi®(n) (note the equal-
ity), hence G*®(1)C G*?(n).

2.18. SuBcLaiM. The set AP of finite approximations is partially ordered by
<, and it has the countable chain condition.

PROOF. Trivial, if we use Subclaim 2.16.

2.19. CLamm. Suppose S € AP,  €T°, then there are S(1), S < S(1), and »
such that:

D) ngy, verse,

(i) H*(n)C H*"y,

(ii) for any 1 € H*®(v) there is 7(t) € G{(v) and

v o “7(t)is an upper bound of G7(v)”.

(When (iii) holds we say » is canonical in S(1), for 7(t). Hence it is canonical in
any S(2)> S(1). If we omit “for 7(¢)” it means “for some 7(¢)”.)

ProOF. Easy.

2.20. CLaiM. Suppose S € AP, n €T’ is canonical in S for 7(¢), and
nk“n(E)=n", sUh,...,s UL EH’(n), s< <+ <, || =]]=-=
| tal, tmC tw, Val(tm tm)=Val(ti, 1), s'Cs, 7'(s' Ut = 7(s U tn).
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Then there are S(1) € AP, S(1)> S, and v €T, n < v and 7*(¢*) such that
blo “(r'(s'Ut]), ..., 7' (s Utl), T*(t*) EE”
and 7*(t*)€ G*"(»).

Proor. Let t*=sulU.

Choose m such that 7 "(m)&T® and choose », 7" "(Mm)<vE“ o,
vibg “Ar'(sU1),...,7'(sUt), t*(t*)EE: such that {r*(t*)}U{r(s,t):1=
1, n} has an upper bound” for some r*(t*). This is possible by 2.5(C). Now the
only problem is to show v ko “G(n) U {7*(t*)} is compatible”. This is quite easy
by Definition 2.3(E). (So we let I*@=T° U{vll:I=1(»)} for I(n) =1 <I(»),
G*Ywv )= G (), G*¥(v)={r'(t")} where 7'(t') is an upper bound of G(n)U
{r*(*), t'=W°)

2.21. CLaM. Suppose D is a smooth density function. If S € AP, n €T,
I <w tC WS then there is S(1)>S, v €Y, n <y, and 7(t)€ G*“(v),
vikg “r(1)E Di(t)”.

Proor. Trivial.

2.22. LEMMA. There is L C AP such that:

(1) L is directed.

(2) For any a < w, for some SEL, a € W°.

(3) For any €7 w for some S EL, n €T".

(4) For any 1 €E*"w, | <o, t € Su(w:) there are SEL, v ET®, n <y, and
H)EG () st vio “r(t)EDi(1)".

(5) For any nE€E“"w, |<w, SEL, there are vE“"w, n<», S(HEL,
S < 8(1) such that v €T° is canonical in S(1) and v ko “n(E;))=n" for
some n.

(6) Suppose m €“ w is canonical for SEL, sUt,...,sUt, EH*(n),
nken(E)=n", s<t<:+-<ty s'Cs, tnCtm and

Val(tm, t.) = Val (1, 1)), T'(s'Utn) =S 7(s U tm).
Then there are S(1)E L, S(1)> S, v €E“"w, 5 < v, v €TV, 7*(1*) such that
vho “(T'(sUL),...,T(s" UL, T*H*NEE”, T*(H)E G’ (v).

Proof. The existence of such § is equivalent to the existence of a model of
some ¢ €L, .(Q) (O — the quantifier “‘there are uncountably many x such
that...”). By Keisler [2] this is absolute (as long as N remains N.), so it suffices

' Namely, the completeness theorem for L, ,(Q).
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to find a generic extension of our universe in which N, is not collapsed, and such
L exists there. Use AP as a forcing notion; by 2.18 this does not collapse N,, and
use the generic subset of AP as the desired L. It satisfies (1) trivially, (2), (3)
easily, (4) by Claim 2.21, (5) by Claim 2.19, and (6) by Claim 2.20.

PROOF OF THEOREM 2.13. Let L be as in Lemma 2.22 and define the Q-name
G’:
) G” ={z(t): for some 1 €“”w, which is in the generic subset of Q,
and SEL, peG*(n)}.

It is easy to check G is as required.

§3. Adding a random real is different

3.1. THEOREM. If Vis a universe of set theory, r a random real over V, then in
V|[r], (P): does not necessarily hold. In fact, not necessarily, there are h, <* such
that:

(@) (w1, <) is a tree, the last level is , — w; it is the w-th level, so that for every

@ Elw,w], {I:1<* a}C w has order type w (by <*),

(b) for any a# B €E{w, w1}, h(a,B)<* a, h(a,B)<* B and there is no bigger

element (by <*) with those properties,

(c) for any uncountable S C wy there are (distinct) a, B, y €S, s.t. h(e, B) =

h(a, y)=h(B, ).

REMARK. If V =L, then in V|r] obviously O, holds; and even CH implies
the existence of such a tree.

PrOOF. It will be enough to assume V satisfies Martin’s Axiom and 2" > N,.
Let Q be the forcing adding a random real, i.e., {p : p a measurable set of reals
of positive measure} and <*, h be a Q-name, p € Q, p ko “*, h satisfies (*)".
Let R ={(ai, az, a3} C[w, w1] : h(ao, @1) = h(ao, a2) = h(a:, @2)}. Define a forc-
ing notion

P={(q,W):q € Q has measure >3, W C w, is finite,
and for every tC W, [1|=3, gko “tEZ R}

It is enough to prove P satisfies the countable chain condition. For then, for
every a < wi, p. =([0,1],{a}) € P, hence there is p* € P, p*I» “for unboun-
dedly many a <w,, p. is in the generic subset of P”. (Otherwise there is a
P-name a of the bound, and by the countable chain condition it has N, possible
values, a. (n<w), but pu.. gives a contradiction) Let D, =



Sh:176

14 S. SHELAH Isr. J. Math.

{p EP:(3B)a <P <w Aps=p}itisdense above p*, hence by MA there is a
directed G C P, p*€ G, G N D, # DB forevery a < w, and, w.lo.g.,|G|=N,.

Letg* = N{q: forsome W, (q, W)€ G}, as G isdirected and (q, W)E G - ¢
has measure >3; by MA, q* is measurable and has measure =3 Let W* ={a:
for some (g, W)E G, p. =q*},as GN D, #J, W*—a#J, hence W*C w, is
unbounded. It is also clear that for t C W*, g* ko “t& R™ (as G is directed,
tC W, (g, W)E G, forsome g, W; glro “t&€ R” by P’s definition, but ¢* = q).
Sothis contradicts (b) of 3.1.

So suppose (g, W;) € P for i < w,, and it suffices to find two compatible oncs
to finish the proof. We can replace {(g, W) : i < w,} by any uncountable subset.

Let W ={ab,..., k., ak ..., a. 1} (w.lo.g. k, e does not depend on i), and
ai=alfor 1<k, ap<---<ai.<ai<--<a.,and a. <alfori<j We
know that (after forcing with Q) there are ay, ..., a.-,, such that a;<* a;, the a;

are pairwise <*-incomparable. Hence there are Q-names a; for them. In Q
there are pairwise disjoint g/=q., ¢ = U.<.q] and qito*ai,...,ac )=
(a§",...,ai")". Also there is n(i) and rationals u} such that g; has measure
>ul, for n<n(i) and S.<niyui>1 So wlog n(i), ad",....al, u] for
n < n(i), does not depend on i and are n(*), aq,...,ac- (n <n(x)), u". Also,
because of MA, there are w.l.o.g. g%, g« C q’ for every i, g4 has measure = u”"
(do this for each n successively; of course, replace our set of conditions by an
uncountable subset).

Let g, =U.<.yq5s, so clearly q, C g hence g, =g (in Q) and g, has
measure =3 u" >3 (as the g ; remains pairwise disjoint). Now (¢, , W, U W;) €
P, the ag,...,a:-, exemplify this; and it is = (g, W) = p1, (g2, W2) = p2, s0 we
finish.

§4. An attempt on “every set of reals has the Baire property”
The following is a good introduction to the measurc casc.

4.1. ATTEMPTED MAIN THEOREM. If every X; set of reals has the property of
Baire (i.e.. outside a set of the first category, it is equal to an open set), then N, is
an inaccessible cardinal in the constructible universe L.

4.1A. REMARK. A X} set of reals is a set of the form
{x : 3y Vz Iwep(x,y, z,w, a)} where x, y, z, w vary over reals (i.e., members of
“2), a is a real, and ¢ an arithmetical formula.

Henceforth we assume that the hypothesis of the theorem holds, but that the
conclusion fails, and eventually get a contradiction. So for some real a*,
NI*T= N, (i.e., N, in the universe L[a*] is N, of the true universe V) (this is



Sh:176

Vol. 48, 1984 SOLOVAY’S INACCESSIBLE 15

because N;, being regular in V, is regular in L, but is not inaccessible by an
assumption, hence is a successor, N = ("), so a* can be any real which codes a
well-ordering of w of order-type w).

The proof is broken into a series of lemmas and definitions, which lead to the
construction of two disjoint X; sets of reals, each nowhere of the first category
(i.e., in no open set), thus getting the desired contradiction.

4.1B. NotaTiIoN. For AC“2, n €“72, let A, ={r €A :n<v}.
The following forcing notion plays a central part in our proof.

4.2. DefFINITION. UM (universal meagre) is the following forcing notion:

(a) Its set of elements is: {(t, T): T C“”2 is a perfect tree, t = T [ n for some
n}, where TIn={n€T:l(n)=n}. If t = TIn for some perfect T, we
say ht(t)=n, t a tree of height n.

(b) (t, To)=(t,, T)) if ty==tTht(t), T, C T,

4.3. SKETCH OF THE PROOF. UM is the natural forcing for making the union of
all old closed nowhere-dense sets, a set of the first category (see below). In fact,
the natural approach to prove the conjecture “if ZFC is consistent then
“ZFC + every 3 set of reals has the Baire property” is consistent” is as follows.
We use iterated forcing O =(P, Q. : a < ay) such that, for unboundedly many
a’s and for every a <8 < ay and Ps-names r. (e =1,2) of reals generic over
Vi P, =P=* UM (Q\M’ i.e., UM as interpreted in V"), and for some y = 83,

Pv+1 = ’YPu+:=12P7’
i.e., two copies of P, amalgamated over P, and r, = r.; more formally it is
{(pi, p2): pr € P,, p, € P,, and for every q € P,, and finite function f from w to 2,
for I =1,2; if some pi=p, pi=q and pil-“f C r,” then for some pi = ps,
pi-1 Zq and piy HfC [3#1}-

Such an approach was tried (at least for the parallel case of measure) by Truss
(the Baire property was considered ““the little sister”). The problem was to show
that iteration satisfies the countable chain condition (in order to show that it does
not collapse N;).

If V satisfies MA + 2" > K,, then UM satisfies: among any K, conditions, there
are N, which are below one condition. This is a strong strengthening of the
countable chain condition. This condition is preserved by the amalgamation (as
above), but if we try then to force by UM again, it is no longer over a model
which satisfies MA again, hence it is not obvious why it should satisfy the
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strengthening of the countable chain condition (and this is why Truss had asked
“does adding a Cohen generic preserve MA?” which Roitman answered
negatively (for more on history see Harrington and Shelah [1]).

We first show that (if the theorem fails, as we assume) for every real a we can
force with UM over L[a] (i.e., there is a directed G C UM""*!, which meets
every dense subset of UM*'®! which belongs to L[a]). Then we shall construct a
special function h*:[w\]’>w ((A]* — the set of increasing pairs from A), so
every real a induces a colouring of [w:]’ by red (= 0) and green ( = 1): the colour
of (i,j) is a(h*(i,j)) (note Ni'®" is NY). Now call a real a red [green] if w; is the
union of N, sets A, (n <w) so that each A, is homogeneously red [green].
Clearly the red set (= the set of red reals) is disjoint from the green set. Now
together with h*, we shall construct some names in the forcing UM* UM (i.e.,
we force by UM, and in the universe we get we force by UM again). There will
be two sets of names: the red and the green. There is a name a™ which is forced
to be a generic real (i.e., no closed nowhere-dense sets from the ground model),
and names, for i < w,, n"(i) of natural numbers, so that {i : n™(i) = n} is (forced
to be) homogeneously red for the colouring a™(h * (-,-)), hence a™ is a red real.
Similarly there are green a®, n®(i).

Now for every real a, we can force by UM =* UML[“"“] and then interpreting
a™, a* get red and green reals which belong to no closed nowhere-dense set
from L[a*, a]. With a little more care we get them in any open interval. Now,
any first category set in V is included in the union of countably many closed
nowhere-dense sets Lim T, (T, a perfect tree C“”2). For some a, (T, :n < w)
€ L[a*, a]. Hence, by the above, the red set and the green set are every- where
not of the first category, and they are disjoint, so they do not satisfy the Baire
property. Really, we replace them by some 33 subsets. Most of our efforts will be
to construct h* and the names simultaneously by finite approximations.

NotaTion. If V, C V, are universes, B € V, a Borel set of reals, then B*2is a
Borel set in V- having the same definition.

The following is well known.

4.4 LEMMA. Suppose a is a real, then A = U {(Lim T)" : T € L[a] a perfect
tree} is of the first category.

PROOF. Suppose not.

Clearly A is a %} set of reals (x € A & (3T)(x €ELim T and T is constructi-
ble from a) and x € Lim T is X and “T constructible from a” is ). So by our
assumption it is equal to an open set outside a first category set. A is not of the
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first category, hence in some interval (“2),; = {v €“2: 7 < v} its complement is
of the first category. As A is invariant under finite changes, “2 — A is of the first
category. Now in L[a] there is a %; quasi-linear ordering <* of A, with every
initial segment being of the first category (there is such an ordering of the perfect
TEL[a), (T.:i<K), so x=*y if and only if ValyeU...T. > x€
U i-. T]); more exactly: (3R)[(w, R) is isomorphic to some L,[a], @ < w, and
for some perfect T € L,[a], x €lim T but y& Lim T’ for every T' € L.[a]].
Let B=A XA,

By={(x,y):xEA, yEA, x ="y},

B, ={(x,y):xEA, yEA, y=*x}.

Clearly B = B, U B, is a subset of “2 X 2, with complement of the first category.
For every y €“2, {x : (x,y) € By} is of the first category, so if B, has the Baire
property, then by the analog to Fubini theory, B, is of the first category.
Similarly {y : (x, y) € B} is of the first category for each x € “2, so if B, has the
Baire property, then it is of the first category. But By U B; = B is not of the first
category. So for some e =0, 1, B, does not have the Baire property; however, it
is a 3 set, contradicting an assumption (formally, we should translate the
situation from “2 X “2 to “2, which is trivial).

4.5. LeMMA. For every real a, there is a generic set for UM"'! (over L [a)).

ProOF. By 4.4 there is BD U{BY:B € L[a] a Borel set of the first
category}, B a Borel set of the first category. In L[a, B], BCU,.,B., B.
nowhere dense, and so there is a countable family H of nowhere-dense subsets
of “2 (in L[a, B]) so that every nowhere-dense subset of “2 in L[a]is included in
a member of the family (you have to work a little: Note that if B& L[a] is
nowhere dense and closed, then there is a perfect TC“72, Lim T = B and (in
Lia]) there is a perfect T', TC T' such that for every n € T’ for some
v=p, €72, n<vET and (Vp)[pET > v "p&ET']. Now LimT' C
U.<. B., hence for some 7 € T', and n < , (Lim T").,,;C B,. Hence Lim T C
{p, : v," p € B,}, so the family {{p:v"p € B.}:n <w, v €“72} suffices). Let N
be a countable transitive elementary submodel of Ly,[a, B] to which H belongs.

We can find a generic object for UM""“?!N' N over L[a, B] as this is a
countable forcing, hence equivalent to forcing a generic real. The generic set
induces a generic set of UM"*.

Unfortunately, we ran into difficulties trying to build £* and the names.
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On “‘every set of reals is measurable”

5.1. MAIN THEOREM. If every X set of reals is measurable, then N, is an
inaccessible cardinal in L.

REMARKS.

1)

@)

G)

The theorem is proved in ZFC, of course. However, very little use of the
axiom of choice is made, only that N, is not singular in any L[a], a a real.
For this it suffices that N, is regular, which follows from the countable
axiom of choice (i.e., the existence of choice for a family of countably
many sets).

In the proof we use, in fact, only two formulas: ¢(x,y), ¥(x, y). For the
first we need, as a parameter, any real a such that U {B : B a Borel set of
measure zero which has a code in L[a]} does not have measure zero (i.e.,
for such a, {x : ¢(x, a)} is a non-measurable set of reals). For the second
we need to assume there is no a as above, and use as a parameter any a
such that Ni“'=N,.

It is known that there is a generic extension of L not collapsing cardinals
nor violating CH, in which every definable (with no parameter!) set of
reals is measurable, e.g., force by ® ={P: P, (see Definition 6.2) and it
satisfies the ccc where ¢ is X, ¢ is X1} with the order < (being a complete
Boolean subalgebra). Note that if P, P,E® then P, X P,E® and P,
P, < P, X P, (force MA + not CH and use absoluteness). After forcing
with @ we get, as a generic object (its union, more exactly), a ccc forcing
notion, with which we force.

5.1A. ConcrusioN. The following are equiconsistent:

1)
2)
)

ZFC + there is an inaccessible cardinal.

ZFC+every 3} set of reals is measurable.

ZFC + every set of reals defined by a first-order formula with real and
ordinal parameters is measurable.

(4) ZF + the axiom of countable choice + every set of reals is measurable.

5)

ZF + DC + every set of reals is measurable.

(Solovay proved (1) = (2), (3), (4), (5), our main theorem is (2) = (1), 3) = (2)
is trivial, and (4) = (1) is Remark (1) above. Lastly (5) = (4) is trivial.

By minor changes in the proof we can get

5.1B. THEOREM. (ZF +DC) If there is a set of N reals, then there is a
non-measurable set of reals.
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REMARK. The parallel theorem on the Baire property is not provable in
ZF+DC, by §7.

ProoF oF THEOREM 5.1. Henceforth we assume the hypothesis of the
theorem, and that the conclusion fails, so for some real a*, Ni“"1 = N, (see 4.1A).
First we note the following, which is well known.

5.2. LEMMA. Suppose a is a real, B; (i <81} a list of all Borel sets of measure
zero of L[a], and let B! be the Borel sets with the same definition in V. Then
obviously each B! has measure zero, moreover, U.BY has measure zero.

Proor. U,B! is measurable because it is defined by a 3[a] formula;
moreover, on it there is a 2 quasi-linear ordering <*, with every initial segment
of measure zero. This contradicts the Fubini theorem for {(x,y):x,y €
U B, x <* y}, except when U, B} has measure zero (see the proof of 4.4 for
more details).

5.3. ScHEME oOF THE ProOOF. We shall construct a special function
h*: |8 — o ([A] — the set of increasing pairs from A). So for every real a
(which is a function from  to 2) a colouring of [N, ]’ by red ( = 0) and green (= 1)
is defined: (i, j) is coloured by a (h*(i, j)) (note N, is the true 8, that of V). Now
we consider the following two sets of reals: The red [green] set is the set of reals
a, such that: N, is the union of Ny sets, A, (n <w), so that each A, is
homogeneously red (i.e., for i <j € A,, the colour is red) [each A, is homogene-
ously green] for the coloring which corresponds to a. Those two sets are disjoint,
and if h* is “simply” defined, they hopefully will be “simply” defined too. We
could also use other properties, like: an Ni-tree defined from the real a has an
w-branch, or is special. So we have to construct a suitable h*, and prove that
both sets of reals have outer measure 1 where, for technical reasons, we work
with 2“, as the set of reals with the measure LbMs, where LbMs ((2°);,,)) =27,
(2°)m={v €“2:m < v}. Note that every closed set A C2“ is uniquely deter-
mined by T[A]={nll:l<w, n €A}, which is a closed subtree of 2°“, as
A=LimT.

The natural forcing, which makes the union of all old Borel sets of measure
zero into a measure-zero set, is the amoeba forcing Am: the set of conditions is
the family of measurable sets of measure <3; w.l.o.g. we consider only open
sets. For technical reasons we use their complements, i.e., Am'={T: T C2" a
closed tree, LbMs (Lim T)>3}. So the generic object of Am’ is, essentially, a
closed tree T C2°“, LbMs (Lim T) =3, Lim T disjoint to all B", for B an “old”
measure-zero Borel set. Now in the forcing Am’+ Am’ (we iterate the forcing),
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we shall build (in L[a*]) two systems of names: the red system and the green
system. Both give a name a™[a®"] of a real, which is inside the generic tree of the
first Am’, and h*:[N,}’— o and for each i <N, a natural number n“(i) [n*"(i)},’
such that A} = {i : n"(i)= m} is homogeneously red (similarly for green), i.e.,
if n“(i)=n"(j) then a“(h*(i,j))=0. So for any real a, we forcc by
(Am’* Am')**"*L. So, e.g., for red, we get a real a’, such that the colouring it
induces on [N,]* is the union of countably many homogeneously red sets, so it
belongs to the red set. Also, it belongs to the generic tree of the first forcing,
hence it does not belong to any BY, B € L[a*, a] a Borel set of measure zero.
Hence a’ is a random real over L[a*, a]. Being careful a little more in the
details we then prove that the “red set’” has outer measure 1. As the same holds
for the “‘green” set, we finish. In fact, we do not use the red and green sets, but
definable subsets of them.

Unfortunately, we have not proved that for every a, there is a tree generic for
Am'’ over L[a*, a]. We have becn able to prove (by Lemma 5.2, see below) that
there is a closed tree T such that Lim T has measure } and is disjoint to B" for
any Borel set of measure zero B € L{a*, a]. This may look like ‘‘the poor man
generic tree for Am’” and we call it by this name, but it will suffice. Note that

S.3A. Fact. If T is such a tree, A, C2° open (I <), A1,y C A, and 1), A,
has measure zero, (A, :l < w) defined in L[a*, al, then for some n € T and
| <, (Lim Ty, N A, =. (Really each A, defined in L[a*, a] suffices.)

So choosing the first pair (n, [) for which this occurs, we obtain essentially a
“name” of a member of 25“ X w; we use such names for the n"(i), n®(i).

We now proceed to the actual proof.

5.4. DeriNiTION.  We define the natural number u(k), for k < w, as follows
(they should be just increasing fast enough): u(k)=2"" .

5.5. DerFiNITION.  For a closed tree T, the function ms; is defined, for
7 €72, by msr(n)=LbMs [(Lim T)N (2°)). For a function m : T—Q, T is
suitable for m if m(n)= ms;(n) for every n €“72.

5.6. CLaiM. Let B be a set of measure zero, then there is a perfect tree T and
function m : T— Q (Q — the rational numbers) such that:
(a) (LimT)N B =, m = msy,
(b) msr(( ))=3, and msr(n) has the form k/4'""', 0=k <4'"' and k#0
iff neT.

" Both are Am* Am-names.
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A similar lemma is:

5.7. CLaiM. Let B be a set of measure zero. Then there is a perfect tree T
and m : T— Q and natural numbers n(k) (k < w) such that:
(a) (LimT)N B =&, m = msr,
(b) msr(( Y =3%and for every n € T, [(n) = n(k), msr(n)is [/4"", 0<1<
grioet

(c) for every n €"2N T, msr(n)>2 "“ (1-1/u(k)).

PrOOF OF 5.6. As B has measure zero, there is an open set A, B C A,
LbMs (A)< 1/100. Now we define by induction on n <w a set t, C"2, and a
function m, : t, — Q and an open set A, such that:

(*) (1) if n €1, then4""'m,(n)is a natural number <4"'' (but > 0)and

m.(n)+1/4""" <LbMs((2° — An)m) < ma(n) +1/4""" + 174",

hence necessarily m, (n) <27,

(2) A...C A, are open, Ag=A;
(3) if n €t then Mui(n"(0))+ mau(n " (1))=m.(n) (of course, if
vE"2—t,, m,(v)=0).
For n =0, t,={ )}, m(( )=z
For n + 1, for each n € t,, [ €{0, 1}, choose a maximal integer k(n, [) such that

k(n, 1)/4"? <LbMs (2° = An)inrawn)-

So
LbMs ((2° — An)an) — k(n, 14" 2 = 1/472,

Hence
LbMs ((2° — Auiap) — (k(n,0) + k (n, 1))/4""?

= (LbMs ((2° = An)iao1) — k(n,0)/4™**) + (LbMs ((2° — An Jim~con) — k (1, 1)/47*2)
S1/4™7 4 1/4%2 = 2/42,

Hence
LbMs ((2° — A ) = (k(m,0) + k (5, 1) +2)/4" ™.
But by (*)(1)
m.{(n)+ 4/4""* < LbMs ((2° — A, Y1)

Together we get
ma(n) < (k(n,0)+ k(n,1)—2)/4"".

First assume k(9,0), k(n,1)>0.
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As 4""'m, (n) is a natural number we can choose natural numbers k’'(n,0) <
k(n,0), k'(n,1)< k(n,1) such that

ma(n) = (k'(n,0)+ k'(n, 1))/4"".

We then let m,.(n ") =k'(n, /4. If k(n,1)=0 we can check that
k(n,1—1)>0, and we choose k'(n,1—1) such that m,(n)=k'(n,1-1)/4""",
and we can check that k'(n,1—1)=k(n,1—1), and we let

Maei(n " (1= D) = k'(n, 1= 1)/4""" = m,.(n).

We let ty ={r €2""":m,.(v) is defined and positive}. Now one of the
inequalities in (*)..:(1) holds, with A, instead of A,...
We prove the left inequality of (*)(1).
Suppose n"(l) € t,... First, if k(n,0), k(»n,1)>0 then
mn+1(7’A<l>) + 1/4n+2 — k/(ﬂ/\([))/4n+’l + 1/4n+2
=k(n D4
< LbMs ((2w - A,. )[,,'*(1)]).

Second, if the condition *“k(n,0), k(n, 1) > 0” fails, then necessarily k(n,1—1)=
0, and by our choice above

Maar(n (D) + 14" = m, (n)+1/4""
= (m.(n)+1/4"")=3/4""
< LbMs((2° — A )mp) —3/47"
=LbMs((2* — An)nran)
+ (LbMs((2° — A, )rci-ny — 3/47"
= LbMs((2° — Au ) ay)-
The last inequality holds as otherwise
EbMs((2° — A )mra-m) > 3/4",
but as k(n,1—1)=0, by the choice of k(n,1—1)

b

LbMs ((2° ~ A )mra-my) = 1/4™72,
Contradiction.
We can increase A, to A,.; so that both hold.
Now T =U,t, is the required tree, and m, (n)=msr(n) for n €, : T is
C“"2and is a closed tree. As B C Ay C A,, A, open, Lim T closed and for no
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N ET, (“2)m C Ao (by (*)(1)), clearly (Lim T)N B =, in fact (LimT)N A, =
.
Forany n €T and k, I(n)sk<w

m,(n)= 2 {m.(v): v € (t )}

< 2 {Lsz((Z‘” - Ak )[v|)+ 1/4‘“'I + 1/4“I v e ('k)(nl}
= > {LbMs (2 ) )) +2/4* " v € (b))}

=S {1724 + 24" v € (b))}

= 6 [/2% +2] g /45"
<[ |25 +2- 24 )4k
=8 |/2% +1/2°".

When k < w increase, the first term converges to LbMs (Lim T') and the second
term converges to zero. So we can conclude that m, (n) = msr(n) for every
neT.

On the other hand, for every n, by (*)(1),

LbMs ((“2)m — An) —2/4™"" < m, (p) = msr () = LbMs ((“2)n — An)

(as (Lim T)N A, = @), hence 0 = msr(n) — m. (n) <2/4""'. Moreover, for every
k<w

msr(n) = m.(n) =2, {msr(v)~ m(v): v € &, n < v}

=\t 2/4 =2 214 = 112",
As this holds for every k > n, my(n)=m.(n).

PRrROOF OF 5.7. The proof is similar, but we define, by induction on k, n(k),
{t, :1=n(k), !> n(k')forevery k' < k}, and the function m, (I = n(k)), and A..

5.8 DerINITION. (1) Let N, be the set of pairs (t, m) such that:

(a) tis a non-empty subset of "2, closed under initial segments, and for every
nE€tN"72, for some I, n"(I)E L

(b) m is a function from ¢ to the rationals, m({ )) =3, 4" 'm(n)is a natural
number >0 and <427 and for n€tN2", m(n)=
E{mnD)y:n(Het.
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(2) We let N= U. N., we call n the height of (t, m) for (t, m)E N,, and let
n=ht(t,m). Welet (t’,m)=(,m)Inift'=tN""2, m"=m]|t.On N a tree
structure is defined:

(tO, mO) = (tl, ml) lf (’0, m()) = (11, ml) r ht (t(), m()).

Note that N, is the nth level and it is finite.
(3) A closed tree T C“”2 satisfies (,m) if TN("“"2)=1, msy [t =m.

5.9. DEFINITION. (1) My is the set of pairs (¢, m) such that the following
holds, for some n =ht(t,m):
(@) t is a non-empty subset of "*2 closed under initial segments and for
nEtN""2 there is [ €{0,1}, n " (DHET;
(b) m is a function from ¢ to the rationals which are >0, <1, m(( ))=3,and
m(n)=2{m(n"()):(n"())Et} for nE€"72.
(c) We define r, = lev((t, m) by induction on I; r, =0, and r.,, is the first r > n
such that:
(*) r=n, and for every n €'°2Nt, 4" 'm(n) is an integer, and for every
ne2nt, m(n)>2"1-Yu(l+1)).
Now we demand that r, is defined and is equal to n.
(2) M., ={(t, m)E M, :ht(t,m) = n},

Mkv<" = U Mk.l, M*.<n = U Mk,<n7 M: U Mk
k

I<n k

for (t, m)EM,, rtk(t,m)=k.

We define (t, m)| n as in Definition 5.8 but maybe (t, m)| n& M; also, the
order is defined similarly. So M, is the kth level of M as a tree, M, is infinite,
but M, .., M,.. are finite.

(3) We define “T satisfies (t, m)” as in Definition 5.8(3).

ReMARK. In the following definition the ‘green part’ is not really needed; but
if we use other properties (like: a tree defined from the real is special, as a “‘red”
name and a tree defined from the real has an w,-branch as a green name), such a
thing will be needed.

5.10. MaIN DEFINITION.  We shall define here what is a finite system [a full
system). The finite systems are approximations to the full system, which consist
of the “names” discussed before.

A finite [full] system S consists of the following (when several systems are
discussed, § will have an additional superscript or be S(i)):
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(A) The common part: A finite subset W of N, [the set W = N,], and a number
n(l)< o [n(1)= ], and a function h from [W} to n(1)={l:1 < n(1)}, such
that for i, <i,<i; in W, h(i, i;) # h(iz, i3).

(B) The red part: This consists of (everything should have a first subscript rd,
which we omit):

(a) For every (t,m)€ M, <.q), a natural number A(t,m), and for every
(t1, m1) € Nygm), there is a member p(t, my, t,m) of t N"™2,

[Explanation: This gives partial information on how red reals are defined from poor man generic
trees, (1, m) is an approximation of the first tree, (t,, m,) of the second tree, p(t,, m,, t, m) is an initial
segment of the real, passing through the first tree, hence random over L[a*, a].]

(b) Let {m: I <w} be a fixed enumeration of “72, such that [(n,)=1 (its
significance will appear in (f) and (c)). For any (t, m) € Mi=nqy, [ <k, j <k, and
EE W, there is a finite set Ay of sequences from “2, each of length
= A(t,m), and such that

{12y € ALY < 1721,
J

[Explanation: This is part of the name g"’(&); we let

C?;m).é = {n e“2: (311 S AY‘M)"E)"’ < V}’

24

so it has measure < 1/2"*/, hence U,<,,,,,->,O Ci™* is an open set of measure <1/2%”', hence

ﬂ,-o<,,,U,<,,,v,->,0 C{™* has measure zero, so for every poor man generic 7 (this will be the second

one), for some j < w, 1 € T, (T),,, N (U, C") = . The name n™ could be defined after (c). An
approximation to it is: the first pair (v, /) such that (T,),, (T, — the second poor man generic tree) is

disjoint to U {C{™¢: 1 < w, (t,m) is T,Iht(s, m)} (T, — the first poor man generic tree).]
(c) For every (t,m) € My <.y and £ € W and (¢(0), m(0)) € Ny(.m) there is a
function fioyeoy from {n : I <k}x k into w.
[Explanation: This function is part of the name we describe in (b), i.e., we shall try to make
A =HE: feat om J) =1, (1, m) is in the first poor man generic tree T,
(t(0), m(0)) is in the second poor man generic tree T,,
1 €72, j<w, and Lim T, is disjoint to U,_, C™ 4

homogeneously red.
Note that instead of using w, = U, A, we use

w=U{4

so the name Kl'd(f) technically does not appear, but this is just a notational change.}

ME“T2, j<w |, <w}

54

Now the parts described above should satisfy some conditions.
(d) Monotonicity for (a): If (to, mo) < (t:, m;) (both in M 4 5.a)) then A (to, mg) <
X (t;, m,); moreover if (t',m')E Nyimy (t°, m?)<(t',m'), then

P(to, mU’ t(), mo) < P(tla m l’ tly ml)-

[This will guarantee a* is well defined.]
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(e) Monotonicity for (b): If (1°,m")<(t',m") both in M, z.q), AL s
defined, then A, ™™= A{/ " Also

8::.':':;;)'5 - fg.‘.'::))'g if (1, M) € Nitmb, (o, Mmo) < (f;, my).

(f) The homogeneity consistency condition: If (t, m)€ My s.g)and § <{ E W,
and h(£ {)<ht(t,m) and (t;, m,) € Nyum) and p = p(t,, mi, 1, m), then
(i) p(h(£()) =0 (=the red colour), or
(i) for every I, j <k, j# O such that f"25(m,j) = firm(mi) there is no perfect
tree T C “72 which satisfies (,, m,), and (T, is disjoint to U .« Co
and also to U<« C&%
This last phrase is equivalent to: (t,),, is disjoint to U, AL and
also to U, o, AL,
(C) The green part: 1t is defined similarly, only in (f)(i) we replace 0 (= red) by
1 (= green).

5.11. DeriNITION.  The order between finite systems is defined naturally (for
specific (t,m), A (,m) remain constant as well as A {;™%, f(@) oy, but W and n(1)
may increase).

5.12. LEMMA. The family of finite systems satisfies the countable chain
condition.

PrOOF. Suppose S(y) (v < w,) are N, conditions. Then, in the standard way,
we can assume that S(0), S(1) are such that: n = n(1)*® = n(1)*®, A% = A5,
p°©@ = p*® (both as functions), and there is a function g (one-to-one) from W*®
onto W which “maps” S(0) onto S(1) in the natural way and is the identity on
WS(O) N WS(l)_

We want to deﬁne a common upper bound S.

We let W S WSOU W5, n(1)* = n+1. The function h° is defined as
follows: it extends h°® and K", and if ¢ <{E WS, tE WV & (& WP
(1=0,1), then h®(£, ¢) = n. For each (t, m) E M, 5, we let A(t,m), p(-,~, t,m),
be as in $(0) and S(1), and for £ € W, A{;™* and f{i" are defined as in S(/)
(and there is no contradiction in the definition).

The problem is to define all this for (t, m)E M sy, (t, m)E M <. So let
(t, m) € Misisinany, (1, m) & M zn, hence ht(t,m)=n +1. (Clearly (s, m) is not
of height zero, so the k is =0.)

Clearly there is a unique (£(0), m(0))<(t,m), (¢(0),m(0)) € Misn, M, sn.
W.l.o.g. we concentrate on the red part.

We first define A (f, m) = A (¢(0), m(0))+| W* |+ (2k + 1); and now comes an
important point:
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for any j = k, we define (AL"*: ¢ € W?) as an independent family of subsets
of {v:1(v)=A(t,m)} (independent in the probabilistic sense); moreover, this
holds “above” each v €*“*™2 and

AL ] 24 = 124

We can define, for j = k, (A{3": ¢ € W) in any reasonable way, e.g., as in the
previous case. (For j,[ <k, Aji™* is determined by (e) of 5.10(B).)

Now we have to define fimé(msj) for (£, M) € Nygmy, j, I <k +1.For j, I <k
this will be fimm N o.mon(m j) for $(0) or S(1) depending on whether ¢ € W5
or £ € W3 and if both we shall not get a contradiction. For I = k or j = k we
have full freedom to define fig <on(m,j) and we define it as a one-to-one
function of ¢ (possible as W* is finite).

Now we come to the crux of the matter: why can we define p(t,, my,t, m) for
(t1,,m) € Nagmy?

Let (fo, mo)= (t, m)IA(t(0), m(0)) and p:= p(to, Mo, (0), m(0)), I(ps)=
ht (¢(0), m(0)), p. € 1(0). Now we have to find p,p. < p €t N"*2, and to satisfy
condition (f) from (B) of the Main Definition 5.10.

So we are interested in the cases from (f) for which (ii) fail. Each one demands
that p(1) =0 for some | <n +1, and clearly I = I(p,) in the cases which are not
trivially satisfied.

How many such demands can we satisfy? Remember that as (¢(0), m(0)) €
Misn, m(0)(p2)>2""O"P(1 —1/u(k)), and as (t,m)E Misynsy, {v €2
vEL p,<<v} has >20""")Y1—1/u(k)) members, so we can satisfy any
<log; n (k) such demands.

Now, how many demands are there? We shall see for each pair I, j, for how
many & € W, (t,) is disjoint to U,y AL in fact even to A% Now we
use the definition of the A {["**. Remembering that by the definition of N, 7,

my(n) = 1/4"™" =z 14!
clearly

, (t])[y"] , /2A(l(0),m(0)) 'I(n’) > 1/41-0—1.

If it is disjoint to x of the sets {A}]"*: £ € W*}, then by trivial probabilistic
results (as [{v € AL q < v} =] AL4]2'):

1/4l+1 < (l — 1/2k+j+l)x.

But (1-1/2*7*'Y*"" < 1/e <} (remember e is here the basis of the natural



Sh:176

28 S. SHELAH Isr. J. Math.

logarithms and j > 0), hence for x >2*"*'(2/ +2) we get a contradiction. So
x <Ql+2)47

So the number of pairs of such ¢ ¢ is < (2*7*'(21 +2))°, and we have to
consider every [ <k, j < k, j > 0. Hence the number of “problematic” [, j, ¢, { is
at most

> RMIMRL+2) < 24
Li<k

So if log, (u(k)) > 2", we finish, and this holds (see Definition 5.4 of u (k).

REMARK. We have been *“‘generous” in our use of A {i™*

hence of u(k).

and computations,

5.13. LEMMA. There is a full system in L]a*] (the only need for a* is that
~:-[ﬂ'] — Nl)'

Proor. The existence of a full system is equivalent to the existence of some
model for a sentence in L, . (Q), hence is absolute (by Keisler completeness
theorem), hence if we find such a system in a generic extension of L[a*], this is
sufficient.

So just force with the family of finite system. By Lemma 5.12, N, is not
collapsed, and in a similar way to the proof of 5.12 we can show the required
density demands.

ConvENTION. Let § be such a system.

5.14. DerINITION. We define formulas (with real parameters) ¢.a(x) = there
are perfect trees Ty, T; such that:

(a) Tois a poor man generic tree over L[a*] as in Claim 5.7, so for some n (k)
(k < w), (t(k),m(k))=(Tol "*72, msr|"*72) E M..

(b) T, is a poor man generic tree over L[a*, To], T: as in Claim 5.6, so for
every n, (t, m.) = (T, "2, msr,["*2) E N,.

(c) For every k, pa(tratmiy, Macgmuy, E(k), m(k))is an initial segment of
X.

(So the parameters which appear are p and a*, though we can eliminate p
by choosing a simply defined one.)

Pla(x) = “there is y, ¢.a(y), and for all but finitely many I < w, x(I)=y(I)".

We define ¢, ¢4 similarly.

5.15. CLamM. The formulas above are 3.

Proor. The non-trivial part is the “poor man genericity” which says: “for
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every B, which codes a G;-set of measure zero, B is not constructible from a* or
T is disjoint to B, which is II}, as being contructible from a* is X..

5.16. CLamm. The formulas ¢ra(x), ¢4(x) are contradictory.

PrOOF. Using h and x we define a colouring to [w,]’: x (h (¢, {)).
If ¢.a(x), there are To, T, exemplifying it, with n(k) (k < @). We define, for
j<w, mMET, a<w,
Ajia ={& <R :(T))}ny is disjoint to

(t(kymk).e (1(k).m (k))& Ty —
U C’-i and f('u:(k).m(k))-’"uuk),m(k)))(nlv]) -a

i<w
k<w

for every large enough k}.

Then A;.. is homogeneously red. So w; is the union of countably many
homogeneously red sets. Similarly for ¢, so clearly ¢.a(x), ¢,(x) are contradic-
tory.

But we have to deal with ¢, ¢g. So suppose @.u(x), du(y), and say
{(0,...,n*} D {n:x(n)# y(n)}, is finite. So there is a homogeneously red set A
for x and homogeneously green set B for y, A N B uncountable. There is an
infinite subset {& :n <w}C A N B such that the truth value of h(&.,, &)<
h(&., &) is fixed (for n, < n, < n;). By Definition 5.10, part (A), h(&, &..1) is
strictly increasing, so for n large enough itis > n*. So x “‘thinks” (&,, &) is red,
whereas y “thinks™ it is green, but they agree. Contradiction.

REMARK. In fact ¢ja(x) implies x is a “red real” (by h), hence the
contradiction.

5.17. CLAIM.  A,s={x : dla(x)} is not of measure zero. Similarly for green.

Proor. If b is a code of a G; set covering A4, which has measure zero, then
by Claims 5.6, 5.7 there is Ty, a poor man generic tree over L[a*, b],and T\, a
poor man generic tree over L{a*, b, Ty]. We can easily find x for which they are
witnesses to ¢a(x) (now x € Lim Ty), hence x is in no measure-zero set coded in
L[a*,b], in particular the one b codes.

5.18. CLAaM.  {x: ¢da(x)} is not measurable.

Proor. By 5.17, it is not of measure zero, but by its definition the measure of
{x:¢1(x), n <x} (n €“72) depends on [(n) only. So by measure theory its
outer measure is 1. But the same holds for {x : ¢,(x)}, and they are disjoint.
Contradiction
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Proor oF THEOREM 5.1B. In the Main Definition 5.10, let W be an ordered
set and let T be a closed subtree of “”2 such that | T N "2
induction on n a finite system S(n), such that:

(a) W= TN "2, ordered lexicographically.

by . ETN"2 is the unique n, 7°(0), £¢"(HET and W'(nl)=

WS(n-O-l)_{n"A (1=}
(c) The mapping 7 — 7! n is an isomorphism from S(n + 1) W(n,!) onto
S(n).

(d) " (" 0), (1) =n, n(0)* " =n+1.

The induction step is just like the proof of 5.12, except for the definition of h
which is handled by (d) (and trivially satisfies the last demand in 5.10(A)).

Now, if we have (in V) a set of N, reals, then we have a sequence of length w,
of distinct members of Lim T, and restricting the inverse limit of the §(n)’s to
this sequence, we get a system S, | W* | = N,. However, the order used at the end
of Definition 5.10(A) for the demand on h, is not a well-ordering. This demand
was used only in the proof of 5.16, but the well-ordering was not used.

= n, and we define by

§6. On “every A; set of reals is measurable”

6.1. MAIN THEOREM. Every universe V of set theory has a generic extension in
which every A: set of reals is measurable.

PROOF. We prove the theorem by the following series of claims.

6.2. DEFINITION.” Let ¢ = @(x), ¥ = ¢(x, y) be formulas and let P,, be the
following forcing notion: the set of elements is {x :x areal and ¢(x)}, and the
order is x =y iff ¢(x, y). The formulas may have parameters.

Note that P,, depends on the universe, so we write explicitly P, (V).

6.3. CLaM. Suppose V,C V, arc universes with the same ordinals, ¢(x)
Y(x, y) are T}, X4, respectively (with parameters, if at all, from V), and P, (V)
is a forcing notion and satisfies the countable chain condition. Then:

(@) P,y (V\)C P,,(V:) as ordered sets (and P,,(V-) is a forcing notion).

(b) If G C P,,(V)is generic (over V2)then G N P, (V) is generic over V.

PrOOE.
(a) Easy by the well-known absoluteness results.

For more on Borel forcing sce On cardinal invariants of the continuum, Proc. Conf. on Sct
Theory, Boulder, 1983.
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(b) We just have to prove that any maximal antichain I of P,,(V\)in V,,is a
maximal antichain in P,,(V,). As P,,(V)) satisfies the countable chain
condition, I is countable, so let I ={x, : n < w} (maybe with repetitions).
As it is a maximal antichain

VIE(Yy ER)[T1o(y) v 3z)¥(y, 2)A v ¢ (xn 2))].

This is a IT; statement, hence by the absoluteness theorem also V, satisfies it,
hence I is a maximal antichain in V..

REMARK. Note that (b) implies that if x, y € P, ,(V,) are compatible (incom-
patible), then the same holds in P, ,(V,).

6.4. CaM.  Suppose for i <a, ¢, ¢ are X, 2| formulas defining in V a
forcing notion. Let (P, P,4 1 =a, ] <a)be a finite support iteration, i.c.,

P.={f:f a function with domain a finite subset of i,
f(j) is a P,-name of a condition in P, (V")},

f=giftforevery jE€Domf, gljke “W(f(j), g(j))".

Suppose further (P%, P,.,.:i < B,j < B) is another such iteration, B < w,,
and there arc y(i,n)<a for i <B such that y(i,n)<y(i,n+1), y(i;,n)<
y(iz, n2) for i <i> and (@7, ¢*) = (Qy4my, Yyim). Assume also all P,. are
non-trivial, i.e., contain two incompatible elements.

Then we conclude that in V' there is a subset of P} generic over V;
moreover, there are N, such sets whose union is P}.

REMARK. So we here assume (¢, ¢ :i <a)E V.

PrROOF. Let Q, =P, ,, Q7 = P,:y; Where (o3, ¢% i < B) and the function y
are as in the claim.

We prove by induction on { = g that, letting £(¢) = U{y(j,n):j < ¢ n < w},
in V'ao there is a subset of P generic over V, and even for every ¢ <,
G* C P%, generic over V, G*€&€ V'« there are G, C P*%, generic over V,
G.NP%L=G*U,..G.=P*G ={p € P* : p compatible with every member
of G*} (and (G.:n < w)€E€ V'),

¢ =0. Nothing to prove.

¢ + 1. Clearly, it suffices to prove the statement for (o= ¢, G* C P* generic
over V, G* € V[G N P;)) where G C Pg.y is generic over V.

For k < w let Gi € V" be the intersection of P,.4:(V[G*)]) and the generic
subset of Q. V™) (this is done in V[G}]).

It is easy to check that {G, : k < w} is as required.
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¢ Limit. Let { = U, .. & < &usis {o the given one, and G* C P%, generic
over V, Gt € V'wo. Let p,, . be Py, 0, two incompatible members of Q).

We can define by induction on n, for every 1 € "w, G, C P%, generic over V,
G ,=G* G,NP% =Gum for m<n and U..,G,u=P%, |G, Define
P, rnames k(n).

k(0)=0, k(n +1)is the first k > k(n) such that p, is in the generic subset of
Oye.o- As the support is finite, and by the definition of generic, it is easy to
check the U{U .. G,i:n E“w is in V"o and for every large enough n,
n(n)=k(n)} is as required.

PrROOF OF THE THEOREM. Let (P, Q; : i < w;,j < w) be an iterated forcing with
finite support, Q, is the random real forcing for a even and the amoeba forcing
Am for @ odd (AM={A C[0,1]: A an open set of measure <3}, ordered by
inclusion). Let G,, C P, be generic.

So let ¢(x, r) be a A; formula, r a real parameter, and it suffices to prove that
for some A of positive measure, {x: @(x,7)}N A is measurable.’ As is well
known, each O, satisfies the countable chain condition, hence also P, satisfies it,
so for some a <w,, r € V%, so w.lo.g. @ =0. By symmetry, suppose that the
random real r* of Q, (i.e., the one we get from G, N P) satisfies ¢(x,r). As
@(x.r) is A; for some II; formula ¢(x, y, z), ¢(x,r) =y ¢(x, y, r), hence form
some r, € V|G,,], V[G..]JE ¢(r*, ri,r), but again for some B < w;, r € V[G].
By the absoluteness lemma also V[Gg)kE ¢[r*, r, r]. Hence for some p € P,
ple,y(r* r,r), rca Pg-name, r* the P-name of the random real. Note that
P, = Q..

Now clearly there is qo € Qo, qul-*p € P3/Q,”. Now

(*) every real r” € V[G,,] which is random over V and belongs to qu (i.e., r”
defines a subset of Q, generic over V which includes qo) satisfies ¢.

This is clearly sufficient, as the amoeba forcing makes the union of all Borel sets
with old codes of measure zero, into a set of measure zcro, so except for
measure-zero sets, every real in V[G,,] is random over V.

So let us prove ().

But by the previous claim, and what we prove in its proof, for some
G e V[G.], VI[r',GlEe¢lr, rn[G),r], hence V[r',G]E¢[r",r], hence by
absoluteness V|G, ]F¢[r',r].

CONCLUDING REMARKS.
(1) We can get more information on forcings with ““simple” definitions.

' As we are proving this for every ¢(x,r).
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(2) The proof clearly has very little to do with random reals.
We can notice

6.5. LEMMA. (1) Suppose (P, P, i =a,j<a) is a finite support iteration,
where @;, ; are 2, %, formulas, respectively, and P, , (€ V%) satisfies the N;-cc.

Ifwisasubset of a, B=U e (i +1), (P}, P,u :i €wU{BL,j Ew) is also a
finite support iteration, then Py <\P,.

PrOOF. We prove this lemma by induction on 8. For 8 = 0 this is trivial, for 8
successor use Claim 6.3, and for 8 limit there are no special problems.

§7. On “every set of reals has the Baire property”

7.1. NOTATION AND STANDARD FAcTs. Let P, Q, R denote forcing notions,
1.e., quasi-orders with minimal element ¢ so x =y A y = x may not imply x = y.
Let their members be denoted by p, g, r. We denote complete Boolean algebras
by B but reverse their order (so 15 <0g) and omit the zero element. It is well
known that for every P, there is a complete Boolean algebra B = BA(P) and
f:P— B such that p =g = f(p)=f(q), p, q incompatible iff f(p)N f(q)=0,
and {f(p):p €P} is dense in B—{0}, i.e., (Vb EB) 3p € B) [b>f(p)]
Moreover, (f, B) are unique up to isomorphism over P, and there is no difference
between forcing by P and forcing by B.

We say I C P is dense [above p] if for every g € P (such that g = p) there is
re€lrzgqg.

We say P, Q are equivalent if BA (P)=BA (Q)

We say P < Q if

(@) forpg€EP,p=qin Piff p=gq in Q,

(b) for p, g € P, p, q are compatible in P iff they are compatible in Q,

(c) every maximal antichain of P is a maximal antichain of Q.

So P <BA(P) (if we identify p and f(p)).

Let Gr be the P-name of the generic subset of P.

If P<Q oreven P<BA(Q)lct Q/P ={q € Q : q is compatible with every
p € Gr} (so this is a P-name of a forcing notion, which is a subset of Q).

Note p+“q € Q/P” iff every p' € P, p' = p is compatible with g.

It is well known that Q and P *(Q/P) are equivalent when P <BA(Q).

If P,<BA(P), BA(P,), let

P,%p P, ={(p:,p2): p. EP. for e = 1,2 and for some Do € Py,
Pol-“p. € P. /Py for e = 1,2}

with the natural order (p,, p2) = (p1, p3) ift p1 = p1, p. = ps.
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It is well known that P, *p P>, Py (P,/PoX P,/P,) are equivalent. Also, for
e =1,2, P. < P,*p, P, identifying pi, (po, ¢) and p,, (¢, p»), resp.

7.2. THE MAIN DEFINITION.
(1) The forcing notion P is sweet if there is a subset ¥ of P, and equivalence
relations E, on &, such that:

(a) E,..: refines E, E. has countably many equivalence classes, & C P is
dense.

(b) For every n<w, p € %, p/E, is dircted.

) If pp€PD for i =w, and p.E.p. then {p;:i=w} has an upper bound;
moreover, for each n <w, {p; : n =i = w} has an upper bound in p/E..

(d) For every p, g in @ and n <w there is k <e such that for every
p' €pl/E, 3r€q/E,) (r=p) implies (3r Eq/E.) (rZp').

ReEMARK. Those statements (in (d)) are equivalent to:

g, p(g,p’) are compatible in gq/E,, i.e., have a common upper bound there;
remember g/E, is directed. If p <gq, clearly for every p' € p/E. there is
q'€q/E., q9'=q, q¢'=p’ (really, if (d) holds for every p <g (and (b)) and
(a) holds).

7.2A. DEFINITION. We say that @, E, (n < w) exemplify the sweetness of P if
(1) holds, and call (p, 9, E.) a sweetness model.

7.3. CLAms.

(1) If P <BA(Q), Q is sweet, then P is the union of countably many subsets
A,, the elements of each A, are pairwise compatible (in fact, P is the
union of countably many directed subsets).

(2) We can replace &9 by any of its dense open subsets.

PRroOOF.

(1) Trivial. If 9, E, exemplifies the sweetness of Q, then for g € let
A, ={p: for some q' Eq/Eo, p=q'}; A, is directed, there are N, A,’s and
P=U,wA,

(2) Trivial too. If &, E. (n <w) exemplify the sweetness of P, 'C 9P is
dense, p €E D', q=p, q €D implies q € @', then @', E, | D’ (n < w) exemplify
the sweetness of P too.

7.4. CLAM. Suppose P <BA(Q), Q is sweet and this is exemplified by 9,
E. (n < ). Suppose further A, C P and U, A, is a dense subset of P. Then
for any g €%, and p € P such that pl“q € Q/P”:

(1) For some n, k <w the following holds:

(*) Forany q' € q/E,forsome p' € A,,p'Zpandp'lt: “q' € Q/P”.
p p=p p q
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(2) Moreover A* = U({A, : A, satisfies (*) for some k} is dense in P above p.

PROOF.
(1) Let{n(i): i < w} be alist of the natural numbers, each appearing infinitely
many times. Define by induction on i <w, ¢: € g/E,, such that:

¢ If thercisq' € q/E: such thatfornop' € A, p'Zpandp'lrs “q' € Q/P”
then g; has this property, i.e.,fornop’' € A,w, p'Zpandp'ltr “q € Q/P”.

There is no problem in the definition and as %, E, exemplify the sweetness of
P there is k < w such that every q' € q/E, is compatible with p (choose r € 9,
rzp, q, apply Definition 7.2(1)(d) for g, r). By Definition 7.2(1)(c) there is
q* €D, q*=q, q for k =i < w. Moreover q* € q/E,. So by the choice of k,
q*, p are compatible, hence for some p'Zp in P, p'ks“q* € Q/P”. As
U.<. A, is dense in P, w.l.o.g. for some n, p’' € A.

By the choice of the n(i) (i < w), clearly, for some i, k <i <w, n(i)=n. As
g =q*, clearly p'lFr “q: € Q/P”, hence in @ (as p' € A.) the conclusion
fails, hence the assumption fails, i.e., for any q' € q/E; for some p" € A,
p"zp and p"IFp “q' € Q/P”. But this is the desired conclusion of (1).

(2) We can replace p by any po= p (po € P) in (1), so for every po = p there is

n satisfying (x) (with p, instead of p), for some k,. Apply (*) for ¢’ = q and
get p'=p,, p' € An, and of course A, C A*.

7.5. THE AMALGAMATION LEMMA. Suppose P\, P, are sweet, P, <BA (P)),
BA (P,), then Q = P, xp, P, is sweet.

PrROOF. Let, for e =1,2, the sweetness of P. be exemplified by 2., E.
(n <w). By Claim 7.3(1) there are sets A, C P, of pairwise compatible
elements, and let @ ={(p, p2): p1 € D\, p, € D, (p1, p.) € Q}.

Suppose (pi, p2) E 9, and let p, € Py exemplify it, i.e., polts, “p. € P. [Py for
e = 1,2. By Claim 7.4(2), U .es A C Py is dense over powhere § = {n : for some
k. < w forevery p; € p,/E., there is po € A, po= po, and pilkp, “pi € Po/ P}

Apply again 7.4(2), this time for P, <BA (P;), and {A, : n € S}, and we get
that U,cw A, C P, is dense over po where W ={n €S for some e, < w for
every pi€ p./E:, there is piE€ A., po=po and pilrs “ps € P,/Py}. Choose
n € W. Let m = Max {e., k.}, then for any pi € p,/E .., p5 € p,/E>, there are pq,
P52 po, po, po € A, and pyls, ‘p. € P. [Py for e = 1,2. But as pg, ps € A, they
are compatible, and their common upper bound exemplify (pi, pz) € Q. We have
proved
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(*) For every (pi.,p:)E P there is m <o such that for every
piEpi/En, piEp:/Er,
there is po € Po, polte,“pi € P\ /Py and polk p,*“p2 € P2/ Py”.

Define for (p,p.)€ Q, m(p,, p2) as the minimal m < w for which the
statement () holds.

Now define the equivalence relations E, on 9 : (pi, p2) Ei(p}, p3) iff p.E P’
p.E%.ps where m = m(p,, p.) = m(p}, p5). The checking of Definition 7.2(1) is
trivial, e.g.,

Condition (a): Trivially E. is symmetric and reflexive, and it is transitive.
For suppose (p1,ps)E.(pi"',ps™"), for k = 1,2, then m(pi, pz)= m(p3, p3) and
m(p}, p3) = m(p}, p3) hence m(p},p3)= m(p3,p3), and call the common value
m. S0 also prEm+ept”', psEL+ps”', for k = 1,2, and as E...., E ... equivalence
relations, piE nspl, psEmspi. We can conclude (pi,p:)E.(pi,p3), so E. is
transitive.

It is quite clear that E,.,, refines E, and E. has
=|{pi/E. :p EDiyn <o} X|{p2/En: P2 E Dryn < w}| =Ny

equivalence classes.
Note also

) If m = m(ps, p), (p1, p2) € B, and p} € pi/E ., p3 € p2/E,
then m(pi, p3) = m(ps, p2).

7.6. THE COMPOSITION LEMMA.  If P is sweet and Q (in V") is UM then P * Q
is sweet where

7.7. DEFINITION.
UM ={(t, T): T C “72 a perfect nowhere dense tree, t = T N ""2 for some n},
., T)=(t,T) it TICT,, tiCt and £, =t n for some n.

ProOF. Let 9°, E', (n < o) exemplify the sweetness of P, and let{A. : e < w}
enumerate {p/E%: n < w,p € 2°}. Now define

2={p,(,T):pED, Bk “(1, T)EQ"}.

Clearly 9 is a dense subset of P* Q. Now we come to the main point, the
definition of the E,:

For (p, (t, 1)) € D (I = 1,2), (p1, (t,, T\))E.(p2, (12, T2)) iff the following condi-
tions hold:
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(a) PxE?.pz,

B) =1,

(y) for every m <n, there is p € A,.,, p = p, iff there is pE A, p Zp,,

(8) suppose m < n and there is p € A, p Z p, and let n €"”2, then there is
pE A plke“n& T, iff there is p € An, plre “n& T2,

(¢) let k.(q) be the minimal k such that for every q' €q/E}, (3r € A,)
(rzq) implies Ar € An)(rzq").

Now we demand that for m < n, k..(p:) = kn(p.) and p,E%_,,p: (but

note that if (y) holds, p,E’_ p- implies kn(p:) = kn(p2).

The following fact is important:

7.8. SuscLaM. Let p € 2°, k =Max{k.(p): m <n}U{n}, and suppose
p'€YD, p’Exp and p' = p. Then:
(1) For any (,T) such that (p, (1, T))EZ also (p',(+T)EPD and

(p,(t, T)E.(p', (1, T)).
(2) Forany m < n, thereisq € A.,q Z p ifandonly if thereisq€ A, g =p’.

PROOF OF THE SUBCLAIM.

(1) The only problematic point is (y) in the definition of E., which is just (2) of
the Subclaim.

(2) Now the “if” part is obvious as p'= p, and the “only if” part by the
definitions of k.(p) and k.

CONTINUATION OF THE PROOF OF 7.6. So we have to check the conditions in
Definition 7.2(1).

Condition (a). Trivial (in proving that E, is an equivalence relation, for (&)
note () implies we can replace p = p, by p = p,, and by p = p,, p,; for (¢) note
(8) and that A,, is directed).

Condition (b). Let (p1,(ti, o)), (p, (t2, T2)) be E,.-equivalent, and we have
to find a common upper bound equivalent to them. Let k..(p;) be as in (¢). So by
(), for m<n, kn(p))=kn(p:) for m<n and let k =Max{k,(p;)):m<
n}U{n}. So by the definition of E,, p.Eip..

So as 9°, E*, exemplifies the sweetness of P, and Definition 7.2(1)(b), clearly
there is p*=p,, p:, p*Eip;. A common bound is (p*,(t, T:U T:)) where
t=1t =1 (by (8)). Easily it belongs to P*Q and even to 9.

Let us check the conditions for (py, (t;, T))E. (p*, (1, T, U T3)).

(a) As k = n, Ei refines E5 and p*E\p,, clearly p*E.p..

(B) Holds by the choice of .
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(y) Holds as p*E\p,, and by the choice of k and Subclaim 7.8(2).

(8) Suppose m <n,n €"72 and there is p € A, p Z pi, 50 as A is directed
and by () there is such p = py, p, p*. By (8) for (pi, t, T\)E.(p2, (1, T2));
there is r € An, rlkp “n& T if and only if there is r € A, rltp “n €
T;”. So if there is r € A, r ks “n& T,”, then, as A, is directed, there is
r€A,, ritp “n& T, U T,”. The inverse is even casier: if there is r € A,,,
rike “n& TiU T2, clearly for the same r € A, rikp “n& T\".

(¢) Trivial. (Use 7.8 again.) )

So we have proved (p*, (t, T\ U T,))E. (pi, (t, T1)) hence prove condition (b) for

Definition 2.1.

Condition (c). Suppose (p, (&, T:))Ei(p., (t., T.)) for n =i < w and we have
to prove that the set {(p,(t,T.)):n=i=w} has an upper bound in
(Por (tos T.))/E.. We know that for i<w, izZn, pEp, where k=
Max {k..(p.): m < n}U{n}. So by condition (c) of Definition 7.2(1) for P, there
is p*, p*=p for n =i = w, and p* € p, /E}, (really a short argument is needed,
but such an argument appears in the proof of JIF*“T* is nowhere dense’). By
(B) we have ; =t for every i. We shall prove that (p*, (1, T*)) is an upper bound
as desired where

nEifw

T*=

{ U T ifp*eGn

T, otherwise.
Let us check that
T* a perfect subtree of “”2, B *“T* N'"2 = t for the suitable |

is trivial.
The main point is

D+ “T* is nowhere dense”.

So let n €72, r € P, and we have to find p'Zr, v €“72, 7 < v such that
p' e “vET*”; wlo.g. rzp* or r, p* are incompatible. In the second
possibility the statement is trivial so assume r Z p*. As (p., (t, T..)) € 9, there is
r' =z r such that forsome v €72, n <y, r' b “v€ T,”, and w.l.o.g. r' € 3". For
every i, n =i <w, i >1(v)let I(i)< o be maximal such that for some m(i)<i,
r'/E}i, = Anq). Suppose [(i) exists, which occurs for every i large enough, say
> ip. So for every j, h =] = w, as (p.(1, iﬂ,))E,»(p,, (1, T,)) and as m(j)<<}j, and as
there is p € Any), p = p. (take p =r'), by (y) of the definition of E; there is
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1] € Amg), ri Z p;. Similarly by (8) there is r; € Ang), rj e “vE& T;” (remember
IW)<iv=j). Let r, € Ay, 1; =1}, 1] (exists as A, is directed).

Notice that rE}.r', and [(i) may be <i, but it diverges to infinity, and
()= 1(i+1). Let i, be the first i such that I(i)>k, so {r....,r i} are
all E%-equivalent to r', so they have a common bound ri € r'/E}; if ix = i1, let
ri=r'. Hence the set {ri:n =k <w}U (') has a bound r*, so r*=r', r, for
i =i, and clearly r*Ip “vEZ T;” for i, I(n)=i<w and also for i =w (as
r*zr'). However JIF*T: is nowhere dense” for every i. So we can define by
induction on i, n =i>i,+1, r¥, v, €72, such that r¥t=r* v, =v, vi <viy,
and r¥. F“u& T.”. Now r¥% ., v, are as required, as r¥ . F“v, & T, for
every i, n =i =w (for i > i, by the choice of r* and r}, for n =i =i, by the
choice of r¥.;=r% .1). So r¥ . F“T* is nowhere dense”, and we can conclude
that (p*,(t, T*)) € @. Now

P CTNZELT) fornSisw
trivially, and we shall prove

(p*. (& T*)E. (po. (1, Tn.)).

We have to check (a)-(¢). This is similar to the proof of condition (b), but
nevertheless we check.

AS p*Epu, p* Z pur k = Max{kx (p.): m < n}U{n}itis easy to check (a), (y),
(¢). Now (B) is trivial, so we remain with (8). Let m <n and assume there is
r€A,, rzp, (or equivalently r=p*). If n €"72, and there is p € A,,
plte“n& T* then trivially for the same p € A, pls‘n& T.”. Suppose
pPEALPEe“nZT.,”, p=p. So, as in the previous argument, there is p’' = p,
p'€ A, and forsome k, p'Fn& T.” for k =i = w. As (p;, (t, T.))E. (p., (8, T.,))
there are pi€ A, (n=i<k), pik“n&T.”. So as A, is directed {pi:n=i<
k}U{p'} has an upper bound in A,, p", and clearly p"Ip “n& T*".

Condition (d). Suppose (p,(t, T))=(q,(s,S)) are in @ and n < w. Let k, =
Max {k.(q): m <n}U{n}, and let k.> k, be such that for every p’' € p/E\,,
p’, q have an upper bound in q/E3:,. Let q/E%, be A, and n(0) be minimal such
that s C"2 and let k = k,+ m(0)+n(0)+ 1.

We claim that (p', (t, T"))Ei(p, (t, T)) implies that (p',(#, T")), (g, (s, S)) have a
common upper bound in (q, (s, S))/E..

We know by k,’s definition that there is p§ = p’, p, g, such that p§E}q (as
k =z ks, p'Eip). Because (p,(tT)=(q(sS)), clearly for n&€"2—jy,
qr“n&T” so Bre€Ano)(rzpark“n&T”), hence as (p',(t, T))E.
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(p. (1, T)), m(0), n(0)< k there is p4 € Amay, piI n& T'". Let p* Eq/E\, =
Anme be a common upper bound of {p¥,p%:n €2, n Es}.
Let

T* =

{ sSuT if p* is in the generic subset G,,

S otherwise.

Clearly if (p*,(s, T*))E <, then it is =(p',(£, T')), and Z(q,(s,$)).

First let us prove (p*, (s, T*)) €, clearly p* € 2°, so we have to prove only
ke ““(s, T*) € UM”. Clearly I-» “T* is a perfect nowhere-dense tree”, so we have
to prove for n €"772, - *n € T*iff n Es”. If n € s, then because (g, (s, S))is a
condition Ik “n €S but kp “SC T*”, hence ke “n € T*”. For the other
direction assume p €"¥72—~s,r € P. W.lo.g. r 2 p* or r, p* are incompatible in
P; in the second case rIH*“T*=S8" so we finish. In the first case clearly as
(4:.(s.S)ED, q+*nE&S”, but (4,(s,5)Z (p,(t, T)) hence q “n& T”, hence
pik<“n&T'" (see its definition above). So r=zp* p*=gq, p*zp}
qtr“nE&S”, pilke*n&T'” and p*Ip “T*=T'US”. Clearly this implies
rikp “m& T*”. So we have proved (p*,(s, T*)) € 9.

The problematic point is checking (p*, (s, T*))E.(q, (s, S)). Condition (B) is
trivial, () holds by Subclaim 7.8(2), and the choice of k, p* and conditions (a),
(£) too are clear: So we are left with condition (8); so suppose there is ro € A,
rn=p* q and n €"72. If there is rE A, and ribp “n@& T*”, then by T*’s
definition, rlt, “n& S™.

Now suppose there is r € A, and rlkp “n& S”. As A, is directed, ro € An,
wlo.g rzr,=zq hence rkp “TCS” (as q-“(t, T)=(5,5)7).

So clearly rIk» “n& T”. Hence (as (p', (t, T"))E(p, (1, T)), k > k; and there is
rcA,rzp(use o=p*=p), thereis r' € Ap, r'lbe “n&€ T' ", wlog r'=r.
Asrlkp"n& TV and rikp “n& S7, clearly r kp “n & T*”, so we finish the proof
of condition (8) (for m), hence of condition (d) of Definition 7.2(1).

7.9. DEFINITION.
(1) A sweetness model is (P, 9, E, )u<., P a forcing notion such that 9, E,
(n < w) exemplify its sweetness. We allow one to write BA (P) instead of
P.
(2) For sweetness models (P, 2" E)aca for 1=1,2, (P, D", E)ucu <
(P?, D% EXn<. if
(@) P'<P’, @'CP°, E, is E’ restricted to 9',
() pED', n <w implies p/ELC P,
(©)p=q, pED’, q€ D" implies pE D"
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7.10. Cramm.

(1) < is a quasi-order.

@) If (P D  Efco <P, 2" Ef " ucw then (Uico P, Ui @5,
U.<.E¥) is a sweetness model and (P, Ui D5 Ef)oca <
(U< P, U, 35, U, EY).

3 If (P,Y, E.)uc. is a sweetness model, P<Q, P dense in Q, then
(Q,9,E,)n<., is a sweetness model > (P, D, E,)u<o.

ProoF. Easy.

7.11. THE ComposiTiON CLaiM.  If (P', 2°, E}), ., is a sweetness model then
there is a sweetness model (P', 2", E.),<. > (P, 2", E}), P'= P'* UM (when
we identify p € P, with p = (p,) € P'* UM; remember & € UM is a minimal
element).

PrOOF.

As in Composition Lemma 7.6, we can define &, E, (n < w) exemplifying the
sweetness of P**UM and w.l.o.g. 9 N P’=. We let

(@) 2'=92"Uy,

(B) nE.r if and only if r,, € D\, nE.y. or i, nE D', nE'wr..

Clearly P' is a quasi-order, and 9 is a dense subset of it. Hence P', 9@ are
equivalent, hence P', P"* UM are equivalent. It is also clear that P"< P', P'/P
is equivalent to UMY, Also conditions (@), (b), (c) of Definition 7.9(2) are
obvious. But we have to check (P',2', E}) is a sweetness model. In Definition
7.2(1) only part (d) is problematic. Let r,<r, n < w;it r, ,ED orr,, n,EP"
then we use the sweetness of (P%, 2", E)uca, (P, D', EL)uc Tespectively.
Otherwise necessarily r, € P’, r.=(p,q) € 9°, hence r,, p are in @°. Now by
Subclaim 7.8(1), for some n,, p’' € p/E,,, p'=p implies (p',q)E.(p, q), and by
the sweetness of (P’, 2°, E}) for some k, r{ € r,/E} implies r}, p have a common
bound in p/E,,, as r, = p. So clearly k is as required.

7.12. THE AMALGAMATION CLAM. Suppose (Pi, D1, E ucws (P2, D2, E)ncw
are sweetness models, P,<BA(P), P,<BA(P,). Suppose that we identify
p €P, with (p,¢)E Pi*p P,. Then there are 9, E, (n<w) such that
(Py%p, Py, B, E,)n<., is a sweetness model > (Py, Dy, E, )u<o.

ProOOF. By Lemma 7.5 there are D*, E% exemplifying the sweetness of
P, #¢, Py, as defined there. By Lemma 7.3(2), w.L.o.g. @* N P, =, Let

() D=2*U DT,

(B) nE.r, if and only if r,, € 2*, r,E%r, or r,r € Dy, nE 2.
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We first check that (P, *p, P2, 9, E, )n<., is a sweetness model as in Claim 7.11,
and then it is even easier to check

(Pl, Dy, Ell)n<w < (Pl ,’,':‘ P, 9, En)n<w'

7.13. Coamm. If (P, 9, E, )u<. is a sweetness model, f an isomorphism from
B, onto B, where B, B, are complete Boolean subalgebras of BA (P), then
there is a sweetness model (Q, @', E <. > (P, D, E,. ).« and complete Boolean
subalgebras Bi, B; of BA(Q), and an isomorphism f' from B onto B3, such
that: B, < B}, B,< B}, fCf' and

(1) Bi=BA(P) (as P<Q, BA(P) is a complete Boolean subalgebra of

BA (Q)), or even

(2) Bi=Bi=BA(Q).

PRrROOF.

(1) This is a restatement of 7.12 (more exactly, a particular case of it).

(2) Define by induction on I, (P, @', E.)sc., an increasing sequence of
sweetness models, and complete Boolean subalgebras Bi, B} of BA (P'),
and an isomorphism f' from Bj{ onto B}, such that Bi=B,, B}= B,,
f'=1f, (P, 9", E%.-., and Bi"*'=BA(P"), Bi>=BA(P""). The in-
duction step is by 7.13(1), and at last let

P'= ’U P, 9= ,U @, E.= ,U E.
and so U, .f' is an automorphism of U, BA (P"), hence there is a unique
extension f' to an automorphism of its completion which is
BA (U, P')=BA (P). By Claim 7.10, (P', %', E}).<. is a sweetness
model > (P, %', E})<. for each [, hence (for [ =0) > (P. D, E.)a<.. Of
course f'= f' = ' ={, so we finish.

7.14. MAIN LEMMA.  Assume CH holds. Then there is an increasing continu-
ous sequence of sweetness models (P, 2% E})uc. for a < w, such that letting
P=U.,.., then
(*) (a) BA(P) satisfies the countable chain condition and BA(P)=

U, <., BA(P.),

(b) for every countably generated, complete Boolean subalgebras B,, B. of
BA (P) and any isomorphism f from B, onto B, f can be extended to an
automorphism of BA (P).

(¢) for every complete, countably generated Boolean subalgebra B,, B, of B,
B, C B., there is an automorphism f of B, f| B, = the identity, and B,
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f(B.) are freely amalgamated over B,, i.e., we can embed B+ f(B.)
into B by a function which is the identity over B,
(d) for arbitrarily large a

BA(P...)/BA(P,)=UM".
Proor. Trivial by 7.10, 7.11, 7.12, 7.13.

7.15. CrLaiM.  Forcing with UM makes the union of all ““old™* closed nowhere-
dense subsets of “2 (*‘old” means with a definition in the ground universe, but
allowing members to be new reals) into a set of the first category.

Proor. Trivial (see Definition 7.7).

7.16. MAIN THEOREM. (1) For every universe V of set theory satisfying the
continuum hypothesis, there is a generic extension V' in which every set of reals,
defined (in V") by a first-order formula with a real and ordinal parameter, has the
Baire property.

ProoF. By Solovay [7] from the Main Lemma 7.14 and Claim 7.15.
Again by Solovay [7]:

7.17. Concrusion.  The following theories are equiconsistent.

(1) ZFC,

(2) ZFC+ *‘every set of reals definable by a first-order formula with ordinal
and a recal parameter has the Baire property”,

(3) ZF+ DC + “every set of reals has the Baire property”.

REMARK. The proof of 7.17 is, in essence, like this: (1) = (2) by the forcing P
from 7.14; (1) = (3) as we can take the subuniverse of V" consisting of sets
hereditarily definable from a recal and ordinal parameter; now (2) = (1) trivially
and (3) = (1) by Godel’s work on L.

CONCLUDING REMARKS.

(1) The proof will be much shorter if we were able to waive Definition
7.2(1)(d), but this causes difficulty in Claim 7.4.

(2) It is not clear whether sweetness is preserved by composition. It would be
true if we were to waive Definition 7.2(1) part (d), but even so our proof (of
Composition Lemma 7.6) works for some class of forcing notion, but as we have
no other example in mind we have not carried this out.

(3) Even the product of R, Cohen forcing (with finite support) is not sweet
(because of Definition 7.2(1) part (b)).

(4) In fact if P, < P,,,, each P, is sweet, then U, P, is sweet.
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Ciam. If P<Q, Q sweet, then P is equivalent to a sweet forcing.

Proor. Define on Q an order <*:

q:1=*q,iff (a)thereisp EP,p=q,,pFr “q. € Q/P”
or (b) ¢: = q..

It is easy to see that =* is transitive, Q* = ({q : g € Q},=%) is equivalent to P
(and P is a dense subset) and the @, E, exemplifying the sweetness of Q
exemplify the sweetness of Q*.

§8. The uniformization property for the Baire category

The uniformization property is a strengthening of “‘every definable set of reals
(with real parameters only) has the Baire property” and Solovay proves that it
holds in the model he uses.

The construction in the last section suffices to prove that it is consistent (if
ZFC is consistent).

8.1. THEOREM. Suppose for simplicity V = L. Then some inner model of a
forcing extension V' of V (with P of power N, satisfying the ccc) satisfies
ZF + DC and

(2) Every set of reals has the Baire property.

(b) Suppose for x ER, A, is a non-empty set of reals and (A, : x €R) is a set.

Then there is a function h, Dom h =R, h(x) € A, except for a first-category
set of reals.

ReEMARKS. (1) We know V7 itself satisfies (a) and (b) for sets definable with
real and ordinal parameters.

(2) Woodin has showed that if V i=ZF+ DC + (b), then V can be elementar-
ily embedded into some forcing extension of it. (Force by Borel non-first-
category sets, then define a filter D on R, and embed V into VD, x > {(x:x €
R)9.)

ProoF. The proof is like that of Solovay [7], except that we use Lemma 8.2
(see below) at one crucial point. We define a finite support iteration (P, Q.1 i =
wi, j < ), where P; is sweet, as in 7.14, and let P=P,,.

We shall eventually use the class of sets in V* which are hereditarily definable
by a real and a member of V. So we can work in V'’ note that for every 8 < o,
{r:r arealin V", r not Cohen generic over V*s} is (in V") of the first category
(as for some y > B, Q, = UM).
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Now suppose ¢(y, x, a) is a formula defining y € A,, a a real (we suppress the
parameters from V). So for some a < w,, a € V.

Now suppose x € V* is Cohen generic over V%, so for some y and B,
a<B<w,x yEV’ and V' F o[y x.a], wlo.g let x, y be the P;-name
s, “@(y,x,a) and x is Cohen generic over V%", )

We use Lemma 8.2 with P, for Py, Ps for Py, x for {n:(p,n) € Gs}. If for
some y < w,, (P, D,, EX)a<. is like (P, D, E,) in Lemma 8.2, then we can finish
as in Solovay [7]. But we could have replaced a by any a’, a < a’ < w,. So there
is no problem to guarantee this in constructing the iteration.

8.2. LemMa  Suppose

(@) (P, @\, E%)a<. are sweetness models for 1 =0,1,2, and (P, Do, EDncu <
(P2, Dz, E2)ac. and Py< P, < P,.

(b) Pi={(p.m):p € Po,m € w} with 0, (J, 1) and p, (p,D) identified and
(p.q)=(p'.q') if and only if p = p’ (in Py) and n = v’ (i.e., 1 is an initial
segment of n') (so P,/Py is Cohen forcing).

Then there is a sweetness model (P, 9, E,, ). such that:

(1) (Po, Zo, EVJnc <(P,Z.E,)n<u.

(2) Forany G, C P, generic over V, in V[ G,| the following holds : 5,5, *there is
a function H from P,/ P, to subsets of *~ w, such that: if G C“  w is generic
over V|Gy)[Ge»,) then {p € P,/P,: H(p) N G # @B} is a directed subset of
P,/ P, generic over V|Gy), and including G™.

PROOF. Let P be the set of functions f such that:

(«) The domain Domf of f is a finite subset of ““w closed under initial
segments, which is not empty.

(B) f(n)€ 9: for n € Dom f.

(v) If n <v are both in Domf, then f(n)= f(v) (in P).

(8) There are n<w, and r € Py such that for any p.LE€f(n)/E: (for
n €Dom f) there is r' € r/E} = r/E}§ such that

r' e, [p .. m belong to P,/ Py, moreover n lkep, oy € (Pof Po)/(Pi Py)”).

Let, for f € P, n(f) be the minimal n for which (8) holds. The order on P is
defined by:

fi=f. ifiDomf,CDomf, andforn€Domf, f(n)=f(n)

Now we shall define the sweetness model. First, let @ = P. Second, we have to
define its equivalence relations. As a preliminary step, we define for every f € 2
and n < w a function k; from Dom f to w. The definition is carried by downward
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induction on the length of n € Dom f (this is possible as Dom f is finite). So we
should have written k;.(n).

Let ki(n) be the minimal k which is =n, =Zn(f) and for every
n"(i)EDomf, for every q' € f(n)/Ex there is r € f(n " () Exm . 4 =r.
There is such a k as n " (i) € Dom f for finitely many i’s only, and condition (§)
of the definition of the sweetness model.

So now at last we come to defining the E,’s:

fE.h ift f, h have the same domain, the functions k;, k, are equal, and

f(n)Ek,(n)h(’Y]) when ne Domf

8.3. Fact. In the definition of E, we can drop “k;, = k;,”’. Moreover if f € &,
h a monotonic function from Domf to 9, and f(n)Eyh(n) for every n €
Dom H, then h € @, fE,h.

Proor. Clearly it suffices to prove the “moreover”. Now by n(f)’s definition
there is r such that:

for every p, € f(n)/E%(n €Dom f)thereis r' € r/E;=r/E) s.t.
r' kg, “p i, m belong to P,/ Py, moreover m lbpp, Py € (Paf Po)/(P1/Py)”.

But p.L€f(n)/E5 iff p,€h(n)/E. So h satisfies condition (8) of the
definition of P. Now (y) was assumed (h monotonic) as well as (8) and («) (as
fEP). As Range hC 9, h€P.

Now r, n(f) witness n(h) = n(f), and the inverse inequality is proved similarly
(as f(n)Eipnh(n) implies that h(n)/E% = f(n)E: for m = n(f)). So n(f)=
n(h). Now the equality k;(n) = k.(n) is proven by downward induction on 7. So
we have proved Fact 8.3.

Now we can easily prove that (P, %, E.).<. 1s a sweetness model.

Now note that P, P, whereas we want (Po, Do, E. )n<o <(P, 9, E.). So let

P’=P,U P (assuming they are disjoint),

p=q (inP)iff pqEP, PbFp=qorp, qEP, PEp=q
or pEPy, q€P, Domg#J
and p = q(n) for every n € Domg,

@'=QDOU@,
E,=E)\UE,.

Now the rest is trivial.
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