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0. Introduction

The basic motivation for the study of abstract model theory is the
search for languages (“"abstract logics™) which have a stronger expressive
power than ordinary first-order logic L, , and yet have a workable mod-
el theory. Previous work in the subject has been devoted mainly to char-
acterizations of known logics (L, by Lindstrom [33,34], L., , and its
sublogics in Barwise [3,4]) as maximal with respect to some of their
mc ‘el theoretic properties. A general discussion of desirable properties
of {(model-theoretic) languages can be found in Feferman [10-121 and
Kreisel {31].

During the years in which this abstract point of view has evolved there
have also been intensive studies of perticular languages, notably the lan-
guage L, ,1Q,] obtained from L, , by adding the quantifier ““there exist
uncountably many” (cf. Fuhrken [17] and Keisler [29]) and other lan-
guages based upon generalized quantifiers. Some of them are treated in
Bell and Slomson [7] and the present work will give an up-to-date survey
in the examples. In {53, §4] (see {47]) Shelah proved the compactness
of the languages L, [QC] obtained from L., by adding to L, a quan-
tifier saying that an ordering has cofinality w. L ,,[Q,], L_,,[Q°] and
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various related logics are countably or fully compact and satisfy, as will
be shown in the present work, a downward Lowenheim—Skolem Theo-
rem to ¥; and are axiomatizable (i.c., have a recursively enumerable

set of valid sentences). But Craig’s interpolation theorem fails for them
as was noted for L, [Q;] by Keisler (¢i. Fe erman [10, p. 216. footnote
3.

This paper grew out of the search (suggested and motivated by Feferman
in [10—12] and in private conversations, but conceived independently by
other people, in particular Barwise, Friedman and Keisler) for a manage-
able extension of L, ,[Q,] which will satisfy the interpolation theorem
in addition to having the above-mentioned nice properties. At present no
such extension is known but the search for it has led to a wide class of
compact an:d axiomatizable logics based on quantifiers, which are studied
in Section 3 of this paper as well as in Shelah [47] or Hutchinson [24].

It was realized by the people mentioned above and others that with
every logic L one can associate a smallest extension A(L) haiving a weak-
ened interpolation property known as Souslin  Kleene interpolation.

The operator A preserves compactness and other. but not all, nice model
theoretic p "operties of logics. The systematic study of properties pre-
served by the A-operation in Section 2 is largely taken irom Makowsky
[37], though the simpler facts proved there are not claimed to be new
(cf. also Paulcs [44-46]). It provides a basis for the further study of

the quantifiers introduced in Section 2. This approach demonstrates the
fruitfulness of the abstract point of view in discovering and proving prop-
erties of “‘concrete’ generalized quantifiors.

But the A-closure is more than just a echnical tool to construct logics.
It is a closure operator motivated by Beth’s Theorem (or variations of it),
which adds to a logic L everything which is, in some sense, implicit in it.
The A-closure also provides a means of evaluating the choice of generalized
quantifiers, a problem which seems even more delicate than the “*choice of
infinitary languages' (cf. Kreisel [31]) since we seem to lack not only a
programme i la Kreisel but also experience and intuiticn. But one may say
that the expressive power of a quantifier Q is better shown by the A-clo-
sure of the logic generated by it. For instance, the difficulties of finding a
reasonable description of A(L ., [Q,]) might indicate that pure cardinality
quantifiers are not the right choice.

In Section 4 we study sublogics of L, ,. Our main task > to identify
A(L) for certain logics L (containing generalized quantifiers) with admis-
sible fragments Ly of L, .. The simplest case was treated by Barwise [4]



Sh:47

J.A. Makowsky et al. [ A-logics and generalized quantifiers 159

W in which X is interpreted may be of arbitrary type though the induced
structure U is automatically of type 7. For example, if 7= (),
K ={(A| A is infinite} then a quantifier Q of type 7 binds one¢ variabie
and Qxe(x, w) is interpreted as “there exist infinitely many x such that
Note the role of the formula ¢, (in the above X) — it serves to de’ine
the domain 4 of the structure which is claimed in X to belong to K.
Thus “‘relativization™ is built in the formation of formulas involving the
quantifier (in this we deviate from Lindstrom [33] and follow Barwise
(4.
There is no difficulty in introcucing quantifiers of certain many sorted
types. Call a type 7=/, I, I, I3, py, p3, 3’ semi-simple when for some
ok, 12 0:

IO:{l, ...,h},]lr‘{l,...,k},12={b,13={1,...,l}

(when /it = 1 7is a simple type). A quantifier of type 7 (where 7 is semi-
simple as above) would produce formulas X of the form

QX‘ e Xp Xy xln,"' Xkt --- ank{(pl, cees Phs l]ll, ceey ‘[/k,f}, vees f[]

where gy, ..., g;, take the role of ¢y above so that U will be an (h-sorted)
structure of type 7. The definition of satisfaction of the formula X is left
to the reader. When /1 = 0 (hence I = 0 and each relation is 0-ary) struc-
tures of type 7 consist simply of a sequence of k truth-values and a quan-
titier of type 7 is just a propositional connective.

It is also possible to consider infinitary connectives (see Friedman [16]
and Harrington [54]) and more gencrally quantifiers which bind infinitely
many variables and/or opcrate or. infinitely many formulas and terms, but
we shall not do this here.

1.4. Logics (model theoretic languages): Instead of defining abstract
logics axiomatically as in Barwise [3,4] we introduce them in a concrete
restricted way. A logic L is given by a family <Q'|i € I) of quantifier sym-
bols, a family (7'1i € I} of semi-simple types and a family (Kfjie ), K*
closed under isomorphisms and included in S(r') for each i. / may be a
proper class. K¥ will serve as the interpretation of Q’. For an arbitrary
type T we construct atomic formulas of L(7) as in the ordinary language
L., (7) (using infinitely many variables of each sort). Arbitrary formulas
of L(7) are now obtaired from atomic formulas by the usual logical
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operations of L, (—,/A, V¥, etc.) and the quantifiersQ’. We shall write
L=L, {Qi],e, though L really depends (for its semantics) also on the
famlly (K'lz € I). The precise definitions of the basic syntactical and
semantical notions for a logic L are left to the reader. A logic L is called
finitely generated when it is of the form L = L_,1Q!, ...,Q"] for some
n< w.

Although this notion of a logic is narrower than the abstract notions
considered in Barwise 13] or [4], any abstract log ¢ which satisfies some
reasonable closure conditions and in which only finitely many non-logi-
cal symbols “occur” (cf. Barwise [4, I, §7]) in each sentence can be put
in this form: Assigning a quantifier QX (i.e., a quantifier Q interpreted by
the class K) to each class K of structures (of any semi-simple type) which
is elementary (EC) in the giver: abstract logic. Thus, for example, the
part of L., consisting of sentences in which only finitely many non-
logical symbols occur is equivelent (in expressive power) to some logic in
our sense, though the definition of satisfaction for that logic would pre-
suppose the ordinary semantics of L,

Examples. (1) Ky of type ¢ ) with Ky = {4 # @} QX1 can be iden-
tified with 3. .

(2) K5 of type ( ) with K5 = {1 A = N, ) Q"7 can be identified
with Q, ( ‘there exist at Jeast R,

(3) K5 of type (2) with K5 "{‘JI | 9 =(A, Ry and R is a well-ordering
of A}; o’ﬂv will be dentoed by Q*°.

(4) K@ of type (m) with K3 % = {*)l | =(A, R)such that there is an
SCA w1th S"CRand 8 = &_}: QK will be denoted by QMM and was
first discussed by Magidor and Malitz [36]. For o = 0 this quantifier is
soraetimes called the Ramsey quantifier. -

(5) K5 of type (1) with K = {{4,R)}| R ‘A} If we rest ‘ict ourselves to
single-sorted structures and put for ¢y in Q%s x:: v, the 1 the resulting
logic corresponds to Chang’s quantifier in Bell- Slomson 7, Ch. 13].
Chang’s quantifier will be denoted Q... The more general form was in-
troduced by Hirtig [22].

Given a logic L and a class of structures K of a type 7 we say K is L-
elementary (K € EC] ) if there is a sentence ¢ € L(7) such that K = Mod(y).
K is a L-projective class (K € PC]) if there is a type 7' D7 and a sentence
¢ in L(r") with K = Mod(p)!,.

If L; and L, are two logics, the logic Ly 0 L, is defined by Lyn Ly =
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and similar work was done by Makowsky [39]. However, in some cases
this leads to L4 with A4 a non-transitive set. Therefore we also introduce
a new closure operation A on sublogics of L, , which is, in some cases,
at least for identifications of that type, better behaved than A. Related
work was done recently by Paulos [45,46] and Swett [49].

Fach section contairs numerous examples, and open problems are stated
at the end of Sections 2, 3 and 4. We consider these examples (and coui. er-
examples) as an important part of this paper. Abstract model theory gives
us only an approach to general questions; the intuition and experience for
it can only be found by dealing with concrete problems. Several of the
basic ideas of Section 2 have b:en essentially known to Keisler, Barwise,
Friedman, Shelah, Paulos and possibly others. The detailed study has been
done by Makowsky (cf. [37,391). Section 3 is mainly due to Shelah ad
Stavi and Section 4 to Makowsky and Stavi. We wish to thank S. Feferman
for many challenging questions and helpful discussions which greatly en-
couraged us to pursue the subject.

1. Preliminaries

1. 1. Unexplained notation is standard. For model theory the books of
Chang-Keisler [8]. Keisler { 28], Shoenfield {48] or Bell-Slomson [7] will
do. For admissible s:ts wer refer to Barwise [5] although admissible sets
are only used in Section 4.

1.2 A many sorted similarity type is a 7-tuple 7 = (g, 1y, 15, 13, py, 2. P3)
where / is a set indexing the sorts, /; indexes the relations, /, the opera-
tions and /5 the distinguished elements (cf any structure of type 7). py, p,,
p3 are functions delined on Iy, I,, I, respectively, and showing the num-
ber of places and sorts of arguments and value for each relation, operation
and distinguished element. A simple type is a type 7 for which Iy={1},

Iy ={:, .. k} forsomek [, =0,[;={", .., 1} forsomel(k, > 0).
Structures of type 7 are then single-sorted, with finitely many relations
and distinguished elements (no operations). We denote such a type 7 by
(Hy, ..., 1 1) where n; is the number of places of the i'" relation (given

by py(i)). When ! = 0 we simply write 7= (ny, ..., np). For any type 7, S(7)
(S(7),. S,) is the class of all structures of this type (of cardinality k).

A set of relation symbols, operation symbols and constants is called a
vocabulary. With each type 7 we associate in some standard way a voca-
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bulary, which is used to construct (atomic) formulas of L, (7). For de-
finiteness let us agree that equations ¢ = ¢ are allowed as atomic formulas
{for any 7) just in case ¢ and ¢’ are terms of the same sort.

1.3. Generalized quantifiers have been introduced by Mostowski [52]
and in greater generality by Lindstrom [33] (see also Kalish—Montague
[27D).

Let 7 be a simple type. A quantifier Q of type 7 is a variable-binding
operator that makes a formula out of formulas and terms. If 7 =(n, ...,
ng; 1) then a typical formula x(w) beginning with Q (here w = (w{,w,, ...)
is a list containing the free variables of x) has the form

Qxos (X hcick 1< ian [Poxo W) Wi(xy, ooy X1y, W) oo

wk(xkh eeey -xknk» \X)), t](w)9 seey t[(ﬁ})] s

where the free variables of each formula or term are among those dis-
played, the variables x, x;;, wy, w,, ..., are distinct and all these variables
and the terms ¢y, ..., f; are of the same sort.

Now let X be a class of structrues of type 7, closed under isomorphism:
K gives rise to an interpretation of Qwhich we describe below in the spe-
cial case v =¢1,2;1) to simplify notation. The formula x(w) is now of
the form

Qxyzyzy (@O, w), Y (¥, W), Yp(zy, 25, W), (W]

Let % be a structure of any type and let b be elements of B assigned as
values to the variables w. Let By be the basic domain of 8 corresponding
to the (common) sort of the variables x, y, z,, z,. We define: B = x[b] iff
(A, Ry, R,, ¢)isa structure in K, where

A={a€Byl® F gyla, bl},
Ry ={a€ByIB k& y;la, bl},
Rz ={(al,a2)€B(2)t‘B = 1112[01,(12,5}},

c = t[b] (evaluated in B ) .

Thus B = x[b] iff (4 # Q)R € 4, R, € A2, ¢ € A and the structured
U=(A, Ry, Ry, c)isin K. A short suggestive notation is: 4 = gy( 5, b),
Ry =y (8,b), Ry = y,(B2,b), c = t(h). We emphasize that the structure
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= Ly, [Q¥Tkercy, nEcy,- Ly is asublogic of Ly, Ly < Ly, if ECL, € ECY,
forull 7. Ly is a PC-sublogic of Ly, Ly < PC Ly, if PC], S PC]_ for all 7.

Ly is equivalent to Ly Ly ~ Ly, if ECT = EC], and Lj ~p¢ L, if PC] = PC],
(forall 7). Thy (UA)={pe L(r)I A |} with7=7(A). A= B if
Thy(B)=Th (B); % and B are then called L-elementarily equivalent.

If Lisalogic, L=L,,10%],c  we write L[Q#] 5 g for L,,[Q%),c 40 5-

Examples. (6) L < L[Q] for any quantifier Q.
(7YL~ L[Q} iff K2e EC|.
(8) wa[Q()] < Lwlw'
ML, Q"< L, .,
(10) L, ¢ is the logic obtained from L, ., by adding the following for-
mation rule: If g;(xy, ..., Xp:s Vs -0 Vi) (i < @) are formulas having only

the displayed free variables then

3x) Vxy3x3Vxy ... My; and

Ax, ¥xy ... W o, are formulas

of L, - The semantics of L,  may be explained via two-person games.

Lo,w, € Lu,c and L, g € L. (see Barwise [3] and references there).

Strictly speaking, L, as described here is not a logic in our sense but

see remarks preceding (1). ‘
(11) L., [QE] with efining class K of type (2) K, ={A1UA =(A4A,R)

and R is an equivalence relation with at least X ,-many equivalence classes}.

One easily verifies that K and its complement are PC; with L=L_ ,1Q,]

but not EC, . Furthermore L__,[Q,] < L_,[Qf] and hence .

Lo, [Qal ~pe wa[oaﬁl. This logic was considered by Feferman [12].

1.5. Let L be a logic, A a structure of type 7 and B a substructure of
A. B < A B isan L-elementary substructure of U, if Thy (B .b)=
Thy( %, b) for every finite sequence b in B .

A logic L satisfies the Lowenheim—Skolem Theorem for k, k a car-
dinal, if every sentence ¢ of L, which has a model, has a model of car-
dinality < (<)x. We dencte this property by LS(k) (LS(<k)). A logic L
satisfies the Lowenheim—Skolem—Tarski Theorem for k if every 7-struc-
ture ¥ has a L-elementary substructure of cardinality <k(<«k), proviced
7 < k (7 < K respectively). We denote this property by LST(k) (LST(<x)).
A logic is (k, Aycompact, for infinite cardinals &, A, k= A, if for every set
of sentences £ of L, T < «, such that every £,C X, £, < A, has a model,
2 has a model.
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A logic L is axiomatizable if L= L ,_[Q}, ..., Q"] (n < w) and the set
of valid sentences of L ic recursively ernumerable.

A logic L has the Tarski property for k, k a regular cardinal, if the
union of an L-elementary proper chain of cofinality 2« is an L-elemen-
tary extension of all the members of the chain. We denote this prop-
erty T(k). L has the Tarski property if it satisfies T(¢w).

The Lowenheim number of a logic L is the smallest cardinal k such
that LS(x) holds for L. The Hanf niumber of a logic L is the smallest
cardinal k such that whenever a sentence of L has a model of cardinality
«k then it has arbitrarily large models. Both numbers exist if L = LM,[O" lics
where [ is a set.

We say that an ordinal « is L-accessible if there is a class K of type (2)
which is PC|, all its members are well ordered and there isa %A € K such
that {a, <) is embeddable in A. The well-ordering number of L is the
least ordinal which is not L-accessible (if it exists). We shall abbreviate it
by wo-number.

A logic L is bounded if and only if the class of well-orderings is not
PC; This is equivalent to Barwise’s definition {3.4].)

A logic has the Karp property if forall %4, 8 % =, (cf. [4]) implies
A =198 . Various definability properties (Craig, B2 th) will be studied in
Sectlon 2.

1.6. Logics may be characterized in terms of their model-theoretic
properties. As an illustration we give two theorems.

Theorem 1.1 (Lindstrom [34,35]). /f L satisfies one of the following
(i)—(v) then L~ L, ,
(1) LS(w) and (w, w)compact;
(ii) LS(w) and the Hanf number of L is w:
(iii) LS(w) and L is axiomatizable,
(iv) L is (k, w)-compact and satisfics T(k) and LST(Lk) (for some
K> w).

Theorem 1.2 (Barwise [4]).
(i) If L satisfies LS(w) then L has the Karp property.
(i) If L satisfies Craig’s Theorem and has the Karp property then L
satisfies LS(w).
(i) Let k =3, or k = w. If L has the Karp property and the well-or-
dering number of Lis <k then L< L,



Sh:47

J.A. Makowsky et al. | A-logics and generalized quantifiers 103

Since k = w is allowed in (iii) parts (i), (ii) of 1.1 follow easily. There
are also theorems characterizing certain logics as the minimal logic with
respect to certain properties. Exaraples of this sort will be discussed in
Section 4.

2. The A-ciosure

Consider the following interpolation and definability properties of a
logic L, for a given similarity type 7. U varies over structures of type 7.
K is the complement of K.

(1), . Whenever Ky, K, are disjoint PCy (7) classes there is some

K3 € ECy(7) such that K € K3, K, € K.

(A) ,: I K, K€ PC, (7) then K € EC{ (7).

(B)_,: If K€ ECy(7), where 7" is obtained from 7 by adding (an index
for) one n-ary relations, and VU 3! R((U, R) € K( then

{U, ap, ., g )13REU, RY € K and (ay, ...,a,) € R} € ECy.

(WB)y ,: As (B)g, with “YUu3=! R” replaced by “VU3!R”.

(D), ,: Same as(WB), , except that only K € PCy (7) is assumed (rather
than K € EC (7). : .

When (1), , holds for all types 7 we write (I} and say that L has the
interpolation propcrty (or the Craig property). Define (&), (B),, (WB),
(D), similarly. (A), is called the A-interpolation (sometimes Souslin—
Kleene interpolation) property, (B), - the Beth property, (WB)y - the weak
Beth property. (D) is equivilent to (4); (by Feferman [10]). When (A),
holds we sometimes say that L is A-closed.

It is easy to see that (1)) holds iff (1), , holds for all semi-simple types
7, and similarly for the other properties. {1t is, epparently, not enough
that (1), , holds for all single-sorted 7.]

Theorem 2.1.

/(I)L
(A)L/ \\
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For proofs of the implications see Feferman [10] and Jensen | 26]);
for the counterexamples see Proposition 2.21 (A # 1), Corollary 2.23
(WB # A) and Makowsky~—Shelah [40].

For L =L, (I); and (B); are the well-known theorems of Craig
and Beth respectively.

Examples. (1) If L is L4, A a countable admissible set, then (I holds
and hence also (4); and (B)_ and (WB), (Barwise [2]).

(2)If Lis L, and A 1s a union of countable admissible sets, then (1)
holds. In particular, for L In Section 4 a converse of this is proved
(Theorem 4.15).

(3)IfLisL,,[Q,] (A), doesnot hold (cf. Feferman [10], p. 216.
footnote 3) nor does (B); (ct. Friedman [13] and Makowsky - Shelah
[40}).

(4 If Lis L, [Q}M] (A), does not hold (Magidor and Makowsky ),
since the irrationals and w;-many copies of them are L-elementarily
equivalent as dense orderings yet by Theorem 2.15 they can be distin-
guished by complementary PC, -classes. Badger [ 1] showed that (B)
does not hold either.

(5) L, satisfies the foilowing approximation theorem due to Harnik
[2]1]. Let R, Q be disjoint sequences of relation symbols, ¢(R, Qibe a
L., c sent:nce. Then there isa L, ¢ sentence ¢*(Q) such that for any
sentence 6( 2) in L,,c we have: (a) If 5(Qj = ¢(R, Q) is valid so is
0(0) = ¢*(() and (b) if (R, Q) = 6(Q) is valid so is ¢*(Q) = 8(Q).
Barwise [3] showed that (I)L does not hold, and J. Burgess showed
that even A-interpolation iaxls ln fact he proved a more general result
about absolute logics as defined in [3]. An absolute logic is a logic L
(in the sense of [4], say) such that the relations

Wwiw’

{(p, T)l ¢ is a sentence of L(7)}.
{U,p, T)] W is a structure of type 7, ¢ a sentence of L(7)
and U = ¢}.

are respectively X Zy, and A -definable over the universe. In the next proof
the first relation is also assumed to be A;: we could even assume it to b
Ay with no loss of generality.

Theoiem 2.2 (Burgess): Let L be an absolute logic and assume thai the
class of well-founded binary relations is PC. Then L is not A-closed.
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Proof. Let K be the following class of structures of type (2). K={A=(A,E)]
for some sentence p of L((2)), # is isomorphic to (TC{y}, €) and

dAF=, rp Using £ formulas of the language of set theory which e».-
press: “x is (is not) a sentence of L{2)’, “x is a sentence of L(2) and is

true (false) in the structure (3, €)', it is easy to see that both K and K

are PCy . (One uses an extra sort of elements and an extra predicate € to
embed all objects involved in a well founded model of ZFC™.) However,

K is not ECp . for suppose K = Mod(x) and let o =(TC{x}, €). Then

Al Xed € Ke A F X, contradiction. O

Remark. If one defines PCy allcwing only extra predicates, not éxtra
sorts of elements, the definition of K must be modified to ensure all
structures in K are infinite. In this case the theorem still goes through
it we add the hypothesis that L contains the quantifier “there exist in-
finitely many’™.

Corollary 2.3. L, ¢ is not A-closed.
Proof. L, ¢ isabsolute (¢f. [3]) and can express well foundedness. O
Lindstrom showed the following general result. (cf. {34])

Theorem 2.4. /f L=1L__[Q'. ....Q"]. L > L and L satisfies LS(R,)
then Lo does not satisfy (WB), .

The proof uses the fact that (WB); and LS(R ) (together with Godel’s
incompleteness theorem) are sufficient to show the existence of ron-
standard models of arithmetic.

16) L, 1 Q) does not have the weak Beth property.

(7) Malitz had shown that L ,, , does not have the weak Beth property
(¢f. Makowsky - Shelah [40]: or unalyze the proof of {42, Theorem 4.21).

(8) Second-order logic: (A); fails, as is not hard to see, but (I), is true
for the single-sorted part of second-order logic.

(9N L., isnot A-closed (cf. the proof of Proposition 2.19) nor does it
have the Beth property (cf. Gregory [20] and Makowsky--Shelah [401).
Shelah [cf. 40] showed that even weak Beth fails for L ,. Malitz [42]
furthermore showed that L, has interpolantsin L, with g =(2")" and
K regular. For a semantical proof of this see Green [19].
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Feferman [10, p. 211] has characterized logics satisfying (A); in terms
of truth maximality and truth adequacy. The definitions are quite com-
plicated, so we omit them.

If now a logic does not satisfy one of these properties (1)y . (A} . (D).
(B); or (WB), one might ask if any extension L of L does. All the prop-
erties but (1), speak of a uniquely defined class which must be in EC, .
If it is not, cne might add it to L using additional quaniifiers. In the fol-
lowing, we investigite this possibility for (A); . (WB); and (B), . the lat-
ter two only in outline.

Definition. Let. L be a logic and let {K,}, <4 be a list of all classes K such
that K, K € EC] for some semi-simple type 7. Now put A(L)=L_ Q%4
where the generalized quantifier Q% has K¢ as its defining class.

A is in fact a closure operator on logics. To prove this, and other nice
properties of A, we need a crucial lemma.

Lemma 2.5. Let L be a logic and L' = L1 Q%) 4 where each generalized
quantifier Q% corresponds to a PCy class K whose complemnet is PCy

too. Then L' <pcL.

Remark. The proof will imprlicitly give an effective way of associating

with each type 7 and sentence ¢ of L' a sentence ¢ of L such that

{UMTIUE @} = {BT1V =}, assuming that the syntax of 1. L' and the

type 7 are recursively presented and we can find, as a recursive function of
K. as projective classes.

o € A, seniences of L defining K, and K

Proof. Let K be a class in PC] : K = {U 171U = ¢} where ¢ is a sentence
of L'(7) (r' 27). For cach subformula ¢ of ¢ introduce a new predicate
P, whose arity corresponds to the number and sorts of the free variables
of ¥ (in particular £, is a propositional constant). Define the sentence
0, (Y = Y(¥) a subformula of ¢) as follows:

If ¢ is atomic, 0, isVX (P, (X) = Y(x))
ifYis 7 ¥q, 0, SN () P (X))
and similarly for other connectives:

Iy is vy, 0y is VI(7,(X) < VP (x. 3)
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and similarly for 3;
it g(x) is (say) Quuwlolu, ). ¢ (v, w, X)] then o, is
VI(P,(Y)~ Qzu;w?f’%(u, X), Pw(v, w, X))

similarly for generalized quantitier of L of any type.

Let Yy .o iy be a list of a1l subformulas of ¢, and iet
O1=P A 04 A A Oy It is clear that K = {8 [7{BF= ¢} (in fact
pE3IP, . Pwk¢1)~

Thus it will suffice tc prove that the class of modeis of o, is in PUp
for each subformula ¥ of ¢ (since PCy is closed under {inite intersections
and projections). The only case in which g, is not a sentence of Lis
when ¢ begins with Q° for some a € A. For definiteness say that Q* is of
type (2) so that g, is of the form:

vx(P(x) « Q%uuwl Py, x). Pi(v, w, X)),
which is equivalent to the conjunction of

YX(P(x) > QY uow [Py, X), Pitu, w, X)]3 (1)
and

V(= P(%) -~ QUuow|Pylu, X), Pi(u, w, X)]). )

Given that K, € PC, it is casy to see that the class of models of (1)isin
PC, . Similarly the fact that A, € PCy implies the same for (2). We leave
the details to the reader. 0

Corollary 2.6. K € PCyy,iff K€ PCy (i.e. L ~pe A(L)).
This ts immediate from 2.5.

Lemma 2.7. (3) A(L) satisfies A-interpolation.
(i) L osatisties A-interpolation iff L~ A(L).
(iti) ACL) is the largest extension L' of L such that L' ~pc L.

Proof. (1) First suppose K. Ke PC"ML) where 7 ic a semi-simple. By 2.6
K. K € PC{ hence, by definition of A(L), K € ECY;,. Next note that if
a logic satisfies A-interpolation for semi-simple types then it satisfies A-in-
terpolation for all types (proof casy).
(ii) By 2.6 and (i).
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(i) By 2.6 A(L) ~pe L. If L' ~pc L then K € ECp- = K, K€ PCy = K,
KePCp = Ke ECy,.
Thus L' < A(L). O

Theorem 2.8. A is u closure operator, i.c., —
() L< A(L);
(ii) A(A(L)) ~ A(L);
(iii) Ly < Ly = A(L)) < A(Ly).

Proof. (i) is obvious by the definition of A. (ii) follows from 2.7 (i). (ii). To
prove (iii) note that K € EC,q ,= K, KEPC = K, K€ PC, = K€ ECy,

Remark. The proof of 2.7 (i) explains ‘why in the definition of A(L) we con-
sider classes K such that K, K € PC[ for some scmi-simple (not only simple)
type 7.

Example. (10) L, [ Q;] < A(L

u)zw)'

Proof. It is enough to show that K5 = {(A)I;Z > R} and K are PC| o
which s left to the reader (or see preof of 2.19). (3 oz

For tl e sake of comparison we now define two cther closure operations
tor logic:, connected with (B); and (WB), . The way (B); and (WB); are
formulatcd, the class K which is supposed to be elementary in L is a class
involving a simple type {(u, ... ;. ), 1> 0, ie.. involving distinguished
elements.

Definitions. Let K, € B be a list of the counterexamples to (WB) ((B)).
Then WBY(L)(BYL)) is the logic L[ Aﬁlﬁhg- Now we proceed by induc-
tion:

WB™* (L) = WBL(WB" (L)), B"*!(L) = BI(B"(L)) .
Finally let WB(L)=U, . , WB"(L). B(L) = U, . ,B"(L).

Proposition 2.9. WB(L) (B(L)) is the smallest extension of L having the
weak Beth (resp. Beth) property.

Proof. That WB(L) satisfies (WB) follows directly from the definition.
Now assume L' satisfies (WB) and L < L'. We proceed to show that
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WB(L)< L. WBYML) < L' since L' satisfics (WB). Now WB (L) =
WBHWB"(L)) hence WBM(L) < L' for all n. Similarly for B(L). O

Corollary 2.10. WB(L) and B(L) are closure operations. U1

Remark. By Theorem 2.4 WB(L) is not finitely generated if L satisfiec
LS(w) and extends properly L, ,. The same is true for B(L) and A(L).

For WB(L) we also have an analogue of Lemma 2.5 since the condi-
tion of (WB}, says that every structure has a required expansion.

Lemma 2.11. For every sentence (formula) ¢ of WB(L) there is a sen-
tence (formula) ¢ of L having additional predicates such that for all
structures W, W= @iff there is an expansion A* iff A with A*E= .
In particular WB(L) < A(L).

Proof. FFor every quantifier in ¢ which is not a quantifier of L we add a
new predicate T which is interpreted by the implicitly definable relation,
where it comes from. The details are analogous to the proof of Lemma
2.5.0

In the case of B(L) we run into troubles sinice not every structure need
have an expansion of the required type.

Definition. Let % be a structure. We define. analogously to Bell and
Stomson {7. Ch. 10. §41. the L-full expansion of 9 by adding for every
formula ¢(¥) a new predicate R¥(¥) with the obvious interpretation. Let
the resulting structure be denoted by ¢U*.

Lemmna 2.12. For cach logic L and similavity type 1, denoting by % the
tvpe of the WB(L-full expansions of models of type T, there isa set T
of L(t*) sentences such that the following holds:

If U is any structure of type Tand U* is its WB(L)-full expansion,
then U¥E=T and W* is the unique expansion of U to type v+ which
satisfies T

Proof. If ¢ is a formula of WB(L)(7) and ¥, ¥,. ... are its immediate :ub-
formulas then I' will contain an axiom describing how R¥ is related to
R¥0, R¥1, .. The cnly interesting case is when ¢ begins with a quantifier
0O of WB(L) which is not in L. Then the corresponding axiom will essen-
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tially say that R¥ satisfies the implicit definition which gave rise to the
quantifier Q in the structure defined by R¥o R¥1, ... Actually we are
oversimplifying a bit but the details can be left to the reader, whoe ould
notice that the proof applies to WB(L) but not to B{L). O

The operators A a:id WB preserve some of the “nice”™ model-theoretic
properties of a logic L, while to prove similar results for B scems more dif-
ficult.

Theorem 2.13. (i) If L is (k, ANcompact so are A(L) and WB(L).

(ii) If L is bounded, so are A(L)Yand WB(L). In fact, L. A(L)and WB(L)
have the same wo-nurber.

(iti) L, A(L) and WB(L) have the same Hanf- and Lowenheine-numbers.

Proof. L, WB(L) and A(L) have the same projective classes. The propeitas:
of compactness, boundedness, well-ordering number, Lowenheim nume
ber and Hanf number can all be defined by reference to projective clisses
only, hence the theorem holds. O

Applicztions.

(1) Fe ‘erman’s quantifierog. (cf. ex. 11. Section 1). The logic L __ !Qf;}
is (w, w)-compact (for many o’s) and satisfies LS(w ) since it is mdm d
in A(L,,1Q.0).

(2) Lindstrom’s Theorem gives new proofs for the tact that L atis
fies (WB); and (A), : L, is maximal with respect to c.umpmmux tmd
LS(w) or with respect to Hanf-number = Lowenheim-number = . all
properties preserved under the A-operation. Thus A(L, )~ L.

(3) Another application of Lindstrom’s Theorem gives us information
about L, ,1Q;] and its A-closure: (This statement tor L, 1Q.. ] only
makes sense for unrelativized logics: here Q. is (”hang's quanttm 5 i
ex. 5.

Proposition 2.14. A(L, QDN L, =L, fora=1.orany «such
that L, ,10Q.] is C()zmtabh compact. Also, i L Q.1 s (w. wlcom-
pact then A(L,,,[Qecc]) N Ly, 0 = Lo
Note: The GCH implies (w. w)-compactness of L, 1Q...} and of L, [Q,]
for most «. (See Bell and Slomson [71].)



Sh:47

J.A. Makowsky et al. | a-logics and generalized quantifiers 171

Proof. L [Qc. ] and L, [Q,} (o = 1. say). arc both (w, w)-compact
and we assume L, satisfies LS(w). Both these properties are preserved
under the formation of sublogics. Hence in both cases the intersection
satisfics LS(w) and is {w, w)-compact. But by Lindstrom’s Theorem
(Theorem 0.1) this must be L, . Note that we are applying Lindstrom’s
theorem to a logic which does not atlow relativization. O

(4) Consider the quantifier O with xab = {9019 of typc (2) and
is a dense linear ordering with » countable dense sut set) (= KP).

Theorem 2.15. L, 1QP1 < A(L_,(Q D) and hence L, ,[QP] is (w. w)-
compact and satisfies L.S(wy).

Proof. We show that K2 and (KP) " are PCL tq, For KP this is straight-
forward, For (KP)  we observe that if a dense linear order (A4, <) has no
countable dense subset then there are at least wy many disjoint rectangles
= cartesian products of intervals) in A2, For as;ume there is a maximal
countable set of disjoint rectangles avoiding the diagonal, then the projec-
tion of their endpoints into A is a dense sebset of 4. With this obscrvation

we easily see that (KPYy s PCwa,Ql;. This idea goes back to Kurepa (511.03
15y Theorem 1.2 (iii) as proven in Barwise [4] gives slightly more:

Theorem 2.16. Let k = 3, or k = wand L be a logic witit wo-number K.
It K is closed wnder partial isomorphisms and K € EC then K € EC Lo

Since A preserves wo-nun bers we obtain the following interpoclation
theorem for L, . Note that the wo-number ol L, ,isk if k = wor k=3,

(this follows casily from {61).

Theorem 2.17. If K is closed under partial isomorphism and K is
R e S
FCan, p(k=3, cre=wihen Kis ECy .

Corollary 2.18. i1 K is closed under partial isomorphism and K and K
are PCy_ then Kis ECy .

Not all model-theoretic properties are preserved by A.

Proposition 2.19. A dues not preserve the Karp-property.
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Proof. Let L be L, . L has the Karp property. There are sentences ¢
and ¢y in L, , characterizing the structures (w. < and (. <), respec-
tively. Now put K, = { 9| % =(A> and 4 can be mapped I | into w}
and Ky = { 21U =(A)and A can be expanded to W =4y A, [ <)
where (A,, <) = {wy, <) and fis an injection of 11 into A, ;. Obviously.
K, Ky are PC; and K is the complement of Ky Hence Ky and K5 are
EC4 (- But Ky contains only countable structures, Ky only uncountable
structures. In view of the fact that all infinite sets are partially isomorphic,
it follows that A(L) does not have the Karp property. O

Remarks. (i) A similar argument shows that in A(L,,) all the quantifiers
Q, for 8, < k are definable. In particular. for k > w; L, is not A-closed.
(i1) If L has LS(w) then it has, by a result of Barwise [4]. the Karp
property and so has A(L).

(iit) Kueker [50] studies ‘ogics with LS(w} in a general context and
found that the logic gencrated by his closed and co-closed clisses is
A-closed.

Proposition 2.20. A does not preserve the Tarski property.

Proof. Againlet L=1L, . L has the Tarski property (in fact.all L,
have it). Now let {9 }Kw be countable structures with equaltiy only.
where eve.y 9,4 isa proper exiension of Ay {3, is an clementary
chain of A(L,,,,) since for every finite subset 4 of 4, (A a € ) =
(Ajep, a € A). But Uy 3 cannot be an A(L)-clementary extension of

any of the ;s since U, % is uncountable and L, 1Q,1 < A(L
by ex. 10. O

Lu"w

A{L,, ) also gives an example of a A-ciosed logic which does not satis-
fy (. ln fact, Friedman (unpublished) proved the Tollowing theoren.
The proof below is essentially due to Hutchinson (cf. [241):

Proposition 2.21. Let L be such tha: L, [Q 1< L < AL, ). Then
there are disjoint PCy -classes Ky, Ky which cannot b s [m;czlt'd in
AlL,,.,).
Proof. Let Ky = {9 | A =(A. <} where < is an ordering of A of cofinality
w} and Ky = { A} =(A, <) where < is an ordering of cofinality wyJ.
Clearly, K, K are disjoint PC-classes in L, 1Q,] (using 8, -like orderings).

L)
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Now assume, for contradiction, that ¢ i1s a formula of A(szw) which
separates Ky from K. Using Lemma 2.5 ¢ is equivalent, using additional
sorts and predicates, to some formula¢ of L, . Assume further that
(W3, <= Y and B = ¢ (if not take ~ ¢). Expand ¥ to a model ¥ of
¢. Using the Lowenheim - Skolem Theorem for L, , we can find a
HyCB such that B¢ and (VY | < wy. Let b€ B — | Byland
forall by€ | Bl BFbH > by Let By be such that ¥yc B, B,

B o, b e 181 and that (( )71 < wy (sucha By exists using the
Lowenheim  Skolem Theorem once more). Now iterating this process
w-many times givesusa B, such that (B 1, <) = P has cofinality w,
iterating w.-many times gives us B, of cofinality w;, which contradicts
our assumptions (as B, F ¢. B, = ¢ hence B = o, B, F . yet
separates Ky and K,).0

In contrust to this we have:
Theorem 2.22. /1 L has the Tarski properiy, so fas (WB(L).

Proof. Let %, o < § be a WB(L)-clementary chain of structures of type
Tand U = U, ., U, Consider the WB(L)-full expansions U¥ of each

Uy and YT of U (let 7% be their similarity type). For a < g, U, <yp, Uy
hence U<y UF (in fact U F <y, U since every WB(L) (%) formula
can be “translated™ to a WB(L) () formula). Let U’ =U_ ., U* Since L
has the Tarski property UF <, ' for each «. Let I' be the set of sentences
i Lemma 212 Then U §BE T ohence %' = TLand since %' is an expansion
of ‘U it folows from Lemma 2012 that U= U*. Thus U F <, U* and so
U, <y U Tor cach o (We are using the trivial fact that if L' is any logic
and U BF are the L'-full expansions of U, B and U * C B* then
U<, W O

Corollary 2.23. (WB), #+ (4),.

Proof. A(wa ) does not have the Tarski property (by 2.20) but WB(Luzu)
does, by 2.22. 03

Example. (11) WB does not preserve the Karp property. To see this we use
Shelah’s theorem (cf. ex. 9 above) that WB(L,, ) > L. By Theorem

213 (i) WB(L..) is a bounded logic. By {4, Corollary 3.3] every bounded
togic having the Karp property is<L,,_,. Hence WE'L_ ) does not have
the Karp property.
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If L is axiomatizable, one would like to know if A(L) also is axiomari-
zable. The construction of A does not indicate any solution to this prob-
lem, but the following is true:

Theorem 2.24. Let L be an axiomatizable logic. Ler L'=L[Q 1. ... Q"] be
such that the defining classes K. ..., K, of Q', ..., Q" respectively, are in
ECaqy Then L' is axiomatizable.

Froof. We have to show that the set of valid sentences V' of L' is recur-
sively enumerable. By our assumption, the set of valid sentences V of L
is r.e. Now let ¢ be a sentence of L', hence of A(L). By the remark fol-
lowing Lemma 2.5 there is an effective translation of ¢ into a sentence

¢ of L. The effectivity of the translation is guaranteed by restriction to
finitely many quantifiers in L'. Now ¢ € V" iff 7lp has no model iff (Tl¢)~
has no model iff W (T¢) )€ V, hence the result. O

Corollary 2.25. The same is true if we replace EC 5y by ECypq -

Applications.

(H szoc%] is axiomatizable fora = 1 (and many a2 1). This sclvesa
problem posed by Feferman {10]. Stavi had given an explicit axiomati-
zation (by schemes) for L, [QY].

(2) L, QP1is axiomatizable. Both these results follow from the fact
that L [C.] for @ = 1 and many other a is axiomatizable.

HIL,l Q. ..., Q"] satisfies LS(w) and properly extends L then
A(L,[Ql, ... Q") and WB(L__IQ'.Q"). cannot be obtained by adding
only finitely many new generalized quantifiers. by Theorem 2.4.

(4) Theorem 2.24 gives a new proof for (A); inL . since L,  is
maximal with respect to axiomatizability and LS(w).

Problems.
We concentrated mainly on the A-closure and the WB-closure, both
being very smooth operations on logics.

Problem 2.1. Does the B-closure have similar features?
Problem 2.2. Is there 4 way of defining reasonable an I-closure?

Trivially, one could add all PC -classes to a logic L extending it in w-
many steps to L’ such that ECy» = PC; - but this seems to strong. For L,
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for example, this construction gives a!l the classes of structures definable
in set theory, i.e., goes beyond second-order logic.

We were operating on logics defining intersections and closures. Unions
can be defined similarly.

Problem 2.3. Investigate the model-theoretic properties of logics and their
behaviour under these constructions.

3. Cofinally invariant classes of structures and A(L ,_,|Q,]

Malitz and Magidor in [36] asked whether one can characterize L, Q1
in model-theoretic terms such as axiomatizability, compactness or Lowen-
heim- and Hanf-numbers. With the exception of axiomatizability the pre-
servation Theorem 2.13 tells us that this is not the case. The modified
question of course would be to characterize A(L,, [Q]). This chapter is
a result of atiempts to do so, but does not give a soluticn to this problem.

Now Theorem 2.24 gives us even axiomatizable extensions of L ; [Q,].
In this chapter we shall construct more logics which are (w, w)-compact,
satisfy LS(wq) or even LST(ew ) and are axiomatizable. Our starting point
is the following observation:

Theorem 3.1. Let L be a logic, K a cluss of structures closed under isomor-
phism such that for seme k, K and its complement are both “PCy on struc-
tures of cardinality <7 (ie. - K0S, =K,nS, KNS =K,n S, for
some Ky, Ky € PC). Let L = LIQX] (or. more generally, let L' be ob-
tained from L by adding finirely many quantifiers of this kind).

(W)Y I L satisties the Laowenheim— Skolemn thicorem for k for single sen-
tences (LS(k)yand Lis axiomatizable then L' is axiomatizable,

(2 [f L satisfies the Liwenheim - Skolem theorem for k for sets of
sentences 0f cardinglity <k (and, in particular, if L' satisfies LST(k)) and
Lis (N p)ycompuact, pu < X< k. then L is (A pycompact.

{ This generalizes results of 32 on preservation of axiomatizability and
compactness by the A-operation. |

Proof. (1) As in the proof of Lemma 2.5 we can effectively associate with
each sentence p of L a sentence ¢ of L such that a structure ¥ € S, isa
model of ¢ Iff U has an expansion to a model of ¢. Since L' (hence ¥))
satisfies LStk) it is clear that v has a model iff ¢ has a model. Thus the set
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of valid sentences of L' is effectively reducible to the set of valid sentences
of L.

(2) Similarly, with each set @ of sentences of L' we can associate a set
& of sentences of L such that for ¥ € S, : U |= & it U can be exvanded
to a model of . & stands ina 1-- Lorregporxdcxche with @ and the state-
ment of (A, u) compactness appliev to d(d < \) easily reduces to the stite-
ment applied to @, bearing in mind that A< k so LS is applicable to & und
¢. 0O

Examples. (1) The quantifier Q¢ defined by K= 9|9 = (A, <) where
< is a linear ordering of cofinality «w}. Shelah {47.53. §41]) proved

that wa[ch is (k. w)-compuct for every k. It will follow from the re-
sults in this chapter that wa!Q(‘] satisfies LST(w)). Taking L in Theorem
3.1tobe L, ,[Q,] we see that wa[QC} is axiomatizable (to verify the
hypothesis with k = X, one uses x;-like orderings) and (w. w)-compact.

The main difficulty in the applications of Theorem 3.1 is to verify that
L[O] has the same Lowenheim-number as L.

The following work developed of course from the special to the general:
Examp'e (3) was suggested by S. Feferman [ 10]. ex. (4) was studied pre-
viously by Shelah [47] who also first defined ex. (5) and ¢x. (6).

The cofinally invariant (c¢.i.) quantifiers we are going to study in this
chapter a.0se on the way of trying to find a broad class of applications
for Theor»m 3.1 using, as in ex. (1), the nice properticsof L_,_[Q;] as a
point of departure.

Let us point out, though. that recently J. Hutchinson [ 23] |24} has
found another approach to construct extensions of L, ,1Q,] using. fol-
lowing an idea due to H. Friedman. nonstandard models of set theory.

Let 7 be a similarity type. The syntax of the (monadic) second order
language L{Z (7) can be described as follows: we add a new sort of vari-
ables X, Y, ... (called set variables) and a new predicate symbol € for
each sort of 7. and then build formulas of L, (7‘2’) in the usual way.
where 7¢2) is the type obtained from 7 by the above additions (if 7 is
single sorted. 7% is two sorted). For each structure % of type 7 let ¢
be Lhe structure of type 2 obtained by letting the set variables range
over countable sets of elements (of the corresponding sort) and € de-
noe membership. Thus if U = (A4, ... is single sorted. U =(U. P<\ (A).€)
wiere P (A) is the sct of L()Untdh]t‘ subsetsof U. If pisa sentence of
LA M (=L, () we let U =D mean T = . Thus B is the ordinary
satlsf rction relation of “weak ™ second order logic.
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For any logic L and type 7 let L'2(7) be the set of formulas of L(r®)
in which the quantificrs of L (other than V, 3) bind only *individual
variables” not **set variables™. Naturally we define: ¥ = Loy iff U = LY
(Incidentally, LD or even L(jl, is an abstract logic in the sense of [3],
<41, say, but not a logic in the technical sense of this paper.)

Returning now to wa(’r(z)), suppose 7 is single sorted. We shall be ir-
terested in structure U ¢ = (U, S, e) of type 73 ( Yof type 7). in which
Sisasubset of £ (4) which is cofinai in the partial ordering € of
P,y (A). Thus the set variables, rather than ranging over all countable
sets fas in U ) range only over a cofinal collection S of such sets. Such
stru tures U ¢ will be called cofinal structures over U while U itself is
the full structure over L.

A formula o(x, v, ... X, ¥, ) of L, (7'?) will be called cofinally in-
variant (¢4 ) if for every U of type 7 and cofinal structure U ¢ over U
and elementsae, b, . €U, 5, ¢, ... €S we have

Ust=la, b, ...os b, L Viff UEga, b, 8.t 0.

By u ¢.i clasy of type 7 in the wider sense we mean the class of models
of some ¢.i. sentence 9 € L, (7'?). In order to take care of the relativi-
zation built into our quantifiers we shall define a c.i. class of type 7 (in
the strict sense) as a class & of models of type 7 for which there exists
ac.iosentencepin L, (7,1 124y ({7, 1] is obtained from 7 by adding
one unary predicate) such that for every structure U of type 7 and set
B 21l

If 7is a simple type and K a c.i. class of type 7 then the quantitier QX
will be called a c.i. quantifier. A c.i. logic isalogic L=L_ [Q,l;e;
where each Q; is a c.i. quantifier (of some simple type 7;). Note that a
¢.i. logic has only countably many quantifiers.

Examples (in each example the sentence ¢ shows the defining class of
e quantifier to be ¢.i.: P is the unary predicate added in passing from 7
to 7. 1.

(2) Q; of example (2), Sect. 1 is c.i. with

¢ =18XVy3xPx)= x € X).
(3) Q" from example (11), Sect. 1 is c.i. with

= 13X W [P(y)~ 3x(x € X AxEp)] A (E is an equivalent reiation).
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(4) Q% from example (1) is c.i. with
¢= 3XVr[ax(y<x)->3Ix(xeX Ar<x)] a(<isalinear ordering;

(5) QP from Th. 2.15 is c.i. with r
e=3XVrVzp<z=3v(xeX ap<x <"‘:{ A (< is a linear ordering

(6) QB is of type (2) with
KB={%} % =<A, Rys.t. there isa countable ¥ < |9 | with
vx[3pR(xy)=(3yeYVIR(x1)] QBis c.i.}

(the reader will easily find the sentence ¢ showing this).

Remark. LLM[QB] might have applications to separable metric spaces and
similar structures where separability is needed ~s a basic concept. (cf.
Makowsky [56]).

Remark. QF can be generalized by looking at an equivalence relation be-
tween n-tuples. This gives a quantifier Q™ of type (2m). Similarly one can
define Q%, QP by looking at an ordering of n-tupics. and QB (of type
(m + ) by considering a relation between m-tuples and n-tuples. These
quantifiers would be c.i. if we made the natural generalization of allow-
ing variables »ver countable n-ary relations (for all n) in L2 thus replac-
ing the monadic second order language by the full language. We could then
generalize the notion of cefinal structure, c.i. formula etc. and extend all
the re=ults of this section .0 the wider class of c.i. logic, thus define.

(7) Monotone classes: A class of structures K of type 7 is monotone if
there exists a first-crder formula with one additional unary predicate
P o(PY such that whenever (%, )= o(PYand PSR € {9 | then
(U, Ry = o(R)and K ={ A | there exists a countable P with (%, P = o(P)}.
Monotone classes ave, by similar arguments as above, c.i. at least in the
wider sense. Furthermore. all the examples (1)—(6) are monotone.

Theorem 3.2. Let L be o «.i ogic, T any single sorted type. Every formula
0 of L) can be translated into a formula § of L‘jzg(r) with the sume
Jree variables such that for all cofinal structires U g, elements a of |U | and
clements B of S we have:

® U= la, B iff Usl=@la, B].



Sh:47

J.A. Makow:ky et al | a-logics and generalized guantifiers 179

Proof. We define ¢ by induction on ¢. If ¢ is atomic ¢ is¢. @ commutes
with 7./\, V v, 3. “‘tp isQ,—.i"Q.'x;l ‘i:,\[liio(—i—o), \l/,(;t‘), ‘l/k(:\:k)‘tl* vy f[}
and the defining class K; of Q; is seen to be c.i. by the sentence

X{(P, Ry, ....Rp. ¢, ..., cp) then @ is X;(Yg. Y1 - -0 Yk, 21 oou £p). The veri-
fication of @ is straightforward using the absoluteness of X; between U ¢
and Uu. O

It follows from Theorem 3.2 that if ¢ is a c.i. formula of L®(r) (where
cofinal invariance is defined for L'?(r) formulas just as for L®) () for-
mulas) the ¢ is c.i. too. From this it is easy to deduce:

Corollary 3.3. If K € ECy for some c.i. logic L then K is a c.i. class.
The main results for c.i. logic are:

Theorem 3.4. If K isa ¢.i. class in the wider scnse then there are PC-classes
Ky Kyin L, tQul such that K0Sy =Ky 0S¢ and Khyn S, =KN S,

and
Theoiem 3.5.If Lisa c.i. logic then L satisfies LST(w).

Coroilary 3.6. Let L be a finitely generated c.i. logic. Then L satisfies
LS (wy), is (w. w)compact and axiomatizable.

Proof. This follows from Theorem 3.5 and Theorem 3.1. O

Proof of Theorem 3.4. |- suffices to show that for each c.i. sentence ¢

there is a class K, € PCp g, such that K,n S, =K N S, where K is
Wi 1 1

the class of models of ¢. So let p be a c.i. sentence and [U =< ¥,

U € K iff cither U is countable and U g, = ¢, with Sg= {| % I}, or there
1s an wy-like ordering < of |9 | and Ag [= ¢ where S is the set of initial
segments of <. Clearly, this can be translated into L, ,[Q] using addi-
tional predicates. O

To prove Theorem 3.5 we prove something a little bit stronger:
Definition. Let k be a cardinal. P(k) holds if the set of countable subsets

of k. Py, (k). partially ordered under inclusion, has a cofinal subset of
power < K.
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Theorem 3.7. If P(k) holds and k > Ry and T < k then for every T-struc-
ture N and C< ||, C <_k there is an L-clementary substructure A o of
A with CS | Ugland | Ayl < k.

Proof. Let % and C be given. Look at ¥ as a many sorted first-order
structure and select a family of Skolem functions for ¥ (since T < K
there are k such functions). Now if BC {9 | and T < qul(' Aylet kB, T
be the smallest set (B', 7') 2(B, T) which is closed under the Skolem
functions and is transitive (i.e., UT' € A"). This can be obtained in w-
many steps; hence, if BUT) <k then (B UT) <«k.

We now define by induction on a < w;

(A, Sp) = cl(C. 9)
(A5,S5)= U (A4,,S,) for § a limit ordinal
a<d

(AQH' SC'H'I) = C](Aa, SQ) and

Sat1 = Sa+1 U “a cofinal subset of Py (A,4) of power <k

Let U, =U|A,,,. Clearly the structure (U, S, .€)isan L, -ele-
mentary substructure of U. Also, every countable subset of A, is in-
cluded in s me A4, (a < wy) hence in some member of §4 &, .
Thus (‘Mwl Swl, €) is a cofinal structure. For any formula ¢ of L(7)
with paramcters-from Aw’ we have (@ being the translation given in
Theorem 3.2):

U= piff UI=@ itf (U, S, F@iff U, =e.
Thus U, < U. Clearly Zw; < Kk s0 U, has all the required properties. [
Remark. It is easily verified that P(k) = P(«"), in particular P(R,) n < w.
Hence Theorem 3.5 follows. But Theorem 3.7 gives us also information
about the possible other cardinalities of elementary submodels for c.i.

logic L. To exploit this even more we investigate the property P(k) fur-
ther:

Theorem 3.8. (i) If P(kyand k = R, then c¢f(k) > w.
(i) k = 280 implics P(k) = kN0 = k.

Proof. (i) Let S be cofinal in (P<Nl(l<), ). S < k and assume, for contra-
diction, that cf(x) = w. Then S = U, . S, withS, =7, < k for suitable
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S,’s. Since (U S,)” < A, - 8By < k there is some §, < k such that there is no
AwithB, € A€ S,. Let B={f,|n € w}. Thenforalln and all 4(4 €S,)
= B < A. Thus S is not cofinal, a contradiction.

(i)k N0 = g = P(k) is clear. So let K> 2% and §C Py, (k), S cofinal
and § < k. Let T be a family of ™0 almost disjoint countdble subsets of
«. Forse€ Slet Ty={r € T|t < s} _By the cofinality of S we have
T= Uy T, thus PRI TeesTs< S 2o g+ o=y, [

Theorem 3.6 is best possible even for the quantifier QP as shows:

Theorem 3.9. There is a sentence p of wa{QB] such that, for all K, ¢
has a model of power k iff k 2 Ry and P(k).

Proof. Let p; be vx 370 R(y, x) and ¢, be 1QBx, y(IR(», x)), where
R is a binary predicate. (4, R) = p, iff there is no countable ¥ € 4 with
Vx[3r IRy, x) = By € YY(TIR(y, x))] iff for every countable

Y CA3x[33TR(y, x) AlVY € Y)R(y, x))]. Let g be chA @,. Now
(AR Egand S= {y]R(y, x)}x € A} implies4 > X § < A4, S is co-
final in P (A). Thus it 4 = x then k > R and P(k). Conversely, if

K= N mdl’(;c) et A ={a;1i<k}a;#a;fori#jand §={b;|j <k},

S cofinal in PQs (A). Then (k, RY |= ¢ with R(, f) itf a; € b;. E}

For L=1L,_[Q,,Q] we have a better result:
Theorem 3.10. L = L. 1Q,. QY] satisfies LST(k) for every k > 1.

Proof. Let B be a structure of type 7& > wg and T<k CS|V|and
C = k. Define (A, | « <_w; > such that:
(DAL CTIBL A=k
() C S 1AL 1 Ut = Ug g1 U, for a b limit ordinal and
LU S Ay .

(m) A, isa subsiructure of 5.

(iv) Let o< wyanda €U, Then for every p € Li(a) If B |= Ixp(v,a)
then for some b € | A 1B ¢(b, a). (b) If B = Q; xp(x, a) then there
exist at least N{ many elements b € | ¥ o4q| with B = p(b, ). (¢) If
B = Cxye(x, y, @) then there exist by, by, by, ... € | A 44q! such that
{b,1n € w} is cofinal in {(x, B I= @lx, v, @)}. (d) If {(x, B =olx,y,a)
is an ordering of cofinality > w (call it <, , and let D, , be its field) and
1N Dy, is not cofinal in <, , then there is some b E [ Aqsq! Which is
greater in < o~ than every element of {1 N D, ,. Clearly, % 44 can
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be obtained from %, by adding < « elements, so the construction is
possible and | 9,1 = k since k = ®;. Also, each . 8 a limit ordinal, is
closed under the operat;ons of B and I, <i, ‘b(bv he Tarski- Vaught
Theorem for L, ). In fact, % <1 Q) Bds one easily verifies.

We now show that % =9, < 3 Ly proving that ( 9(,a) = Y(a) iff
(B, a) = y@) foralla € ||, hy induction on C-quantificr rank of .
The only non-trivial case is Y(e) of the form Cxyela, x3t). By induction
hypothesis p(x, ¥, @) linearly orders 2 iff it does it for "i Thus we may
assume that <Y is a linear ordering of DY, and that <; W = =< 3 B’
and D‘z‘ = DB N A (again by induction hypothems) lf< f*’%, is of co-
fmdhty w then V] «+1 and hence # contains a countable sequence for
<, and hence for <\p)1 If <3, has cofinality bigger than w then cither
l 2(] N Db is cofinal in <¢B dnd then the cofinality of <3 b is the same
as of <¢<;‘, or4d N Db is not cofinal in <¢b and then for md* <oy,
contains an element bxgger than all of [ 941 N D 'B s0 the cofinality of
< isw;. O

Problems. Ebbinghaus [9] recently proved that L__{Q"] does not satisfy
interpolatior.

Problem 3.1. i) Is A(L_,[QP] finitely generated?
(i) Is A(L, _[Q;]) finitely generated?

Problem 3.2. (1 eferman) Is there an extension L of L _[Q;] which is
(w, w)-compact, axiomatizable and satisfies (1); or (4), ?

Problem 3.3. Are the c.1. logics A-closed? Do they satisty (B); ? Find
(natural) examples of c.i. logics which require non-monotone quanti-
fiers (see ex. (7).

Modifying a question by H. Friedman [ 15] one might ask:

Problem 3.4. (i) Is there any L properly extending L, , which satisties
(B); . (I); or (WB), ., and is axiomatizable?

(:i) Is there any L properly extending L, , which satisfies (B); or
(WB); and is (k. w)-compact for some k > w?

4. A-sublogics of L, , and Scott sentences
T.et U be a structure of semi-simple similarity type. We define

ICAY={ 9" o = A"
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and
PHAY={ U XA =, %'},

If % is countable PI(4) = Mod(o¥) where o is the canonical Scott
sentence of A inL,, .1 A isa term model then I(A) = PI(2A).
(See [4, {, §10] for definitions of =, %)

In this chapter we study the A-clsoure of logics obtained by adding
1C30) or PI() for some fixed U (or a family of 9’s) as a quantifier to
L. We shall mainly concentrate on sublogics of L, L but our con-
siderations go a little bit further.

There are two ways of looking at sublogics of L, , (or L, in gen-
eral): Either we look at logics of the form L, ,[Q%],c 4 or at logics
Ly =L, N Aforsome transitive set A closed under some set-theoretic
operations. We shall consider both approaches here. We assume general
acquaintance with ad-aissible sets (¢f. [5]) but unlike [5] consider only
sets without urelements in this section.

The basic relation between the two approaches was discovered by
Barwise, who showed (cf. {4, 11, 4.11), that the A-closure of w-logic or
of the logic L,.,1Qq), is the logic Ly where A4 = w* the least admissible
set containing w. This was generalised by Barwise {4, 11, 4.4} and Ma-
kowsky [37,39] to get the following theorem (see {4] for the proof or
compare the proof of 4.4 below).

Theorem 4.1. Let p © w and let L be a A-closed logic in which the struc-
twre U =L, <, p) is characterizable (that is U)(=PU)) € EC)).
Then L, < Lwhere (w, pY' is the smallest admissible set containing
wand p as elements. In particular A(L_, 10" 7) ~ Lo, p+-

[Note that by regarding L, (admissible 4) as alogic in the sense of Section 1
we are cifectively restricting attention to the sentences of L, in which
only finitely many non-logical symbols occur. ]

Corollary 4.2, If L is a4 A-closed logic in which each structure (w, <, p)
(r & w is characterizable then L, , < L.

Thus L, , is the least logic which is A-closed and satisfies Scott’s
theorem (every countable structure is characterizable).

The main aim of this section is to try to characterize'A(wa[ Q"D
where Q¥ abbreviates Q") and U is not of the form (w, <, ...). It was
conjectured by H. Friedman {14} and announced by Makowsky [39]
that:
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Statement 4.3. If U is an arbitrary countable structure of finite similarity
type ang ¢ is its canonical Scott Sentence then A(L_,,[Q¥] =L, with
QY defined by PI(‘¥) and 4 = (6¥)".

It turns out that Statement 4.3 is false. To sec this we first consider
the case U ={a, <> where o« is an ordinzl and the quantifier Q° of type
(2) defined by I(U ) = PI(U)).

Definition. Let ¢ be a set. Then the Z-definable part of the next admis-
sible set a* is the set S, = {b € ¢*| there is £{-formula p(x, v') such that
(a*, €)= 3lyp(a, v) Ap(a, b)}. That is to say. b € S, iff b is £, -definable
ina* from the parameter a.

Theorem 4.4. L, _{Q%] ~p¢ Ls, = L
<gclLs,

o NS, Furthermore, L,,1Q%

o0

Proof. We first show L, ,[Q%] <y Lg, . Since a € 5. ¢e. €) can be
characterized up to isomorphism in Lg_, hence Q° is definable in Lg. .

It remains to show that every K € E(’LS& is P(’wama;. Letpe S, be
a sentence and let 0, be a Zy-formula that defines g ina* using a as the
only parametei. Consider the conjunction ¢ of the following sentences
in L ,,1Q%] (for a two-sorted structure). For the first sort we have:

{i) the axion s for KP or a strong enough finite set of them.

(i1) ¢; (a constant) is an ordinal and {c;. € = (o, < (using Q° and
sentences in L, )

(ii1) BY.X'%(C',,.\‘) AT Cr, ), (This insures that the constant ¢ “is”
¢.)

(iv) c3 (another constant) is a structure satisfying ¢, (which is expres-
siblein L, ).

For the second sort we have:

(v) The universe of the second sort is isomorphic to ¢3 (which is
again expressible in L, . due to the fact th{ <5 has a finite similarity
type).

The Z,-definition of ¢ and its uniqueness guarantee that the models
of Y do not admit nonstandard elements for ¢5: 50, clearly, all the models
of { restricted to the second sort are models of ¢ and vice ersa. O

Corullary 4.5. A(L,,,1Q°D ~ A(Lg ). O

For countable ordinals & we get more:
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Theorem 4.6. If a € HC then Lg satisfies interpolation.

Proof. Let ¢ and ¢ be sentences of Lg, such that ¢ = . Since a € HC,
o’ is a countable admissible set and L+ satisfies (1) . Hence there is an
interpolant 0, i.e., 0 € a” and ¢ = 0 and 0 = Y where the interpolant
contains only extralogical symbols occurring in ¢ and . All we have

to show is that we can find a 0 which is in S,. Let Rp, ¢, x) be an ab-
breviation for: x is a triple <0y, m, my) where 0 is a sentence containing
only symbols occurring in both ¢ and ¢, m; is a derivation of ¢ = 6 and
m, is a derivation of 04 = ¢ (within L,+). Let R'(p, ¥, ag) be an abbrevia-
tion for: ag is an ordinal and (Ix € cho{‘Ps U Rp, ¢, x) AV < ag) T
(3x € Lyle. yb) (R(p, ¢, X)) where L, {«. b} is the a-th stage of sets rela-
tivcly constructible (over {q, b}).

Finally, let R"(p, ¥, ag, 1) be an abbreviation for: R'(p, ¥. ag) and
= MA01L, e Y} contains a triple x =<0, m), ™) s.t. R(p, ¥, x)}. Note
that R. R and R are primitive recursive relations and thata in R" and «
and v in R” are uniquely determined by ¢, and ¢. Note, further, that if
R"{g, ¥, ay, ¥) then y is a non-empty conjunction of interpolants for ¢
and ¥ henge, v itself is an interpolant for ¢ and ¢. Since g and  are in

S, there exist Zy-formulas g,(x, ') and 0,5(x, ¥} such that

f.eyE 3troa ) A3lvoyle 1) Aoy (a.p) Aoya, ¥).

Let ggfa, 1) be the Z-formula expressing 3u, v. agfo (o, 4) A 05(a. V)
AR"(u, v.oag, 1Y) Clearly, (¥, €) |= gylz, ) holds for a unique y, say 0;
hence, 0 € Sg» and ¢ is an interpolant for g and . O

Corollary 4.7. I/ o < 1. AL, 1Q° ) ~ Lg . O
The proot of the next result is easy and left to the reader.

Theorem 4 8. {f § is an ordinal, 3 < O(a™). Then 148, <) € ECin Ls,

Thus for countable & we have:

Corollary 4.9. [f o < wy ihen 1. <Yyis ECin A(L,,1Q*D) iff B € S,u.

Proof. For § < 0(a™) this follows from 4.7 and 4.8. For § = 0(a*) this
follows from a result due to Barwise and Kunen [6] to the effect that
cannot be characterized in L+ even as a projective class. O
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There are also generalizations of Corollary 4.7 if we replace the ordinal
by an arbitrary hereditarily countable set ¢ and consider U for the struc-
ture U =(TC{a}, €,a), a € HC.

Furthermore, if 9 is an arbitrary countable structure (of semi-simple
type) whose universe is a set of urelements and ¢ is its canonical Scott
sentence, then we have:

Theorem 4.10. If 0 “€ (U)', then AL 1Q"] ~ Lg «

Which looks very much like statement 4.3, only that there is an addi-
tional hypothesis o™ in the conclusion is replaced by S -

We now proceed to show that statement 4.3 is false. the main reason
being that S, in general is not transitive. It is enough by 4.9 to show that
for some countable ordinal « S, 2 0(a™).

Example. Let L (y < w)) be a model of (enough axioms m) ZF and et
a= wLY Thus a is uncountable in Ly. The definitions of o and S are
dbsolute, hence, S, of L, is the real §,. But, by definition ot'S, we have
I, 1= %S, is countable and o is uncountable”: hence,a € §,,.

Remark. The quantifierQ“! is quite strong: In A(L_, ,(Q='D[Q} is de-
finable and also the quantifier of wellfoundedness on countable domains.
It follows from 1 result of Stavi (unpublished) that the set of valid sen-
tences of L, ,[Q~1] is extremely complicated. in faci not X, over the
universe using only the parameter w;.

Statement 4.3 fails mainly because A(L_, ,1Q“]) need not be of the form
LA with 4 transitive. For the rest of this scmon we shall study fragments
of Lwlw with A transitive and primitive recursively closed. Another way
to look at A-logics is the following: A(L) was defined to be the smallest
logic of the form L, ,[Q;];.; which is A-closed and has all the L-clemen-
tary classes as quantifiers in it, t.e. A(L) has a special syntactical form. This
suggests for L< L, , to replace A(L) by A(L). which is the smallest logic
of the form L, where 4 is primitive recursively g!osed and transitive, A-
closed and contains L. To discuss the operation A we need a theorem due to
Friedman [14] and independently proved by Stavi.

Theorem 4.11. Let A be a transitive primitive recursively ciosed set. If L
is A-closed then A is the union of admissible sets.

Proof. We first recall a fact about the next admissible set (¢f. Barwise [ S,
Ch. ).
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Lemma 4.12. /f b € " then there exists a 2 -formula o and elements
dy. ooy dyy, € TCLa) such that whenever = (M, €) is a model of KP and an
end extension of . e then M= 3lxo(ay. o), X) A a(ay, ....a,.h).

We now want to show that under thie hypothesis of Theorem 4.11
A=U,.  a" Byaresultin [S}a" = U, . g,nLa{a} so it suffices to show
that if g € A and o < 0t@”) then o € A since A s primitive recursive
closed. Without loss of generality (since A is transitive) we can assume
that o = w® and that O(¢™) > w.

Lemma 4.13. [fa€ A. o < 0™ then Wa. <)) is ECin Ly.

Proof. (2) I{a.<») is PC in L 4. Let ¢ be the conjunction of the follow-
ing sentences in a two-sorted language. € a binary relation over the first
sort, < a bhinary relation over the second sort and I a binary relation
over both sorts, unprimed variables for the first and primed variables for
the second sort.

(i) The universe V' of the first sort together with € satisfies KP (or
a strong enough finite subset of KP).

G MV € Cpe W v = p)lep € TCLal} where ¢4, 85 are names
of elementsin V|

(i) vx'3'x Iy, x').

(v varx' v ) Al 7 = (V< e v e )]

(v) 3zloay, ...oa,2) AVXIX'[Ix. x )= x €],
where ¢ is the £-formula from Lemma 4.12 and 44. .... 4,, are names for
the parameters in Lemma 4.12 designing elements of 4. Clearly. when-
ever M= o the restriction of Y to the second sort is isomorphic to
{a, <) and ¢ is consistent. hence 1, <0)) is PC in L. (Note only clause
(i1) is infinitary.) '

(b) I{a. <N is PC in L. To see that we note that (3, <) # (a. <) iff
cither (B, <O s not well founded (which is PCin L, ) or (B, <) is iso-
morphic to an initial segment of (a, <} (which is PC in L, using (a)) or
{a. <} is isomorphic to an initial seement of (B, <) (which is PCin L,
again by (a)). So by our assumptionon Ly . <)) isECin L4. 0

Continuation of proof of Theorem 4.11. By Lemima 4.13 there is a sen-
tence ¥ in L4 characterizing {a. <) up to isomorphism. ' is also a sen-
tence of L . so. by a result due to C. Karp {55] the quantifier rank
qr(y) is bigger o1 equal to a if o = w*. Therefore. since Y isin L,

o= gy <A anda e 4. O
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Remarks. Clause (ii) in Lemma 4.13 contains possibly countably many
constants ¢ (for every ¢ € TC(a)). Now we only work with finite simi-
larity type. But this difficulty can easily be overcome. We replace the
constants for ¢ by a formula m.(x) which defines ¢ using its Z-structure:

7.(x) is (Vu € v) \V Ty A M\ (Su € v)myiun).
= he
Clause (ii) then reads 3xm,(x) and in clause (v) we replaces all the q;’s
by their defining formulas g, (1) and bind x; by an existential quanti-
fier.
The proof also shows the foliowing:

Theorem 4.14. Let a be a set and B any transitive primitive recursive
closed set cortaining a. Then every K which is PC in L, is already PC
in Lp.

~ A converse of Theorem 4.11 is the following:

Theorem 4.15 Let A be transitive and primitive recursive closed. Then
Ly satisfies irterpolation iff A is a union of admissible sets and 4 € HC.

Proof. If A S HC and satisfies the hypothesis then L satisfies (1), by
Barwise [2]. If .1 € HC and L, satisfies (I); then L, satisfies (A); and
hence A is a unic n of admissible sets by Theorem 4.11. So suppose L,
satisfies (I); and A is transitive and primitive recursive closed. It remains
to show that 4 € HC. If not, there isa€ 4 - HC. Leta bein A HC of
minimal rank. Thena € HC and sincea € HC. 2 = > Ny, Also w € A since
we assume A has no urefements. Now Ky = {9 [|% | < ¥,} and

Ky =1{ 1| > @) are easily seen to be PC in L4 and are disjoint. But
since L4 satisfies the Karp property K| and K, cannot be separated biy
an EC classin L. O

Remark. The set @ in the proof of Theorem 4.15 has cardinality < 2%o
since « € HC. Now if &, = 2% K, and K, are disjoint and complementary
and we have:

Theorem 4.16. If R, = 2% and A is primitive recursive closed and transi-
tive then Ly is A-closed iff A is a union of admissible sets and A S HC.
We can now give a precise definition of A(L).
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Definition. Let L <L, . A(L)= Lywitn A=0{B{L<Lg. LyisA-
closed and B transitive aad primitive recursive closed}.
Note that it is not obvious that L < A(L).

Proposition 4.17. A(L) is A-closed.

Proof. Let A(L) = L. Since A € HC it is enough to show that 4 is a
union of admissible sets. We shall first show that for everya € A, a* € A.
Ifa € A thenu € B for some B which by Theorem 4.11 is ¢ union of ad-
missible sets (; (by the definition of 4). So« € (; for some C;. But. then
a*SCianda® © A. Now 4 = U, 4{a} = U, 4a” which proves the
proposition. O :

To conclude this section we want to prove an analogue of Conjecture
4.3 for ﬂ(L). For this we need a theorem due io Nadel [43].

Let 9 be a countable structure, o ¥ its canonical Scott sentence. We
call a sentence @ a Scott sentence of ¥ if ¢ is logically equivalent to ol

Theorem 4.18. Let A be a countable admissible set, w € A, and ¢ a
Scott sentence in A. Then the canonical Scott sentence o equivalent to
wisalso in A, (Proof in [43}].)

Theorem 4.19. Let U be a countable structure (of finite (semi-simple)
similarity tvpe) and let Q° be the quantifier defined by PY(U ), L= wa{{f"].
Then:

() IFPUU) € ECy  then A(L) ~ L, (~ A(L)),

(i PUYE E (l zizc’n ALY ~ Ly Wwhere 0¥ is the canonical
Scott sentence of K.
In both cases A(L) = A(L)> L.

Proof. (1) I PICi) € EC Lo then L< L, ,= Ly and the result follows
immediately from the definition of A.

(2) Suppose PI(U) ¢ ECy, wos Suppose L < Lg where Ly is as in the
definition of A. Then B is a union of admissibie sets (by Theorem 4.11)
and P¥W) € EC| € EC Lg- Thus Ly cortfains a Scott sentence for Y and
Lg v L, hence w &€ B. By Tacorem 4.18 ¢ € B. Taking the intersec-

tion over all B we get 0 Y€ A where A(L) = L. Therefore A4 2 (¢%)".
On the other hand the admissible set B = (0%)" clearly satisfics L < Lg.
Therefore A € B, hence 4 =8. 0

By Theorem 4.10 A(L) and A(L) coincide for L=L_, [Q“]if S, =0¢"
and o € (1), By Theorem 4.1 this is the case for Y = (w <. P>. In
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Makowsky [38] a family of generalized quantifiers, the w-securable quan-
tifiers, is studied and it is shown that for logics L = LMJQI withQ w-
securable A(L) and A(L) coincide, too. But obviously A(L) was introduced
only to make precise how statement 4.3 fails and no preservation theorems
of the type discussed in Section 2 were discussed for A(L) mainly because
A(L) only applies to sublogics of L

Wy
Problems

Problem 4.1. Characterize A(L , ,[Q 1) tor arbitrary countable structures

Problem 4.2. Let L< L, . Is A(L) = L? A simpler auxiliary question:
Let A, B be countable admissible sets and let K € EC, 0 ECy, . Does
Ke I:CL ? If this is not always true then L, [Q"} will be dn exampic
of-a loglc L(< L,4) such that AL)> L.

Problem 4.3. Characterize L, , or fragments of it (other thun L, ) as
maximal logics for some model theoretic properties.

Barwise [3., §3] gives such a characterization using the notion of an
absolute logic which is not purely model theoretic. For some time we
thoguht that 1, , might be the maximum of logic satisfying LS(w) and
having well-orcering number < w,; (similar characterizations could be
proposed for certain fragments). This conjecture was rejected ina very
strong sense by Harrington [54]and, independently, by Kunen [57].

Added in proof

Let L? be the fragment of weak second-order logic allowing existen-
tial quantification over couitable sets and relations provided t/iey do no
not occur negatively in the scope of the existential quantifier. L was
introduced by Makowsky and further studied in [40.561. L7 is (¢cquiva-
lent to) a c.i. logic and contains L( Qf):itis countably compact and. as
well as a c.i. logic, has a completeness theorem with a natural finite list
of axioms and schemata provided by Stavi (¢f. [40]

We do not know whether L7 is the strongest c.i. logic.
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