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ABSTRACT. We solve a problem of Friedman by showing the existence
of a logic stronger than first-order logic even for countable models, but still
satisfying the general compactness theorem, assuming e.g. the existence of a weak-
ly compact cardinal. We also discuss several kinds of generalized quantifiers.

Introduction. We assume the reader is acquainted with Lindstrom’s articles
[Li 1] and [Li 2] where he defined “abstract logic” and showed in this framework
simple characterizations of first-order logic. For example, it is the only logic sat-
isfying the compactness theorem and the downward Lowenheim-Skolem theorem.
Later this was rediscovered by Friedman [Fr 1]; and Barwise [Ba 1] dealt with
characterization of infinitary languages.

Keisler asked the following question:

(1) Is there a compact logic (i.e., a logic satisfying the compactness theorem)
stronger than first-order logic? It should be mentioned that it is known for many
L(Qxa) that they satisfy the A-compactness theorem for A <8, (for a > 0).
(Qxa(x) <> there are > 8, x’s; the \-compactness theorem says that if T isa
theory in L(Qxa)’ IT} <A, and for all finite ¢ C T there is a model, then T
has a model.) For example, this is the case for a = 1. See Fuhrken [Fu 1],
Keisler [Ke 2] and see [CK] for general information.

At the Cambridge summer conference of 1971 Friedman asked:

(2) Is there a logic satisfying the compactness theorem, or even the N,-
compactness theorem, which is stronger than first-order logic even for countable
models, i.e.,is there a sentence Y in the logic such that there is no first order
sentence ¢ such that for all countable models M, M £ ¢ <=M E ¢?

Notice that the power quantifiers an do not satisfy the second part of
(2). The quantifier saying “p(x, y) is an ordering with cofinality 8,” solves
(1) (but obviously not (2)) as proved, in fact in [Sh 2,§4.4] and noticed by me
in Cambridge.

The main result of this paper is the presentation in §1 of an example solving
both (1) and (2) positively (assuming the existence of a weakly compact cardinal);
thus, compactness alone does not characterize first-order logic. In §2 we mention
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all kinds of problems about generalized second-order quantifiers, and prove some
results.

After the solution Friedman asked:

(3) Is there a compact logic, stronger than first-order logic even for finite
models?

Notation. \, u, k, x designate cardinals; i, j, k, I, a, B, v, 6, £ designate
ordinals; and m, n are natural numbers. The power of 4 is |A|. Models are
M, N, and the universe of M is |Ml. a, b, ¢ are elements; g, b, ¢ finite se-
quences of elements; I(@) is the length of the sequence a. x, y, z, v will be
variables, and X, y, z, v sequences of variables.

1. A compact logic different from first-order logic. The following theorem
is proven under the assumption of the existence of a weakly compact cardinal
(see Silver [Si 1]).

THEOREM 1.1. (There is a weakly compact cardinal «.) There is a compact
logic L*, which is stronger than first-order logic even for countable models.

DEFINITION 1.1. cf(4, <), the cofinality of the ordering < on the set A,
is the first cardinal A such that there exists B C 4, |B| = A, B is unbounded
from above in 4. cf*(4, <) is cf(4, >), > the reverse order. When < is
understood we just write cf(4) or cf*(4). It is easy to see that the cofinality
is a regular cardinal (or O or 1).

DEFINITION 12. (4,, A,) is a Dedekind cut of the ordered set (4, <)

(or just cut for short) if 4, UA, =A;b, €A, ANb,€EA4, = b, <b,;b<
byeA, —b€EA,.

DEFINITION 13. Let C be a class of regular cardinals. We shall define
two generalized quanuﬁers (Q x, ¥) and (Q X, ¥):

A) MF (Q %, Y)o(x, y; @) <= the relation x <y =4.¢ o(x, y;a) linearly
orders A = {bEM: M F (Ax)(x, b; @)} and cf(4, <)E€C.

(B ME (Qgcx, P)o(x, y; @) <> the relation x <y =,.¢ ¢(x, y; @) linearly
orders A = {b € M: M F (3x)¢(x, b; )} and there is a Dedekind cut “,,A,)
of (4, <) such that cf(4,, <), cf*(4,, <) € C. Clearly the syntax of
L(QS, 03°), the logic obtained by adding the two generalized quantifiers to
first-order logic, is not dependent on C.

DEFINITION 14. L* = L(Q%s .« }» @4 ,c}) Where K is the first weakly
compact cardinal. In the following we shall omit writing {8, k}.

LEMMA 1.2. L* is stronger than L for countable models.

PrROOF. We must find a sentence ¢ E L* for whichthereisno ' €L
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Let ¢ = [< is a linear order] A [every element has an immediate follower
and an immediate predecessor] A 71(Q%x, y)x < ).

Clearly a countable order satisfies ¥ iff it is isomorphic to the order of
the integers. So clearly there is no sentence of L equivalent to ¢ for count-
able models.

THEOREM 1.3. L* is compact.

REMARK. If we just wanted to prove A-compactness for A <k, the proof
would be somewhat easier.

In order to take care of the possibility that |L]| = k, we encode all the
m-place relations by one relation with parameters and then we use saturativity.
A similar trick was used by Chang [Ch 2] who attributes it to Vaught who at-
tributes it [Va 1] to Chang.

We also use the technique of indiscernibles from Ehrenfeucht-Mostowski
[EM]. Helling [He 1] used indiscernibles with weakly compact cardinals.

PROOF OF THEOREM 1.3. Let T be a theory in L* such that every finite
subtheory ¢ C T has a model. We must show that T has a model. Without
loss of generality we may make the following assumptions.

Assumption 1. There is a singular cardinal Ay, > |T] + k such that every
(finite) ¢ C T has a model of power A,. (There is clearly a singular Ay >k +
IT] such that every ¢ C T has a model of power <\,. Now let P be a new
one-place predicate symbol, and replace every sentence of T by its relativization
to P (ie. replace (Q%fx, yyo(x, y,z) by (Qx, yXP(x) A P() A ¢(x, ¥, 2))
and replace (Q%°x, y)o(x, y, z) by (Q%°x, Y}P(x) A PG) A ¢lx, , 2))). Let
T’ be the resulting theory. Clearly every ¢t C T’ has a model of power A,
and T' has a model iff T hasamodel. Also |T'|=[T1.

Assumption 2. Every t C T has a model M, (of power A,) whose
universe set is Ay = {a: @ <Ay}, < (the order on the ordinals) is a relation of
M, RCMt = {u: <Ay is a regular cardinal}, w and « are individual con-
stants, and there is a pairing function.

Assumption 3. Thereis L, C L, L, countable, and the only symbols in
L - L, are individual constants, and w, k are in L,. We can assume that L
has no function symbols. :

Let {R{:i<a, n<w} be alist of all the predicate symbols in L,

R} being n-place. Define languages Ly, L) as follows: L' = {w, k, <} U
{R": n<w, R" isan (n + 1)-place predicate symbol}, Ly =L U {cf:i<
@, n<w,ci individual constant symbol}. If ¢ €T define Y, by replacing
every occurrence of R}'(x,,* -, x,) in ¢ by R"(x,, -, x,, c}'). Let

Ty = {Yo: Y ET}, T, is a theory in L'} and may be taken in place of T.
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Claim 1.4. For every language L, containing < there is a language L,
and a theory T, =T(L,) in L} such that:

(M) L,CL,,IL,l=IL

(2) Every model M, for L, has a fixed expansion to a model M, for
L, which is a model of T,.

(3) Every formulain L} is T,-equivalent to an atomic formula; i.e. for
all p(x) €LY there is a predicate symbol R,(x) such that (Vx)p(x)=
R, (X)) ET,.

(4) T, has Skolem functions; i.e., for all ¢(y, x) €L} there is a function
symbol F, € L7 such that

(VDIAX0, D = oF, (), DIET,.

(5) For every formula o(x, y, z) €L} there are function symbols F:, €
L, (for i=1,--+,5) such that: if [M,| =2, (the universe set of M), Mo
is the “natural” order, then for all sequences a from My if ofx,y, a) linearly
orders A = {y € IM,|: M, F (3x)p(x, y, a)} # & then (in M,):

@) Fy(a) = cf(4, ¢(x, y, a)).

(i) The sequence (F:(y, a): y <F,(a) is an increasing unbounded
sequence in A.

(iii) 4 hasacut (4,, 4,) such that cf*(4,, o(x, y, a)) =p,
cfd,, ox, y, @) = x iff Fo(u,x a)=0 iff Fi(u,x,a)+*1.

(v) If Fy(u,x,a)=0 then (Fy(y, u, x,a): y <) is an increasing un-
bounded sequence in 4,.

() If Fy(u,x,@)=0 then (Fy(y, u, X, a): y <p is a decreasing un-
bounded sequence in 4, [where A4,, 4, in (iv), (v) are from (iii)].

ProOF. If in each stage we were to take ¢ € L} (instead of L}) the
proof would be trivial. By repeating this process ¢ times we get the desired
result.

Notation. Define languages L, and theories T, in L} as follows: Ly =
L,V {P} where L, is from Assumption 3 and P is a new unary predicate
symbol. If L, isdefined let L, =L, U {P,, P"} where P,, P* are new
unary predicate symbols. Now L, ., T,,, willbe L, and T(L,) from
Claim 1.4 where L, corresponds to L,. Clearly L, are countable. Let
L,=UL, 1, =UT,.

DEFINITION 14. If M is a model, A ,a set of formulas o(x) (i.e. a
formula with a finite sequence of variables, including its free variables) in the
language of M, A C |M], then the sequence {b;:i<a} C |M| is A-indiscern-
ible (or a sequence of A-indiscernibles) over A if i#j=b,# b; and for all

L\cﬁ(sftgt,:o:)yr'ig;t . st’ﬁ!ﬁsas!n)aﬁppe{u" <k, permutation ¢ of {0, ++,n—1} and
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a,," ",a,_,€A4 and jO)< - <jn-1)<a,i0)<---<in-1)<a
the following holds:

M E Big0y)y """+ Pigotn=1)y > " " "> G-y ]
S ME Biooyy "2 bjotn—1)y > " s Gk_q]-

Claim 1.5. 1. If A, A, M are as in Definition 1.4, A and A are finite,
and B C |M| is infinite, then there are b; € B such that {b;:i<w} is A-
indiscernible over A. :

2. If A, A, M are as in Definition 1.4, A is finite, B C M|, |4| <k <
IBl, then there are b, € B such that {b;: i <k} is A-indiscernible over A
(x is the weakly compact cardinal chosen at the beginning).

ProOF. 1. This is a result of the infinite Ramsey theorem. Ehrenfeucht-
Mostowski [EM] used this to obtain essentially (1).

(2) It is known that « is weakly compact iff x — (k);’ forall u<«
(see [Si 1]). From here the result is immediate. O

Let {c,: @ <ag} be all the individual constants in L — L, (see Assump-
tion3). Let S={(tn B):tCT,n<w BC {c,:a<ap}, t and B finite}.
Denote elements of § by s or s; = (t;, n;, B;) and s, <s, willmean ¢, C
t, ny Sny, B, CB,. Now we define the L, -model M(s),s = (¢, n, B). For
t, B fixed, denote M(s) by M". Define M" by induction on n such that
M"*1 expands M", M" isan L,-model, P,(M"*') C w, P"(M"*!) C«,
IP,(M" 1) = R, IP"M" 1) = k. For n=0 take M® to be the expansion
of M, by adding the predicate P(M°) = B. Let {cp,.(?): i<w} be alist of
the formulas of L., such that the number of variables in x’ is <i, and let
A, ={gzi<n}NL, If M" is defined we define M"*! as follows: Let
A' CP''(M™) (or A' C {a: a <k} if n=0) bea A,-indiscernible sequence
over BU {a:a<w} andlet A2CP, ,(M™) (or A2C {a:a< w} if
n=0) be a A,-indiscernible sequence over B U (@, -, d"}, where a!,
-+, a" are the first n elements of A!. (In fact A, A% are sets, but we
look on them as sequences by the ordering <.) As for each ¢(x) € 4, the
number of variables in x is <n, A2 is A,-indiscernible over BUA'. Expand
M" by interpreting P" as A' and P, as A2, and then expand the result
toan L, -model by Claim 1.4, so it will be a model of T, (mentioned in the
notation after Claim 1.4). This will be M"*!. Let L, be the language ob-
tained from L. by adding the individual constants {c,: @ <ay} (from L -
L,) and new constants ¥, y; for i <k. Now we define a first-order theory
Ty in Ly. Let Y(xy,- -, x5xt, -+, x™;z,,- -, z,) be aformula in
L, andlet j(1)<---<jim)<k, i(1)<---<i(l) <«k. Then
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'I'(yi(l)’ cee, yi(l);yi“)’ e ’yi(m); Cact)yr " ca(k))e Ty
iff there is s; €S such that, forall s=>s,, s=(t, n, B), and for all 4, <
- < a, €P,(M(s5)), b, <---<b,, €P'(Ms)), itis the case that

ME)EYlay, -, a5b), by Caay s ca(k,].

Clearly T, is consistent. Let M k T be «k*-saturated (sce Morley and
Vaught [MV] or e.g. Chang and Keisler [CK]). Let N be the submodel of M
whose universe set is the closure of PM under the functions of M (and so in
particular all the individual constants are in N). Let D be a nonprincipal ultra-
filter on w, and let N* = N“/D. We shall show that N* F T, and thus com-
plete the proof of the theorem. We use the fact that N* is R, -saturated (see
e.g. [CK]).

Because of Claim 1.4(3) it is sufficient to show:

() If R,(x, y, z) is an atomic formula in L, and (¥ [, »)
R,(x, y,Z)=R,(2)] € T,, then forall a€N*

N*E (@, y)R,(x, y, @) = N* E R,[a].

(ID) If R,(x, y, z) is an atomic formulain L. and V2)[(Q%x, »)
R (x, y, z) ERz(g)] € T.,, then for all a € N*

*E (Q%x, y)R,(x, ¥, @) = N* ER,[a].

ProoF orF(l). Clearly the sets {a € N*: a < w(N*)}, {a € N*: a < k(N*)}
are linearly ordered by <, and both have cofinality x. So by the assumptions
and Claim 1.4(5), N* E R,(a) = N* E (Q°x, )R, (x, y, a).

Now assume N* E T1R,[a] but N* E (Q%x, y)R,(x, y, a). We shall
produce a contradiction. Hence R,(x, y, a) linearly orders A = {b: N* E
(Ax)R,(x, b, a)} # &, and A has no last element. Since N* is R, -saturated,
cf A >8, and so by N* k (Qx, y)R,(x, y, @) we have that cf 4 = k. By
the assumptions and Claim 1.4(5)(ii) we may assume that R,(x, y, @) = x <
y Ny <a (a is one element in place of the sequence a), N* k RC[a], and so
A= {b:N*EFb<a}. Let {g;};, bean increasing unbounded sequence in
A, a, = a, and suppose that ¢, =¢ -, a},- - /D where a} €N (since
N* = N¥/D).

Now for all « <B <k define fla, B) = {n < w: ay <aj <a,, RC[ay],
ag # w,k}. Since N* F (g, <a3<a, ARCla,] Na, #w ANa, #k) we
have by fos’ theorem that fla, f) € D. k, being weakly compact, satisfies
K— (:c):No and so without loss of generality fla, §) = f(0, 1). If, for all
n € f{0, 1), there exists b" such that o} <b" <a forall a €k, then

L\ce?:se or cgpyrlght ?estrlcnbns rnay !Q to redlstrlbutlon see hgﬁ/www ams. org/aumal termglc! us‘e! < K ’ a contfadlctlon
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So there is n € f0, 1) for which {a}: a <k} is an (increasing) unbounded
sequence in {PEN: b<da"} and N ERC[a"] Aa" # w Aa" # k. From
now on denote @ =4a" a, =a%. Let a, =71,( -, y/@m) ...y... ity

* 3 badici(@),m<m(a)» Where 7, isaterm,in L., j(o m) is an increasing
sequence in m, i(e, ) is an increasing sequence in /, and b, is a sequence
from PV. Since we may replace {a,: @ <k} by any subset of the same power,
we may assume that m(a) =mg. @) =1,, and 7, =7 for all a <k.

Since N FRC[a] A a> w and in every M(s) the interpretation of P is

a finite set, and {b: b < w} is a countable set, there is a function symbol F
in L_ such that

ma—1
F(x°,---,x 0 , X)
ma—1
=sup{1(xo’....x (1] ;zo"..’zlo—l’vl"..)<x:
Zg,",<w,vy, ", EP)L

Clearly 7( - -, yi(a.m) ....... iy Ea) <FC--, yi(a.rn), )
<a, and thus without loss of generality a, = F(- -+, y/@™) ... ). If

N Ea<k then N satisfies the sentence “saying:” there is a regular cardinal

a <k such that X, is an unbounded subset of {c: ¢ <a}, but X, isa
bounded subset of {c: ¢ <a} forany b <k; where X, = {F(--,x, -, a)
<a: x <b}. Hence, for some s, M(s) satisfies it, contradicting the fact that
cfk=x. If NFa>k, asweget F wecanget F' such that a, <F'(a) <
a for every a, a contradiction.

ProoF oF (). As in the proof of (I) it is clear by Claim 1.4 that N* k
R,[a] = N* E (Q%x, y)R,(x, y, a).

Now assuming N* k (Q4°x, y)R,(x, ¥, @) A T1R,(a) we shall arrive at a
contradiction. We can restrict ourselves to the case where x <y =,.¢ R, (x, ; a)
linearly orders A = {b € N*: (3x)R,(x, b, a)} # &, A has no last element.
Since there are pairing functions we may replace a by a. By hypothesis A4
has a Dedekind cut (4, A,) such that cfA4,, cf* 4, € {w, k}.

Case 1. cf A, = cf* A, = w: This contradicts the N, -saturation of N*.

Case 2. cfA; =w,cf* A, =«: Let {b,,},,<., be an increasing un-
bounded sequence in A4,, and let {a,},., be a decreasing unbounded se-
quence in A,, where b, =C -, by, c/D @y =C 0,05, Ve

Forall a <k define fi(a)={{n<w: b}, <az}: m <w). Since the
range of f, is a set of power < 230 we can assume that f, is constant. Let
T, = {n<w: by <ag}; clearly T,, €D. Let R be a new one-place predi-
cate symbol, R" = {b}:n€T,}, and \W*,R) =1, V, R")/D. Clearly
{b,, m<w}CRNA and (RNA4,<* isan 8, -saturated model of the

/D.
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theory of order, and so it contains an upper bound to the b,,’s, and also
b<*a, forall bERNA, a<k. Thisis a contradiction.

Case 3. cf A; =k, cf* A, = w: The proof is similar to the proof of Case 2.

Case 4. cfA, =cf*A, =«k: Let {a,} <, ({B }o<,) be an increasing
(decreasing) unbounded sequence in A, (4,), where a,=¢ -, d;, ). /D,
ba =(--, b:n .o °>n€w/D'

Asin (I) we can assume that for all « <p <k the following sets are not
dependent on the particular a or f:

Jy={n<wa<al, J,={n<wa<bg}, Jy={n<cw: b;<by}.
Also J;€ED, and Jy = {n<w:N FTR,[d"]} €D, where a=¢(--,d",
++ ). Thus as in (I), for some n GnJ,-, R,(x, y, a") linearly orders

A= {yEN: (Ix)R,(x, y,a")} D {ag, by: a <k}

and, for no ¢ € 4, a <c¢ <bj. So by renaming,

(*) Thereis a €N, N ET1R,[a], A = {bEN: N F (3x)R,(x, b, a)} is
linearly ordered by x <*y =R,(x, ,a), and A hasacut (4, 4,) with
{8, o<k ({by}a<,) an increasing (decreasing) unbounded sequence in A4,
(4,). Let

aa = T&( cee, yj(a.l)’ ceegeee, yi(a'm), LI ‘_ia)l<l(a),m<m(a)’

and j(o, 7) and i(e, m) increase with I, m respectively, a =
-, 8D e Yemy " * > d): where d, d,, are sequences from
PM =pN,

Since k is weakly compact we can assume the following:

(1) 74 = 79, (@) = I(0), m(a) = m(0).

(2) For every formula @(x', 2, x®) € L., the truth value of ¢(d,, d; d)
is the same for all a < g <k,

(3) There is I; <I(0) such that for every a <<k

yi(ato) =yi(p’o) <yi(avl) =y](ﬁ’l) < .« o <yi(atll-l) =yi(BoIl-l)

<HH@I) < i+ . & HI@IO)=1) < i1
< .. <yi(BvI(o)-l)

and y*W < /(@) fo- any I Denote for 1<l y/® = yi@D,
;* - (yi(o)’ c oo ’yi(ll_’l)’ c e .ys(l)’ .o )’

J_)a = (yi(a'll)’ cee, yi(oz,l(o)—-l)).
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(4) Similar to (3) for the y;(, ), We get y, and y,. Thus a, =
7o * Y%, Vs Vo y), @ = T*(D*, Y4, d). By treating the b, similarly and
making some change in y*, y,, d, we may assume

(5) by =7°0*, *Y, Yas o¥> d%), and if a <P then every element of
@y comes before every element of #y (in the sequence {y*: i <«k}), and after
every element of y*. Similarly for ,p. (Of course d* is a sequence from
PM;y* 2y from {1 i<k} and y,, .y from {y;i<k})

(6) As a strengthening of (2), for all ¢(x!, x2, x3)E L, andall a, 8
the truth values of @(d®, @, d), 9(d,, @*, d), and @(d,, dg, d) are dependent
only on the order between a and B.

Notation. a5 =T7o(V*, ¥*, Vas Yg dy)s by =1°0% ¥, Vs gy, ).

Notice that by the indiscernibility of the y’s and (6), Ay gy bagy €A
and the order between a, 5, and @,(;)5(1),y(1) depends only on the order
between a and a«(1), the order between B and B(1), and the order between
v and y(1); and similarly for the by gy

Now for every a,8,7v,8 <k choose €, a,f8,7,86 <e<k. So a, <
be=ay 40 <be=a,5, <b.=a,5, <bs, and hence every a, ;. € A4,.
Similarly b, g, € 4,.

If ag,, <8y, then a<a(1),>p(1) imply a, 44 <8y1)a01)60)
Soforall >0,a,4,<@,4y441,00 a0dso {a,, o> @<k} isan unbound-
ed subset of A4,. Similarly, if @44, <@, ,0 and a, , 3 <a,,q then
{ay,1,0: @<k} isunbounded in 4,, if a4, <@y, and a;,9>4a,,,
then {a, 4 ¢: @<k} isunbounded in A4,, andif 54, >a, , o then
{ag,0,o: @ <k} isunbounded in A,. A parallel claim is true for the b’s. So
we may change 7, and 70 such that a5, and b, g, will each be depen-
dent only on one index. (If @, g, isnot dependent on a, then y* is empty;
if not dependent on §, )7,, is empty, and if not dependent on 7, c_i,y is constant.)
There are, in all, nine possibilities.

We shall now show that there cannot be dependence on v alone. Assume
without loss of generality that a, = 7,(y; d,) where y is the concatenation of
all sequences from {y;, y%: i <} which are not dependent on 7. Consider
the following type in the variables x;, i <I=1I(d,): (let X =(x,, -, x):
{Plx)): i <I} U {@X)R, (%, 7o, X), @)} U {ry(3, ¥) < by: a <k} U {g, <
7o, X): a < k}).

This type, containing parameters from N, is finitely satisfiable in N and
thus in M since N is an elementary submodel of M. Thus it is satisfiable by
c={c;,"",¢p in M, since M is x*-saturated. But ¢; EN since ¢, € PM
and thus the type is satisfiable in N. This contradicts the definition of the a,, b,.

We are left with four cases. Without loss of generality we shall deal only

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-lise
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with the case a, = 7o(J*, ¥, Y4, ), by = T°0'*, Va, o ¥ ). Without loss of
generality all the above sequences are of equal length, and it will be recalled that
the sequences of the y’s here are increasing sequences, y* < %, y, <.» (ie.
every element in the left sequence is smaller than every element in the matching

right sequence).

For every sentence ¢ which N satisfiesand s, €S thereis s=>s,
such that M(s) satisfies . Hence there are s €S, and a sequence d €
P[M(s)] where s = (t, n, B) such that n > 1000/(y*) and n is big enough
so that all the formulas we shall need are in A,_; and (remembering the indis-
cernibility in the definition of P"~2[M(s)], P, _, [M(s)]).

(**) If c¢*<c!<c? are increasing sequences from P*~2[M(s)] and
cx < ¢ < ,c are increasing sequences from P,_,[M(s)], and I(c*) = I(y*),
I@?) = 1E") = I5"), @) = I(74), 1,€) = I(,¢) = I(;7) then

(A) M(s) F AR, [r(c*, cy,d)] R (x, y, T(c*, Cy4,d")) is a linear order
<* (nonempty) without a last element on a set A,.

(B) In M(s) the following holds:

1o(c*, €', Cy, d’) <* To(C*, €2, cy, d') <* 1O(c*, Cy, 50, d')

<* 1.0(2.#, C-'. lz;’ a:) GAS.

Define A! = {b € A,: thereis ¢®> c* suchthat b<*714(c* c® cy,d')}
and A2 = (b€ A, thereis o> c, such that 1°(C*, Cy, ¢o,d)} <* b.
Clearly A} N A2 =g, cf A} =k, cf A2 = w, but from M(s) F IR, [H(c*, ¢,,d)]
and by the definition of R, it follows that M) F 11(Q%x, y)R, [x, », 7(c*, ¢, d")}.
Thus there is b € A, A} <b < A42. But A, A}, A? are definable by the
formulas o(x, c*, ¢,d"), o' (x, c*, ¢y, d"), P*(x, c*, c4,d’), where ¢, ¢!, P EL,

Now by 1.4 there is a function symbol F in L,,, such that for all s,
such that n; > n the following sentence holds in M(s,) (abusing our notation
the free variables are y,, y*, z):

If TR, (7(D*, V4, 2)); and R (x, y, T(¥*, V4, 2)) defines a linear order
on A= {v: AxX)R,(x, v, 2)}; 4 (¥*) is a sequence of elements < w (<«k);
and for all y* < y! < y? such that the elements of y!, 2 are in P", and

forall y, <y, <y, such that the elements of y,, y,, arein P,, it is true
that

10(3;*’ .;lr }7‘9 ;) <* To(j;‘; ;2, ;" ;)

<‘ 1.06;1’ ;‘) )_’2' Z_) <‘ To(}_)‘a .;*’ .)_)p Z-)EA

L\ceng_gl;lrecggyrigﬁregtrictie}r:s ;éy%!l;ﬁ?egﬁriﬁl{%; sée%{ﬂﬁwﬂlﬁs.ggﬁmnmgggof%s‘! *> 2) e A and for all

Y1,y asabove
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700-’*’ ;ls ;t’ Z) <* F(;*s J_’#’ Z_) < 70(;*’ .}-’ta ;2’ Z-)
Thus M, and N, satisfy the above sentence (because of the suitable indiscern-
ibility of P", P,). Thus F(y*, y,,d) € A, a, <F(y*, 4, d) <b,, a contra-
diction. This concludes the proof of Theorem 1.3 and of Theorem 1.1.

2. Discussion. More on L*. Some natural problems are:

Problem 2.1. A. In Theorem 1.2, is the condition that k¥ be weakly com-
pact necessary?

B. Give L* a “nice” axiomatization.

In Theorem 1.2 we prove actually:

THEOREM 2.2. A. L* satisfies the completeness theorem; that is, for every
sentence Y € L* we can find (recursively) a recursive set T of first-order sen-
tences (or even a single sentence) in a richer language such that  has a model
iff T' has a model,

B. Every L-model has L*-elementary extensions of arbitrary large power.

Clearly L* is interpretable in L“+ + (the language with conjuction on
k formulas and quantification on « vanables) and by Hanf [Ha 1] every L-
model hasan L , . -elementary submodel of power < |L|*. Thus

THEOREM 23. A. If |LI <X =\ then every L-model of power > \*
has an L*-elementary submodel of power \*. (If |L| <« we can choose
A=2%)

B. There is a sentence in L* (having a model) whose models are of power
> 2o, There is a consistent theory in L* of power k whose models are of
power =2%.(})

C. Every consistent theory in L* of power <k has a model of power <k.

PROOF. A has already been proved.

B is proved by the sentence “< is a linear order, in which every element
has immediate predecessor and successor; 1 (Q%x, y)x <y); P is a nonempty
convex subset, bounded from above and below, which has no first or last element.”
Every model of this sentence is of power = 2%,

Let T be the following theory:

(1) “< is a linear order and ~1(Q%%x, y)x < y”.

) “¢< ¢ forall i<j€J”, where J is a dense k-saturated order of
power K.

Clearly T is consistent. Now let M kT and let (/,, J,) be a cut of J,
f J; =cf*J, = k. So there is an element a €M, a;<a<g;, forall iE€J,,
J€J,. Thus IMIl > 2%, This completes the proof of B.

License or copyright Q!&cnw&nﬁﬁ!bp‘msﬂyﬁ:“u;&e i‘n&//m%égrwoﬁel‘[ewp“lkél” models only in cardinalities
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C is proved like 1.3, but we do not need the P.

Elimination of the assumption of the existence of a weakly compact cardinal.
In place of a weakly compact cardinal we can assume:

(*) There is a proper class of regular cardinals, C,, such that for all A €
C, thereare {S,: @ <A%,cfa =2} such that forall SCAt, {a<At:
cfa=NSNa=S,} isastationary set of AT.

By Jensen and Kunen [JK, §2, Theorem 1] the class of regular cardinals
satisfies (*), if V' =L.

If (*) holds we can choose C such that By €C (A€ C= At € (), and
C- {8,} satisfies (*).

THEOREM 24. If C and (*) are as above, then L* = L(ng, 03°) satis-
fies the compactness theorem.

PROOF. The proof is a combination of Keisler [Ke 3, §2] and Chang[Ch 2].
We assume T satisfies the conditions of 1.4, and every finite subtheory has a
model. Choose AE C, A= |T] (or even A= |T]). By (*) clearly A% = A. Now
we define an increasing elementary sequence of A-saturated models {M,}, ,;+,
such that for @ <P, M, is an end extension of M,, and M =UM,. Also, if
a €RCM then

M F(Qg.fx,y)(x <y<ag =Ar=cf{bEM: b<a}

=\t #£cfbEM: b<a};

and if (4,, 4,) isa cut of an order in M which is definable(?) (in M by a form-
ula with parameters) such that c¢f 4, = A* or cf* 4, =\* then A4, isalso
definable (in M by a formula with parameters). Clearly M F 7. O

Cofinality quantifiers. We shall deal with logics containing just the generalized
quantifier Q°f. We write Q{f in place of QE{}.

THEOREM 2.5. Let M be an L-model of power >«k. Then M has an
L**-elementary submodel of power k where L** = L(QE.‘;, Qi;)K,,. i<u If

(1) <k, LI+ p<k,

(2) for every i<n there are regular cardinals X <- - <x., ., such
that if forevery 1 x <X} =X <X then x€C, <= x €C;; and

(3) forall regular \ there is a regular \' <k such that \ # A; forall
j and A\EC; =\ EC,

ProoF. The proof is by induction on A = IMIl. Asin §1 we can assume

that |[M| is an ordinal, say \ + 1, <M s the order on the ordinals, RCM is
the set of regular cardinals in M, M has Skolem functions, and also cofinality

License or copyc'ﬁ, remtiwp“‘té f?ﬁ‘P&@y“i&? ?éﬂliﬁ‘lww\/;ams.org/joumal-terms»of»use
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Skolem functions (see 1.4(5)). Thus in order that a submodel N of M be an
L**-elementary submodel; for all 2 € RCY we must have

ME Q3% y)x <y <a) = NF(Qx y)x <y <a),
M E Qg% y) <y <a) = N E(Qx, y)x <y <a).

Case 1. \ is a regular cardinal: Choose regular X' <A, X' # A forall j,
and A€ C; < X € (;. Build an increasing sequence {M_,}, <, of elementary
submodels of M such that

O M, M, . My =U,csM, for & alimit ordinal, 1Myl >«

(ii) IM,| is an initial segment of N\ with the addition of A (which is the
last element of M). M, will be the desired model.

Case 2. X is singular. Choose regular x < Asuch that A < x} <= x < .
There is such a x since the number of )d is finite and they are regular thus
#\, and A is a limit cardinal. Let M, be an elementary submodel of M of
power X = x* + cf A which contains {a: @ < x'} U {A}. Define by induction
on a<y* an increasing sequence of elementary submodels of M, {Ma}a<x+,
such that 1Ml =¥, Ma U,<sM; for & alimit ordinal, and if a€ RCY, x <a,
then there is @' <a, ' €M,,,, such that for every b <a if b€ M,, then
b<d. Clearly if a€RCY N |M,| then the cofinality of {b€ M, : b<a}
is either x* or the cofinality of {6 €M: b <a}. Thus M. isan L**
elementary submodel of M.

We may assume now that in the definition of L** the C; are pairwise
disjoint.

THEOREM 26. Assume u< W, in the definition of L** in 2.5.

(A) L** satisfies the completeness theorem and the compactness theorem
(and thus the upward Lowenheim-Skolem theorem)

(B) Let T be a theory in L(Q ) By substituting )\, for N and
C; for C, wegetatheory T'. T has a model iff T' has a model, on condmon
that:

M) N =), =N =X,

2 )\]eCi‘=>)\ GC,,

@) if ;= {)\,I 1<y} then C;= {7\}1: 1<}

REMARK. In the completeness theorem we consider a single sentence and
the set of quantifiers appearing in it, so there is no need for u < N,.

SKETCH OF PROOF. Let T be a theory in L**. Without loss of generality
T has Skolem functions, there is a symbol < which is an order on the universe,
RC is a unary predicate, there are cofinality Skolem functions (see 1.4(5)), and

License or copyright restrictions may apply to redistribution; see http://www.ams. orgtoumal -terms-of-use
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we can assume that L** = L(QE-’;)K,, where the C; are disjoint intervals of
regular cardinals, C, = {\: Ay <\ regular}; U, C; is all the regular cardinals.
By using the previous theorem and the set of sentences from Shelah [Sh 2, §4],
we get: if every finite £ C T has a model, then TN L has a model M for
which if (V*)[R(z) = (Qﬁ.flx, Yx<y<2)]ET and M E R(z) ARC][z],
then cf{a: a <z} =N.(3) From here, by [Sh 2, §4], the theorem is immediate.

Problem 2.7. When in general is L** compact?

ReMARK. If there is a C; which is an infinite set of A’s then L** is
not compact. On the other hand, by the previous theorem and ultraproducts, if
every finite ¢ C T has a model, then there isa 7', as in (B) of the previous
theorem, which has a model.

Problem 2.8. Give a nice axiomatization of L**. In one case we have

THEOREM 29. If C# &, and C is not the class of all regular cardinals,
then the following system of axioms is complete for L(QS):

(1) The usual schemes for the first order calculus.

(2) The following scheme (in which variables serving as parameters are not
explicitly mentioned):
(Qx, y)o(x, ) — [w(x, ¥) is a linear order on {y: (3x)p}

without last element]

(QFx, yyolx, ¥) A 1(QFx, »)W(x, ¥) A [V(x, ¥) is a linear order
on {y: (3x)¥} without last element]

A (Wx, o, y) — (3-"1)‘?("1' x) A (3}'1)\00’1» )
AWIEy WO, ¥) — (3P, )] —
T(Vx)Ay o X@x)(x 1 xo) — QYW ¥o)

A (Vxl» yl)(‘p(yo: yl) A O(xl, yl) - tP(xo. xl)))]

ProOF. By the previous theorem it is sufficient to prove that if T C L(Qﬁ.f)
is countable, complete, and consistent (by the above axiomatization), then T has
a model where we interpret C as {®,} for example. The proof is like [KM].

A quantifier close to the quantifiers we have discussed is

DEFINITION 2.1.  (Q%“x, y)[¢(x, »), ¥(x, ¥)], which means that the orders
defined by o(x, ) and ¥(x, y) on {y: (3x)e(x, »)} and {y: Ax)¥(x, »)},
respectively, have the same cofinality.

CoNJECTURE 2.10. The logic L(Q®°€) is compact and complete (and even
has an axiomatization parallel to that of the last theorem). It is not hard to see
that

License or copyngnt restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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THEOREM 2.11. (1) There is ¢ € L(Q°®) which has a model of power
R, iff R,=a.

@) If IMll =« where « is a Mahlo number of rank o« + 1, then M
has an L(Q°“)-elementary submodel of power \ for some Mahlo number \ <k
of rank a (actually the set of such N\’s which corresponds to M is a stationary
set). (For information about Mahlo numbers see Lévy [Le 1].)

(3) If « is not a Mahlo number then there is a model of power k, with
a finite number of relations, which has no L(Q°°)-elementary submodel of small-
er power.

Generalized second-order quantifiers. Henkin [Hn 1] defined first-order
generalized quantifiers as follows: The truth value of (Ox)o(x) in a model M
is dependent only on the isomorphism type of (IMl, {x: ¢(x)}), i.e., on the
powers of {x: ¢(x)} and {x: T1¢(x)}. This is how the quantifier (Q%"x)(x)
< [{x: o(x)}| = X\ was reached.

Similarly we may define “generalized second-order quantifier” to be such
that the truth value of (QP)¢(P) in M is dependent only on the isomorphism
type of (IMl, {P: o(P)}), like [Li 1].

The regular second-order quantifier is too strong from the point of view of
model theory, and so there are no nice model theoretic theorems about it. But
there could be generalized second-order quantifiers which are weak enough for
their model theory to be nice, for example by satisfying Lowenheim-Skolem,
compactness or completeness theorems. In fact the cofinality quantifiers we
discussed previously are an example.

DEFINITION 22. If < is a linear order on A then an initial segement of
A isaset B G A such that b <a,a€B—> b EB. An increasing sequence
{B,: @ <A} of initial segments is unbounded if every initial segment of A is
contained in some B, and it is closed if By = U,<sB, for all limit ordinals
8.

If ¢fA> w then the closed and unbounded sequences of initial segments
of A generate a (nonprincipal) filter D(A) on the set of all initial segments of
A, H(A).

Now we define some generalized second-order quantifiers.

DEFINITION 2.3. Let C be a class of regular cardinals > N,.

(QZEP! X, y)[lp(x, y)’ ‘p(P)] hand (ngx’ y)P(x, y) and

if A= {y: Ax)o(x, y)} then H(A) — {P: Y(P), P € H(A)} € D(A4); that is, the
above set is stationary.
DEFINITION 24. Let A > 8, be regular, and let CC A

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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@3 e P, x, p)ox, ¥), ¥(P)] = (GX' P, x, p)le(x, ¥), ¥(P)] and

there is a sequence {P;};., of initial segments of {y: (Ix)p(x, y)} which
is closed and unbounded, and {i <X: Y(P)} U -C) € D).(Y)

REMARK. It is not difficult to see that the above is well defined, for if
{P;};,<) is another example of such a sequence {i: P, = P;} € D(A).

In another example we use a filter similar to that of Kueker [Ku 1]:

For a regular power A > R, and set 4, |[4| =], let S,(4)= {B:BC
A, |BI <AL, D,(4) will be the filter on §,(A4) generated by the families
S C §,(A4) satisfying

(1) for all B € S\(4) thereis B' €S such that B C B’, and

(2) § is closed under increasing unions of length < A.
Thus for example if M is a model Ml >\ whose language is of power <A
then {IV: N < M, INI <2} € D,(IMl).

We can define a suitable quantifier:

DEFINITION 2.5. (OQ°P, x)[o(x), ¥(P)] <= S,(A) — {P: IPI<K N, PCAF
Y[P]} € D,(4) where 4 = {x: p(x)}.

Again it is not hard to check that the definition is valid.

Problem 2.12. Investigate the logics with the quantifiers (A) i‘ 4> (B)
0%; (C) Q3. In particular in regard to (1) compactness theorems; (2) downward
Lowenheim-Skolem theorems; (3) and transfer theorems (from one A to another).
If necessary use V = L.

We now mention several partial results in this context.

THEOREM 2.13. (A) If IMll =k, k weakly compact, |IL(M)| <k, C is
the class of all regular cardinals > 8, then M has an L(Q‘C?)-elementaty sub-
model of smaller power.

(B) (VW=L.) If k is not weakly compact, then there is a model of power
K, whose language is countable, which has no proper L(ng)-elementary submodel.
(C as above.)

ProoF. (A) follows from well-known theorems in set theory.

(B) We shall prove it for regular k; the result for a singular one follows
from it.

By Jensen [Je 1] there is a set S of ordinals <« of cofinality w such
that k —S € D(x) but for all @ <k of cofinality > w, @ —a N S € D(a).
Let f be a two-place function such that for all a of cofinality w {fle, n):
n < w} is an increasing sequence with limit a. We shall choose our model to
be M=(k,S, £,<,-**,n,+*-). Assume that N isan L(Q%)-elementary sub-
model of M of smaller power. Let a = sup{f: BE N}, then cfa>w as
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M EQFP, x, y)(x <y, (32)(VV)[Pv) =v<z A S()]), and
there is a closed and unbounded set 4 = {g;: i <cfa} Ca of type cf a which
is disjoint with S because a <k, cf @ > w. Forevery g; € 4, let q; =
inf(lbEN:b>a;} and A’ = {d;: a; € A}. Clearly in N g =sup{dj: i <8}
for & alimit ordinal. Thus A’ is closed and unbounded in N. If 4} €S,
cf(@;) = w and so the fla}, n) EN converge to d;. So g; = a}, contradiction
to the disjointness of 4 and S. Thus we have

N ETQEP, x, »)x <y, (A2)Vo)PW) =v<z ASE))],

a contradiction.

In regard to the possibility that N be of power k, by Keisler and
Rowbottom [KR] (see [CK]) we can expand M such that M will be a Jonsson
algebra, and that will be a contradiction. If we restrict ourselves to ¥, we can
get stronger results.

THEOREM 2.14. (A) L(QY Q‘Nl Q§l AJi<n 18 Vo-compact and com-
plete. The consistency of a sentence is just dependent on the Boolean algebra
generated by A,/D(X,), and not on the particular A )

(B) L(st o vy dicn B8 B -compact

OoIrT s a theory in L(QY', O, O3 BJi<n and T' is the correspond-
ing theory in L(Q"l, , O A ),<,,, and {B} a partition of \, {A;} a
partition of w,, ¥, —A,-GD,(N,) N—B;€D(\) then T hasamodel = T'
has a model.

Proor. (A) Without loss of generality we shall deal with models of power
N, whose universe sets are w,.

It is not-difficult to define a language L,, [L,| < |L| such that every L-
model M, M| = w, can be expanded to an L,-model M, such that

(1) M, has Skolem functions (dependent only on the formula and not on
M), and every formula (including sentences) is equivalent to an atomic formula,

(2) < is the order on the ordinals, and

@) Pt =4

Let T be a theory in the logic from (A) such that every finite ¢ C T has
amodel M*. Let T, be the set of sentences of L, holdingin M! for ¢
large enough. Define an increasing elementary sequence of countable L ,-models:
N, will be any countable model of T, Ny = UJy<sN, for § <w, limit. If
N, is defined N, will be an end extension of N, (ie. N,,, Fa<b€
Ny, — a€N,) such'that there is a first element a, in [N,,,|- IN,| and
a, € P, <> a € A;. The proof that this is possible is similar to Keisler [Ke 2],

course, every model w’ h Ian uage L has an elementary submodel of cardin-
tt) wwwam “org/fournal-terms-of-use
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[Ke 3]. It is not difficult to check that U, wlNa is the required model of T.
The proof of the completeness is similar, but T, must be defined more

carefully.
(B) The proof is similar to that of (A); here N,,, will be an expansion

(as well as an extension) and instead of the demand that N,,, be an end exten-
sion, we only need that for all § <a limit ordinal the type {g; <x:i<8} U
{x <az} be omitted.(%)

(C) The proof is similar. O

The class K,. After the proof of the previous theorem it is natural to
consider the following class of models which is somewhat parallel to the class of
k-like models.

DEFINITION 26. Let N be regular. M €K, iff < linearly orders
{x: M EQ@y)x <y vy <x)} with cofinality A, and there is a continuous
increasing unbounded sequence {a;};., (i.e. forall § <X\ limit, the type
{g; <x<az:i<8} is omitted by M).

From the previous theorem follows

THEOREM 2.15. If ITI< R, (T a first-order theory) and every finite
t C T has a model in some Ky, \> R, then T has a model in K“l'

It is easily proven that

THEOREM 2.16. If M E€K,, u <X regular, |L(M)| <\ then M has an
elementary submodel in K.

Somewhat less immediate is the following.

THEOREM 2.17. (A) If for every n < w every finite t C T has a model
insome K, for N>R, then T has a modelin K, forall X\

(B) (Completeness.) The set of sentences true in every model of Ky w1
is recursively enumerable.

ProoF. Without loss of generality assume that T has Skolem functions.
For every ordinal a define

Ea = {chil,. v ,y,'")<y,'(k+l)—’7'0’,-l,' t ’yin)<y(ik+l):
r isaterm of L(T),i, <---<i, <a}.

It is clear that: TU X, is consistent for all n <= T U Z_ is consistent
forall a <= forall A T has amodel in K,; forif M isa model of T U Z,

(6) We should first assume w.l.o.g. that our language L has a countable sublanguage
L,, such that L — L,; consist of individual constants {c,- i< wl}, P(c)) €T; and every

L\cﬁ&‘sgcoﬁyr&tgsn'}%énw%ﬂm mrlmd = M’q/b/%s “glﬁﬂ“ﬁerﬂﬂd ;1) Ml, every limit ordinal is
the universe of a submodel of M? 1» and (1)—(3) from the proof of (A) holds.
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which is the closure of {y;: i <A} under Skolem functions, then M € K.
Thus it is sufficient to prove:
(*) Forall n and all finite %, CZ, andall MEKy there are
Vor* "2 Vn_y EM satisfying Z,.
We shall show by downward induction on m <n that:
(**) There are
M Y41 < - <y,_, (when m=n -1 thisis an empty sequence).
() a' <al' <yp4y foral j<i<RN,__, a'{{n_m =Ynm+1 (except
when n = m).
(3) Forall § <W
g forall i<.
4 If 7 occursin Z, by, -, b € (a1 i<a<N,_,}V Upirs
“yVp-y}s then MET(h , -, b)) <Yy —> 70y, -, b)) <dly,
(if m=n-1 we have instead M E 7(b,," - -, b)) <al,,).
(5) Ym+1>" " » Y, satisfy the corresponding formulas of Z;,. Now for
m =n choose an increasing unbounded continuous sequence {a}'};c -
Assume that we have already completed stage m + 1, and we shall define
for m (for simplicity let m <n) there is a closed unbounded set S C {a:
a<R,.,} suchthatfor «€S, 0y, " ,0€ {g'*:i<a} U {yp m<
i<n}, and 7 which occurs in Z, we have 7(0,,- - -, o,)<a"""l —
7(0y, -, 0) <aF*l. Choose @y €S such that cf(SNa)= & "and define
=a7*'. Let {a;:i<N,} be an increasing unbounded continuous sequence
in SNa (it is easy to verify that there is such a sequence), and let a]” =aj} +1
(If m =0 there is no need to choose a;*, and thus it was sufficient to assume
that M€ K“n—l')

limit ordinal there is no x such that 4" <x <

n-m

THEOREM 2.18. Forall n < w there is a sentence ), having a model
in Ky but no modelin KR"“

ProoF. V¥, will more or less characterize (w,, <).

Vo will say that there is a first element, every element has a successor,
and every element (except the first) has a predecessor.

Y, Will say that {a:a<c;} satisfies Y, for i<n (c; being an
individual constant), P, - -, P, is a partition of the limit elements, and if
a € P; then (Ffa, x): x <cp is an increasing, continuous, unbounded sequence
in {y:y<a}.

Similar theorems may be proved with omitting types as in [Mo 1]. For
example if T is countable and has a model in K R, omitting a type p, then
forall A T has a model in K, omitting p. “1

Problem 2.19. Prove the compactness of Ky , for 1 <n < w.
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REMARK. If we relax the condition of continuity at & of cofinality w
then we can prove this as in [Sh 1]. Since then the class is closed under ultra-
products of R, models. In general it suffices to prove the N,-compactness of
K*‘n'

General questions. A general problem (which is of course not new) about
abstract logic is

Problem 2.20. Find the logical connections between the following properties
of the abstract logic L*:

(A) L* is first-order logic.

(B) ,L* satisfies the compactness theorem for theories of power <A.

(©) = (B)..L* satisfies the compactness theorem.

(D) L* satisfies the A-downward Lowenheim-Skolem theorem. (If ¢ €
L* has a model then ¢ has a model of power <A.)

(E) L* satisfies the A-upward Lowenheim-Skolem theorem. (If ¢ hasa
model of power = A, then Y has a model of arbitrarily large power.)

(F) L* satisfies Craig’s theorem.

(G) L* satisfies Beth’s theorem.

(H) L* satisfies the Feferman-Vaught theorems for

(1) Sum of models.
(2) Product of models.
(3) Generalized product of models.

(I) L* satisfies the completeness theorem (assuming that the set of sentences
is recursive in the language).

It is known that (A) implies the others; for u <A (C) — (B), — (B),,
®), = E), @), = O); F) = G, (©) = By, (N3 — EYD) —
(HX1). Lindenstrom [Li 1], [Li 2] proved (and Friedman [F 1] reproved).

B, A O, = A), B, A D)y, = @), F) A D), — B
The method of proof is by encoding Ehrenfeucht-Fraisse games.

Special questions which look interesting to me are

Problem 2.21. Is there a logic L* stronger than first-order logic which
is Ny-compact and satisfies Craig’s theorem? Do sums of models preserve
elementary equivalence for L*?

Is there an expansion of L(Q‘;{l) satisfying this? Keisler and Silver
showed that L(Q5") does not satisfy Craig’s theorem. Friedman [Fr 2] showed
that Beth’s theorem is also not satisfied. Similarly it is not hard to show
that all the logics with the quantifiers Q°f, Q9¢, @°¢, @** (all or some of
them) do not satisfy Craig’s theorem, but satisfy (HX1). Q%% does not satisfy
H)(1).

Problem 2.22. Does L(Q} ) satisfy Craig’s theorem, if we restrict our-
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Problem 2.23. Find a natural characterization for L(| ﬁ{l). (For L
Lw,,w» etc. Barwise [Ba 1] found one.)

w’w’

LEMMA 224. Let Q' be the quantifier Q‘gf ; there is a sentence ¢ in
L(Q"), which has only well-ordered models, and has a model of order type a for
every «=>2%0. (Thus L(Q') is not compact.)

Proor. Let ¢, say:

1. P, P,, P, P, (one place predicates) are a partition of the universe.

2. < is a total order of the universe, S is the successor function in P
and P, (so P, and P, are closed under S) and each P; is a convex subset.

3. F is a one place function mapping P, into P,.

4. G is a two-place function from P; to P; and

(Vx € P)(Wy € P})XVz EP)[SE) < G(x, ) Ax<y=(WE P,)3x', y' €Py)
x<x <y <ynex,y, v)Az<GKX,y))]

where ¢(x, y, 2) = P;(x) AP;0)) AP,)Ax <y A (W)x <v<y—z<FQV)
5. (Vz €P,))3x, y € Py)x <y A G(x, y) = 2).
6. The cofinality of P, is 8, (just say F is an anti-isomorphism from
(P, <) onto (P4, <), and

Q@'x)) [P, (x)V Py(x)) A P,(») v PO A x <]
A @'xp)P,(x) A P,(») A x <y)

7. @x)Pyx) A PG A x <),
Suppose M k ¢, and c, is a strictly decreasing sequence in P'l” ; let
d, (n <w) be an increasing unbounded sequence in P;” , and define inductively
Xp Yn € PY, xp <Xpyy <Vpyy <Vp» and Gx,, y,) >c,, and
W(Xp41) Yns1r dy)- For n=0 use 5,for n+ 1 use 4. So by ¢’s defini-
tion for no z, x, <z <y, forevery n (asthen F(z) cannot be defined);
contradicting 7). So in every model of ¥, P, is well-ordered. Now we define
by induction on « orders I, and functions Fy: I, — w as follows:
I, is R, -saturated order of cardinality 2%o; F is constantly zero.
I,,,={i,a:i€w+1,a€l,} ordered lexicographically.
Fy (i, @) =F(@) +i for i<w, and zero otherwise.
Iy = {{o, @ a<8 +1,a€,} ordered lexicographically.
F;, (o, @) = F,(a) for «<§, and zero otherwise.
Now we can easily define M* k {,, P’f’a =1+gq, P’z”a = w, Pg"a =1, FM* >
F, o * = w*. The change to ¥ is now only technical.
Added in proof. 1. Schmerl, in a preprint “On k-like structures which
Heense b ed StatioAary AR d 888U THBOUN AT YaBEETS™ Proved interesting results on
problems closely related to (Q3'x)-
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2. The author proved that a variant of Feferman-Vaught theorem and Beth
theorem implies Craig theorem. This and other results will appear.
. f d .
3. Why do we use Qc{;o’x}, Q‘i;o’“},and not just O, 1. Of,} in
Definition 1.4? (Note that Q%fo is added just for convenience.)
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