
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 204, 1975

GENERALIZED QUANTIFIERS AND COMPACT LOGIC

BY

SAHARON SHELAH

ABSTRACT.   We solve a problem of Friedman by showing the existence

of a logic stronger than first-order logic even for countable models, but still

satisfying the general compactness theorem, assuming e.g. the existence of a weak-

ly compact cardinal.  We also discuss several kinds of generalized quantifiers.

Introduction. We assume the reader is acquainted with Lindström's articles

[Li 1] and [Li 2] where he defined "abstract logic" and showed in this framework

simple characterizations of first-order logic. For example, it is the only logic sat-

isfying the compactness theorem and the downward Löwenheim-Skolem theorem.

Later this was rediscovered by Friedman [Fr 1] ; and Barwise [Ba 1] dealt with

characterization of infinitary languages.

Keisler asked the following question:

(1) Is there a compact logic (i.e., a logic satisfying the compactness theorem)

stronger than first-order logic?  It should be mentioned that it is known for many

¿(Ok ) that they satisfy the  X-compactness theorem for X < Na  (for a > 0).

(QH (x) <=* there are > Kax's; the  X-compactness theorem says that if T is a

theory in L(Q* ), \T\ < X, and for all finite  tC T there is a model, then  T
"a

has a model.) For example, this is the case for a = 1.  See Fuhrken [Fu 1],

Keisler [Ke 2] and see [CK] for general information.

At the Cambridge summer conference of 1971 Friedman asked:

(2) Is there a logic satisfying the compactness theorem, or even the  No-

compactness theorem, which is stronger than first-order logic even for countable

models, i.e.,is there a sentence  ^  hi the logic such that there is no first order

sentence <¿> such that for all countable models M, M (= \¡/ <=> M t= <¿>?

Notice that the power quantifiers QR do not satisfy the second part of

(2). The quantifier saying 'V(x, y) is an ordering with cofinality K," solves

(1) (but obviously not (2)) as proved, in fact in [Sh 2,§4.4] and noticed by me

in Cambridge.

The main result of this paper is the presentation in § 1 of an example solving

both (1) and (2) positively (assuming the existence of a weakly compact cardinal);

thus, compactness alone does not characterize first-order logic.  In §2 we mention
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GENERALIZED QUANTIFIERS, COMPACT LOGIC 343

all kinds of problems about generalized second-order quantifiers, and prove some

results.

After the solution Friedman asked:

(3) Is there a compact logic, stronger than first-order logic even for finite

models?

Notation.  X, ß, k,x designate cardinals; i, j, k, I, a, ß, y, 6, i- designate

ordinals; and m, n are natural numbers.  The power of A  is  \A\. Models are

M, N, and the universe oí M is  \M\. a, b, c are elements;  a, b, c finite se-

quences of elements; 1(a) is the length of the sequence  a. x, y, z, v will be

variables, and  x, y, z, v sequences of variables.

1. A compact logic different from first-order logic. The following theorem

is proven under the assumption of the existence of a weakly compact cardinal

(see Silver [Si 1]).

Theorem 1.1. (There is a weakly compact cardinal k.) There is a compact

logic L*, which is stronger than first-order logic even for countable models.

Definition 1.1.   cf(/4, <), the cofinality of the ordering < on the set A,

is the first cardinal X such that there exists B CA, \B\ = X, B is unbounded

from above in A.   cf%4, <) is ci(A, >), > the reverse order. When < is

understood we just write  cf(4) or cf%4).  It is easy to see that the cofinality

is a regular cardinal (or 0 or 1).

Definition 1.2. (Av A2) is a Dedekind cut of the ordered set (A, <)

(or just cut for short) if Ax U.42 = A; bx € Ax A b2 £A2 —► by < b2; b <

bi e^i -*bGAv

Definition 1.3.   Let C be a class of regular cardinals. We shall define

two generalized quantifiers (Qc¿x, y) and (Qccx, y):

(A) M 1= (QçX, y)ç(x, y; a) *=*• the relation x < y =def <p(x, y; a) linearly

orders A - {beM:M\= (lx)p(x, b; a)}  and cf(4, <) S C.

(B) M 1= (Qccx, yyp(x, y; â)<=>the relation x <y =def tp(x, y; a) linearly

orders A = {b G M: M N Qxyp(x, b; a)} and there is a Dedekind cut (Av A2)

of (A, <) suchthat cf(4,, <), cf*(42, <) e C.   Clearly the syntax of

L(Qc> ôcC)'  the logic obtained by adding the two generalized quantifiers to

first-order logic, is not dependent on C.

Definition 1.4. L* = L(QC^ )K},ôd{x iK}) where « is the first weakly

compact cardinal.  In the following we shall omit writing   {N0,k}.

Lemma 1.2.   L* is stronger than L for countable models.

Proof.  We must find a sentence   \¡j S L*  for which there is no  \p'& L

such that for every countable model M, M 1= \¡/ <=> M t= t/>'.
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344 SAHARON SHELAH

Let  \¡i = [< is a linear order] A [every element has an immediate follower

and an immediate predecessor] A ~1 (Qdcx, vX* <.?)•

Clearly a countable order satisfies  ty  iff it is isomorphic to the order of

the integers.  So clearly there is no sentence of L  equivalent to  \¡/  for count-

able models.

Theorem 1.3.  L* is compact.

Remark.   If we just wanted to prove  X-compactness for X < «, the proof

would be somewhat easier.

In order to take care of the possibility that  \L\> k, we encode all the

zzz-place relations by one relation with parameters and then we use saturativity.

A similar trick was used by Chang [Ch 2] who attributes it to Vaught who at-

tributes it [Va 1] to Chang.

We also use the technique of indiscernibles from Ehrenfeucht-Mostowski

[EM]. Helling [He 1] used indiscernibles with weakly compact cardinals.

Proof of Theorem 1.3.  Let T be a theory in L* such that every finite

subtheory t C T has a model. We must show that  T has a model. Without

loss of generality we may make the following assumptions.

Assumption 1. There is a singular cardinal X0 > 171 + k  such that every

(finite) t CT has a model of power X0.  (There is clearly a singular X0 > k +

|71  such that every t CT has a model of power < X0. Now let P be a new

one-place predicate symbol, and replace every sentence of T by its relativization

to P (i.e. replace (Qcfx, y)p(pc, y, z) by (Qcfx, y)(P(x) A Pf» A ^pc, y, z))

and replace (Qdcx, y)tç(x, y, I) by (Qdcx, y)(P(x) A P(y) A <fLx, y, z))). Let

T'  be the resulting theory. Clearly every  t CT' has a model of power X0,

and  T' has a model iff T has a model.  Also  \T'\ = 171.

Assumption 2. Every  t CT has a model Mt (of power X0) whose

universe set is X0 = {a: a < X0}, < (the order on the ordinals) is a relation of

Mv RCTt = {ju: ß < X0  is a regular cardinal}, co  and k  are individual con-

stants, and there is a pairing function.

Assumption 3. There is LaCL, La countable, and the only symbols in

L - La are individual constants, and co, k are in La. We can assume that L

has no function symbols.

Let   {R": i <an, n< co} be a list of all the predicate symbols in L,

R"  being zz-place. Define languages L'0, L\   as follows:  L\ = {co, k, <} U

{R": n < co, R"  is an (zz + l)-place predicate symbol}, L'0 = L\ U {cn: i <

an, n < co, c"  individual constant symbol}.  If \¡/ 6 T define  i//0  by replacing

every occurrence of R"(xt, • • •, xn) in  i^  by Rn(xl, • • • ,xn, c").  Let

T0 = {i//0: \p G T}, T0 is a theory in Z/jJ and may be taken in place of T.
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Claim 1.4. For every language Lb  containing < there is a language Lc

and a theory Tc = T(Lb) in L* such that:

(1) LbCLc,\Lb\ = \Lc\.

(2) Every model Mb  for Lb has a fixed expansion to a model Mc for

% Lc which is a model of Tc.

(3) Every formula in L* is Tc-equivalent to an atomic formula; i.e. for

all y(x)CL* there is a predicate symbol R^(x) suchthat (VJeXvOO —

R^x)) S Tc.

(4) Tc has Skolem functions; i.e., for all y(y, x) G L* there is a function

symbol F^ G L* such that

( \/x)[(lyyp(y, x) a ^(5), Í)] G Tc.

(5) For every formula y(x, y, z)CL* there are function symbols F^ G

¿c  (for i = 1, • • • , 5) such that: if \Mb\ = X0  (the universe set of Mb), <b

is the "natural" order, then for all sequences a from Mb if tp(x, y, a) linearly

orders A = {y G \MC\: Mc h Ox)p(x, y, â~)} =¿ 0 then (in Mc):

(i) F¿(z7) = cfÇ4. tfx, v, ä)).

(ii) The sequence   <F2(y, a): y < F^(a)) is an increasing unbounded

sequence in A.

(iii) A  has a cut (AVA2) suchthat  cf%42, y(x, y, a)) — ju»

cftVl,, tfx, y, â)) = x iff F*Qi, x. a) = 0 iff FJ(ju, x, «) * 1.
(iv) If F*(/u, x, a) = 0  then (F^O, /i, x, a): J> < x> is an increasing un-

bounded sequence in A t.

(v) If F^fju, x. «) = 0  then <F*(y, /i, x, a): v < /i> is a decreasing un-

bounded sequence in A 2   [where .4,, .42  in (iv), (v) are from (iii)].

Proof. If in each stage we were to take <p G L* (instead of L*) the

proof would be trivial. By repeating this process co times we get the desired

result.

Notation.  Define languages Ln  and theories Tn  in L* as follows: L0 =

La U {P} where La  is from Assumption 3 and F is a new unary predicate

symbol. If Ln  is defined let L'n — Ln U {/?„, i"1} where Fn, P"  are new

unary predicate symbols. Now Ln+l, Tn+1   will be Lc  and  T(Lb) from

Claim 1.4 where Z,^,  corresponds to Lb. Clearly Ln  are countable.  Let

¿» = Ul„, r. - Ur„.
Definition 1.4.   If M is a model, A ,a set of formulas <p(x) (i.e. a

formula with a finite sequence of variables, including its free variables) in the

language of M, A C \M\, then the sequence   [b¡. i<á) C \M\  is A-indiscern-

ible (or a sequence of A-indiscemibles) over A  if i =£ j ^ bt + b¡ and for all

<f(x0, • • • , xk_,) G A, zz < k, permutation a of  {0, • • • , zz - 1}   and
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346 SAHARON SHELAH

fln>" - - ak-\ eA  and /(°)<- • • </(«- 1) < a, z(0) < • ■ ■ <z(zz- l)<o

the following holds:

M N [Ôi(a(0))> " ' ' bi(o(n-\))> an> ' ' " - fl*-lJ

*=>Mt= [Ô/(o(0)). • '     >ô/(o(n-l)yan>' '     >ak-l]-

Claim 1.5.  1. If A, A, M are as in Definition 1.4, A  and A are finite,

and B C \M\ is infinite, then there are b¡ G B such that   {b¡: i < co}  is A-

indiscernible over A.

2. If A, A, M are as in Definition 1.4, A  is finite, B C \M\, \A\< n <

\B\, then there are b¡£B suchthat   [bf: i < k} is A-indiscernible over A

(k  is the weakly compact cardinal chosen at the beginning).

Proof.   1.  This is a result of the infinite Ramsey theorem.  Ehrenfeucht-

Mostowski [EM] used this to obtain essentially (1).

(2) It is known that k  is weakly compact iff k —► (n)m   for all ß < k

(see [Si 1]).  From here the result is immediate.   D

Let   {ca: a < aT} be all the individual constants in L - La  (see Assump-

tion 3).  Let S = {(t, n,B):tÇT,n<u,BC{ca:a< aT}, t and B finite}.

Denote elements of S by s or s¡ = (t¡, n¡, B¡) and sl <s2  will mean  íj C

t2, n, <zz2, Bx CB2. Now we define the ¿„-model M(s), s = (t, n, B).  For

f, B fixed, denote M(s) by M". Define M"  by induction on zz  such that

M"+ •   expands M", M"  is an ¿„-model, Pn(Mn+1) C co, P"(Mn+l) C K,

|F„(M"+1)| = H0, \P"(Mn+l)\ = K.  For zz = 0  take M0  to be the expansion

of Mt by adding the predicate P(M°) = B.   Let   {</>,■(*'): ' < w} be a list of

the formulas of ¿„,  such that the number of variables in  x' is < i,  and let

A„ = {(/>,.: i <zz} n Ln. If M"  is defined we define Mn+I   as follows:    Let

^i c/'""1(Af") (or A1 C {a: a < «} if zz = 0) be a A„-indiscernible sequence

over B U {zz: a < co}  and let A2 C Pn_ X(M") (or A2 C {a: a < co}  if

« = 0) be a A„-indiscernible sequence over B U {a1, ■ • • , zz"}, where a1,

• • • , a"  are the first n elements of A1. (In fact A1, A2  are sets, but we

look on them as sequences by the ordering <.)  As for each  ip(x) G A„   the

number of variables in  x is < zz, A2  is A„-indiscernible over BU A1. Expand

M"  by interpreting P"   as A1   and Pn  as A2,  and then expand the result

to an Ln+,-model by Claim 1.4, so it will be a model of Tn  (mentioned in the

notation after Claim 1.4). This will be M"+1.  Let Lv be the language ob-

tained from L„  by adding the individual constants   {ca: a< aT} (from L -

La) and new constants y', y¡ for i < a. Now we define a first-order theory

T,j  in L(j. Let  \p(x¡, ■ • • , x¡; x1, • • ■ , xm; zx, • • • , zk) be a formula in

L«,   and let ;(1) <       < j(m) < k, i(\) <   ■   <i(l)<K. Then
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^Oid). ■ • •. yi(iyy'(l)' •'•> ^(m); ca(D> • • • • ca(fc))G Tu

iff there is sx G 5 such that, for all s> s,, s = (f, zz, B), and for all al <

■ ■ ■ < a, G F„(/lf(s)), 6, < •• • < bm G P"(M(s)), it is the case that

M(s)\= \¡/[at,- ■ ■ ,a,;by,- ■ • ,bm;ca(l),- ■ ,ca(jt)].

Clearly  Tu  is consistent.  Let M h Tv be k+-saturated (see Morley and

Vaught [MV] or e.g. Chang and Keisler [CK] ).  Let N be the submodel of M

whose universe set is the closure of PM  under the functions of M (and so in

particular all the individual constants are in N).  Let D be a nonprincipal ultra-

filter on  co, and let N* = N^/D.  We shall show that N* t= T, and thus com-

plete the proof of the theorem. We use the fact that N*  is  X,-saturated (see

e.g. [CK]).

Because of Claim 1.4(3) it is sufficient to show:

(I) If Rt(x, y, z) is an atomic formula in L„   and (Vz)[(Qcfx, y)

R,(x, y, z) = R2(z)] G T„,  then for all  âG N*

N* N (Qcfx, jOzV*. y, a) *=* zV* N /?2[ä"].

(II) If /?,(x, y, z) is an atomic formula in ¿^   and  (Vz)[(QdQx, y)

Rx(x, y, z) = R2(z)\ G T„, then for all  z7g N*

N* N (Qdc*. jOR.(x, 7, ï) ~ A" 1= /?2[z7].

Proof of(I). Clearly the sets   {a C-N*: a< co(tV*)}, {a GN*:a< k(N*)}

are linearly ordered by <,  and both have cofinality  k .  So by the assumptions

and Claim 1.4(5), zV* h R2(a~) <• N* t= (Ôcfx, jz)/?^*, jz, a).

Now assume zV* k~]R2[â]   but N* £ (Qcfx, y)R¡(x, y, ä). We shall

produce a contradiction.  Hence R^x.y.a) linearly orders A = {6: /V* 1=

(3x)Ä,(x, /3, a)} =£ 0, and /I  has no last element.  Since N* is  H,-saturated,

cf A > N0  and so by N* t= (ßcfx, ^)/?,(x, 7, a) we have that cf A = k.  By

the assumptions and Claim 1.4(5X¡i) we may assume that Rl(x,y,a) = x<

y A y <a (a is one element in place of the sequence  a), tV* N RC[a], and so

A = {b: N* f= ô <a}.  Let   {a,}l<({  be an increasing unbounded sequence in

A, aK = a, and suppose that a¡ = <•••, aj1, • • >„<UJ/£> where a" C N (since

AT* = A^/D).
Now for all a < 0 < k  define f(a,ß)= [n < co: a£ < a£ < a£, ÄC[a£],

a" # co, k}.  Since tV* f= (aa <aß <aK A /?C[aJ A aK =£ co A aK # «) we

have by ios' theorem that /(a, ß) G £>.   «, being weakly compact, satisfies

k —* (k)2x0  and so without loss of generality flu, ß) = flO, 1).  If, for all

nEflO, 1),   there exists Z>"  such that a". < b" < a"   for all a G k,  then

¿> = (•••, ft", • • •>/£> G N*  and aa<b < a  for all a < zc, a contradiction.
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So there is n GflO, 1) for which {a",: a < k} is an (increasing) unbounded

sequence in {beN:b<an} and Nh RC[a"] A a" ± co A a" ¥> a. From

now on denote a = an,aa=anl. Let aa = ra(- • •, y^a-m\ •••;■■■ ,yi(al),

""* ba)¡<nct),m<m(a)> where Ta  is a term> fa ¿<»' /(<*> m) fe an increasing

sequence in m, /(a, /) is an increasing sequence in /, and  ba  is a sequence

from P^. Since we may replace   [aa: a < n} by any subset of the same power,

we may assume that m(a) = m0. 1(a) = /„, and ra= r for all a<n.

Since N 1= RC[a] A a > co and in every M(s) the interpretation of P is

a finite set, and   [b: b < co}  is a countable set, there is a function symbol F

in L„,  such that

F0c°,--.*m°-1,;c)

= sup{r(x°, • • •, xm°~ ;z0,- • •, Z/    t, vv • • • )<x:

z0,- • • ,<co, i»,,- • • ,GF}.

Clearly r(- • •, y^a'm\ ■■;■■■, yi{afiy ■ ■ ■ ;ba)<F(-■ ■ , yK*"\ ■ ■ ■ , a)

< a, and thus without loss of generality aa = F(- • •, yi(-a'm\ • • •, a). If

zVNa<K  then N satisfies the sentence "saying:" there is a regular cardinal

a < k  such that XK is an unbounded subset of  {c: c < a}, but Xb is a

bounded subset of {c: c<a] for any b < k ; where Xb = {F(- • •, x, • • •, a)

<a:x<b}. Hence, for some s, M(s) satisfies it, contradicting the fact that

cf k = k. If N r= a > k, as we get F we can get F' such that aa < F'(a) <

a for every a, a contradiction.

Proof of (Q). As in the proof of (T) it is clear by Claim 1.4 that N* t=

R2[â] =► A* h ((fcx, yyi^x, y, â).

Now assuming N* N (Qdcx, y)Rt(x, y, a) A~\R2(a) we shall arrive at a

contradiction. We can restrict ourselves to the case where x <y =def R¡(x, y;a)

linearly orders A = {b GN*: (3x)Rt(x, b, a)} ¥= 0, A  has no last element.

Since there are pairing functions we may replace a by a.   By hypothesis A

has a Dedekind cut (Av A2) such that cf Alt cf* A2 G {co, k}.

Case 1. cf Al = ci* A2 = co:  This contradicts the  N,-saturation of N*.

Case 2. cf A j = co, cf* A2 = k:  Let   íbm}m<t¡}  be an increasing un-

bounded sequence in i4,, and let   {aa}a<K  be a decreasing unbounded se-

quence in A2, where bm =<••-, />£,, ■ • •>„<OJ/A aa =<•••, «£, • ■ )„<W/D.

For all a < k  define /,((*) = <{« < co: b"^ < a£}: zzz < co>.  Since the

range of fx   is a set of power < 2  °  we can assume that fx   is constant.  Let

Tm = {n < co: b^ <a"¡}; clearly  Tm E.D.   Let R be a new one-place predi-

cate symbol, Ä"= {&£:n erm}, and  (N*,R) = n„<w(N, Rn)/D.   Clearly

{6m:zzz < co} C £ n A  and CR n ,4, <*> is an  X,-saturated model of the
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theory of order, and so it contains an upper bound to the bm's, and also

b<* aa  for all b G R C\ A, a < k. This is a contradiction.

Case 3. cf Ay = k, cf* A2 = co:  The proof is similar to the proof of Case 2.

Case 4. ci Ay = cf* A2 = k: Let {aa}a<K ({ba}a<K) be an increasing

(decreasing) unbounded sequence in Ax (A2), where aa = <• • •, a"., • • ■ >„£u)/D,

ba = <---.bna,---)nejD.

As in (I) we can assume that for all a < ß < k  the following sets are not

dependent on the particular a or /?:

Jl= {n<u:a"a<an},   J2 = {« < co: a£ < bn),   J3 = {zz < co: bn<bna}.

Also /,G£>, and J0 = {zz < co: AT 1= li?2[s"]} G£>, where a = <•••, a",

• • •>. Thus as in (I), for some zz GÍI/,-, Äj(x, ^, a")  linearly orders

A = {yeN:(3 x)Rt(x, y, a")} 2 K- K- <*<k}

and, for no c E A, a" < c < b",. So by renaming,

(*) There is aEN, N ¥lR2[a\,A = {b EN N ¥ Qx^^x, b, a)} is

linearly ordered by x <* y = Ry(x, y, a), and A  has a cut  (Av A2) with

(fla)a<K  ({ba}a<K) an increasing (decreasing) unbounded sequence in Ax

(A2). Let

aa = Ta( '    ' • y        » '    ' ! '     ' ' ^/(a.m)» '     ' 5 OKl(a),m<m(a)'

and /'(a, /) and /"(a, zzz) increase with /, zzz  respectively, a =

t*(- • • , y^'\ •••;•••, y$(my • • • ,d):  where   d, da are sequences from

pM - pN

Since k  is weakly compact we can assume the following:

(1) ra = r0, /(a) = 1(0), m(a) = m(0).

(2) For every formula ^x1, x2, x3) E L„   the truth value of ip(da, dß, d)

is the same for all a < ß < k.

(3) There is /, < 1(0) such that for every a < ß < k

yj(a,0) =yj(ß,0) <yj(ot,l) =yOJ,l) < . . . <y(a.'l-D = ytifi.h ~ 1)

<y'(a.'i) <y(<*.'i + n <... <yn<x.Ko)-\) <yj(ß,ii)

<. . . <yW(o)-i)

and /(,) <y(a-/i)  fo-any /.   Denote for /</,/(/) =/(a'/),

y* = {yK0))...tyjUl-i)i...iyW)i...)>

-a _ <y(a,Z1)) . . .    y(a,Z(0)- 1)>
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(4) Similar to (3) for the yi(amy we get ya  and y*. Thus aa =

T0G*,ya,y*,ya,da),a = T*(y*,y*,d). By treating the ba sirmlarly and

making some change in y*, ya, da we may assume

(5) ba = t°(j>*, ay, J*, ay, d01), and if a < ß then every element of

ay comes before every element of ®y (in the sequence   {y*: i < k}), and after

every element of y*. Similarly for ay. (Of course d" is a sequence from

PM;y*,ay from   {yu.i<K)  and y*, ay from   {y{: i < «}.)

(6) As a strengthening of (2), for all tp(xl, x2, x3) E L„  and all a, ß

the truth values of ifXd01, d13, d), vid^, d?, d), and $ßa, dß, d) are dependent

only on the order between a and ß.

Notation. aap<y = T0(y*,ya,y*,yß, dy), baß>y = T°(y*, ay,y*,¡¡y,c7Y).

Notice that by the indiscernibility of the j's and (6), öQ>(3>r ba^y G A

and the order between zza>j3)7  and aa(i)>/3(i)(7(i)  depends only on the order

between a and <x(l), the order between ß and ß(l), and the order between

7 and 7(1); and similarly for the   ba^y.

Now for every a, ß, y, S < k  choose  e, a, ß, y, 8 < e < k.  So aa <

be + «a.a.a < be * fla,p)7 < ¿>e =» «a,fî,7 < *6 >   and hence every   aa,(3,7 GAl-

Similarly baßyEA2.

If «0,0,1 <Ä1,1,0   then   a < <*(1),/? > 0(l)   imply   ««,ajJ<«o(l)/«(lW(l)-

So for all a >0, aau¡a <aa+, a+10, and so   {att>flli0: a < k} is an unbound-

ed subset of Ai. Similarly, if a0 0 , ^ai>1)0  and at 2 0 <a2 , 0  then

KM,o:a<K>  is unbounded in Ax, if «0,0,1 <ai,i,o  and fli,2,o >fl2,i,o

then   {a, a 0: a < k}  is unbounded in Ax, and if a0 0 , > a¡ j 0  then

{a0 0 a: a < k}  is unbounded in ^4j.  A parallel claim is true for the  ¿Vs.  So

we may change r0  and r°  such that «a>p>7  and ba^y  will each be depen-

dent only on one index. (If aa^y  is not dependent on a, then ya  is empty;

if not dependent on ß, yß  is empty, and if not dependent on  y, dy  is constant.)

There are, in all, nine possibilities.

We shall now show that there cannot be dependence on 7 alone.  Assume

without loss of generality that aa = T0(y; dy) where y is the concatenation of

all sequences from   {y¡, y': i < «}  which are not dependent on 7. Consider

the following type in the variables *,-, i<l = l(dy):  (let  x = (xlt- ■ • , x¡):

{POcjU < /} U {QjORjC*, t0Cv, x), a)} U {r0(y. x) < ba: a < k} U {aa <

t0O, x): a<«}).

This type, containing parameters from N, is finitely satisfiable in A' and

thus in M since N is an elementary submodel of M.  Thus it is satisfiable by

c = (c,, ■ ■ • , c¡> in M, since M is k+-saturated.  But c¡EN since c¡EPM

and thus the type is satisfiable in N. This contradicts the definition of the aa, ba.

We are left with four cases. Without loss of generality we shall deal only
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with the case aa = T0(y*, ya, y*, d), ba = r°(y*, y*, ay, d). Without loss of

generality all the above sequences are of equal length, and it will be recalled that

the sequences of the .y's here are increasing sequences, y* < ya, y* < ay (i.e.,

every element in the left sequence is smaller than every element in the matching

right sequence).

For every sentence  t//  which N satisfies and s, G S there is s> s,

such that M(s) satisfies  \[/.  Hence there are s G S, and a sequence  et E

P[M(s)]   where s = (t, n, B) such that    zz > I000l(y*) and  zz  is big enough

so that all the formulas we shall need are in  An _ 3  and (remembering the indis-

cernibility in the definition of P" ~ 2 [M(s)\, P„ _ 2 [M(s)] ).

(**) If c* < cl < c2 are increasing sequences from P"~2[M(s)] and

c* < xc < 2c are increasing sequences from Pn_2[M(s)], and l(c*) = l(y*),

l(P) = l(P) = l(ïl), l(c*) =_/(J?), l(,c) = l(2c)_= l(J)_ then

(A) M(s) N ~\R2[t(c*, c*,d')], Ry(x, y, t(c*, c*,d')) is a linear order

<*  (nonempty) without a last element on a set As.

(B) In M(s) the following holds:

t0(c*, P, c„r?') <* t0(c~*, c2, c~m, d') <* t°(c*, c0, 2c, d')

<*T°(c*,c, xc,d')EAs.

Define A¡ = {bEAs:  there is  c° > c*  suchthat b<*T0(c*, c°, c*,d')}

and A2 = {b EAS:  there is  c0 > c*  such that t°(c*, c„, c0,d')} <* b.

Clearly A\ n A2 = 0, cf A\ = k, cf A2 = co, but from M(s) t= 1R2[t(c*, c*,d')]

and by the definition of R2   it follows that M(s) r-~\((fcx,y)R¡ [x, y, i(c*, c,d')].

Thus there is b E As, A¡ <b<A2. But As, A], A2  are definable by the

formulas y(x, c*, c, d'), <pl(x, c*, c*, d'), y2(x, c*, c*,d), where <¿>, <pl, tp2 ELn.

Now by 1.4 there is a function symbol F in Ln+l   such that for all Sj

such that zz, > zz  the following sentence holds in M(sx) (abusing our notation

the free variables are y*, y*, z):

If 1R2(T(y*, y+,z)); and /?,(*, y, r(y*, y*,z)) defines a linear order

on A = {v: (3x)Rx(x, v, z)};y+  (y*) is a sequence of elements < co  (< k);

and for all y* < yl < y2  such that the elements of yl, y2  are in P", and

for all ym< yx < y2  such that the elements of yt, y2, are in F„, it is true

that

r0(y*, P, y»z) <* r0(y*, y2, y#, z)

<* r°(yl, y*, y2, z) <* t°0*, h, yv^eA

where x <* y = R¡(x, y, r(y*, y*, z)), then F(y*, y*,z)E A  and for ail

Vj, v'   as above
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r0O*, y\ y*, z) <* fty*, y*> *) < ^O*. y*, n, *)•

Thus M, and N, satisfy the above sentence (because of the suitable indiscern-

ibilityof P",P„). Thus F(y*, y*,d)EA, aa <F(y*, y*,d) < ba, a contra-

diction. This concludes the proof of Theorem 1.3 and of Theorem 1.1.

2.  Discussion. More on L*. Some natural problems are:

Problem 2.1.    A.  In Theorem 1.2, is the condition that k  be weakly com-

pact necessary?

B. Give L*  a "nice" axiomatization.

In Theorem 1.2 we prove actually:

Theorem 2.2.  A. L* satisfies the completeness theorem; that is, for every

sentence  \p EL* we can find (recursively) a recursive set T of first-order sen-

tences (or even a single sentence) in a richer language such that \¡> has a model

iff T has a model.

B. Every L-model has L*-elementary extensions of arbitrary large power.

Clearly L* is interpretable in L +   +   (the language with conjuction on

k  formulas and quantification on k  variables), and by Hanf [Ha 1] every L-

model has an L +   +-elementary submodel of power < \L\K. Thus

Theorem 2.3.   A. // |Z,|<X = XK,  then every L-model of power >\K

has an L*-elementary submodel of power X".  (// \L\ < k  we can choose

X = 2K.)

B. There is a sentence in L* (having a model) whose models are of power

> 2 °.   There is a consistent theory in L* of power k  whose models are of

power >2K.(i)

C. Every consistent theory in L* of power <k has a model ofpower <k.

Proof.  A has already been proved.

B is proved by the sentence  "< is a linear order, in which every element

has immediate predecessor and successor; ~1 (Qdcx, y)(x <y); F is a nonempty

convex subset, bounded from above and below, which has no first or last element.'

Every model of this sentence is of power > 2  °.

Let  T be the following theory:

(1) "< is a linear order and 1 (Qdox, y)x <y".

(2) "C(<Cj for all i<jEj", where J is a dense k-saturated order of

power k.

Clearly  T is consistent. Now let M k T and let (/,, J2) be a cut of /,

cf J j = cf* J2 = k . So there is an element a EM, a¡<a<a¡, for all iEJv

jEJ2. Thus  IIA/II > 2K. This completes the proof of B.

(t)   We can improve 2.3B, i.e. there is <p e L which has models only in cardinalities

> k; see 2.24.
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C is proved like 1.3, but we do not need the P.

Elimination of the assumption of the existence of a weakly compact cardinal.

In place of a weakly compact cardinal we can assume:

(*) There is a proper class of regular cardinals, C,, such that for all  X G

C,   there are   [Sa : a < X+, cf a = X}  such that for all S C X+, {a < X+ :

cf a = X S n a = Sa} is a stationary set of X+.

By Jensen and Kunen [JK, §2, Theorem 1] the class of regular cardinals

satisfies (*), if  V = L.

If (*) holds we can choose C such that  N0 G C (X G C => X+ EC), and

C- {«„}  satisfies (*).

Theorem 2.4.  // C and (*) are as above, then L* = L(QC¿, Q%c) satis-

fies the compactness theorem.

Proof.  The proof is a combination of Keisler [Ke 3, §2] and Chang [Ch 2].

We assume  T satisfies the conditions of 1.4, and every finite subtheory has a

model. Choose  XGÇ X>|T|  (or even  X>|71).  By (*) clearly  X* = X.  Now

we define an increasing elementary sequence of X-saturated models   [Ma}a<x+,

such that for a<ß,Mß  is an end extension of Ma, and M = \jMa.  Also, if

aERCM  then

M h (Qc¿x, y)(x<y<a)<^\ = cî{b EM:b<a}

<=»X+ ¥=ci{bEM:b<a};

and if (Av A2) is a cut of an order in M which is definable(2) (in M by a form-

ula with parameters) such that  cf Ax = X+   or cf* A2 = X+   then Ax   is also

definable (in M by a formula with parameters).  Clearly M 1= T.    D

Cofinality quantifiers. We shall deal with logics containing just the generalized

quantifier ßcf. We write  Q\f in place of Q/j[}■

Theorem 2.5.  Let M be an L-model of power > k.   77zezz M has an

L**-elementary submodel of power k  where L** = L(QF¿} Q.\j¡<„ ¡<„  if

(1) X/<K, \L\ + p<K, '
(2) for every i <n there are regular cardinals Xi < ' ' ' < Xm o) ^^

that if for every /X<X/'<=>x'<:X; i^ezz  X G C¡ <=* x' 6 C¡; and

(3) for all regular X there is a regular X' < k  such that X' ¥= X;- for all

j and XeC(*=*A'e C¡.

Proof.  The proof is by induction on  X = llAill. As in § 1 we can assume

that  \M\ is an ordinal, say  X + 1, <M  is the order on the ordinals, RCM  is

the set of regular cardinals in M, M has Skolem functions, and also cofinality

(2)  We assume the order is definable.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Skolem functions (see 1.4(5)). Thus in order that a submodel N of M be an

¿**-elementary submodel; for all a G RCN  we must have

M I» (Qfy, y)(x<y<a)<=*N£ (Q$x, yXx<y< a),

M N (Qc¿x, y)(x<y<a)*=>N£ (Qc¿x, y)(x <y<a).
i i

Case 1. X is a regular cardinal: Choose regular X' < X, X' =£ Xy for all /,

and X G C¡ <=> X' G C¡. Build an increasing sequence {Ma}a<y of elementary

submodels of M such that

(i) Ma C¡Ma+vM0 = UoKs^a  for S   a limit ordinal,  \\M0\\>k.

(ii) |Afa| is an initial segment of X with the addition of X (which is the

last element of M). My  will be the desired model.

Case 2.  X is singular. Choose regular x < X such that X < x, *=* X < xj-

There is such a x since the number of Xz is finite and they are regular thus

=é X, and  X is a limit cardinal.  Let M0  be an elementary submodel of M of

power x' = X+ + cf X which contains   {a: a < x'} u (X}-  Define by induction

on a < x+   an increasing sequence of elementary submodels of M, {Ma}a<x+,

such that   \\Ma II = x\ Ms = U^sM,- for 6 a limit ordinal, and if a G RC™, x < a,

then there is a <a, a EMa+l, such that for every b <a if bEMa, then

b < a. Clearly if a G RCM n |Afx-|  then the cofinality of  {b G Mx-: b < a}

is either x+   or the cofinality of  {bEM:b<a}. Thus Mx<  is an £,**-

elementary submodel of M.

We may assume now that in the definition of L**  the C¡ are pairwise

disjoint.

Theorem 2.6. ^sswzzze ju < N0 zzz i/ze definition of L** in 2.5.

(A) ¿** satisfies the completeness theorem and the compactness theorem

(and thus the upward Lowenheim-Skolem theorem).

(B) Let T be a theory in L(QC¿, Q\f). By substituting X^ for X;- azzd

C'i for C¡ we get a theory  T'.  T has a model iff T' has a model, on condition

that:

(i) x,. = x, *=> x; = x;.,
'1 >2       ,    '1 ,      72

(2) \jECi^>r^EC¡,

(3) if C( = CK,-. Kl0}  then  C\ = {fy / < /0}.

Remark. In the completeness theorem we consider a single sentence and

the set of quantifiers appearing in it, so there is no need for ß < N0.

Sketch of proof.   Let T be a theory in L**. Without loss of generality

T has Skolem functions, there is a symbol < which is an order on the universe,

RC is a unary predicate, there are cofinality Skolem functions (see 1.4(5)), and

every formula is equivalent to an atomic formula.  By adding cofinality quantifiers
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we can assume that L** = ¿(ôc ),<„  where the  C¡ are disjoint intervals of

regular cardinals, C„ = {X: X0 < X regular}; U,C, is all the regular cardinals.

By using the previous theorem and the set of sentences from Shelah [Sh 2, §4],

we get: if every finite  fCT has a model, then  T n L has a model M for

which if (\Jx)[R¡(z) = (Qc¿x, y)(x <y<z)]ET and M 1= R'(z) A RC[z],

then cf {a: a<z} = X'.(3) From here, by [Sh 2, §4], the theorem is immediate.

Problem 2.7. When in general is L** compact?

Remark.   If there is a C¡ which is an infinite set of X.-'s then ¿**  is

not compact. On the other hand, by the previous theorem and ultraproducts, if

every finite  t CT has a model, then there is a  T', as in (B) of the previous

theorem, which has a model.

Problem 2.8. Give a nice axiomatization of L**.  In one case we have

Theorem 2.9.  // C ¥= 0,  and C is not the class of all regular cardinals,

then the following system of axioms is complete for L(Qç):

(1) The usual schemes for the first order calculus.

(2) The following scheme (in which variables serving as parameters are not

explicitly mentioned):

(QçX, y)f>(x, y) —* [<p(x, y) is a linear order on   {y: Qx)p}

without last element]

(Qccfx, y)p(x, y) A "1 (Qc¿x, y)ty(x, y) A [4>(x, y) is a linear order

on   {y: Qx)\p]   without last element]

A(V*, y)[0(x, y) — (3*,M*i. *) A G.y,)iKvi. y)]

A (\/y)[Qyl)^(yv y) — Gx)6(x, y)] —

n [(vx0X3^oX(3*M*i*0) -* Qy)*(y> y0)

A (V*,, y1)(^(y0> J',) A e(xv yx) -+ ^x0, xt)))]

Proof.  By the previous theorem it is sufficient to prove that if T C L(QC¿)

is countable, complete, and consistent (by the above axiomatization), then  T has

a model where we interpret C as   {N„}   for example. The proof is like [KM].

A quantifier close to the quantifiers we have discussed is

Definition 2.1.   (Qecx, y)[p(x, y), \p(x, y)], which means that the orders

defined by <¿(x, y) and  \¡i(x, y) on   {y: Qxytfx, y)}   and {y: (3x)\¡/(x, y)},

respectively, have the same cofinality.

Conjecture 2.10. The logic L(Qec) is compact and complete (and even

has an axiomatization parallel to that of the last theorem).  It is not hard to see

that

(3) The \''s are arbitrary.
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Theorem 2.11.   (1) There is  \p E L(Qec) which has a model of power

Ka iff Ka = a.

(2) // IIMII = k  where a  is a Mahlo number of rank a + 1, then M

has an L(Qec)-elementary submodel of power X for some Mahlo number \<k

of rank a (actually the set of such  X's which corresponds to M is a stationary

set). (For information about Mahlo numbers see Levy [Le 1].)

(3) // k  is not a Mahlo number then there is a model of power k,  with

a finite number of relations, which has no L(Qec)-elementary submodel of small-

er power.

Generalized second-order quantifiers.   Henkin [Hn 1] defined first-order

generalized quantifiers as follows:  The truth value of (Qx)p(x) in a model M

is dependent only on the isomorphism type of (\M\, {x: </K*)})> i.e., on the

powers of  {jc: <p(x)}  and   {x: ~ltp(x)}. This is how the quantifier (Q"x)p(x)

<=> \{x: ¡p(x)}\ > X was reached.

Similarly we may define "generalized second-order quantifier" to be such

that the truth value of (QP)p(P) in M is dependent only on the isomorphism

type of (IMI, {P: tffli}), like [Li I].
The regular second-order quantifier is too strong from the point of view of

model theory, and so there are no nice model theoretic theorems about it.  But

there could be generalized second-order quantifiers which are weak enough for

their model theory to be nice, for example by satisfying Lowenheim-Skolem,

compactness or completeness theorems. In fact the cofinality quantifiers we

discussed previously are an example.

Definition 2.2.   If < is a linear order on A   then an initial segement of

A is a set B c¿ A  such that b < a, aEB —► b E B.   An increasing sequence

{Ba: a < X}  of initial segments is unbounded if every initial segment of A  is

contained in some Ba, and it is closed if Bs = Ua<6^a  ^or au umit ordinals

5.

If cf A > co then the closed and unbounded sequences of initial segments

of A generate a (nonprincipal) filter D(A) on the set of all initial segments of

A, H(A).

Now we define some generalized second-order quantifiers.

Definition 2.3.   Let C be a class of regular cardinals > K0.

(QcP, x, y)[&x, y), Un] «=* (Qcx, y>P(x, y) and

if A = {y: (3x)p(x, y)}   then H(A) - {P: \¡/(F), P e H(A)} È D(A); that is, the

above set is stationary.

Definition 2.4.   Let X > K0  be regular, and let C C\.
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(Ql\c, P, x, yMx, y), .//(F)] ~ «ftp, x, y)[^x, y), HP)]  and

there is a sequence   {F,}/<x  of initial segments of   {y: (3*M*. y)}   which

is closed and unbounded, and   {/ < X: \¡/(P,)} U (X - Q G £>(X).(4)

Remark.   It is not difficult to see that the above is well defined, for if

{F¡}/<x  is another example of such a sequence   {/: Pt = P¡} E D(\).

In another example we use a filter similar to that of Kueker [Ku 1] :

For a regular power  X > N0  and set A, \A\> X, let SK(A) = [B: B C

A, \B\ < X}.  DX(A) will be the filter on SX(A) generated by the families

SCSK(A) satisfying

(1) for all BESK(A) there is B'ES suchthat BCB', and

(2) S is closed under increasing unions of length < X.

Thus for example if Af is a model   \\M\\ > X whose language is of power < X

then   {\N\: N < M, llA'll < X} G DX(\M\).

We can define a suitable quantifier:

Definition 2.5.   (Q{SP, x)[y(x), Hñ] *=" SX(A) - {F: |F|< X, F ç A ¥

¡P[P]}EDX(A) where A = [x: </>(*)}.

Again it is not hard to check that the definition is valid.

Problem 2.12.  Investigate the logics with the quantifiers (A) ß^; (B)

Qc'> (C) Q\-  In particular in regard to (1) compactness theorems; (2) downward

Lowenheim-Skolem theorems; (3) and transfer theorems (from one  X to another).

If necessary use   V = L.

We now mention several partial results in this context.

Theorem 2.13. (A) // \\M\\ = k,k weakly compact, \L(M)\ <k, C is

the class of all regular cardinals > N0 then M has an L(Qs¿)-elementary sub-

model of smaller power.

(B) (V = L.) If k is not weakly compact, then there is a model of power

K, whose language is countable, which has no proper L(Qs¿)-elementary submodel.

(C as above.)

Proof.  (A) follows from well-known theorems in set theory.

(B) We shall prove it for regular k ;  the result for a singular one follows

from it.

By Jensen [Je 1] there is a set S of ordinals <k  of cofinality  co such

that K-SE D(k) but for all a<n  of cofinality >co, a-an SE D(a).

Let / be a two-place function such that for all a of cofinality  co   [fla, n):

n < co}  is an increasing sequence with limit a. We shall choose our model to

be M = (k, S, /,<,•••, n, •• • ). Assume that N is an ¿(ôcty-dementary sub-

model of M of smaller power.  Let a = sup{/3: ß E N}, then cfa>co as

(4)   Q*¿   means  Q*fa.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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M t= (QS¿P, x, y)(x <y,(3 z)(\/v)[P(v) = v < z A S(z)]),  and

there is a closed and unbounded set A = [a¡: i < cf a} Ca of type cf a which

is disjoint with S because a < k, cf a > co.  For every a¡EA, let a'¡ =

inf{b EN: b> a,}   and Ä - {a'¡: a¡EA}. Clearly in N a'& = sup{a¿: i < S}

for Ô  a limit ordinal. Thus Ä  is closed and unbounded in N.   If a'¡ E S,

cf(a¿) = co  and so the fla'¡, n)EN converge to a't. So a¡ = a\, contradiction

to the disjointness of A  and S.  Thus we have

N t» 1 (QS¿P, x, y)[x<y,(3 z)(V<z)(F(i>) s v<z A S(z))],

a contradiction.

In regard to the possibility that N be of power k , by Keisler and

Rowbottom [KR] (see [CK] ) we can expand M such that M will be a Jonsson

algebra, and that will be a contradiction.  If we restrict ourselves to  Sj   we can

get stronger results.

Theorem 2.14.   (A) L(Q" , Qs¿ , Q% A .),<„  is ^-compact and com-

plete.   The consistency of a sentence is just dependent on the Boolean algebra

generated by AJD^J, and not on the particular A¡.(s)

(B) UG&V GS^o,  is ^-compact.
(C) // T is a theory in ¿(Qxr, Q\\ ôxiB .),-<„ and T'  is the correspond-

ing theory in ¿C2»,. Ökj.Ökj^Pk».  fl"d   {5,}  a partition of \, {A¡}  a

partition of ool,K1-AiE Z),(N,), \-B¡E D(X) then  T has a model  «* F'

te a zzzoc/e/.

Proof.  (A) Without loss of generality we shall deal with models of power

Nj   whose universe sets are coP

It is not«difficult to define a language L¡, \Ll\ < |L|  such that every L-

model M, \M\ = cj1  can be expanded to an Lt -model Ml   such that

(1) M,   has Skolem functions (dependent only on the formula and not on

M), and every formula (including sentences) is equivalent to an atomic formula,

(2) < is the order on the ordinals, and

(3) Pfl=A,
Let  F be a theory in the logic from (A) such that every finite  t CT has

a model M*.  Let  Tx   be the set of sentences of L j   holding in M\  for  t

large enough.  Define an increasing elementary sequence of countable L j -models:

N0  will be any countable model of Tv N6 = [Ja<sNa  for S < co,   limit.  If

A^  is defined A^j   will be an end extension of 7Va  (i.e. A^a+1 1= a < b E

Na —* aE Na) such that there is a first element aa  in  \Na+l\- \Na\  and

aa E P¡ <=> a E A¡. The proof that this is possible is similar to Keisler [Ke 2],

(s)  Of course, every model with language  L  has an elementary submodel of cardin-

ality   < \L\ + K,   in this logic.
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[Ke 3].  It is not difficult to check that  Ua<cj ^a  is the required model of T.

The proof of the completeness is similar, but  Tt   must be defined more

carefully.

(B) The proof is similar to that of (A); here A^a+1   will be an expansion

(as well as an extension) and instead of the demand that Na+1   be an end exten-

sion, we only need that for all 6 < a limit ordinal the type   {a¡ < x: i < 5} U

[x<a6]   be omitted.(6)

(C) The proof is similar.   D

77ze class Kx. After the proof of the previous theorem it is natural to

consider the following class of models which is somewhat parallel to the class of

K-like models.

Definition 2.6.   Let  X be regular. M EKX  iff < linearly orders

[x: M h Qy)(x <y y y < x)} with cofinality X, and there is a continuous

increasing unbounded sequence   {«,-},-<\  (i.e. for all S < X limit, the type

{a¡ < x < as : i < S }  is omitted by M).

From the previous theorem follows

Theorem 2.15.  // |71 < Nj   (T a first-order theory) and every finite

t CT has a model in some Kx, X > S0  then  T has a model in ATK  .

It is easily proven that

Theorem 2.16. If MEKx,ß<\ regular, \L(M)\< X then M has an

elementary submodel in Kß.

Somewhat less immediate is the following.

Theorem 2.17.   (A) If for every zz < co every finite t CT has a model

in some Kx for X > N„,  then  T has a model in Kx for all X.

(B) (Completeness.) The set of sentences true in every model of KH

is recursively enumerable.

Proof.  Without loss of generality assume that  T has Skolem functions.

For every ordinal a define

s* = iföv•^.n)<V.)"r(F'V- >yO<y«k+iv

t is a term of L(T), i, < ■ ■ • < i„ < a}.

It is clear that:   T U 2„  is consistent for all zz <=>■ T U 2a  is consistent

for all a *=*  for all X F has a model in Kx; for if M is a model of T U 2X

(6) We should first assume w.l.o.g. that our language L has a countable sublanguage

Lj, such that L - Lj consist of individual constants {c¡: i < cj,}, P(cA e T; and every

finite t C T has a model Mt, \M*\ = u,, pM* is finite, and in M\, every limit ordinal is

the universe of a submodel of M\,  and (l)-(3) from the proof of (A) holds.
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which is the closure of  {y¡: i < X}  under Skolem functions, then M E Kx.

Thus it is sufficient to prove:

(*) For all n and all finite  ?n C S„  and all MEK^n   there are

y0,- ■ ■ ,yn-iEM satisfying ?n.

We shall show by downward induction on zzz < zz  that:

(**) There are

(1) ym + i < " ' ' <.Vn-i   (when m =n - 1  this is an empty sequence).

(2) of < am < ym +.   for all / < / < N„_m, a*^ = ym +.    (except

when zz = zzz).

(3) For all 6 < N„_m   limit ordinal there is no x such that am <x<

of   for all i<8.

(4) If t occurs in S^ »,, • • •, bk € {<f : /<«< K„_m} U {yw+1,

•••, ;>„_,}, then M f=i-(6i.---.6fc)<>'m + i -* r(b .,■•, /3fc) <a£+1

(if m = zi - 1  we have instead M 1= r(bl, • • •, bk) < a™+ j).

(5) ym + i,' ' ' , yn  satisfy the corresponding formulas of l!n. Now for

zzz = zz  choose an increasing unbounded continuous sequence   {aj1},-^  .
n

Assume that we have already completed stage m + 1, and we shall define

for zzz (for simplicity let m<n) there is a closed unbounded set 5 C {a:

a< Km + ,}  suchthat for a ES, ap • • • , a¡ E {aj" + 1: i<a] U fy: zzz <

z<zz}, and t which occurs in 2'   we have t(o., • • • , a,)<am + l    —►
, - n — m

t(o1 , • • • , o¡) < am + l. Choose a0ES such that cf(5 na) = Kffl  and define

ym — am +1.  Let   [a¡: i < Nm }  be an increasing unbounded continuous sequence

in S n a (it is easy to verify that there is such a sequence), and let am = aJJ1 +1.

(If zzz = 0 there is no need to choose a^", and thus it was sufficient to assume

that MEKH      .)

Theorem 2.18.   For all zz < co there is a sentence \¡in having a model

in K»    but no model in K^

Proof.  i^n will more or less characterize (co„, <).

y¡¡0 will say that there is a first element, every element has a successor,

and every element (except the first) has a predecessor.

^n+i   will say that   {a:a<c¡}  satisfies \¡/¡ for z<zz (c¡ being an

individual constant), F0, • • • , Pn  is a partition of the limit elements, and if

a G P¡ then (F¡(a, x): x < c¡) is an increasing, continuous, unbounded sequence

in  {y:y<a}.

Similar theorems may be proved with omitting types as in [Mo 1 ].  For

example if T is countable and has a model in KH    omitting a type p, then

for all X  T has a model in Kx omitting p. 1

Problem 2.19. Prove the compactness of K^ , for  1 < zz < co.
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Remark. If we relax the condition of continuity at 5 of cofinality co

then we can prove this as in [Sh 1]. Since then the class is closed under ultra-

products of N0  models.  In general it suffices to prove the  tt0-compactness of

General questions. A general problem (which is of course not new) about

abstract logic is

Problem 2.20.  Find the logical connections between the following properties

of the abstract logic L*:

(A) L* is first-order logic.

(B) XL*  satisfies the compactness theorem for theories of power < X.

(C) = (F)«,/.*  satisfies the compactness theorem.

(D) L* satisfies the X-downward Lowenheim-Skolem theorem. (If i// G

L* has a model then  i//  has a model of power < X.)

(E) L* satisfies the  X-upward Lowenheim-Skolem theorem.  (If \p has a

model of power > X, then  <//  has a model of arbitrarily large power.)

(F) L*  satisfies Craig's theorem.

(G) L* satisfies Beth's theorem.

(H) L* satisfies the Feferman-Vaught theorems for

(1) Sum of models.

(2) Product of models.

(3) Generalized product of models.

(I) L* satisfies the completeness theorem (assuming that the set of sentences

is recursive in the language).

It is known that (A) implies the others; for ß < X (C) —► (B)x —► (B)M,

(E)M — (Ex). <P)S -> <Ph'> (?) -* (G)- (9 — (E)«0, (HX3) — (H)(2) —
(HXl).   Lindenstrom [Li 1], [Li 2] proved (and Friedman [F 1] reproved).

(B)„o A (D)„o -+ (A), (E)„o A (D)„o -* (A), (F) A (P)„0 — (A).
The method of proof is by encoding Ehrenfeucht-Fraisse games.

Special questions which look interesting to me are

Problem 2.21.   Is there a logic  L*   stronger than first-order logic which

is   N0-compact and satisfies Craig's theorem?   Do sums of models preserve

elementary equivalence for  L*l

Is there an expansion of  L(Q" )   satisfying this?   Keisler and Silver

showed that   L(QX)   does not satisfy Craig's theorem.   Friedman [Fr 2]showed

that Beth's theorem is also not satisfied.   Similarly it is not hard to show

that all the logics with the quantifiers   ßcf, ßdc, ßcc, ß8'   (all or some of

them) do not satisfy Craig's theorem, but satisfy (HXl).   ß"   does not satisfy

(HXD.
Problem 2.22.   Does   L(Q% )   satisfy Craig's theorem, if we restrict our-

selves to models of power   < Kj?
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Problem 2.23.   Find a natural characterization for  L(QC^ ).   (For  L„ w,

Lu.,u>   etc   Barwise   [Ba 1] found one.)

Lemma 2.24. Let Ql   be the quantifier ß£c ; there is a sentence  \¡i in

L(QX), which has only well-ordered models, and has a model of order type a for

every a>2  °. (Thus L(Ql) is not compact.)

Proof.   Let  ^l   say:

1. Fj, F2, F3, F4  (one place predicates) are a partition of the universe.

2. < is a total order of the universe, S is the successor function in Fj

and F2  (so Px   and F2  are closed under S) and each P. is a convex subset.

3. F is a one place function mapping F3  into P2.

4. G is a two-place function from F3  to Fj   and

(Vx G P3XVjz G ?3XVz G F,)[S(z) < G(x, j) A x <y = (Viz G F2)(3*', / G F3)

(x < x' < y < j A *(*', /, u) A z < G(x', y))]

where tf*. j>, z) = F3(x)AF30) AF2(z) A x <y A (S/v)(x < v <y —*■ z <F(v)\

5. (\/zE PJQx. y G P3)(x <y A G(x, y) = z).

6. The cofinality of F2  is  N0  Oust say F is an anti-isomorphism from

(P2,<) onto  (F4,<), and

(Qlxy)[(P2(x) V F4(x)) A (P2(y) v F4(y)) A x <y]

A(Qlxy)(P2(x)r\P2(y)/\x<y)

7. (Q'x^W^sWAK^).
Suppose M |= i>x   arid c„  is a strictly decreasing sequence in F^; let

cz*„ (zz <co) be an increasing unbounded sequence in P2 ,  and define inductively

x„> yn &P%>xn< *ft+I < yn + l < yH,   and   G(xn, yn) > cn,   and

f&n+v yn+v d„)-  For zz = 0  use   5, for zz + 1   use 4.  So by <p's defini-

tion for no z, xn <z <yn   for every n  (as then F(z) cannot be defined);

contradicting 7).  So in every model of  i//,, F,   is well-ordered.  Now we define

by induction on a orders Ia  and functions Fa: Ia—*■ co as follows:

/„  is  N,-saturated order of cardinality  2  °;F0   is constantly zero.

Ia+1 = {<£ a): i E co + 1, a G Ia}   ordered lexicographically.

Fa+1((.i, a)) = F(a) + i  for i < co, and zero otherwise.

/6 = {(a, a>: a < 5 + 1, a E Ia}   ordered lexicographically.

F6 + j(<a, a>) = Fa(a) for a<6, and zero otherwise.

Now we can easily define M" h <//,, Ff " = 1 + a, P%a = co, F*'" = Ia, FM° 3

Fa, F^" = co*.  The change to  \p  is now only technical.

Added in proof. 1. Schmerl, in a preprint "On k-like structures which

embed stationary and closed unbounded subsets" proved interesting results on

problems closely related to  (Qxx).
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2. The author proved that a variant of Feferman-Vaught theorem and Beth

theorem implies Craig theorem. This and other results will appear.

3. WhydoweuseßfXo>K},ßd{=o>K},andnotjustßf,o}.ßd{=o}  in

Definition 1.4? (Note that ßcKf    is added just for convenience.)
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