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Volume 74. Number 2. -lime 2009 

MODEL THEORY WITHOUT CHOICE? CATEGORICITY 

SAHARON SHELAH 

Abstract. We prove Los conjecture = Morley theorem in ZF. with the same characterization, i.e., of 

first order countable theoiies categorical m K„ for some (eqiuvalently for every ordinal) a > 0. Another 

central result here in this context is: the number of models of a countable first order T of cardinality Hn is 

either > | a | for every a or it has a small upper bound (independent of a close to 32). 

ANNOTATED CONTENT 

§0 Introduction, pg. 362-365 

Part I: 
§1 Morley's proof revisited, pg. 365-367 

[We clarify when does Morley proof works - when there is an UJ\ -sequence 
of reals] 

§2 Stability and categoricity, pg. 367-372 

[We prove the choiceless Los conjecture. This requires a different proof as 
possibly there is no well ordered uncountable set of reals. Note that it is 
harder to construct non-isomorphic models, as e.g., we do not know whether 
successor cardinals are regular and even so whether, e.g., they have a 
stationary/co-stationary subset. Also we have to use more of stability theory] 

§3 A dichotomy on /(N„. T): either bounded or > \a\, pg. 372-385 

[This shows that "the lower part of the family of functions {/(/., 7") : T first 
order complete countable}" is nice.] 

§4 On T categorical in |7 | , pg. 385-388 

[Here we get only partial results.] 

Part II: 
§5 Consistency results, pg. 388-392 

[We look for cases of "classes have few models" which do not occur in the 
ZFC context.] 

§6 Comments on model theory in ZF, pg. 392-396 
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362 SAHARON SHELAH 

§7 On powers which are not cardinals: categoricity, pg. 396-400 

[We deal with models of (first order) theories in so called reasonable powers 
(which are not cardinals), it is equivalent to the completeness theorem 
holding. We throw some light on "can a countable first order T be 
categorical in some reasonable power".] 

References, pg. 400 

§0. Introduction. I have known for long that there is no interesting model theory 
without (the axiom of) choice, not an exciting question anyhow as we all know 
that AC is true. This work is dedicated to a try to refute this opinion, i.e., this 
work throws some light on this in the contrary direction: Theorem 0.2 seriously, 
Theorem 3.14, (the parallel of the ZFC theorem 0.3) in a stronger way. 

Lately, I have continued my work on pcf without full choice (see [Sh:835], earlier 
[Sh:497], [Sh:E38], later [Sh:938]) and saw that with suitable "reasonable" weak 
version of (the axiom of) choice essentially we can redo all [Sh:c] (for first order 
classes with well ordered vocabulary; see 6.3). 

Then it seems reasonable to see if older established version suffices, say ZF+DC^,, . 
We first consider Los conjecture which can be phrased (why only NQ 's and not other 
powers? see below) 

0.1. THE CHOICELESS LOS CONJECTURE. For a countable (first order theory) T: 
(*)i T is categorical in Ntt for (at least) one ordinal a > 0 iff 
(*)2 T is categorical in frty for every ordinal fi > 0. 

In § 1 we shall show that the Morley's proof works exactly when there is an 
uncountable well ordered set of reals. In §2 we give a new proof which works always 
(under ZF); it used Hrushovski [Hr89d], so: 

0.2. THEOREM. [ZF] For any countable T we have: (*)i of 0.1 iff{*)i of 0.1 iffT 
is H()-.stable with no two cardinal models) 

Note that though we have been ready enough to use ZF + DCN„ in fact we solve 
the problem in ZF. 

A theorem from [Sh:c] is 

0.3. THEOREM. [ZFC] For a countable complete (first order theory) T, one of the 
following occurs: 

(a) Z(KQ,7") > \a\ for every ordinal a, 
(b) /(Na, T) < 32 for every ordinal a [and can analyze this case: either 

i(Ka,T) = lforeveryaori(Ka.T) = Mm{22,2^} for every a > 0). 
We shall prove a similar theorem in ZF in 3.14. 
Thirdly, we consider an old conjecture from Morley [Mo65]: if a complete (first 

order) T is categorical in the cardinal k,k = \T\ > H0 then T is a definitional 
extension of some T' C T of smaller cardinality. The conjecture actually says that 
T is not really of cardinality k. This was proved in ZFC. Keisler [Ke71a] proved it 
when \T\ < 2K». By [Sh:4] it holds if \T\H" = \T\. It is fully proven in [Sh:c, IX, 
1.19, pg. 491]). The old proof which goes by division to three cases is helpful but 

'That is, for no model M of T, formula ip(x.y) 6 LT ( 7 ) and sequence a g tstv'M, do we have 

H„ < \ip(M.a)\ < \\M\\. 
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MODEL THEORY WITHOUT CHOICE'.' CATEGORICITY 363 

not sufficient. Without choice (but note that k is an H) the case T superstable (or 
just Kr(T) < k) has really a similar proof. The other two cases. T is unstable and 
T stable with large Kr{T), are not. Here in §4 it is partially confirmed, e.g., when k 
is regular, the proofs are different though related. 

In §7 we deal with power of non-well orderable sets, in §5 we deal with consistency 
results and in §6 we look what occurs to classical theorems of model theory. 

We may consider isomorphism after appropriate forcing. Baldwin-Laskowski-
Shelah [BLSh:464], Laskowski-Shelah [LwSh:518] deal with the question "does T 
or even PC(7,|. 7") have non-isomorphic models which become isomorphic after 
some c.c.c. forcing?" But this turns out to be very different and does not seem 
related to the work here. 

However, the following definition 0.4 suggests a problem which is closely related 
but it may be easier to find examples of such objects, so called below "cardinal 
cases" with "not so nice behaviour" than to find forcing extension of V which 
satisfies ZF + a failure of some hopeful theorem. 

0.4. DEFINITION. (1) A cardinal case is a pair (/., P) where k is a cardinal and P 
is a family of forcing notions. 

(2) A cardinal* case is a triple (k.P. <) such that k is a cardinal, P a family of 
forcing notions and < a partial order on P such that Pi < P2 => Pi < P2 so if 
we omit < we mean <. 

(3) We say that a theory T or more generally a (definition, absolute enough, 
of a) class 8. of models is categorical in the cardinal case (k, P) when: for 
every M\.Mj & R, (i.e., e R of cardinality A), for some P 6 P we have 
Ihp. "A/, ^ M2". 

(4) We say that a theory T or more generally a (definition, absolute enough, of 
a) class & of models is categorical in the cardinal* case (k. P. <) when for any 
P G P, in V!> we have: if M{, M2 e sC[m, then for some P ' e P satisfying P < P' 
we have Ihw/p "A/| = M{\ 

(5) Similarly uncategorical, has/does not have fi pairwise non-isomorphic models, 
etc. 

(6) We may replace cardinal by power. 

0.5. QUESTION. Characterize countable (complete first order) T which may be 
categorical in some uncountable power (say in some forcing extension of L[ T]). See 
on this §7. 

This work may be continued in [Sh:F701]. 
We thank Udi Hrushovski for various comments and pointing out that Los 

conjecture proof is over after 2.12 as Kueker conjecture is known in the relevant 
case (in earlier versions the proof (of the choiceless Los conjecture) was more 
interesting and longer). We thank Moti Gitik for a discussion of the consistency 
results and for pointing out 5.5). 

Lately, I have learned that Truss and his students were pursuing the connection 
between universes with restricted choice and model theory by a different guiding line: 
using model theory to throw light on the arithmetic of Dedekind finite powers, works 
in this direction are Agatha Walczak-Typke [WT05], [WT07]. Very interesting, does 
not interact with the present investigation, but may be relevant to Question 0.5. 
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364 SAHARON SHELAH 

Recall 

0.6. DEFINITION. A cardinal is the power of some well ordered set (so an H or a 
natural number). 

In [Sh:F701] we may deal with theories in a vocabulary which is not well ordered. 

0.7. CONVENTION. If not said otherwise 

(a) T is a first order theory in a vocabulary i C L , 
(b) T is complete, 
(c) T is infinite. 
(d) if T is countable for simplicity T. T C X ( K O ) (for notational simplicity). 

This is justified by 

0.8. Observation. Assume T is a countable vocabulary and T is a first order theory 
in T, i.e., T C LT. 

(1) There is a vocabulary z' C ^ ( N O ) (Q Lfu) and first order theory T' in z' (so 
T C Lr C •F(No)) such that for every cardinal X. T is categorical in X iff T 
is categorical in X (and even I(X. T) = I(X, 7"), similarly for power and the 
parallel of 0.9 below). 

(2) If T is categorical in some cardinal X then T U {(3~"x){x = x): n < a>) is 
complete. 

0.9. Observation. Assume z is a vocabulary which can be well ordered (i.e., |T| e 
Card). 

There is a vocabulary z' € L (or even z' G L | r : ) and a function f from L(T ' ) 
onto L(T) (note that L (T ' ) C L|T| .) mapping predicates/functions symbols to pred­
icate/function symbols respectively with the same arity such that: 
S i / maps the set of (complete) first order theories in LT onto the set of (complete) 

first order theories in LT/ (really this is the derived map, / ) 
KI2 for some definable class F which is a function. F maps the class of r-models 

onto the class of z' -models such that 
(a) Fis one to one onto and Th(F(A/)) = / (Th(M)), 
(b) F preserves isomorphisms and non-isomorphisms. 
(c) F preserves M C N.M ~< N. 
(d) if F(A/) = M' then for every senience yj e L(r'). M' \= yj o M \= f(y/) 

where f(y/) is defined in E3i, 
(e) F preserves power, so equality and inequality of powers (hence for any 

theory T C LT, letting T' = f{T), for any set X. \{M/ ^ : M e Modr has 
power \X\}\ = \{M'/ ^ : M' e Modr , has power \X\}\. 

We shall use absoluteness freely recalling the main variant. 

0.10. DEFINITION. (1) We say tp{x) is upward ZFC-absolute when: if Vj C V2 
(are transitive classes containing the class Ord of ordinals, both models of ZFC) 
and a e V, then Vi (= <p(ci) =4- V2 |= <p(a). 

(2) Replacing upward by downward mean we use <^: omitting upward mean we 
use <̂ >. Similarly for version Z F C of ZFC (e.g., ZF + DC): but absolute means 
ZFC-absolute. 
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0.11. CONVENTION. (1) If not said otherwise, for a theory T belonging to L[ Y0], 
YQ C Ord, saying "T satisfies Pr", ("Pr" stands for "Property") we mean "for 
some Y\ C Ord for every Y2 C Ord, T satisfies Pr in L[r0, Yu Y2]". 

(2) But "T categorical in A" always means in V. 

Recall 

0.12. DEFINITION. (1) 0(A) = Minfa: there is no function from A onto a } . 
(2) T(A) — Min{a: there is no one-to-one function from a into A}. 

0.13. DEFINITION. (1) If T C L(T) , V is a set of types in L(r), i.e., each p e T is 
an w-type for some m. then EC(T, r ) is the class of T-models M of T which 
omits every p(x) G I\ 

(2) If T C L(T) is complete, T C T\ C L(n) and T C n then YC(TX,T) is the 
class of r-reducts of models M\ of T\. Similarly for a set Y of types in L(TI) let 
PC(r, T,, T) be the class of r-reducts of models M G EC(r i , T). 

We shall use Ehrenfeucht-Mostowski models. 

0.14. DEFINITION. (1) O is proper for linear orders when: 
(a) for some vocabulary x = T<D = T(O) , 3> is an co-sequence, the w-th element 

a complete quantifier free «-type in the vocabulary T, 
(b) for every linear order / there is a r-model M denoted by EM(7, <D), gen­

erated by {a,: t € / } such that s ^ t =$• as ^ at for s,t € / and 
(«,„,..., af„_,) realizes the quantifier free «-type from clause (a) whenever 
n <a> and /0 < / • • • <i t„-\\ so really M is determined only up to isomor­
phism but we may ignore this and use h Q Ji => EM(/i, O) C EM(/2,0). 
We call {a,: t e /) "the" skeleton of M; of course "the" is an abuse of 
notation as it is not necessarily unique. 

(2) If T C T(O) then we let EMZ(I, O) be the r-reduct of EM(7,0). 
(3) For first order T, let T°r[T] be the class of O proper for linear orders such that 

(a) TJ Q T<D and 1$ has cardinality < K, 
(b) for any linear order / the model EM(7, <&) if / is well-orderable then this 

model has cardinality | T ( 0 ) | + | / | and we have EMT(r)(/, O) G K, 
(c) for any linear orders / C J we have EMT(r)(/, O) -< EMT(r)(/, O). 

(4) We may use Skeleton (a,: t G / ) with a = £g(at) constant but in the def­
inition of "d> G T°r[T] we add a < K+. Alternatively a, = (FfM(im(at): 
i < a), where F, G z® are unary function symbols. We use <I>, *P only for such 
objects. Let Tf = Tj» ^[T]. 

§1. Morley's proof revisited. The main theorem of this section is 1.1. The proof is 
just adapting Morley's proof in ZFC. We shall use 0.8(2) and convention 0.7 freely. 

1.1. THEOREM. [ZF + there is an uncountable well ordered set of reals] The 
following conditions on a countable (first order) T are equivalent: 

(A) T is categorical in some cardinal Ha > Ho, in V, of course 
(B) T is categorical in every cardinal H^ > Ho, in V, of course 
(C) T is (in L[T]), totally transcendental (i.e., ^o-stable) with no two cardinal models 

(i.e.. for no model M ofT and formula tp(x,y) G L ( T J ) and a G ig^M do we 
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366 SAHARON SHELAH 

have Ho < \<p(M, a)\ < \\M\\ and \\M\\ is a cardinal, i.e., the set of elements of 
M is well-orderable hence its power is a cardinal), 

(D) if V C V is a transitive class extending L J e V and V satisfies ZFC then 
the conditions in (C) hold, 

(E) for some V clause (D) holds. 

PROOF. By 0.7 or better 0.8(2) without loss of generality T is complete, T C 
•r(K()). Trivially (B) =s> (A). Next (A) => (C) by claims 1.2, 1.3 below. Lastly. 
(C) => (A) by 1.4 below and (C) <=> (D) <=> (E) holds by absoluteness. • u 

1.2. CLAIM. [ZF + 3 a set of Hi reals] IfT is (countable) and in L[T] the theory 
T is not tto-stable and k > Ho then T is not categorical in k. 

PROOF. In L[T] we can find E.M. models, i.e.. <t> e T™ such that z(<t>) is count­
able, extends T = xT and EMT (/, O) is a model of T (of cardinality k) for every linear 
order / (of cardinality k) and let M\ = E M T ( A . <I>) and without loss of generality 
the universe of Mi is k. 

In V let if = {na: a < to\) be a sequence of pairwise distinct reals. In L[T] 
there is a countable model M0 of T with S(M0) uncountable so containing a perfect 
set. Hence also in h[T if]. Mo is a countable model of T with S(M0) containing a 
perfect set, hence there is (in L[T. fj]) a model Mi of T of cardinality k (k is still 
an uncountable cardinal in L[T, fj]) such that M0 -< M2 and there is a sequence 
(a,-: / < co\).a,- e M2 realizes />, e S(M()) with (p,•: ;' < w '̂) pairwise distinct. 
Without loss of generality the universe of M2 is A. 

Clearly even in V, the model M\ satisfies "if A C M\ is countable then the 
set {tp(a,/4,Mi): a e Mi} is countable" whereas M2 fails this; hence the mod­
els Mi, M2 have universe k. are models of T and are not isomorphic, so we are 
done. • 1.2 

1.3. CLAIM. Assume T is countable ^-stable and has a two cardinal model {in L[T], 
but both are absolute). 

Then T is not categorical in k, in fact, /(Ka. T) > \a\for every ordinal a. 

PROOF. SO in ~L{T) it has a model Mi and a finite sequence a e lKl-y,{M\) and a 
formula ip(x.y) € L ( T J ) such that Ko < \<p(M\.a)\ < \\M\\\. If N/y < A, working 
in L[T] without loss of generality |<^(Mi.a)| = H/,.||Mi|| = / (by [Sh:3]) and 
the universe of M\ is k. By the Ho-stability T has (in L[T]) a saturated model 
Mi of cardinality k, so without loss of generality the universe of Mi is / . So 
a' e tg{s')[,M1) => \ip(M2.a')\ $_ [K0J-). Clearly even in V.Mi.M2 are models of 
T of cardinality k and are not isomorphic. In fact for every frty < k.T has an Un­
saturated not K/j+i-saturated model Mp of cardinality k such that \<p(M/i.dp)\ = K/; 

for some a e ^^{Mp). So mm{\tp((Mp.b)\ + N0: b e ^ ( f , (M/ ; ) |} = K/y. hence 
V f= Mp ^ M., when H/j < H-, < k so also the second phrase in the conclusion of 
the claim holds and even 7(Ha. T) > \a + 11. D1..1 

1.4. CLAIM. Assume T is countable ^-stable with no two cardinal models even just 
in L[T] and k > Ho. Then T is categorical in k. 

PROOF. Let Mi, M2 be models of T of cardinality k. without loss of generality 
both have universe k, clearly L[T. Mi. M{] is a model of ZFC and by absoluteness 
T still satisfies the assumption of 1.4 in it, and M|. M2 are (also in it) uncountable 
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models of T of the same uncountable cardinality in this universe. But by 1.1 being a 
theorem of ZFC clearly M\. M2 are isomorphic in L(T, Mj. M2], hence in V. • 1.4 

§2. Stability and categoricity. Our aim in this section is the categoricity spectrum 
for countable T (i.e., Th. 2.1), but in the claims leading to the proof we do not 
assume countability. Note that the absoluteness of various properties is easier for 
countable T. 

2.1. THEOREM. [ZF] For countable T, clauses (A), (B), (C), (D), (E) of Theo­
rem 1.1 are equivalent. 

2.2. Observation. (1) If T is unstable so has the order property, say as witnessed 
by <p(x,y) and, of course, x = xj C L then for some <I> e L[ T] 
© (a) <t> is proper for linear orders, 

(b) r C to and for every linear order I, EMT (/. O) is a model of T with 
skeleton (a,: t e I),£g(dT) = £g(x) = £g(y), 

(c) EMr (/,<£) \=y[ds.a,f(s<l\ 
(d) T(<D) C L and |r(0)j = \T\ (if x(T) e L, without loss of generality 

T(<D) e L) and without loss of generality L[T] |= |T(<D)| = \T\. 
(2) It follows that if / is well orderable then the universe of EM(/, O) is well 

orderable so it is of cardinality | / | + \T\ + No hence we can assume it has this 
cardinal as its universe. 

PROOF. (1) By[Sh:c]. 
(2) Follows. • 2.2 

Our first aim is to derive stability from categoricity, for diversion we give some 
versions. 

2.3. CLAIM. Let® be as in 2.2. ThenM\ ^ Mi when K\ , K? are regular uncountable 
cardinals (> \T\) and for some A C Ord, in \\A\ 

© (a) Me = EMT(/^.<D) in L[A], (so r , $ e UA].Ie e 1{A\) for I = 1.2, 
(b) sl = (s^: a < K\) is increasing in I\JX = (t{

a: a < KI) is decreasing in I\ 
(in L[A]), 

(c) a < K\ A P < K2 => s^ </, tj but -i(3s e 7i)[(Va < Ki)(s]
a < r) A 

(y[i<K2)(s<tjt)i 

(d) in h there is no pair of sequences like s\tl, 
(e) also in the inverse ofh. there is no such pair, 
(f) [only for simplicity, implies (d) + (e)] h is = I2 x Q ordered lexicographically. 

PROOF. Without loss of generality the universes of M\.M2 are ordinals, and 
toward contradiction assume / ' is an isomorphism from M\ onto M2. We can work 
in h[A, M\. M2.f] which is a model of ZFC, so easy to contradict (as in [Sh:12], 
see detailed proof showing more in 3.2). • 2.3 

2.4. Conclusion ([ZF + \T\+ is regular]). If T is categorical in some cardinal 
X > \T\. then T is stable (in h[T]). 

A fuller version is 

2.5. CLAIM. M\ % M2 when for some X > \T\ we have: 

© (a) Me = EM,(le• <&) where T, <5 are as in 2.2 so <D e L[T], 
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368 SAHARON SHELAH 

(b) I\ = X x Q ordered lexicographically, 

(c) h = 2_\ ^« e L[T] w/iere /„ is isomorphic to a + a* (a* the inverse of a) 

or just 
(c~) h is a linear order of cardinality X such that for every limit ordinal 6 < \ T \+, Ii 

has an interval isomorphic to 6 + 8*, 
(d) I\, h has cardinality X. 

PROOF. Let 9 = \T\ in h[T] and 0\ = (8+)v. Without loss of generality Me has 
universe X, assume toward contradiction that M\ = Mi let / be an isomorphism 
from M\ onto Mi and consider the universe L[T, M\, Mi, f]. In this universe 0\ 
may be singular but is still a cardinal so 8 =: (0+)UTM\.M2j] JS necessarily < (|#| + )V 

hence Ii has an interval isomorphic to 8 +8*. Now we continue as in 2.3 (see details 
in 3.2). • 2.5 

2.6. Conclusion. If T is categorical in the cardinal X > \T\, then T is stable. 

2.7. DISCUSSION. (1) We may like to have many models. So for T unstable if 
there are a regular cardinals < X we can get a set of pairwise non-isomorphic 
models of T of cardinality X indexed by | ^ ( a ) | . 

It is not clear what, e.g., we can get in Hj. As 2.5 indicate it is hard to have few 
models, i.e., to have such universe (see more in §3); but for our present purpose all 
this is peripheral, as we have gotten two. 

On uni-dimensional see [Sh:c, V, Definition 2.2, pg. 241] and [Shx, V. Theorem 
2.10, p. 246]. 

2.8. DEFINITION. A stable theory T is uni-dimensional if there are no M (= T 
and two infinite indiscernible sets in M which are orthogonal. 

2.9. CLAIM. Assume T is stable (in L[77], anyhow this is Z~-absolute). Then for 
every X > \T\, T has a model M £ i-[T] of cardinality X such that: 

0 in M there are no two (infinite) indiscernible non-trivial sets each of cardinality 
> \T\+ which are orthogonal. 

PROOF. We work in h[T] or L[T, Y], Y C Ord and let K = \T\L^ and d = 
0V(&>(K)). Let ju be large enough (e.g., 2((2d)+), i.e., the (29)+-th beth), let € be 
a /^-saturated model of T. Let I = {at: i < /u} C £ be an infinite indiscernible 
set of cardinality ju and minimal, i.e., Av(I, Ui) is a minimal type. Let M\ -< £ be 
K+-prime over I. 

More specifically 

© {Ae: e < K+) is an increasing sequence of subsets of M\,AK. = M\.AQ — 
{at: i < JU} and B = (Ba: a e M\), satisfies [a € A0 =>• Bu = {a}] and if 
a e As+i\A£ then Ba C A£ and tp(a. BaX) t- tp(a,Ae+i\{a}X) and \Ba\ < K 
and without loss of generality Ba = {baj: j < n} and { < e => Bu n A(+\ <£ A^ 
and a' e Ba => Ba> C Ba. 

Expand Mx to M2 by adding PM> = l,<M-= { ( a , . ^ ) : i < j < [i},EM- = 
{(b\,bi): for some e < K+ we have b\ e A£ A bi e (Ae+\\A£)}, F^2(a) = baj for 
j < K, (hence a e A£+\\A£ A £ < e =>• c£M2{a} n A^+\\A^ ^ 0) and add Skolem 
functions, still x(M2) e L[T] has cardinality K = \T\L^ = (\T\ + N0)L[r]-
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Now (as in the proof of the omitting type theorem, see e.g., [Sh:c, VII, §5]) we 
can find (I„: n < en), \„ C I is an n -indiscernible sequence in M2 of cardinality > 2d 

and 
(*)i if for n < co. M2 \= a,'J < • • • < a^_x and I < n => a" e l„ then pn = 

tp((a„' <_l)J.M2) = tp(K;+ , . . . . ,<^)J .M2). 
Let I„ = {aa : a e % } and note that 

Kl] (ff(a,(a(1),... ,a,(Qm_[)): a € Z) is an indiscernible set in M\ (equivalently in <£) 
when: 
(a) 2m < n < co, 
(b) Z C (Um is infinite, 
(c) i(a,£) e fln is increasing with I < m for a e Z, 
(d) for each l,k < m and ai < fi\,a2 < p2 from Z we have /(ai ,^) < 

i{p\,k)^i{a2.l) <i(p2,k), 
(e) CT(XO ,xm_i) is a finite sequence of r(M2)-term, 
(f) all (a,-(a.o),. • •, a,-(a.m-i)) for a e Z realize the same type (equivalently of 

quantifier-free type) in M2. 

[Why? If k < n and j < £g(5) then the truth values of <7/(a,-0,... ,aikl) e /4e for 
/'o < • • • < ik-\ < ju such that a,(1,..., a,A , e I„ depend on a only, we can prove 
this by induction on maxje,: j < £g{d)}, using the properties of the Ba's. By the 
properties of F^, -constructions2 ([Sh:c, IV]) we are easily done.3] 

Moreover 

KI2 in ^i> the L(rr)-type of (CT(a,(a0),... ,«,(„„_!)): a e Z) depends just on Z. a 
and the truth values in (d) from M\ and the types in (f) of M\ over acW, (0)-

[Why: Note that aclM2(0) Q (the Skolemhull of 0inM2) andInacW,(0) is infinite.] 
So we can find a T(M2)-model M3 generated by the indiscernible sequence 

(ba : a < X) such that for every n < co and ao < • • • < an-\ < X, recalling (*)i we 
have pn = tp((ba„, &<»„_,), 0, M3). Without loss of generality the Skolem hull 
of 0 in MT, is the same as in M2. Let M4 = M^\XT- Clearly M4 is a model of T of 
cardinality X. 

Now suppose that 
(*)2 in V we have J C M4 (or even J C "-(Mi)), is an indiscernible set of 

cardinality > K+ orthogonal to PMi which is an infinite indiscernible set in M4 
(this is absolute enough). 

Let J D {ca : a < ( K + ) V } with the ca's pairwise distinct. Let c,- = (?i(ba(i0),..., 
ba(i),n(a)-\) where a(i,0) <••• <a{i,n{i)) (may be clearer in L[T, Y,3]). 

So in L[r, K J] for some Z C ( K + ) V of cardinality > (K+)UTY^ (SO maybe 
V |= \Z\ < K+) we have i e Z => <7j = o\* A n{i) = «(*), and the truth value 
of a(i\,£\) < a(i2.£2) for '1 < h depend just on {£\,£2). In L[T, Y] for each 
n > 2n(*), we can find an

a 6 I„ for i < d,£ < «(*) such that M2 (= a" f < a" h «=> 
a{0,£\) < a(lj2) for every I'I < i2 < d and M2 \= af0 < afi < • • • < a,"„w_, 
for / < 9. By Kli we know that (o*(a?0,

 a,"„(*)-i): ' < ^) is a n indiscernible 
set in M\ hence an indiscernible set over acU/2(0)- By M2, its type over aciA/2(0) 

Instead we can use the conclusion derived in &>. 
This is not the end of the proof, we still need to show another indiscernible set does not exist. 
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does not depend on n when n > 2n{*). As |I„| > d > (2lrf)LtrKJl, we easily get, 
see [Shx, Ch. V, 2.5, pg. 244] that this indiscernible set is not orthogonal to the 
indiscernible set {a,: / < fi}. Also easily letting / ' : Z —> d be one to one order 
preserving, the type which (c,: i e Z) realizes over aclM,(0) in M3 is the same as 
the type of (er*(a",.> 0 , . . . ) : / G Z) realized in M2 over aclM,(0) for « > 2n(*) + 1, 
as for formulas with < m variable we consider n > m. As J was chosen to be 
indiscernible orthogonal to tp(aQO,aciA/2(0).Mi), i.e., to the indiscernible set PM", 
we get a contradiction. So there is no J as in (*)2. As I is minimal, it follows 
that in V, if for I = 1,2 the set Je C "W(M4) is indiscernible of cardinality > 6+ 
then J[. J2 are not orthogonal to I hence J i , J2 not orthogonal (e.g., works in 
L[r, KJ , , J 2 ] ) . 

But this says that M4 is a model as required in the conclusion of 2.9. • 2.9 

2.10. Remark. (1) By F^ -constructions (see [Sh:c, IV]) we can get models with 
peculiar properties. 

(2) On absoluteness see 3.1. 
(3) In fact by [Sh:300f, §1], we can assume that (a(b0..... bm-\): m < n. b0 <Ml 

• • • <Ml bm_\ are from I„) where a = G(XQ, . . . , xm^\) and a is a i(M2)-term, 
is (fully) indiscernible in the model M2|Tr, i.e., in M\, see definition there. But 
the argument above is simpler. 

2.11. Conclusion. If T is stable and categorical in X > | T\ then (in L[T. Y] where 
Y C Ord): 

M (a) T is uni-dimensional, 
(b) T is superstable, 
(c) T has no two cardinal models, 
(d) D(T) has cardinality <|T| : moreover D{T) £~L[T] and L[T] f= \D(T)\ < 

\T\. 

PROOF. Assume clause (a) fails and we shall produce two models of cardinality 
(and universe) L The first iVi is from 2.9. The second is a model N2 such that there 
are indiscernible I. J C N\ (or W>{N\)) of cardinality X which are orthogonal; this 
contradicts the categoricity hence clause (a). 

The superstability, i.e., clause (b) follows from clause (a) by Hrushovski [Hr89d]. 
Clause (c), no two cardinal models follows from clause (a) by [Shx, V, §6]. 
Now|Z)(r) | < | r | (clause (d)) is trivial as otherwise we have two models M\.Mi 

of T of cardinality X such that some p G D(T) is realized in one but not the other 
(i.e., first choose Mi G L[T] realizing < \T\ types. Clearly {p G D(T) : p is 
realized in M} is a well ordered set so by the assumption we can choose p G D(T) 
not realized in M\ and lastly choose M2 realizing p). • 2.11 

2.12. CLAIM. If clauses (b) ,(c), (d) 0/ 2.11 hold and T is categorical in X > \T\ 
then: 

(e) any model MofT of cardinality ft, for any JU > \T\ is ^-saturated. 

PROOF. Assume clause (e) fails as exemplified by M and we shall get contradiction 
to clause (c) of 2.11, so without loss of generality the universe of M is ju. 

For any Y C Ord working in L[T. Y.M] we can find a C M and formula 
<p(x, y) G LT(rj such that tp{x, a) is a weakly minimal formula in M, existence as 
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in [Sh:31]: note that "every model M of T with universe X >\T\ is totally saturated, 
i.e., A C M, \A\ < X, p £ Se{A) ^> y is realized in M " can be proved as we proved 
E3(0), in fact follows from "7" ' has no two cardinal model. Let No < M be of 
cardinality | r | such that a C No and A^ e L|T, M]. 

Ca.ve 1: {p e S( MO: P is realized in M} has power > \T\ in V. 
But as \M\ is an ordinal this set is well ordered so the proof of 1.2 applies 

contradicting categoricity in X and we get more than needed. 
Case 2: Not Case 1 but there is a finite A C M such that a C A and p e 

S(y4), </?(*, tf) e /? and the type p is omitted by M. 
As in [Sh:31] (using "not Case 1" here instead "T stable in |7 ' |" there) we 

can find (in h[T, M]) a model M' such that M -< M',M' omits the type /? and 
\\M'\\ > X, so by DLST (= the downward Lowenheim-Skolem-Tarksi theorem) 
some N\ -< M' has cardinality X and is not Ko-saturated. Hence for some complete 
type p(x.y) e D(T)L^™\ for some b G ^^ ' ' (M) , the model N\ omits the type 
p{x. b) which is a type, i.e., finitely satisfiable in A î. 

By clause (d) of H of 2.11 wehave |£)(7)| < |T|inL[T. Y] and D{T) is included 
in L[7. Y]. So in L[T, Y], for every finite A C N \= T, S(A, N)v is the same as 
S(A. N) computed in L[T. Y] and is there of cardinality < \D(T)\ hence absolute. 
So in L[T. Y] we can find a model A^ of T of cardinality X which is Ko-saturated. 

[Alternatively to this, we can choose a model Â2 of cardinality X such that: if 
y e ^(r)/v2 realizes tp(A',0,M') then for some a G ' ' ' ^ ^ the sequence a'"fe' 
realizes /?(.v. >•)•] 

By the previous paragraphs this is a contradiction to categoricity. 
Case 3: Neither Case 1 nor Case 2. 
Subcase A: T countable. 
Let A'I be such that 

<# (a) A'i -< M is countable. 
(b) a C A'i. 
(c) if a C. A C. N\,A finite and /? is a non-algebraic type satisfying ip(x,d) e 

/? e S(/4, A/) then p is realized in A'i 

(possible as by clause (d) of E3 of 2.11 the set D(T) is countable and "neither case 1 
nor case 2"). 

Let Â2 be a countable saturated model of T such that A'i -< A^. We can build 
an elementary embedding / (still working in L[T. M]) from A'i into A^ such that 
f(ip(N\,d)) = (<p(N2.a)). This contradicts clause (c) of Kl of 2.11. 

The last subcase is not needed for this section's main theorem 2.1, (but is needed 
for 2.11). 

Subcase B: T uncountable. 
So possibly increasing Y C Ord. in L[T. Y] we have two models M\,Mi of 

T. M\ is Ho-saturated, M2 is not but ip{x.a),Mi fails cases 1 and 2; we work 
in L[T, Y]. Let £g(a) = n and T+ e h[T. Y] be the first order theory in the 
vocabulary T+ = rT U {ce: £ < n} U {P} where a an individual constant, P 
a unary predicate such that M+ = {M,c(f

f',... ,c^. PM+) is a model of T+ 
iff A/ = M f | r is a model of T.<p{M.cf . . . . . c ^ , ) is infinite and C P w " and 
M\PM -< M. As r is uni-dimensional (more specifically clause (c) of M of 
2.11 + [Shx. V, §6]) T+ is inconsistent, hence for some finite x' C i J + f 1 L(T ' U 
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{c0, c„-i,P}) is inconsistent. Now choose a\ € "(Mi) realizing tp(a,0,M2), 
let «2 = a and let / be large enough, *B -< (<%?(x)L[ZYK e) be countable such that 
{Mi,M2.T',ai,a2} € <B; recall that we are working in L[T. Y]. Now replacing 
M].Mjby (Mi |T ' )nS , (Mjlr^n^B we get a contradiction as in Subcase A. • 2.12 

PROOF OF THEOREM 2.1. By 0.8(2) and 0.9 without loss of generality T is com­
plete, T C JF(N0). Trivially (B) => (A), by 1.4 we have (C) => (B) and by 
absoluteness (C) 4=> (D) <=> (E), so it suffices to prove (C) assuming (A). By 2.6 
the theory T is stable hence the assumption of 2.11 holds hence its conclusion, i.e., 
M of 2.11 holds whenever Y C Ord, in particular D(T) e \\T]. So by 2.12 we 
can conclude: every model of T of cardinality A > Ho is No-saturated (in V or, 
equivalently, in L|T, M] when M has universe / ) . If T is H0-stable use 1.3. So we 
can assume T is not H0-stable but is superstable (recall clause (b) of M of 2.11) hence 
T is not categorical in Ho (even has > H0 non-isomorphic models, by a theorem 
of Lachlan, see, e.g., [Shx]), in any L[T„ Y]. So by Kueker conjecture (proved by 
Buechler [Be84] for T superstable and by Hrushovski [Hr89] for stable T), we get 
contradiction. • 2.1 

2.13. Remark. See more in [Sh:F701] about T which is categorical in the cardinal 
X > \T\,T not categorical in some JU > \T\. 

§3. A dichotomy for /(HQ, T): bounded or > \a\. Our aim is to understand the 
lower part of the family of functions /(A, T), T countable: either (Va)/(HQ, T) > 
\a\ or / (Ha, T) is constant and not too large (for a not too small), see 3.14. For 
completeness we give a full proof of 3.2. 

We need here absoluteness between models of the form L[ Y] and this may fail 
for "K(T) > K", "T stable uni-dimensional". But usually more is true. 

3.1. Observation. (1) "T is first order", " T ^ C LCU", "17- C L", "T is complete" 
are Z~-absolute. 

(2) For T (not necessarily e L but, below we can omit DC if we consider only uni­
verses in which xj well orderable, our standard assumption) which is complete: 
(a) "T is stable" is Z -absolute, 
(b) "T is superstable" is (Z~+ DC)-absolute (and downward Z~-absolute: 

Z~-absolute if r(T) C L), 
(c) "71 totally transcendental" is (Z~ + DC)-absolute (and downward Z~-

absolute; Z~-absolute if T C L); "T is Ho-stable, z{T) C L" is Z-
absolute, 

(d) the appropriate ranks are (Z~ + DC)-absolute (Z_-absolute if T C L) as 
the rank of {cp(x,a)} in M depend just on T,(p(x,y) and tp(a,0,M), 

(e) "M a model of T and I, J C M (or 0J>M) are infinite indiscernible sets, and 
I, J are orthogonal and where T is stable", is Z~-absolute, 

(f) "T is stable not uni-dimensional" is upward Z~-absolute, 
(g) for countable T, "T is stable not uni-dimensional" is Z~-absolute when 

T C L , 
(h) " T is countable stable with the OTOP (omitting type order property, see 

3.7 below)" is Z~-absolute, 
(i) "M is primary over A, M a model of the (complete) stable theory T" is 

upward Z~ -absolute. 
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PROOF. E.g., 

(2) Clause {b): 
This just asks if the tree 3~ has an co-branch where the «-th level of 5^ is the set 

of sequence (tpe(x, ye): £ < n) such that for every m, {ip{xn,yv)
lii-v<n^: £ < n,v £ 

lm.n £ "in} is consistent with T. 
Clause (e): Recall that a definition (the one we choose here) is 

(*) i Av (I, IU J) and Av (J. IU J) are weakly orthogonal types which is equivalent to 
(*h for every ip = ip(x.y.z) £ h{zT) and b £ ex{:>(l u J) for some y/e{x,ze) £ 

L(r-f), ce £ ^ ' ' ( I u J) such that y/{(x. ct) is satisfied by infinitely many del 
if £ = \.a £ J if £ = 2 and truth value t we have M \= (Vx, y)[y/\(x,c\) A 
y/jiy.h) -> ip(x.y,cY]. 

Clause (h): 
We just ask for the existence of the <& £ Tf so with T<J> countable 3 rT and type 

p(.x.y.z) from D(T) such that (£g(y) = £g{z) and) for any linear order I, which 
is well orderable EMT(7, <I>) is a model of T of cardinality \T\ + \I\ and p{x.as, a,) 
is realized in it iff .v </ t (so O.K. for stable T). • 3.1 

3.2. CLAIM. If T is unstable and \T\ = H^ < Ha = k then / ( / , T) > \a ~ /?*|. 

PROOF. In L[T]. let <t> be as in 2.2 such that for every a linear order I we have 
s.t £l => EM(/ .0) h (p[ds.d,f{s<'K where, of course, <p{x,z) £ L ( T ( J ) ) . 

First, we define for y < Ha 

J7 =:y +(}•)*• 

We can specify: the set of members of /;. is {(y.£,C): £ £ {0,1}.£ < y} and 
(y.£i,Ci) < (7.^2,C2) iff^i = 0A£ 2 = 1 or 4 = £2 = 0 A Ci < C2 or ^ = ^2 = 
1 A£i >L>2. 

Second, for /? £ [/?«. a] let J11 = ^ P Jy + J^ where / ^ = (HQ + 1) x Q ordered 
lexicographically. ;•<«,, 

Third, let A/f = EM(//y,4>). 
Lastly, M11 := Mf\xr is clearly a model of T of cardinality Ka. We like to 

"recover", "define" K/y from A/^/ = at least when /? > /?». This is sufficient as 
the sequence (A//;: /? 6 [/?»,a]) exists (in fact in L[T]). We shall continue after 
stating 3.3. 

DISCUSSION. (1) In ZFC we could recover from the isomorphism types, station­
ary subsets modulo the club filter so as we get 2N": if. e.g., Ha is regular and there 
are2N" subsets of'Ha any two with a stationary difference we get / (Ka, T) — 2^Q. 
But here (ZF) the stationary subsets of a regular uncountable k may form an 
ultrafilter or all uncountable cardinals are singulars. 

(2) More than 3.3 is true in h[T. Y\, EM(J,<D) satisfies ®e iff/ has a (0,0)-cut 
(provided / has no (1,0), (0.1), (0,0). (0,0) cuts), see below. 

(3) See more in 3.6 on OTOP. 
(4) Of course, we can prove theorems saying e.g.: ifHa > | T | is regular, T unstable 

t h e n / ( N a , r ) > |^(Na) /( the club filter on NJ | . 

3.3. SUBCLAIM. If J = J/!, M — M.P are as above and Y C Ord satisfies M e 
L[T. Y] then in U[T, Y]for any regular cardinal 0 (ofL[T. Y]) 
(*) <8>o <=> 0 > H/; where 
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Cgifl if p is a set of /^.-formulas with parameters from M of cardinality 9 where 

A =: {<p(x,zi) A->tp{x,:2)} 

and any subset q of p of cardinality < 9 is realized in M then some q C p, 
\q\ = 9 is realized in M. 

PROOF OF CLAIM 3.2 FROM THE SUBCLAIM 3.3. Why does this subclaim help us to 
prove the Theorem? Assume P* < P\ < Pi < a and we consider M11'. M/l: as above 
and toward a contradiction we assume that there is an isomorphism / ' from M^ 
onto Mfh-. 

Let Y C Ordcode T,M^,M^- a n d / . SoL[T, Mp<, Y] = L[Y] = L[T.M>S\ Y]. 
In this universe let 9 the first cardinal greater than the ordinal > NY SO NY < 9 < 

QUESTION. Why we cannot prove that 9 = H^|+1? As possibly L|T] |= NY+1 is 
singular or just a limit cardinal. 

NOTE. Maybe every L[y]-cardinal from (NY , KY + | ) have cofinality No in V! 

But in L[Y], KY, HY+1 are still cardinals so the successor of KY in L[ Y] is < NY+1 

but in L[F] this successor, 9, is regular. (In V. 0 may not be a cardinal at all). In 
L[T] there are many possibilities for 0 (it was defined from Y\) and we have built 
Mj before knowing who they will be in L[ Y] so 

9 > H/j, o- Mfl' \= ®o <̂> M A |= c§o <=> 0 > HA 

(the first <=> by (*) of the subclaim and the second <=> as / is an isomorphism) 

but bty, < 9 < N/j,; contradiction. 

PROOF OF THE SUBCLAIM 3.3. I.e., in L[T, Y] we have to prove: 

(*) [®o <* 0 > fy]. 
First we will prove: 

M i 9 < K/; => -i(8)e. 

By the choice of / = / ^ clearly Jg is an interval of J so let 

/> =: {<p(x, dmj] A -.<p(*: a{on,,): / < 9}. 

Let ^ C /?. \q\ < # now as 9 is regular (in L|T, Y\) for some y < 9 we have 

9 C Pj = {<p(x, fl(o,i./)) A -iy?(x, a(ft0./)): «' < ./}• 

We have a natural candidate for a sequence realizing </: the sequence «(w , ; ). Now 

/ < j => (0,1 J) <j„ (9A,i) => M \= v?[«(fl.i.,>»(fl,i./)]-

i< j ^ (9,0. i) <J(I (9, \,j) =>• M \= -vp[a(0AJ).amn]. 

So we have proved that every q C p, \q\ < 9 is realized in the model. Secondly, we 
need to show: 

<g> no a £ M satisfies 9 of formulas from p. 

Assume toward contradiction that a is a counterexample. 
So we can find n < co, a finite sequence of terms &(XQ v«-i) from T(<D) and 

to <j t\ <j • • • <j tn-\ such that a = d(atn «/„_,)• Now for each £ for some 
ie < 9, te is not in the interval ((9,0. if), (9. \.iA)j. 
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Let: 

j * = max[{;> + 1: £ < n) U {1}]. 

Now consider ip(x.d^)A j^ A -,f(x,d^0j))) for j e [j*,6). So te <j (6,1. j) = 
te <j (6,0, j) for £ = 0, n — 1 hence M |= ip[a(dt„ ,a/itl),a(0Ajj] <=> M \= 
ip[5(ah] «f„_i).<2(«.o./)]- So a = <r(afo .«(„_,) fail the j-th formula from p for 
y G [/*, 6). So /? really exemplifies the -><8>0. So we have proved (*)i which is one 
implication of the Subclaim. 

Now we will prove: 

0)2 if UT, Y] |= "0 is regular > K/ ' then ®0. 

So let p = {<£>(*, dj) A -K/>(JC ,£,-): / < 6} e L[T, Y] be given. For j < 6 let 

Pi =: {ip(x,di) A -«p{x,bi): i < j}. 

So some Cj G M realizes it and let (a,-,fc,-,c,-) = (df(ati,...,at, ): & = 0,1,2) 

where <?f is a finite sequence of terms from T(O) and J \= t'0 < t\ < • • • < t'n _x; 
note that we can make (t\: £ < «,-) not to depend on & because we can add dummy 
variables. 

As T(O) is of cardinality < 6 — cf(0) (in LfJ1, F]), for some a*,«* the set 
S = {/: of = cr̂  for /: = 0,1,2 and «, = «*} is unbounded in 6. 

Recall 

•^ = J2 Jy + (H« + !) x Q-

So for some w, < «* 

^ G ^2 J? o £ < mi 

shrinking »S without loss of generality / G S =$• nij = m*. 

NowL[7. F] (= "| ^ / j , | < ] T |/},| = Y, (bl + «o) < fy < « = cf(0)". 
>'<N// 7<N/( }'<N/( 

So without loss of generality 

©i £ < m* => t'e = t( for / e S and for £ G [w*, «*) let ^ = (e'e,q'e) where ^ G Q. 

Clearly for q'e there are No possibilities so without loss of generality, for each 
£ G [w»,n*) 

©2 ^ = <?/ for / G 5, 
©3 (e'e: i € S) is constant say e*t or is strictly increasing with limit e\ and is strictly 

increasing iff £ e u 

so without loss of generality 

©4 (i) if £\ ^ £2 are in the interval [w»,n*) and e*t < e\ then i,j G S ^ e'e < 
£et

 < £e2' 
(ii) if £\ ^ £2 € [w*, «*) and s\ = e*h A £\ e a A ^ u and / < j are in S then 

e'e < e^ (follows). 

We choose to <j t\ <j • •• <j tn-\ which satisfies 
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©5 (a) if £ < m* then tt = t\, 
(b) if £ G [m*, n,) and (^ : i E S) is constant then t( = tg, 
(c) if £ G [m*,n»), (^: i £ S) is not constant (i.e., £ G w) then: (recall that 

( ^ : z G S) is constantly <j£, (e'e: i G 5) is strictly increasing with limit 
£i) we choose t( = (ee,qe) such that ei = Sg.qe = min({0} U {qk: k G 
[m*,«*)}) — «* + £ (the computation is in Q!) 

Hence 

©6 (a) qt is < q*k for every k G [m«. n») when £ G w, 
(/?) if e/ = e^ and£.k e u then qe < qk = £ < k. 

Now note that: 
©7 for e < C < 0 from 5, in J the quantifier free types of (tg : £ <n*)^ (t(: £ < ««) 

and (tf: £ < «*)"(/^ : £ < «*) are equal [all the shrinking was done for this]. 

Now for e < C from S, by the original choice above Mfi j= v?[ct-. ae] A -><p[c£. be] 

that is: Mf h ¥>[<x2(a,;. • • • W K ••••)] A -¥>[^(a,j ••••)• ^ K ••••)]• 
By the last sentence and ©7 4- indiscernibility of (a,: t G / } in Mf we have 

M \= <p[d^(aln,... ) ,<7J(^, . . . ) ] A ^[ffj!(ar(). • • • )^e2K,- • • • )]• 
Let c = a*l(ato,...) in M[ -sense, so e G S =>• M f= <p[c. a£] A -K/?[C, /5e]. Hence 

{(p(jc,ae) A -«p(x.be): e G 5} is realized in M^ and h[T. Y] \= "\S\ = 0" as 
promised. • 3.2 

3.4. CLAIM. If'T is stable not uni-dimensional, \T\ = K/< < KQ = A then I (A. T) > 
\a-p\. 

PROOF. As in 2.9; if y G [/?. a] then there is a model M of T of cardinality A such 
that M satisfies {*)•, but not ft < y\ < y => -'(*);., where 
(*)y if I, J C M are infinite orthogonal indiscernible sets and I = A then 

| J | < N y . D3.4 

3.5. Conclusion. If /I = HQ > K/; = |3"| and 1(1. r ) < \a - ff\ then (in L[T. Y] 
when y C Ord) 

IKI7- (a) 7" is stable and uni-dimensional, 
(b) T is superstable, 
(c) T has no two cardinal models, 
(d) D(T) has cardinality < \T\ or cardinality < ja - fj\. 

PROOF. T is stable by 3.2 and uni-dimensional by 3.4 so clause (a) holds. This 
implies clause (c), see [Sh:c, V,§6]. Clause (d) is trivial by now and clause (b) follows 
from clause (a) by Hrushovski [Hr89d]. • 3 5 

3.6. CLAIM. In 3.5 we can add to E3r also clause (e) and if T is countable also 
clause (f) where 

mT (e) T fails the OTOP (see [Sh:c, XII, Def. 4.1, pg. 608] or 3.7(1) below) 
MT (f) T has the prime existence property (see [Sh:c. XII, Def. 4.2, pg. 608] or 3.7(2) 

below) hence for ZT a model of'T with universe \<LT\ Q L: 
for any non-forking tree (Nn : n G ZT) of models Nn < (Lj. there is a prime 
(even primary, i.e., F^ -primary) model N -< €f over L){Nn: n G !T}, it is 
unique up to isomorphism over L){Nn : rj G 5^}. 

Sh:840



MODEL THEORY WITHOUT CHOICE? CATEGORICITY 377 

PROOF. Clause (e) holds exactly as for stability, i.e., as in 3.2 only the formulas 
tp(x,y) are not first order but of the form (3z) /\tp„(z, x,y), where each tp„ is 

n 

first order. Clause (f) follows by [Sh:c, XII], i.e., it holds in any L[T, Y] which 
suffices. • 3.6 

3.7. DEFINITION. (1) T has OTOP if for some type p = p{x,y,z) in L(TJ-) the 
theory T has it for p, which means that for every X for some model M of T 
with well ordered universe and ba e

 lg{9)M, ca e tg{;)M, for aj<l we have: 
for any a,p<X the model M realizes the type p(x, ba,cp) iff a < fi. 

(2) T has the prime existence property when for every triple (Mo, Mi, M-i) in stable 
amalgamation in a model £ r of T such that |£r | is well orderable (so Me -< €j), 
the set of isolated types is dense in Sm(Mi U M^) for every m. 

3.8. CLAIM. [T countable] We can add clause (g) below to Mr from 3.5 + 3.6: 

^T (g) if clause (A) then for some M ' clause (B) below holds (both in L[7', F]) where 
(A) (a) M0 -< M{,} -<; M* are countable models of T for i < co x 2, 

(/?) (M{/},c)f€A/B = (M{0},c)ceMl, /or * < co that is M{i} is 
isomorphic to M{0j over M$for i < co, 

(y) (M{co+,},c)ceA/0 = (M{m-},c)ceMll that is M{m+i} is isomorphic 
to M{mj over M®for i < co, 

(S) {M{,}: i < co x 2} is independent over M% inside M*, 
(e) M* is prime over U{M{,}: i < co x 2}. 

(B) (a) M0 ^ M' -< M*, 
(j8) (M' , c ) c e M a ^(M{0},c)ceMi, 
(y) (M{i): i < co)"{M') is independent over M$. 

3.9. Remark. (1) We can formulate (B) closer to ©6 inside the proof of 3.10. 
(2) We can omit "T countable" but then have to change Y with the same proof. 
(3) We know more on 7"s satisfying S r of 3.5 by Laskowski [Las88] and Hart-

Hrushovski-Laskowski [HHL00]. 

PROOF. Note that \T\ — K0 and choose the ordinals /?* = /?(*), a* = a(*) such 
that /?* = 0, X = Na>; most of the proof we do not use /?* = 0 but we use Klr(a)-(f). 

We do more than is strictly necessary for the proof; we use ©,- to denote definitions, 
working in L[T, Y] if not said otherwise and €y is a monster for T in h[T, Y\. 

©i (a) f o r a m o d e l M ^ C r l e t S ^ M ) = {tp(a,M,N): M -< N -< Cr> \\N\\ <0 
and a enumerates N}, omitting 9 means some 6, 

(b) in this case we say N realizes p = tp(a, M, N), 
(c) if p = tp(a,M,N) is as above, then we denote \p\ = \\N\\, 

©2 for d = (ae: e < (} and p = (pe: e < C),Pi 6 SC
Y(M), we say N is 

(p, a)-constructed over M when there is M such that 
(a) M = (M{,-}: i < a1-), where a6 = Y^o^ for e < (, 

(b) M{,j realizes pe if/ G [a £ ,a £ + ae), 
(c) (M{,j: / < a1") is independent over M, 

(d) ./V is primary over M M{,}, 
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©3 we say N is ^-constructed over M if this holds for some d, 
04 if M -< N •< €y,p G Sy(M) then we say q lifts p or (/?, M) to N when 

q £ SC
Y(N) and for some M^,N\ realizing p, q respectively, tp{M\,N) does 

not fork over M and N\ is primary over N U Mi, 
05 for M ^ £ and p\,p2 € SY(M) we say /?2 pushes p\ (in L[7", r]) when 

for some ordinals a\,a2 there are Mi., for i < a\ + a2 and M,M*,M' 
satisfying 

(a) M* is ((pi,p2), (a 1,0:2))-constructed over M as witnessed by M = (M^y. 
i < a\ + a2), 

(b) M <M' <M\ 
(c) M' realizes p\, 
(d) {My}: i < a\)"(M') is independent over M, 

06 (a) assume pe,qe G Sc
r(M) for e < e(*); we say (p,d) is equivalent to (q, /?) 

when d = (a£: e < e(*)), (i = (/?£: e < e(*)) and there is M' which is both 
(p, d)-constructed over M and (q, /?)-constructed over M, 

(/?) we may write p instead of (p),q instead of (</), and omitting d, ft means 
"for some d,/3", 

©1 if p\,pi € SC
Y(M) and p2 pushes p\ then in 05 without loss of generality 

ai,a2< llMII + ir i + l/nl + l^l , 
[Why? By the DLST argument.] 
©7 (a) let APe

y = {{M,pi,q\)\ in ~L[T, Y],M -< £Y have cardinality < 6 and 
puqi e S c

r ( M ) } , 
(b) APf, |= "(Mi,puqi) < (M2, P2,qz)" means that 

(a) both triples are from AP^, 
(/?) M2 is (/?i, </i)-constructed over M\, 
(7) />2» <}2 lift ^ 1 . <?i over M2 respectively, 

©2 ifAP^ \="(M\,p\,q\) < (M2,p2,q2)" andq2 pushes p2 then q\ pushesp\, 

[Why? Straight.] 

®3 if {M,p\,q\) € AP/ '* ' and /?i does not push q\ then we can find [io,fi\,M*, 
p2, q2 and r such that 

(a) APy"*' |= "(M,pi,qi) < (M*,p2,q2)" hence by ®2 the type p2 does not 
push q2, (this is the only point where we use "p\ does not push q\"), 

(b) | |M„||=;*o, 
(c) r e SC

Y
M"(M*) and H^*) < fi0 < ju{ < X, 

(d) ((p2,q2), (X,fi\)) is equivalent to {(r), (X)), see ©6-
[Why? For every ju e [K^*),^) let JV be ((p\,q\), (A,/^-constructed over M 
as witnessed by (Nj: z < X + /u). 

As we are assuming that I(X, T) < |a* - /?*|, there are juo,ju\ such that 
1̂ 1 = *V(*) < [*o < Mi < X and there is an isomorphism / 6 V from TV0 onto 
iV"; of course / is not necessarily from h[T, Y], We now work in h[T, Yf] 
and in the end we use absoluteness (here we use "T countable"). 

Now by the DLST argument and properties of F^ -primary we can find 
(u0,ui,M°,Ml) such that 

(*)4 (a) m is a subset of X + /ue of cardinality /zo satisfying \it( C\ X\ — /io = \ue\X\ 
and [X, X + JU0) C ue for £ = 0,1, 
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(b) Me -< N>" is primary over M U {N,: i £ ue} for £ = 0,1, 
(c) N^t is primary over Me U {Nt: / £ (A + jue)\ue} for f = 0,1, 
(d) / maps M° onto A/1. 

For i £ (X + ni)\ut let A ,̂,- -< N^> be primary over Me U A^,} such that Ne is 

primary over U{A^: j £ (1 + /J^) \M^}; clearly 

(*)5 for ^ = 0.1 
(a) M* -< A ,̂,- -̂  A^, 
(b) {Nu,c)c€Mi = {Nthc)c€M, when 1,7 e X\ue or /,y e (A + /ue)\X\ue, 
(c) (A .̂,-: / G (A + fie)\ut) is independent over Ml and Ne is primary over 

their union. 

Choose y\ £ A\wi,>>2 € [A, A + ,«I)\MI, so (Af1,tp(A7'i7|, A/g), tp(Ari.,,2,Mg1)) can 
serve as (M*,/?i,^i) and r is / ( tp (Mo 7 ,M 0 ) ) for any y £ A\«o-

So we have finished proving ©3.] 

©4 assume p.q are sequences of members of SC
Y(M) and (p,d), (</",/?) are equiv­

alent and M -< N and ^ £ Sc
r(A

r) lift /?£ for £ < ^ ( p ) and ^ £ Sc
y(A0 

lift <?£ for e < ^(<?) then ((/>£: e < lg{p)),a) and ( { ^ : e < lg{q)),P) are 
equivalent, 

[Why? By properties of "primary".] 

©5 if p, q £ Sl
Y°(M) are equivalent then (p, 0), {q, 9) are equivalent. 

[Why? By DLST.] 
Note 

©6 in ©3 we can conclude p2, r are equivalent. 

[Why? In clause (d) of ©3, let N be the model and let a witness for N being 
(r, A)-constructed be (A',2: i < X) and for N being {{p2, q2), (X, /ii})-constructed be 
{N*: / < X + p\). Let u0 C X, u\ C X + jui be of cardinality ju\, [X,X + fi\) C u\ 
and Ml be such that: 

(*)6 (a) Ml AN 
(b) Ml is primary over u{Nf: i £ u\}, 
(c) Ml is primary over UJA^*: i £u{\, 
(d) N is primary over UfAf: / £ X\u\} U Ml, 
(e) A' is primary over U{N*: i £ X + fi\\u2}. 

The liftings r'. p'2 of r, p2 to Ml are equivalent, so we "collapse" to cardinality juo 
getting M" so M " is (r, /^-constructed over M* and {pi, JUQ)-constructed over M*. 
Then find liftings r", p2 £ Sc

Y(Ml) of r, p respectively, so r", p2 are equivalent 
naturally but M'J, M* are isomorphic over M by an isomorphism mapping r", p'2' 
to r, pj so we get that r, p2 are equivalent as required.] 

©7 in ©3 if M' is (p2. P-o)-constructed over M* then q2 is realized in M'. 

[Why? Assume M' is a counterexample. Look again at the proof of ©3, so M» is M 1 

there, and so M' is (p2, A)-constructed over M 1 = M* and N1 is (/?2, A)-constructed 
over M1 = M*, so by uniqueness of primary also in Nl we cannot find N' A Nl 

realizing q2. But for any y 6 [1 ,2 + p\]\u2 the model f~l(N\:y) contradict this.] 

Now we can prove 3.8. Let p,q £ S y "'''(Mg) be types which M^^M^y 
respectively realizes. Let (M,p\,q\) = (M^,p,q). 
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So by ©7, there are fio < X and Y\ and M2 G ~L[T, Y\],M2 which is 
((p,q), (^o,/«o))-constructedoverM0 and p2,qi lifting of p,q i n S ^ ^ A ^ ) as there. 
So by DLST we can find such M'2, p2, q'2 for the case /uo = #p(*), but this is absolute 
as /?(*) = 0. Also it gives the required result, i.e., clause (B) of fflT. D 3.8 

3.10. THEOREM. [ZF] IfT is countable and^j below holds, then {recalling 0.12(2)) 
in every cardinal n > T{3B{co)) we have i{fi, T) is < \&* jE\ where 5F* = {f: f 
a function from 3P (co) to co + I}, for some equivalence relation E on the set of those 
functions, where: 

®T (a)-(d) from 3.5, 
(e)-(f) from 3.6, 

(g) from 3.8. 

Remark. (1) Countability of T is not used ( i fwewri te^dr j ) instead of 3P(of)), 
but the gain is not substantial. This applies to 3.11, 3.13, too. 

(2) Fuller more accurate information is given in 3.13. 

PROOF. Let N be a model of T of cardinality ju so without loss of generality with 
universe fi, we work in L|T, N] and we shall analyze it. Now we first choose a 
countable M® •-< N(. As T is superstable, uni-dimensional we can find <p(x, y) G 
L(rr) and a G lg^(M$) such that ip(x, a) is weakly minimal. 

We can find (aa: a < /i) such that: 

©i (a) aa G tp(N,de)\M9, 
(b) {aa: a < ju} is independent in N over Mg (in particular with no repetitions), 
(c) modulo (a) + (b) the set {aa: a < JU} is maximal hence 
(d) tp(N, a) C acl(M0 U {aa: a < ju}). 

Let / G L[T, N] be a function from fito/u such that f(a) < a and (V/? < fi) (3^a < 
fi)(f(a) = P). Now we try to choose (M{aj, ba) by induction o n a < / i such that 

©2 (a) ba G <p(N,a), 
(b) ba$acl(M9U{bp:P<a}), 
(c) M{Qj -< N is F^o-primary over M$ U {ba}, see [Sh:c, IV], 
(d) if a = 2/? + 1 and we can find {M^,ba) satisfying (a) + (b) + (c) and 

(M^},c)ceMl/l ^ (M{fim,c)ceMll then (M{a},ba) satisfies this, 
(e) if a = 2ft and ya — Min{y: ay <£ acl(M@ U {be: e < 2/?}) then ba = a7a. 

[Why can we can carry the induction? We can ignore clause (d) as if its hypothesis 
hold, then clause (e) is irrelevant, and this hypothesis says that we can fulfil clause 
(a), (b), (c), (d). Also if a = 2/5 + 1 and the further assumption of (d) fail then 
we can act as in clause (e). Also in all cases by cardinality considerations recalling 
\<p{M, a)\ = \\M\\ by (c) of Kir of 3.5 there is ba satisfying clauses (a) + (b) and if 
clause (e)'s assumption holds, without loss of generality also its conclusion. 

Let Ba = acW(M0 U {ba}). By the choice ofcp{x,d) if tp(x, a) G p G S(Ba,M) 
then either p forks over a hence is algebraic hence realized in Ba or p does not 
fork over a hence is finitely satisfiable in Mg. Let (baj•'• i < ia) be a maximal 
sequence of members of M such that for each / for some formula <p{x,caj) G 
tp(baj,Ba U {baj\ j < i}) hence no extension in S(Ba U {baj\ j < /}) forking 
over caj. By [Sh:31] there is M{ay -< ,/V with universe Ba U {baj: i < ia\. 

So we are done.] 
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©3 (ba: a < ju) satisfies the requirements on (aa: a < fi). 

[Why? Easy to check.] 
So (M{aj: a < fj.) is independent over MQ inside N hence (by Kr(f)) there is 

N' -< N primary over U{M{ay: a < ju} and by ®i(d) include tp(N, a) hence by 
Klr(c) we have W = N. 

We can find a set S and a partition (It: t G S) of jU such that: for £ = 1,2 and 
a, P < n we have 

®4 (M{ a }, aa, c)ceMli is isomorphic to ( M w , a/?, C)C €M0 iff \/{a,fi} C It. 
tes 

Now how large can |S| be? It is, in V,< \&>(co)\^ZN] < |^(o>)|v (there is a 
function from a subset of &>(co) onto this set). So | 5 | < 9(&>(a>)), but L[r, JV] (= 
"ZFC + |S| < 2*» = |^>(co)|" so there is a well ordering of ^( to) n L[T, JV] = 
^ M 1 ^ 1 , | 5 | < \&{G>)WM\ < |S| < T C ^ M ) andL[r,iV] (= " |S | < 2H»". 
Now we shall prove: 
®5 if / e 5 and L[T,N] \= "N0 < \It\ < fi" then for some a < fi we have 

(Vs G 5)( | / , \« l < No) and/* < T(^ (w) ) . 
Clearly ®5 helps because "^ < T(^9(co))" contradict an assumption on ju. 

Why ®5 holds? Leta(*) = Min(It), it is well defined as I, ^ 0 because "N0 < \h\" 
was assumed. Let / = {Ifi + 1: /(/?) = a(*)}. If 2p + 1 G / =» 2/? + 1 e /,, 
then we get \It\ > |{2/? + 1: /(/?) = a(*)} | = ^ hence the assumption "|/, | < fi" 
is contradicted, so assume that a = 20 + 1 G / \ 7 , . By clause (d) of ®2 apply 
to a = 2/? + 1, we know that if (N',b) satisfies the demands on (M{ay,ba) in 
clauses (a), (b), (c) (i.e., ba G <p(N, 5)\acl(Af0 U {be: e < a}) and N' ~< N is 
F£o-primary over M0 U {6}) then (N',c)ceMt) ¥ (M{a^)},c)ceM<l- This implies 
that /, C a. As it is infinite, by Klr(g) we get (VJ G 5')( | / r \a | < K0) and recall 
\fi\a\ = /i. So {MinC/^a): s € S and /, $£ a } is a subset of ju of cardinality /u 
(working in h[T, N]) and there is a one-to-one mapping from it into 3P(a>) (using 
the isomorphism types of (M^ay,c)c.eMe)- This gives ju < ~£(&>{a>)). But this 
contradicts an assumption on /u. 

So we know 

®e if / , is infinite then it has cardinality ju. 

Let / = /N = f N,Mn,v{x,a) be the partial function from 3°{a>) into co + 1 defined 
as follows: if t G S and tj G 3s{co) codes4 a model isomorphic to (Ma, c)ceMf, for 
a e It then /VO7) = |/(| if/f is finite and /N{V) — f° otherwise: of course, the 
choice of/AT is unique if we use the canonical well ordering of LfT", N] to make our 
choices in particular of M®, <p(x, a), but we could use "any such / " so increasing 
&P below (and fix the coding). 

Now in V for any model M of T of cardinality fi we define 

&M = {(/N, N\co,<p(x,a)): N is a model with universe ju isomorphic to M 

such that N \co -< N so can serve as M$ 

and a &m>N and <p(x,d) is weakly minimal}, 

F* = \J{SfM: M a model of T of cardinality /u}. 

4See more details on this and similar points in the proof of 3.13. 
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Clearly 

©7 (a) !FM depends just on M/ =, 
(b) if &Mi n^M2 7̂  $ then Mi « M2 hence ^ M , = &M2 SO there is an equivalence 

relation ET,M on a subset of Sr* such that the &M S are its equivalence classes, 
(c) the number of models of T in fi up to isomorphism is equal to the number 

of £V/(-equivalence classes. 

So we are done. • 3.10 

3.11. CLAIM. [T countable] The demand ffir from3.\0 is absolute (property of T). 

PROOF. The new point is E3j-(g) which should be clear. D3.11 

3.12. Remark. (1) The proof of 3.10, 3.11 is really a particular case of "the 
number of special dimensions" from [Shx, XIII,§3] the number being here 1; 
see more on this Hrushovski Hart Laskowski [HHL00]. 

(2) The "primary over L){N{ay: a } " is a special case of decompositions. 

3.13. THEOREM. IfT is countable and Kir from 3.10 holds then: 

(a) l(fi,T) is the same whenever ju > fi* =: 0(&~*) recalling 9r* = {f'-fa 
function from m2 to co with supp(/) = {n: f(n) ^ 0} well orderable}. 

PROOF. We elaborate some parts done in passing in the proof of 3.10 (and add 
one point). 

We can interpret n e ra2asatriple (Mo,Mi.ip(x, a)) = {M[j.Ml ,<pn{x,an)) such 
that Mo ~< Mi are models of T Mi with universe oj. Mo with universe {2n: n < to} 
and ip(x, a) a weakly minimal formula in MQ. So the equivalence relation E\ is Zj 
where nE\v <=> [Mj = M0

v,<pn{x, an) = tpv{x. av) and M\, M\ are isomorphic over 
M j = MQ] and EQ a Borel equivalent relation where nE^v 4$ M j = M0

V. 
Let 

3°i = {A: A C m2 is not empty, any two members are 

EQ-equivalent not E\ equivalent and 

A is well orderable}. 

Let 

!F = {f: for some A e £Pi, / is a function from A to co + 1 

such that co e Rang(/)} . 

Let 

6*=0(.9-){<9(F*)). 

For N a model of T of cardinality > 9* let ^ v Q & be defined as in the proof 
of 3.10 but we can write / ' and not (/ , M$,<p{x. a)) as Mo, <p(x. a) are determined 
byDom(f). Let 

Ej = E2
T4t = {( /1 , f 2 ) : there is N £ Modz> for which / , . f2 6 % } . 

(Recalling Modj^ = {M: M is a model of T of cardinality /i}). 
Now 

(*)i if M > 8* and / e & then for some model N of T of cardinality ,u we have 
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(*)2 if N\ = Ni are from Modr / i and n > #* then ^v , = 5 ^ , 
(*)3 ifNuN2 e Modi>jU > #* and 5^ , n &Nl ^ 0 then iVi = JV2, 
(*)4 £"j is an equivalence relation on &, 
(*)s Z?N for N a model of T of cardinality > 6* is an ^-equivalence class, 
(*)6 E1 is the same for all /u > 0*. 

[Why? Assume N\N2 are models of T with universe p., ft. G &nt and let 
NQ, ae

a,N
e,, (a < ju) be as in the proof of 3.10 exemplifying this. Let 0* < ju\ < m. 

If ju = n\,f\Ejf2 => fiEztiJi by the LST argument. The other direction, i.e., 
if ju = ni is similar to the proof of 3.10, i.e., we blow up (aa: a e It) for some t (or 
every t) such that \I, \ = /u and continue as in 3.8.] D 3.13 

3.14. Conclusion. For every countable complete first order theory T, one of the 
following occurs 
(A) for every a, / (NQ ,T) > |a |, in fact there is a sequence (Afy: /? < a) of pairwise 

non-isomorphic models of T of cardinality NQ, 
(B) for all ju>fi*=- 0{&*) (which < fl^Ho)), / ( / / , T) is the same and has the 

form Sr*/E for some equivalence relation E (see more in 3.14 and its proof). 

3.15. PROBLEM. [ZF] Give complete classification of/(A, T) for T countable by 
the model theoretic properties of T and the set theoretic properties of the universe. 

But it may be wiser to make less fine distinctions. 

3.16. DEFINITION. (1) Let |A'l •< \Y\ mean that X = 0 or there is a function 
from Y onto X (so \X\ < \Y\ implies this). 

(2) Let \X\ « | r | if |JST| 3 | 7 | 3 \X\ (so this weakens |JJf| = \Y\ and is an 
equivalence relation) and \X\/ m is called the essential power. 

3.17. THESIS. It is most reasonable to interpret "determining /(A, T)" as finding 
I{X. T)/ « which is the essential power \{M/ = : M a model of 71 with universe 
A} | /« . 

3.18. CLAIM. Assume ^T of 3.10 and T is countable. 

(1) IfTis ^-stable then /(&>, T) = Ifor every a > 0. 
(2) IfD(T) is uncountable and a > 0 then: 

(a) \{AC"2: \A\ < Ka}\ < t(K, T)}, 
(b) /(Na, T) is < -below \{A C " 2 : M| < NQ}j 

(note: \A\ < Ha =̂> A is well ordered). 
(3) IfD(T) is countable, T is not ^o-stable and there is a set of&\ reals and a > 0 

then 

/ ( H Q . r ) » | { ^ C » 2 : M| <H Q } | . 

PROOF. As in [Sh:c]. (E.g., in (2) the first inequality holds as in L[T, Y] we can 
find countable complete T\ D T with Skolem functions M\ \= T\,an e mM\ for 
n e "'2 and bn e M\ for n < co such that letting a = <x>. A — ( r o2)L [ r y i we have 
[*)a

A (a) (b„: n < a) is a non-trivial indiscernible sequence in M\ over {an: n E A}, 

(b) (tp(a^, 0, M\ \xT): n G m2) are pairwise distinct, 
(c) (an: n € w2) is indiscernible in {M\.bn)n<0) in the weak sense of [Sh:c, 

VII, §2], 
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(d) tp(a,, 0, Mi \TT) is not realized in Mi facl({av: v G tu2\{^}} U {6„: n < 
to}). 

So in bigger universe this Mi has a natural extension. So we can define M[+, (an: rj e 
(co2)v), (ba: a e [a>, ft)) naturally such that (*)%M and define M^ for A C M2 as 
Sk({a^: 77 G ^4} U {iQ: a < /i},Mi)}|rr; if ^ is well orderable then MA has 
cardinality p. D 3.18 

We now look at a well known example in our context. 

3.19. EXAMPLE. There is countable stable, not superstable T with D(T) countable 
such that: if there are no sets of Hi reals then /(Na, T) is "manageable" 

(A) let G be an infinite abelian group, each element of order 2. So WG is also such 
a group. We define a model M: 
(a) its universe: GUmG (assuming G n <°G = 0), 
(b) predicates PM = G,QM = l0G, 
(c) the partial two-place function 7/jM which is the addition of G (you may 

add x (£ G A y <£ G => x + My = x), 
(d) Hj1 is the addition on °>G (coordinatewise), 
(e) a partial unary function F„w such that r\ GWG => F^(rj) = tj(n), 
(f) individual constants c\, d the zeroes of G and m G respectively, 

(B) let T = Th(M). Let K* = {N: N (= r and TV omit {g(x) A 2 ( j ) AFn(x) = 
F„{y) Ax ^ y: n < ft)}, 

(C) if (M,: t G J) is a sequence of models of 7" we can naturally define their sum 
®teiMt. Clearly AT* is closed under sum (i.e., \M\ = PM U QM, PM = {f: / 
is a function with domain 7 such that f{t) G P M ' and f{t) is the zero CjM' of 
the abelian group (PM', T/j*'') for all but finitely many /'s}, 

QM = {g- g & function with domain I,f{t) G QMl and for all but finitely 
many t G I we have / ( 0 = c,M'} 
(we ignore that for I finite, formally P M n QM ^ 0}, etc.), 

(D) (ZF) If M is a model from A* of cardinality X and A is a (< A)-free cardinal 
(see Definition 5.2 below) then M = ® M , for some sequence (M,: i < X) 

such that / < X => ||M,-1| < X, 
(E) in (/)) if the cardinal X is (< ,u)-free we can add ||M, \\ < /J. (see Definition 5.2 

below), 
(F) (a) define for M |= T a two-place relation £ M on M: a£A/6 «=> (a = fc) V 

(2(a) A 2(6) A A Fn{x) = F„{y)). It is an equivalence relation on M, 
n 

(b) define M/EM naturally, 
(G) (a) MlEM G A"* for any model M of T, 

(b) Mi = M2 =» M i / £ M | = Mz/^Af,, 
(H) (a) if M f= r and a,b G 2 M then \a/EM\ = I W i / | , 

(b) we can consider a / £ M (where M (= T", a G 2 M ) a n abelian group G„,M 
with every element of order 2 except that the zero is not given, 

(c) if a, b G QM then Ga,M> Gb,M as vector spaces over Z/2Z without zero has 
the same dimension, 

(d) call this dimension X{M), 
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(I) if M\, Mi are models of T of cardinality H„ then M\ m Mj iff M\/EM2 ~ 
M2/EM2 and X{MX) = A(M2) hence i(K,T) = / ( < K,K*) x \co + a\ 
where / ( < K-K*) = Z{/(fy, A"*): fi < a} = £ { / ( ^ , A : * ) : fi < a.H/, < 
6(3*,co)}. D3.19 

§4. On T categorical in \T\. The ZFC parallel of 4.2 - 4.4 is the known 
"\D(T)\ < \T\ implies T is the definitional extension of some T C T, \T'\ < \T\", 
see Keisler [Ke71a], which in Boolean algebra terms say "the number of ultrafilters 
of an infinite Boolean algebra B is > \B\". 

4.1. CONVENTION. For 4.2-4.6, T is first order (with xT not necessarily well-
orderable). 

4.2. DEFINITION. For a first order T in the vocabulary x = Tr, usually for sim­
plicity closed under deduction, we define the equivalence relation Ej on xj by 

(a) for predicates P\,Pi G T. 
P\EPI iff: P\,Pi e x are predicates with the same arity and (Vx)(Pi(x) = 

(b) for function symbols F\,F2 G r, e.g., individual constants. 
F\EF2 iff: P | ,P2 6 r are function symbols with the same arity and 
(VJc)(F,0c) = F2(*))er 

(c) no predicate P G x is ^-equivalent to a function symbol F e x. 

4.3. DEFINITION. Let T = Tr, T a first order theory. 

(1) The theory T is called reduced if ET is the equality. 
(2) Let x/ET be the vocabulary with predicates P/ET,P G T a predicate with 

arity(P/£y) = arityr(i}) and similarly F/ET. 
(3) For a r-model M of T we define M ^ 7 ' naturally, i.e., N = M^ET^ iff they 

have the same universe, A'' is a (T/£y)-model, M is a r-model M \= T and 
(R/ET)N = i?M for every predicate 7? G T ( T ) and (F/ET)N = FM for any 
function symbol F G T ( T ) . 

(4) For N a (r/£r)-model, M = ^N is the t-model such that N = M ^ l if one 
exists. 

(5) Let T/ET be the set of if/ G h(x(T)/Er) such that if we replace any predicate 
R/Ej appearing in y/ by some R' G R/Ej and similarly for FjEj, we get a 
sentence from {^ G L( t r ) : T \~ y/}, see 4.2. 

4.4. Observation. [ZF] For every first order T (as in 4.2) in L(XT) 

(a) ET is an equivalence relation on x, 
(b) if M is a r-model of T then M [ £ r ] is a uniquely determined (T/£Y)-model of 

T/E and^M^) = M, 
(c) for every (r/£)-model M of T/ET, the r-model [£,1M uniquely determined 

and is a model of T and ( l £ r l M ) ^ l = M, 
(d) T/Er is a reduced first order theory. 

See hopefully more on such T's in [Sh:F701]. 

4.5. Hypothesis. x(T) C Las usual. 

4.6. CLAIM. [ZF] If T is a complete first order theory in L(T) and T is reduced and 
Y CL,t_henT G L[7] ^> \D(T)\L^ > \T\. 
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PROOF. By the ZFC case (see Keisler [Ke71a]). • 4.6 

4.7. CLAIM. IfTChis categorical in k and Y G Ord then in L[T, Y] the following 
is impossible 

® (a) T stable, X> \T\+K\+n, 
(b) M -< £ is F^ -primary over 0, see [Sh:c, IV], 
(c) di G nM for i < JU, 

(d) tp(aa, U{a,-: i < S}) forks over U{ay: y < a } whenever a < 8 < fi,S a limit 
ordinal from S, 

(e) every type over U{a,- : / < / / } W/H'C/J is realized in M does not fork over some 
L){dj: / < a} for some a. < p., 

(f) in L[T! y] we have: fi regular uncountable, S C [i stationary. 

PROOF. Work in h[T, Y]; without loss of generality M has cardinality X, and 
toward contradiction assume © holds. By clause (b) there is c such that 

(*)i c = (cr. i < i*), 
(*)2 M ~ U{c,-: i < i*} and tp(c,, U{cj: j < i}) does not fork over some finite 

Bi C \j{dj : j < i} for each i < i*. 

So by the properties of non-forking (or of F^ -constructions, [Sh:c, IV]) without 
loss of generality we have (i* > JU and) U{a,: i < ju} C U{c;: j < p}. Hence 
for some club E of p we have a, C I ) c, <=> i < <S for i < ^ ,^ e E; clearly 

i<» 
tp(a<s, U{c,-: / < 8}) does not fork over some finite Q C u{cy: j < 8}. Hence there 
is stationary S\ C 5 n C such that 8 G S => C$ = C*, and let c list C*. 

By clause (e) of the assumption for some a* < p, 

(*)i tp(c, U{a,: i < p}) does not fork over U{a,: ;' < a*} 

hence by the non-forking calculus 

(*)3 for 8 G S\\(a + 1) the type tp(a<5, U{a,-: / < 8}) does not fork over U{a,: i < 
a*}-

By this contradicts clause (d) of the assumption. • 4.7 
4.8. CLAIM. IfTis stable, categorical in A andX = \T\ > Ko then 
Case (a): //"(3F C Ord)(Ni = H^[r'F]) rte« « r ( r ) = H0, i.e., T issuperstable. 
Case OS): //(VF C Ord)(H, > ^\[TY]) then for every Y C OrdwehaveL[T, Y] (= 

"«(r) < Ny. 
PROOF. Ca^e (a): 

Assume the conclusion fails. Fix 7 C Ord such that T G L[7]. Hi = N, [ r I and 
£ = £ r G L[7] is a j-saturated (in L[Y]) model of T and L[F] |= « ( r ) > H, 
where / is large enough and regular in L[ Y]; and we shall work inside L[ Y]. 

Let p = tt\lY] = itf. We can find (a„: n < <o),an G UJ>€Y and a type p -
{<p„{x, d„): n < co} such that <p„(x, d„) forks over U{am : m < co}. Let {nt: i < p) 
list w>(p) such that m < ^, => i < y and for every limit ordinal S < ju we have 
w>^ = {̂ ,-: / < S}. We choose v = {v$: S < ft limit) such that v<5 is increasing with 
limit 8. 

We choose {an: n G w>ju) such that: if £g(n) = n then ari\tfan\t{---"dn and 
ao" • • • "fln realize the same type in £ and tp(a,, U{av: v G w>,w and ->(̂  < v)}) does 
not fork over L){dn\k '• k < £g(n)}. For limit 8 < JX we choose b& which realizes 
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{<pn(x,aV(i\„): n < OJ} such that tp(bg,U{av: v e 0J>ju}u{b§': S' <S is limit}) does 
not fork over U{<3,V) f„ : n < co). 

Lastly, let a- be b$ if / = S and be ani if / = j + 1, and be < > if; = 0. 

Let Mi -< €, M\ 6 L[ Y] be a model of cardinality X which is F^ -primary over 0. 

Let M2 -< €T, M2 G L[7] be F^ -primary over U{a-: i < ju} of cardinality X (see 
[Shx, IV]). Now by 4.7 for /u = Hi, the models Mi, A/2 are not isomorphic even in 
L[K Yx] for any Y{ C Ord (as H[[Kr ' ] = H\[r] = H^), contradiction. 

Case (/?): Assume that the conclusion fails for F. Clearly H^ is a limit cardinal 
in L[T. J"] for every Y' C Ord. So for every [i G CardL [ r r^ n coj we can find (in 
€j ' e L[T, F] chosen as above) a sequence a^ = (a^,,: i < /x) such that a^., G 
cu>(£ for / < ju and a type p = {<pMj(x, a^j): i < ju} in C such that < ,̂(x, af) forks 
over U{aM.,: 7 < «'} for every /. Choose by induction on / < /u an element bf e € 
which realizes {w ; (x ,a M j ) : j < i} but tp(6f, Ufa,,,/: y < T} U{Z>y : j < i}) does 
not fork over U{aMj: j < i}. Let af = aMj^(bf) so {af: i < ju) is as in clauses 
(c) + (d) of 4.7. Note that the function {ju, i) >-*. af belongs to L[T, Y]. Without 
loss of generality {a,,: ft e Card L [ r r ] n coj} is independent over 0 in €y • In 
L[T, Y] let M, -< €^TY] be of cardinality A, F£O-primary over 0. Let M2 -< C^[ r F ] 

be of cardinality X and F^-primary over U{a„: ju e CardL[r F ' n <x>̂ }. But T is 
categorical in A so there is an isomorphism f e V from Mj onto Mi and now we 
shall work in L[T, Yf] and let //* = H^[ r r ] , clearly /1* e RegLIr r] n atf so a^ is 
well defined. By the non-forking calculus, the statement © of 4.7 holds for [i* so we 
are done. • 4.8 

4.9. Remark. Assume T is stable, (complete with infinite models of course), 
A = |T| > Ha > No and for some Y C Ord we have L[Y] \= UK{T) > Ha or Ka is a 
limit cardinal and K(T) > NQ". Then I(X, T) > \a\. The proof is similar. 

4.10. CLAIM. T is not categorical in X = \T\ > Ho when for some Y C Ord: 

© (a) T is stable, 
(b) L[T, Y] \= "\D{T)\ > X = \T\" (holds ifT is reduced, see 4.6), 
(c) the conclusion of 4.8 holds, [or just for every Y1 C Ord we have 

A > K ( n L [ y " ' K r ] ) . 
PROOF. Choose Y C Ord which exemplify the assumption of case (a) of 4.8 if it 

holds. In L[T, Y] letting K = K{T)^TY^ let: 

(*)i Mi be F^-constructible over 0 of cardinality X, i.e., for some sequence (a,-, Bt: 
i < X) we have Mi = {a,-: i < X} and Bj C {a,-: j < /} has cardinality < K 
and stp(aj,Bj) h stp(a,-, {a;-: j < /}) (not necessarily F£-saturated!), 

(*)2 M2 be a model of T of cardinality X with I C M2 indiscernible of cardinality X. 

[Why (*)2 is possible? E.g., we can have ||Mi|| = X because L[T. Y] \= 
-\D(T)\>r.] 

So assume toward contradiction that Mi, M2 are isomorphic, let f: Mi - ^ M? 
onto 

be such an isomorphism and work in L[T. Yf]. Now K(T)L^-T-Y^ may be > K = 
K{T)L[T-Y] and K may be not a cardinality still the properties of Mi ,M 2 from 
(*)i. (*)2 respectively holds in L[T, Yf] for K = K(T)^TY^. Now we can get a 
contradiction as in [Shx, IV]. • 4.10 
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Putting together Claims 4.8, 4.10. 

4.11. Conclusion. If T is stable in X = \T\ < \D(T)\ then T is not categorical 
in X. 

4.12. Free Models. Let T be complete and stable. £ = £Y.T a monster for T in 
L[r, Y]. 

The proofs above (and actually [Sh:c]) suggest that we look more into free models. 

4.13. DEFINITION. (1) A model M of T, (a stable theory) is free when we can 
find a sequence (a,-: i < a) enumerating M such that for each i < a the type 
tp(a,-, {aj : j < i}, M) does not fork over some finite subset say Bt. 

(2) We call ((Aj,cij.Bj): / < a) is a free representation of M where At = {a}••: j < 
/ } . 

Remark. So free is the same as being F^ -constructible over 0. 

4.14. CLAIM. If A C C, X = \A\ is singular and every A' C A of cardinality < X is 
free then A is free. 

PROOF. By compactness in singular ([Sh:54], [Sh:E18]). • 4.14 

§5. Consistency results. In spite of the evidence of § 1, §4, without choice char­
acterization for the number of non-isomorphic models is different then without 
choice. We look for consistency results for "there are few models in cases impossi­
ble by ZFC", in particular we ask (and give a partial answer): 

5.1. QUESTION. (1) Is it consistent with ZF that for some/many K > N0 we 
have: every two strongly K0-homogeneous linear orders of cardinality K, are 
isomorphic? (Add "K singular or K regular"; or add cf(«) = N0.) 

(2) Similarly is it consistent with ZF that 
"if Mi, M-2 C {WX, En)n<0) are strongly Ko-homogeneous of cardinality K then 

they are isomorphic". 
(3) Instead categoricity proves the consistency of all models has nice descriptions, 

(see below): 
Clearly 5.8 below proves that our use of elementary classes in the proof 

for stable, un-superstable T is necessary, that is we could not prove too good 
theorems on PC classes parallel to the ZFC case. 

Toward 5.1(2) we consider: 

5.2. DEFINITION. (1) A cardinality A is free or co-sequence-free when every subset 
of mX of cardinality X is free, where 

(2) A subset A C WX is free when there is a one-to-one function f: A —> m>X such 
that n G A =>• f(n) <3 n. 

(3) A cardinal X is (< >a)-free when every subset of mX of cardinality < X is (< ju)-
free where 

(4) We say "A C WX is (< Ju)-free if there is a function / : A -^>W>X which in some 
L[F] is (< /i)-to-one" and n € A => f(n) < n. 

5.3. QUESTION. (1) Is it consistent (with ZF) that for arbitrarily large JU,JU+ is 
/i+'free? (K0 always is). 

(2) Is it consistent with ZF that all cardinals are free? 
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5.4. CLAIM. [ZF + DC] Let n = Kj. The following is a sufficient condition for X 
being (< n)-free (equivalently -free) 
Qj.,/i far every A C X for some B C X we have: 

(*)i if L[y4] |= "ju is a cardinal < X but > K such that ju < fi^°, 
ju' = Min{/, juHi'} " then h[A, B] \= "p! is an ordinal of cardinality < ju ", 

(*)2 if L[/4] \= "n < X is regular uncountable > K and S — {S < X: 
cf(3) = Ho}" then Tu[A, B] \= "S is a non-stationary subset of ju". 

Remark. (1) A condition for K > Ki will be more complicated. 
(2) (< Hi)-free is equivalent to free (note that "in some L[7]" in Definition 5.2). 

PROOF. SO assume that A is a subset of WX of cardinality < X. 
Let 

3 = {(Y.f): Y C Ord and / € L[ Y] is a function from A to m>X 
such that n G A => f(n) < 77} 

andlet /2K / = ( ^ : ? G ̂ ) be defined by ̂ r / = \{n' G ,4: /(>/') = / (? / )} | L [ / ' F ] . 

So the role of Y is in determining where we compute jun . 
Now it suffices to prove 

© if(Yf) G S then there is (Z, g) G Ssuchthat?/ G A => /2^, , / ' < n*f V n*f < n. 
[Why it suffices? If so by DC we can find {{Y„,f„):n < co) G V such that 
(Y„,f„) GHand 

(*) n G A =» (^ '" / " > i u „ , w " " ) V (^,K"'/" < «). 
Let n = {cd({l,n,^(^))A)/"{/„()/))): i/ G m>X and« < co}U{cd(2,«,a): a G Y„ 
and K < a>) where cd is a one-to-one definable function in L from !U>Ord into Ord. 

Clearly ( / „ : n < CO}GL[7*] and define/;: A—>coby h(n) = Min{n: $" < K}, 

it clearly exists by ©. 
Lastly, let f: A —> 0J>X be defined by f{n) — n\pr(h(n),£g(fh^(n)) where 

pr(n, m) is, e.g., (n + m + l)2 + n. 
Now check.] 
PROOF OF ©:. Let Z be like B is the claim's assumption with Y playing the roles 

of .4; we work in L[Y,Z], without loss of generality Y e L[Z]. Let (na : a < |̂ 4|) list 
A with no repetitions. L e t ^ = {a < \A\: for no/? < a d o we have f{np) = f{na)} 
and let jua = |{/J: f{np) = f(na)} for a G ̂  and so (jua : a G ̂ ) 6 L [ 7 ] , 

In L[7] let ((^a,e : £ < j « a } : a £ ^ ) b e such that for each a e W the sequence 
{r,a.e :e<na) list Aa := {£: /( /?) = / ( a ) } . Now 
E3 it suffices to prove that in L[Z], for every a G 'U there is fa:Aa—> m>X such 

that?7 G Aa => |{v G ^ « : / a ( v ) = / a ( f ) } | < / i a . 
Note that in L[Z], /xa is not necessary a cardinal, in this case fa=f \Aa can serve! 
[Why? In L[Z] we can choose (fa: a G %) in © and then put together / and 
<J{/a: a e ^ } as above.] 

The proof of the condition in © is by cases (on a): 
Case 1: a G ̂  and ,«Q is not a cardinal in L[Z] or jua < K. 
Trivial. 
Hence by clause (a) of the assumption 

(*)2 without loss of generality L[Z] (= "jua is a cardinality". 
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Case 2: In L[Z], jua is regular > K. 
LetBax = {r]a^(n): n < co and C < e}, soinL[Z], (Bax : e < fia) is C-increasing 

continuous and let Ca o = {3 < A: S is a limit ordinal and for every e < fi we have 
e < 5 iff for some C < S, Rang(^a.e) C Ba^ } . 

InL[Z]thereisaclubC« = {fe: £< /ia}ofjua such that <5 G C. = cf(<5)L[r] > H0 

and C . C C and /?0 = 0. 
For e < na let £ = <f;(e) be maximal such that £ > fls and easily ^a.e ^ m(Ba^t), 

and let g(na,e) be the shortest v < ^Q-e which ^ Ba.pi{el • 
Now check. 
Case 3: c f ^Cua ) > K. 
Similarly. 
Case 4: c f ^ K / O ) = % 
Here we can find an increasing sequence {B„ : n < co) o subsets of A of cardinality 

< fi such that Aac\J m{Bn). 
n<a> 

So we can proceed as above. D 5.4 
DISCUSSION. Question 5.3 seems to me to call for iterating Radin forcing but for 

H2 there is a short cut. For this we quote. 

5.5. THEOREM. Assume ZF+ DC + AD and K = H]. Then 

(*)K for every A C nfor some n G m2 we have A G L[^] andrf {hence A#) exist. 

PROOF. Well known. 

5.6. CLAIM. [ZF] 

(1) If DC + AD + K = Hi or just (*)Kfrom 5.5 /*oW.s, ?/;e« Kj is free. 
(2) ^4/so K w Ord-free (see Definition 5.10 below). 

PROOF. (1) We can easily check the criterion from 5.4 as for M a model with 
universe K and vocabulary C h0J, let n G m2 be such that M G L[//] and can work 
inL[)/,/7#]. 

(2) Easy, too. D 5.6 

5.7. Observation. [ZFC + DC] If (*)A.3 then Ox.d where 
(*)x,a f° r every ,4 C X there is 5 C d such that 4̂ G L[5] and Z?# exists (so (*)* 

is (*)K,N0). 
EU.e every model M of cardinality X with vocabulary of cardinality < d (so TM 

well ordered) is isomorphic to a model of the form EMr(A,0) for some 
template O with |T<I>| < 9 (so Ta> well ordered). 

Remark. This includes (A, <Q) where < a is a well order of X of order type 
a G[A,A+]. 

5.8. CLAIM. Assume T C T\ are countable complete first order theories. 

(1) If T is stable not superstable and X > Ho + | T\ \ is not free (see Definition 5.2) 
then PC(7\, T) is not categorical in X. 

(2) IfT is unstable and X > Ho then PC (TV T) is not categorical in X. 

PROOF. Without loss of generality T, T\ CLj , . 
(1) Working in L[7i, T] we can find <I> proper for trees with co + 1 levels as in 

[Shx, VII], i.e., To, e HTUT], EM l ( r ] ) ( / , 0 ) a model of T\ (e.g., for / C «^A) 
satisfying EM(°^A, <D) |= <pn(an, av)

i{(~r=iM when n G aX, v G "A. 
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Let F: X —> WX exemplify that X is not free, i.e., its range is not free. Work­
ing in h[T,T\,F] (so without loss of generality F is one to one), let M\ = 
EMT('A. 0),M2 = EMr(

f t , > lURang(i7) ,0) and assume toward contradiction that 
/ is an isomorphism from M\ onto M2 and we shall work in h[T, T\,F,f], in 
this universe let ^ C X be of minimal cardinality such that {F(a): a £ %} is 
not free (in the same sense). By [Sh:52] (or [Sh:E18]), \W\ is a regular uncount­
able cardinal, so by renaming without loss of generality 'U — JX = cf(/u) > H0. 
Let W C X,\W\ = n,{f{aa): a £ %} C EM('H^O) and let (wa: a < //) 
be a filtration of W. Clearly M\ satisfies A C M\ t\\A\ < JU => S(A,M) = 
{tp(a, A, M): a e Mi} has cardinality < \A\ + Ko < JU. This holds in M2 hence 
(Va < fi)(3p < ju)[Vy G wa)[{f{aF{y)]n): n < co} C EM(l(wfi),<S>). We continue 
as in [Sh:c, VIII, §2] and get contradiction. 

(2) As in 2.5. • 5.8 

5.9. CLAIM. Assume X > Ho is a free cardinal. 

(1) For T = Th(a'co,E„)„<w, En = {(//, v): n, v G <aco,ri\n = v\n), for some count­
able complete T\ 3 T, PC(7V T) is categorical in X (T\ does not depend on 
X). 

(2) There is a countable complete stable not superstable T such that if M \= T, 
\\M\\ < X, then the isomorphism type ofM is determined by two dimensions. 

PROOF. (1) As in [Sh:100], Tx will guarantee that for any M e PC(7i, T) we 
have: 

(*)i if a € M then {b G M: M \= bEna for every n < co} has cardinality ||M||, 
(*)2 if a G M, n < oo then {b/E^+l: b G a/En} has cardinality || M ||. 

So suppose M\,M2 G VC{T\, T) has universe X and we work in \\T,M\,M2]. 
There is M[ ^ Me of cardinality X and At C mX, \At \ = X for I = 1,2 such that 

(*)3 \M(\ = Ae x A, (r/,a)E„(v,p) iff (77, v G Aa,a,p< A and) 77 T« = vfn, 
(*)4 v e ^ l ^ (3A/7)(v < 77 G ^ ) . 

By the assumption "X is free" (see Definition 5.2) we can find gn: Ae —> co such that 
(771^(77): 1 e At) is with no repetitions and we shall work in h[T2, M\, M2, A \,Ai, 
8i>g2\- For K < ju let ^ be the family of functions h such that 

(*)| (a) h is a partial one-to-one function from A\ into A2, 
(b) |Dom(A)| = K, 
(c) for 771,772 G Dom(/j) and n < co we have 771 f« = 772C7Z <̂> h{r]i)\ n = 

h{n2)\n, 
(d) if £ € {1,2} and v e At and (VTJ < GJ)(3T7 G Ae)(v\n = 77 fn) then v G /*<>. 

Let ^ = {77 :̂ a < X}. It is easy to choose ha G ^k0+|a| by induction on a 
increasing continuous with a such that 77̂  G Dom(/za+i), 77̂  G Rang(/7a+i). 

(2) As in Example 3.19 using co-power. 

5.10. DEFINITION. (1) We say X is Ord-/i-free when: 
for every linear order M = (/,, <A /) , A for some Z? C 1 in LL4,5], M 
can be represented as U{M,: i < p.}, Mt embeddable into ("X, <evcn) 
where 77 <even v <=> (3w < «)(w = ^(77) = €g(v)A (77(777) ^ v(m)) A 
(77(777) < v(m) = m even) (see Laver [Lv71], [Sh:e, XII, §2]). 

(2) If fi = H0 we may omit it. 
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5.11. CLAIM. If X is Oxd-free then any two strongly ^-homogeneous linear orders 
(see below) of cardinality X of the same cofinality are isomorphic. 

5.12. DEFINITION. / is a strongly K0-homogeneous if/ is infinite dense isomorphic 
to any open interval and its interval. 

PROOF. See above. 

§6. Comments on model theory in ZF. Before we comment on model theory 
without choice we write up the amount of absolute which holds. 

6.1. Observation. Let T be countable complete first order theory, without loss of 
generality LT ( r ) C iF(K0) (or if you like C co), so T C ^ (K 0 ) . 

(1) "T is stable" is a Borel relation. 
(2) "M is a countable model of T, q (y) e S<w(M).p(x) e S<0J(M)andMe -< M 

M 
for I = 0,1,2 and for stable T, Mi Mj M2, p does not fork over M0, all coded 

M0 

naturally as a subsets of co" are Borel. 
(3) In part (2), "p J_ q" is Borel as well as "p _L q" is Borel, also "p ± M0" by 

wk 

clause (e) of part (3A). 
(3A) Let Teq be T when we add predicates naming the equivalence classes so 

have a predicate Pv(x,p) equivalent to every <p(x) € L(TJ-), ([Sh:c, III]) 
and T^q be the universal part (pedantically the consequences of Teq), so 
T(r) ,L(T(r e i ) ) , Tei, T*q are Borel definable from T. Also the following are 
Borel 
(a) A is a model of T^q in this observation with universe C to and we use 

A, Alio denote such models, 
(b) A\ C A2 are models of T*q,A2 = acl{A\) (in any M,Ai C M \= r e q ) , 

and computing such A2 naturally defined, 
(c) p e Sm(A),A a model of 7^q; i.e., {tr>(a,A,M): A C M f= Teq,a € 

rM} we may write acl{A), 
(d) computing p\A2 from Xi C A2 and /> 6 Sm(/l2), 
(e) computing Rm{p, A, 2), Rm(p, A, Ho), rkm(/?, A, No) for p an w-type over 

A, (a model of 7^q), A C L( r r ) finite), 
(f) A\ C .42,/>(-*) a n w-type over ^2 (in clause (c)'s sense) and p(x) does 

not fork over A2, 
(g) A\ C A2,p{x) an ra-type over ^42, the type /?(x) does not fork over ^2 

and is stationary over A\, 
(h) in (g) computing the unique extension q € Seg^^(A2) of p(x) not forking 

over A\ and tp(ao"«r<zr • • • A2, Af) when A2 C M \= Teq.a„ realizes 
/?(x) in M and/?^, = tp((a„,^2 U {<3o, • • • ,<*n-\},M) does not fork over 
Au 

(i) pt(xe) e S m W U ) for £ = 1,2 are weakly orthogonal, 
(j) for At C ,4, the stationary types /?f(x) € Sm(f,(y4^) for £ = 1,2 are 

orthogonal, 
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(k) from A C Ae,A2 such that tp(A(,A) is stationary for £ = 1,2 and 
computing A', (f g, A'e) for £ = 1,2 such that ,4 C A', ft an isomorphism 

^ ' 
from At onto ^ over /4, A't C /I for £ = 1,2 and ^ Ml A'2, 

A 
{£) A\ C ^ 2 , ^ C /f2and/>(*) € Sm(A) is orthogonal to ̂ , . 

(4) ' T has DOP" is a S|-relation (so NDOP is Il2). 
(5) "T has DIDIP" is 2{ (so NDIDIP is n [ ) . 
(6) " r h a s O T O F ' i n l J . 

PROOF. Sometimes we give equivalent formulations to prove. 
(1), (2) are obvious; for "does not fork" see clause (f) of part (3A). 

(3) (a.) p ± q just says: for some A C M,p,q e S<W(A,M) (or even p,q e 
wq 

S-"J(A, M)) satisfying: iicp{x,y,z) 6 L( r r ) and a from 4̂ wehave/?(x) U 
q{y) h (p(x,-y.fl)or/>(x)Up(-y) I—«p(x,y, a) and remember compactness, 

(b) p -L q, see clause (j) of part (3A), 
(c) p ± MQ by clause (£) of part (3A). 

(3A) E.g., 
Clause (e): Because A is finite, the value is a natural number and for 

0 < K(),& < co we have Rm(p(x), A, 9) > k iff some Borel set of formulas, see 
[Sh:c, II, §2] is consistent. Simiarly for (Rm(p(x), A,0) > k\) V (Rm(p(x), A,0) = 
A:,) A M\tm(p(x),A,9) >k2). 

Clause (f): This is equivalent to "if AT, = ac/(v42), A C L(TJ-«I) is finite then there 
is q e S^(/l2), i.e., a definition of such type which extend p \ A and is definable over 
aclUi). 

Clause (g): We can use the definition: for every finite A there is q e S™(Aj,) 
definable over ad {A \,Ai) such that Rm {p(x), A, 2) = Rm (p(x) Uq(x), A, 2). 

Clause (j): This is equivalent to: ^ G S< £°(^) for £ = 1,2, At Q M, and for 
every n < a> and finite A] C L(rr) for some finite A2 C L( t r ) , if {afc,... ,a^_{} is as 
in clause (h) with (A(,A\ UA2,pe) here standing for {A\,A2,p) but we have finitely 
many possibilities for each, then tpA2(a,]"... "a\_l,A\ U A2,M),tpA| (a~l~ • • •'a1

n_x, 
A1UA2, M) determine the A\-typeof (a\~... "a\_\a\~... ~a^_x) over^iU^in-*^-

Clause (£): First assume A \, Ai, A are algebraically closed. We know that p ± A\ 
iff there are / , M such that A2 C M \= 2"eq, / D id^ (M, M)-elementary mapping 

M 
(i.e., an automorphism of M) and mapping A% to A'2,A\ Ml /42

 s u c n t n a t ^ -i-
A 

f(p). In the general case as in clause (j) work with "for every finite Ai . . . ". 
(4) Obvious by (3) and by the definition (there are countable models of 

M3 

T,Me(£ < 3) such that M\ MJ M2,M?, is F^o-constructive over Mi U M2 and 
Mi 

/> e S<<U(M3) non-algebraic such that /? _L Mi, /? J_ M2). 
(5) Obvious by (3) and the definition (equivalent to: there are countable models 

M„ of T, M„ -< M„+i, and countable N which is F^ -atomic over U{M„ : n < co} 
and non-algebraic p e S<C0(Ar) such that « < co =^ /?„ _L M„). O 6.1 
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6.2. CLAIM. 

(0) CONVENTION. 

(a) T's vocabulary, x = TJ is well orderable and for simplicity C L, 
(b) M, N denote models ofT with universe a set of ordinals, 
(c) T a theory in L(T) so \T\ is a cardinal; without loss of generality r C hx, 

X = \T\ + K0, 
(d) "a model of T" means one with well ordered universe so without loss of 

generality a set of ordinals. 
(1) DLST and ULST holds {for models as in clause (b)), short for the downward 

Lowenheim-Skolem-Tarski and the upward Lowenheim-Skolem-Tarski theo­
rems respectively. IfT is categorical in X > \T\ then T U {3-"x{x = x): n < 
co} is complete, etc., all that takes place in some L[F] is fine. 

(2) [T complete] T has an ^-saturated model iff every model of T has an No-
saturated elementary extension iff'D{T) can be well ordered. 

(3) Define K{T) =: sup{«;(7,)L[r rl: Y a set of ordinals} but probably better to use 
K+{T) = U{{K{T)+)UT-^ : Y a set of ordinals}. 

(4) Assume T is complete. Every model M ofT ofcardinality < Xhas a K-saturated 
elementary extension of cardinality < Xiff\D{T)\ < X and (a) V (b) where 
(a) \K>X\ = X, i.e., [X]<K is well ordered 
(b) T = Th(Af) is stable, \X<K{T*>\ = X and \&>(co)\ is a cardinal < X if some 

p £ S{B),B C M \= T,M well orderable, \B\ < K{T) has a perfect set of 
stationarization andX > Ho. 

[Whyl As in [Sh:c, III], particularly section 5, hopefully see the proof of 
[Sh:F701, 1.1].] 

(5) [T complete] 
(a) if->(\D(T)\ < \T\) then there is a family & of subsets of D{T), each of 

cardinality < \T\ and U{P: P e 3P} = D{T) and for each Peg0 there 
is a Q> proper for linear orders, with r{T), T (O) C L such that every model 
EMx(T-]{l,<t) satisfies: the model realizes p € D{T) iff p e P. 

(6) Assume there is no set o/Ki reals. IfT is complete countable, D {T) uncountable, 
M \= T andPju = {p & D{T): M realizedp} then PA/ is countable. 

(6A) Of course, it is possible that |Z ) ( r ) | L [ r r ] is large in h[T Y]\ {e.g., there is a set 
of\T\ independent formulas see 12)(c)). 

(7) IfT is complete not superstable, T\ D T complete, X = cf(A) > |ri|,A > 
8(tP(co)) andaxiomAx\ {see [Sh:835], i.e., |[A]N(I| a cardinal) then there is (M„: 
u C X) such that 
(a) MuePC{TuT), 
(b) \\MU\\=X, 
(c) u^vCX^-Mu^Mv. 

[Whyl There is a sequence ( Q : 6 € S),S C S^ stationary Q C S = 
sup(Q), otp{C$) — 0 {hence we can partition S to X stationary sets)]. 

(8) Define X{X) by ^{X) = X,H>a+l{X) = 0{<?O'a{X)),^{X) = U{3'a{X): 
a < S}, it is a cardinal. IfT is countable, F is a countable set ofiL{tr)-types and 
for every a < w\ there is M € EC^' {TT) so \M\ C L of power 3'a or just of 

power > D« {but we do not say that an 03\-sequence of such models exists]), 
then there is an <D e T^JT] so \x<s>\ = tt0 such that EM r ( r ) ( / , O) e EC (J. T) 
for every linear order I. 
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[Why] See proof of (9), but here the members of the tree are finite set of 
formulas hence the tree is C L(T] and we can define the rank in L[T] but. we let 
(A„ : n < u>) be an increasing sequence of finite sets of formulas, each <p g A„ 
has a set of free variables C {x 0 , . . . , x„-\} and M A„ = L(rr) , A„ is closed 

n 

under change of free variables {modulo the restriction above). We define ETn as 
in the proof of part (9) by p e 9~„ is a complete (A„,n)-type. The tree is really 
C a>aj.] 

(9) [DC] Assume T is an (infinite) theory with Skolem functions, F a set ofL^r)-
types and for every a < 0(&>(\T\)) there is M € EC(T, F) of power > ~2a in 
h[T, M], then there is <1> such that EMx(T)(l, O) 6 EC{T, T) for every linear 
order I. 
[Whyl A wrong way is to assume 6{£P(\T\)) is regular and in stage n we have 
an n-indiscernible sequence \n

a C M of cardinality ~D!a for a < 0(3°(\T\)) 
with n-tuple from \n

a realizing p„, as in the ZFC proof The problem is that 
there may be no regular cardinal > 9(£P(\T\)). But more carefully let 3~n 

be the set of complete types p„(x§,...,x„-\) consistent with T', such that it 
is the type of a sequence of length n which is m-indiscernible for each m < 
n. The order on !T = l){?7~„: n < co} is inclusion, so really ?Tn is the n-
th level. We need DC^,, to have a rank function on this set which has power 
< 3°{\ T\). We prove by induction on the ordinal y for each n, that if p € fFn 

has rank y that no indiscernible I C M, M e EC(T T) of cardinality > ~2(}y 
exists.] 

(9A) Of course, if EC(TT) has a model M,\M\ C L of cardinality > ~D!3 where 
S := 0(&i\T\)) then we do not need DC. 

(9B) We can avoid "T has Skolem functions", see [Sh:F70l], in both parts (9) 
and (9A). The point is that T needs not be complete, without loss of generality 
T has elimination of quantifiers and we can define TSK which is T + the axioms 
of Skolem functions; now for every a < 0{3P{\T\), there is a model MofTof 
cardinality > ~D!a or just > 3a , it can be expanded to M+, a model ofTSK 

and we can continue (with new function symbols). 
(10) Assume T is complete uncountable. Then all the proofs in §2 + §3 holds ex­

cept that we do not have the dichotomy OTOP/existence of primes over stable 
amalgamation. We intend to return to it in [Sh:F701]. 

(11) If p(xo,... ,x„-\) is a set of h(iT)-formulas consistent with T then it is realized 
in some model M in some universe h[T, Y] hence can be extended to a complete 
type realized in such M, p hence e D„(T) when T is complete. 

[Why? Work in L[T, p], O.K. as p C L as T C L.] 

6.3. LEMMA. [Sh:c] can be done in ZF + (Va)([a]N° is well ordered), see [Sh:835] 
as long as 

(a) the theory T is in a vocabulary which can be well ordered, 
(b) we deal only with models whose power is a cardinal, 
(c) all notions are in L[T, Y], Y C Ord large enough (so € is not constant it depends 

on the universe), 
(d) in [Sh:c, VIII], the case X> \T\\ regular (t(T\) well orderable, too) is clear as 

using the well ordering [XyHu we can find ( Q : 8 £ S#) £ L|X Y] hence define a 
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partition (Sa : a < X) ofS^ such that (3/-a) (Sa stationary {in V), so increasing 
Y we are there but 

(e) Ch VI on ultrapower should be considered separately. 

§7. Powers which are not cardinals. We suggest to look at categoricity of count­
able theories in so-called reasonable cardinals. For them we have the completeness 
theorem in 7.7. We then uncharacteristically examine a classical example: Ehren-
feucht example (with 3 models in K0, see 7.10). 

We naturally ask 
QUESTION. Can an expansion of the theory of linear orders be categorical in some 

uncountable power? 
We then deal with a criterion, i.e., sufficient conditions for categoricity. We intend 

to continue this in [Sh:F701]. 

7.1. CONVENTION. T not necessarily C L. 

We may consider 

7.2. DEFINITION. (1) For a class C of powers we say T\ <™ T2 when: for every 
set X of power 6 C if T2 has a model with universe X then T\ has a model with 
universe X. 

(2) For a class C of powers we say T\ <<?' 7~2 when: for every set X of power <E C 
if T2 is categorical in \X\, (i.e., has one and only one model with universe X up 
to isomorphism) then T\ is categorical in \X\. 

(3) In both cases, if C is the class of all powers > j T2 \ we may omit it. 

7.3. Observation. <<?, <£" are partial orders. 

We may also consider 

7.4. QUESTION. (1) For which countable theories T is there a forcing extension 
Vp of V, model of ZF such that in Vp the theory T is categorical in some 
uncountable power? 

(2) As in (1) for reasonable powers, see below. 

7.5. DEFINITION. We say that X is a set of reasonable power (or \X\ is a reasonable 
power) when: 

(a) there is a linear order of X, 
(b) \X\ = \XxX\. 

7.6. CLAIM. IfTis countable theory and X a set of reasonable power then T has a 
model with universe X. 

PROOF. By 7.7. • 7.6 

7.7. CLAIM. [ZF] 

(1) For some first order sentence y we have: for a set X the following are equivalent: 
(a) X is a set of reasonable power, 
(b) ifT is a countable theory then T has a model with universe X, 
(c) y/ has a model with universe y/. 

(2) IfT is categorical in \X\, a reasonable power then T U {(3-"x)(x = x): n < co} 
is a complete theory. 
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PROOF. (1) (b) => (a). 

First apply clause (b) to T\ = (the theory of dense linear order with neither first 
nor last elements), or just T[ = {^1} Q T\, where if/] h T\ so it has a model 
M = (X. <M), so <M linearly ordered X. 

Second, apply clause (b) to T2 = Th(co, F),F a one-to-one function from co x co 
onto co, or just T[ — {^2} 6 Ti expresses this so there is a model M = (X,FM) 
of T, so FM exemplifies \X\ = \X x X\. 

Note that we have used (b) only for theories consisting of one sentence. 
(a) - (b). 
Use Ehrenfeucht-Mostowski models. 
That is it is enough to prove: using / = (X, <) a linear order 

EB if T' is a countable complete theory with Skolem functions, every term a(xo,..., 
x„-\) is (by T') equal to a function symbol, M' \= T and (a„: n < <x>) is an 
indiscernible sequence in M', pn = tpqf((ao> • • • > Qn+i),®, M) for n < a> then we 
can find M.(at: t e /} such that 
©(a) M is a model of T\ 

(b) M has universe X, 
(c) (at: t 6 /} is an indiscernible sequence in M, 
(d) (a,u,..., atn _,) realizes p„ in M when /0 </ • • • </ ?«-i• 

Let <* be a well order z(T). 
Let ((/:„, F„): n < a <at) list with no repetition the pairs (k, F) satisfying (*)/t,̂  

such that k{) = 1, M \= VX[FQ(X) = x] where 

(*)k.F (a) ^ G T(T') is a fc-place function symbol, 
(b) there is no H C {0, ...,k — 1} such that FM (ao.^i. • • • »«fc-i) £ 

SkA/({^: ^ e w}), 
(c) there is no fc-place function symbol F\ e T ( 7 " ) such that F\ <* F and 

Fl
M'(ao>...,fl / t |) = F M ' ( a 0 , . . . , ^ - i ) . 

Let Y = M 7„ where Y„ = {(«, ?o,.. . , tk„-\) '• n < a and t0 </ • • • < ^ _ , } . 

Let g: X x X —> X be one to one onto. 
Clearly there is a model as required with universe Y, hence it is enough to prove 

|Fj = \X\. Clearly \X\ < \Y\ as {(0 ,0 : * G / } C Y. Also \Y„\ = \X\k" which is 
1 if k„ = 0 and is \X\ if /c„ > 1 as we can prove by induction on n. Moreover, we 
can choose ( / „ : n < a, k„ > 1) such that / „ is one-to-one from Yn onto X as / „ 
is gotten by composition k„ — 1 times of g. This leads to | Y\ < \X x co\ + \co\. But 
trivially N0 < |X\ by g hence \X\ < \ Y| < \X\ x \X\ + H0 = \X\ hence we are done 
proving (b) =>• (a). 

Let ((/ say "< is a linear order and F(x, y) is a one-to-one function onto". 
Now 
(c) => (a): as in the proof of (b) => (a) 
and also 
(b) =*• (c): should be clear. 
(2) Easy, too. • 7.7 

7.8. DISCUSSION. We can use an K0-saturated model M of T as a set of urelements, 
i.e., we use a Fraenkel-Mostowski model for the triple (M', a copy of M; finite 

Sh:840



398 SAHARON SHELAH 

support; finite partial automorphism of M). Is T categorical in \M'\1 The problem 
is that maybe some y/ e L(2«o)i m define in M' with finitely many parameters, 
a model M" of T with universe \M'\ such that there is no permutation / of 
\M'\ definable similarly such that / is an isomorphism from M' onto M". But 
we may consider (D, No)-homogeneous models of some extension of T (in bigger 
vocabulary). This seems related to [Sh:199], [Sh:750]. 

7.9. DEFINITION. T\ is the theory of dense linear order with neither first nor last 
element and c„ < cn+\ for n < co (so r{T\) = {<} U {c„: n < co}). 

Remark. (1) This is the Ehrenfeucht example for /(Ho, T) = 3. 
(2) We can replace T^ by TLn with 3 below replaced by 3 + n. 

7.10. CLAIM. [ZF] 

(1) T\ is a complete countable first order which is not categorical in any infinite power. 
(2) In fact ifT\ has a model with universe X then T\ has at least three non-isomorphic 

models with this universe. 
(3) If in (2) the set X is uncountable {i.e., \X\ ^ \co\) and moreover not the countable 

union of countable sets then T\ has at least No non-isomorphic models with this 
universe. 

7.11. QUESTION. (1) Consistently (with ZF), in some uncountable power, does 
Th(Q, <) has exactly 3 models. 

PROOF. (1) Follows by (2). 
(2) Let X be a set. For £ = 0.1.2.3 let 

£ = {N: (a) N is a model of T\ with universe X: 

(b) if £ = 1 then N omit p{x) = {c„ < x: n < co}; 

(c) if £ = 2 some a e N realizes p(x) but no 
a e N is the first such element; 

(d) if £ = 3 some element a e N realizes p{x) and is the 
first such element}. 

Clearly 

ffl (a) KQ is the class of models of T\ with universe X, 
(b) Âo is the disjoint union of Kx.Kj. Ki. 

By(*)i,(*)2,(*)3 below the result follows: 

(*)i if ^ 2 7^0 then K3 ^ $. 
[Why? Let M e K3 and we define az(T\)-model N as follows: 
(i) the universe of N is X = \M\, 

(ii) c? = c™+l for n < co, 
(iii) N\=a<bif[M\="a<bAa^ c0 A b ^ c() or a = qf A {b realizes 

p{x) in M) or b = c" A a ^ c0 A \J b < c,„". 
nKoj 

Now check that N e ^3 with eft1 being the <'v -first member of X realizing 
p{x).] 
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(*)2 if A \ , ^ 0 then K{ ^ 0, 
[Why? Let M € Kj and c e M realizes p{x) be the first such element. We 
define a x{T\)-model N by 
(i) the universe of TV is X = \M\, 
(") c»=c?, 

(iii) N |= a < ft iff M \= "a < ft < c" or M \= "c < ft < a" or M \= "c < 
a A 6 < c" or M f= "ft = c A c < a". 

Now check that TV e K\.] 
(*)3 if A", ^ 0 t h e n A : 2 ^ 0 , 

[Why? Let M e K\, let Y = {a e X: M \= "c2„+i < a < cm+i" for some 
n < co} and we define a r{T\)-model -/V 
(i) the universe of N is X = |M|, 

(ii) c^ = c^n for« < co, 
(iii) N \= a < b )tt_ M ^ "a < b A {a £ y) A (ft ^ y ) " or M (= "a < ft A a e 

Y Aft e 7 " or (ft 6 7) A (a £ y) . 
Now check that N e K2.] 

(3) Let M £ K\ have universe X and stipulate c-\ = — oo, X„ = {a: M |= c„_i < 
fl < c„ } for « < co so ( X , : « < co) is a partition of X. 

Let S* = {n < w: X„ is uncountable}. 
Ccwe 1: 5* is infinite. 
For any partition (S„: n < co) of co to infinite sets we can define N £ K\ with 

universe X such that {c^ : n < co} = {c^ : n e So}, o n this set < M , <iV agree, and 
the set {n < co: (C„,C„+\)N is uncountable} is any infinite co-infinite set. 

Case 2: S* is finite. 
We can find A" e Ao with universe X such that max{«: (C„,C„+I)JV is uncountable} 

is any natural number. D 7.10 

7.12. DEFINITION. (1) Let N be (L00.K,A)-interpretable in M means (without 
loss of generality XN consist of predicates only): there is d e A> M and sequence 
(v>R(xR,d): R G TJV), including R being equality such that 

-*OO.K ' <PR(XR,P) e L0 

^gfo) = arity(/0. 

|/V| = {a e M : M |= ^ = (a ,a , J")}, 

/ { " = {a etg{xR)\M\: M \=ipR(a,d)}. 

(2) We add "fully" if <P=(XR) = (x() = x\) for R being the equality. 

7.13. CLAIM. (1) To prove the consistency of "afirst order complete T is categorical 
in some power ^ Ko " it is enough 
(*) yznc/ a model N of T and K > Ho satisfying: if M is a model of T fully 

LOO.K {t M)-.interpretable in N then M = N: moreover there is a function which 
is hoc,K(TM)-definable in N (with < K parameters) and is an isomorphism 
from N onto M. 

(2) We can replace l^oo.K{*N) by: there is a set !¥ such that 
(a) & C {/: / ' a partial automorphism ofN with domain of cardinality < K}, 
(b) (VA C N)(\A\ < K => ( 3 / e &){A Q Dom(/) ) , 
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(c) & closed under inverse and composition, 
(d) iff e&-,A£N then {3g e P)(f CgHae Dom(g)). 

PROOF. Straight. 

Remark. So this categoricity does not imply "not complicated". D 7.13 

REFERENCES 

[BLSh:464] JOHN T. BALDWIN, MICHAEL C. LASKOWSKI, and SAHARON SHELAH, Forcing isomorphism. 

this JOURNAL, vol. 58 (1993), pp. 1291-1301, math.LO/9301208. 
[Be84] STEVEN BUECHLER, Kueker's conjecture for superstable theories, this JOURNAL, vol. 49 (1984). 

pp. 930-934. 
[HHLOO] BRADD HART, EHUD HRUSHOVSKI, and MICHAEL C. LASKOWSKI, The uncountable spectra of 

countable theories. Annals of Mathematics, vol. 152 (2000), pp. 207-257. 
[Hr89] EHUD HRUSHOVSKI, Kueker's conjecture for stable theories, this JOURNAL, vol. 54 (1989), 

pp. 207-220. 
[Hr89d] , Unidimensional theories, Logic colloquium 88, North-Holland, 1989. 
[Ke71a] JEROME H. KEISLER, On theories categorical in their own power, vol. 36, 1971. 
[Las88] MICHAEL C. LASKOWSKI, Uncountable theories that are categorical in a higher power, this 

JOURNAL, vol. 53 (1988), pp. 512-530. 
[LwSh:518] MICHAEL C. LASKOWSKI and SAHARON SHELAH. Forcing isomorphism 11, this JOURNAL, 

vol. 61 (1996), pp. 1305-1320, math.LO/0011169. 
[Lv71] RICHARD LAVER, On Fraisse's order type conjecture. Annals of Mathematics, vol. 93 (1971), 

pp. 89-111. 
[Mo65] MICHAEL MORLEY, Categoricity in power, Transaction of the American Mathematical Society, 

vol. 114 (1965), pp. 514-538. 
[Sh:3] SAHARON SHELAH, Finite diagrams stable in power, Annals of Mathematical Logic, vol. 2 (1970), 

pp. 69-118. 
[Sh:4] , On theories T categorical in \T\, this JOURNAL, vol. 35 (1970), pp. 73-82. 
[Sh:12] , The number of non-isomorphic models of an unstable first-order theory, Israel Journal 

of Mathematics, vol. 9 (1971), pp. 473-487. 
[Sh:31] , Categoricity of uncountable theories, Proceedings of the Tarski symposium (University 

of California, Berkeley, California, 1971), Proceedings of the Symposium on Pure Mathematics, vol. 
XXV, American Mathematical Society, Providence, R.I., 1974, pp. 187-203. 

[Sh: 52] , A compactness theorem for singular cardinals, free algebras, Whitehead problem and 
transversals, Israel Journal of Mathematics, vol. 21 (1975), pp. 319-349. 

[Sh:54] , The lazy model-theoretician's guide to stability, Logique et Analyse, vol. 18 (1975), 
pp. 241-308. 

[Sh:E18] , A combinatorial proof of the singular compactness theorem, 1977. Mineograph notes 
and lecture in a mini-conference, Berlin, August '77. 

[Sh:100] , Independence results, this JOURNAL, vol. 45 (1980), pp. 563-573. 
[Sh:199] , Remarks in abstract model theory, Annals of Pure and Applied Logic, vol. 29 (1985). 

pp. 255-288. 
[Shx] , Classification theory and the number of nonisomorphic models. Studies in Logic and 

the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. 
[Sh:497] , Set theory without choice: not everything on cofinality is possible, Archive for 

Mathematical Logic, vol. 36 (1997), pp. 81-125, a special volume dedicated to Prof. Azriel Levy. 
math.L0/9512227. 

[Shx] , Non-structure theory, Oxford University Press, accepted. 
[Sh:300f] , Chapter VI. 
[Sh:750] , On weak bethfor cofinality logic, preprint. 
[Sh:835] , Pcf without choice, Archive for Mathematical Logic, submitted, math. LO/0510229. 
[Sh:938] , Pcf arithmetic without and with choice. 
[Sh:E38] , Continuation of497: Universes without choice. 

Sh:840



MODEL THEORY WITHOUT CHOICE? CATEGORICITY 401 

[Sh:F701] . More on model theory without choice. 

[WT05] AGATHA W A L C Z A K - T Y P K E , The first-order structure of weakly Dedekind-finite sets, this J O U R ­

NAL, vol. 70 (2005), pp. 1161-1170. 

[WT07] , A model-theoretic approach to structures in set theory without the axiom of choice, 

Algebra, logic, set theory: Festschrift fur Ulrich Feigner zum 65 Geburtstag (B. Loewe, editor), Studies 

in Logic. College Publications at Kings College London , to appear. 

THE HEBREW UNIVERSITY OF JERUSALEM 

EINSTEIN INSTITUTE OF MATHEMATICS 

EDMOND J. SAFRA CAMPUS. GIVAT RAM 

JERUSALEM 91904, ISRAEL 

and 

DEPARTMENT OF MATHEMATICS 

HILL CENTER-BUSCH CAMPUS 

RUTGERS. THE STATE UNIVERSITY OF NEW JERSEY 

110 FRELINGHUYSEN ROAD 

PISCATAWAY. NJ 08854-8019 USA 

E-mail: shlhetal@math.huji.ac.il 

Sh:840

mailto:shlhetal@math.huji.ac.il

