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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 256, December 1979 

THE THEOREMS OF BETH AND CRAIG IN 
ABSTRACT MODEL THEORY. I. 

THE ABSTRACT SEYHNG 
BY 

J. A. MAKOWSKY AND S. SHELAH 

in -in N an i -rnn i ujl 

ABsTRAcT. In the context of abstract model theory various definability 
properties, their interrelations and their relation to compactness are investi- 
gated. 

Introduction. This is the first of three papers on the analogues of the 
theorems of Beth and Craig of first order logic in abstract model theory. They 
grew out of an unpublished preprint [MS]2 which was revised and extended 
several times by results of both authors as well as other people. They unify 
results due to Badger, Ebbinghaus, Friedman, Gostanian, Gregory, Hrbacek, 
Hutchinson, Kaufmann, Magidor, Malitz, Makkai, Makowsky, Paulos, 
Shelah and Stavi. 

In this paper we present the abstract setting; we suppose that the reader is 
familiar with a standard text on model theory such as [BS] and [CK], with 
Barwise's [Bal] and [MSS]. The main results here are that: 

Beth's theorem together with a Feferman-Vaught theorem for tree-like 
sums implies a weak form of Robinson's consistency lemma (5.4) and the 
Robinson consistency lemma together with the Feferman-Vaught theorem for 
pairs implies full compactness (6.2). 

In [MS2] and [MS3], the continuations of the present paper, we present 
applications of the general theory to particular logics. [MS2] is devoted to 
compact logics and some new logics are introduced, and [MS3] is devoted to 
infinitary logics and A-logics. Some complicated constructions are presented 
in detail there. 

There are three aspects of Craig's interpolation theorem and its corollary, 
Beth's definability theorem: 

(A) Philosophical. Every implicit definition is equivalent to an explicit 
definition. 

Received by the editors July 13, 1976 and, in revised form, March 31, 1978, May 25, 1978 and 
September 15, 1978. 
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216 J. A. MAKOWSKY AND S. SHELAH 

(B) Mathematical. Although mathematicians never really cared whether 
they use explicit or implicit definitions, Beth's theorem tries to explain why 
we always have an explicit definition of a concept whenever it is uniquely 
describable. The ordering in real closed fields, e.g., is unique and the proof of 
this gives us an explicit definition of the ordering. Or formally real fields, 
where every element or its inverse can be represented as a sum of squares, can 
be uniquely ordered. Again the proof gives us an explicit definition. Another 
example: Uniquely orderable groups can be characterized by an L,,,- 
sentence (cf. Bludov [B1]) so again there must exist an explicit definition of 
this ordering in L,,,. Since most proofs of Craig's theorem are effective (in 
the finitary case, in the infinitary case this is more complicated) the explicit 
definition can also be obtained on a purely syntactical level. But we do not 
know of any example where this observation gives us anything deeply 
mathematical. 

The main motivation for this paper, however, stems from the third aspect: 
(C) Metamathematical. Craig's theorem holds for predicate logic and sec- 

ond order logic as well as for L,,, and LA where A is an increasing union of 
countable admissible sets. First order logic can be characterized in terms of 
maximality with respect to some model theoretic properties. Now most of the 
proofs of such maximality theorems also give a proof of Craig's theorem. So 
"maximality" implies "Craig's theorem" sounds like a nice motto. Unfor- 
tunately LA does not seem to fit into this picture. More generally we do not 
know if there is a maximal logic satisfying the L6wenheim-Skolem theorem 
down to w and Craig's theorem; in particular Harrington and Kunen have 
shown independently that L,,, is not maximal in a very strong sense. Kunen 
uses CH and gets explicit extensions of L,,, adding propositional connec- 
tives. Harrington gives an existence proof of 22'-many other connectives P 
such that L,1,(P) shares most of the properties of L,. without CH. Both 
results are presented in [Ha]. 

Other aspects of maximality in connection with definability properties are 
discussed in Feferman [Fel] and Stavi [Stl]. 

The aim of these papers is twofold: To provide the reader with a reason- 
ably complete picture of what logics do or do not satisfy what kind of 
definability theorems, providing proofs, counterexamples or references, and 
to discuss definability theorems in the setting of abstract model theory. The 
two cannot be separated completely. Some abstract theorems give us hints of 
how to find counterexamples. Some constructions of counterexamples split 
into two different parts one of which can be easily captured as an abstract 
theorem. What we hope to show, too, is how this interplay works. In detail 
this paper is organized as follows. 

In ? 1 compactness and Lowenheim-Skolem properties are defined as well 
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THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 217 

as the Karp-property. Some theorems relating these properties are studied or 
quoted for later use. 

In ?2 the interpolation and definability properties are introduced for pairs 
of logics: Craig's interpolation theorem, Beth's definability theorem, a 
weakened version of Beth's theorem. A-interpolation and variations around 
Robinson's consistency theorem. Their mutual logical interdependence is 
exhibited, and a theorem of Barwise is improved (Theorem 1.2.4 and its 
corollaries). Also a new characterization of predicate calculus is given as the 
maximal Karp-logic which satisfies Robinson's consistency theorem (Theo- 
rem 2.14). 

In ?3 Feferman-Vaught-type theorems are discussed for pairs of logics and 
various sum-like operations on many-sorted structures. Another characteriza- 
tion of predicate calculus is given involving the Lowenheim-Skolem theorem, 
the weakened form of Beth's theorem and a Feferman-Vaught theorem for 
pairs of structures (Theorem 3.3 and Corollary 3.2). 

In ?4 we review briefly some results due to Feferman and Makowsky on 
uniform reduction which relates Feferman-Vaught-type theorems with defina- 
bility theorems. 

In ?5 we describe a construction whose main motivation is to prove not 
Beth when not Craig. For credit see there. Variations of this construction will 
appear also in [MS2] and [MS3]. Its main content is a way to get implicit 
definitions out of counterexamples for definability theorems. It also yields an 
abstract theorem: Beth's theorem and a strong form of a Feferman-Vaught 
theorem imply the weak Robinson consistency theorem (Theorem 5.4). 

In ?6 we prove that under some weak assumption on set theory Robinson's 
consistency theorem3 implies full compactness. Although not surprising, this 
is a highly nontrivial theorem of abstract model theory and shows that with 
more effort more abstract theorems should be provable. 

In ?7 we finally describe a generalization of an old trick to show that 
second order logic does not satisfy Beth's theorem, which has been worked 
out by Paulos and Burgess. 

We conclude the paper with a survey of what logics do or do not satisfy 
what kind of definability property and an extensive bibliography. 

There are many open problems left in the field: How can one construct 
explicitly logics with prescribed properties? We are still in the state of many, 
but scattered, examples, sometimes with rather well developed model theory 
(cf. [MS2], [Kel], [Ma3] and [BKM] for L(Q) and its extensions and [Ke2], 
[Ba2] for infinitary logic), but no coherent theory is in sight. Abstract model 
theory had two great impulses from Lindstrom and Barwise, but the more 

3Together with a Feferman-Vaught theorem for pairs of structures. 
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218 J. A. MAKOWSKY AND S. SHELAH 

intriguing questions, the hard technical results, which give a field its living, 
seem to develop slowly. We hope to go an important step in this direction. 

Here are some problems: 
Problem 1. Is there any fully compact logic which satisfies Craig's theorem 

or is there any countably generated logic which satisfies Robinson's con- 
sistency theorem and which is different from (extending) predicate calculus? 

Problem 2. What are the properties compact logics have in common? What 
conditions are needed to prove that the union of two compact logics is again 
compact (or similar for other properties than compactness)? 

Kueker [Kue] has developed a general theory around the Lowenheim- 
Skolem theorem. This is what we have in mind for an answer to Problem 2. A 
first step in such a direction has been made by Stavi [St2]. More explicit 
problems may be found in [Sh2] or in the remainder of this paper and in 
[MS2], [MS3]. 

Problem 3. What kind of partial isomorphisms generate reasonable logics? 
Is there a partial isomorphism relation (game characterization) for any 
elementary equivalence relation of an abstract logic? How do the partial 
isomorphisms reflect the properties of logics? 

Stavi and Nadel [NSt], [Na] have some interesting work in this direction. 
An interesting test-case are the various Henkin-quantifiers discussed in [Wa] 
and [Ba4]. Very recently Caicedo [Ca] got very general results concerning 
Problem 3, part 1. 

1. Karp-logics, compactness and cardinality of models. All the definitions of 
abstract model theory are taken from [Bal] unless otherwise stated. Note that 
our languages are mostly finite and all logics have the finite occurence 
property. Infinite languages occur in connection with diagrams. Universes are 
many sorted and PC-classes may admit extra universes, so reducts are 
relativized reducts. We let L vary over languages and L*, Lt, etc. over logics. 
We use also L* for the L*-formulas (sentences).4 Satisfaction is denoted by 
lL* or, when no confusion is possible, by K L-structures are denoted by Xl, 8, 
TI, 91, etc., their universes by A, B, M, N (or Al, . .. , An, etc., for the 
many-sorted case). 

We denote by ThL*(%) = { e L*19 t } and W- (L*) if ThL*(9) = 

ThL*(O). If L* and Lt are two logics, we write L* <Th Lt if whenever 
91 =B(Lt) then also W1 _=(L*). 

Let L* be a logic. L* is said to have the Karp-property (is a Karp-logic) if 
for every L and two L-structures X, 0, 91 -, B implies that 91 93(L*). 

Here W - e means that there is a set of partial isomorphisms with the 
Back and Forth Property (cf. [Bal]). By a theorem of Karp [Ball this is 
equivalent to W9 =3(LJ). 

4Note that L* is not always a set. 
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THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 219 

THEOREM 1.1 (BARWISE). If L* is a Karp-logic then L* <T LM.W 

A proof may be found in [Ba3]. 

THEOREM 1.2 (LINDSTROM/BARWISE). If L* is a Karp-logic in which 

<w, < > is not characterizable by a single sentence even with additional predi- 
cates, then L* = L,.. 

A proof may be found in [Ba2] or [Lil], [Li2]. 
A logic L is said to be (K, X)-compact (K, X cardinals, K > X) whenever 

given a set of sentences I of L* of cardinality K such that each subset :0 of I 

of cardinality < X has a model, then I has a model. Given two logics L* and 
LO we write L* < LO if for every qg E L* there is a cp' E LO with the same 
models, L* = L# if L* < L and P < L*. 

Note that if K1 < K and X, > X then (K, X)-compactness implies (Ki, XI)- 
compactness. 

PROPOSITION 1.3. A logic L* is (w, w)-compact iff <w, < > is not characteriz- 
able by a countable set of sentences of L?* for some L1 D L. 

A proof may be found in [Ba2] or [Fl]. 
Let X, K, ,u be cardinals and L* a logic. We say that L* has the (X, K)- 

Lowenheim-Skolem property for sets of sentences of cardinality IL and write 
LS,,(A, K) if whenever l is a set of sentences of L* of cardiality ,u which has 
a model of cardinality X then it has a model of cardinality K. If ,u is finite we 
omit it. LS,,(K) stands "for all X > KLS,,(X, K)". 

PROPOSITION 1.4. Let L* be a fixed logic. 
(i) If p0 < ,u and L* has LS,,(K, X) then L* has LS,O(K, X). 
(ii) If L* < Lt and Lt is (K, X)-compact (has LS,,(K, X)) so L* is (K, X)-com- 

pact (has LS,(K, A)). 

THEOREM 1.5. (i) (Barwise) If L* has LS(K, w) for all K > w then L* is a 

Karp-logic, provided L is finite. 
(ii) If L* has LS,(W, K)for some K > w then L is (w, w)-compact. 
(iii) (Lindstrom) If L* has LS(W, K) for some K > w and LS(w) then L* = 

L,. 
(iv) (Lindstrom) If L* is (w, w)-comWact and has LS(w) then L = L,,. 

Proofs of (i) may be found in [Bal] as well as for (ii), (iii) and (iv) follow 
using Theorem 1.2. 

Shelah showed that LS(K, w) does not imply LSW(K, w). A detailed study of 

LS(w) may be found in [Kue]. 
The following is an easy exercise and will be used later. 
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220 J. A. MAKOWSKY AND S. SHELAH 

PROPOSITION 1.6. If a logic L* staisfies LS(X) then it has up to logical 
equivalence at most 22-many sentences and therefore almost 22 -many complete 
theories. 

2. Definability and interpolation properties. Let L* be a logic, K a class of 
L-structures, and mp E L*. We define 

Mod((g) = {W%I is an L-structure and W k cp}. 

If Lo C L, 

Mod((g) rLo = {911 is an LO-structure which has an expansion 

to an L-structure t' t }, 

K E EC(L*) iff K = Mod(g) for some qm E L*, 

K E PC(L*) iff K = Mod(qg) rL for some I E L*, L1 O L. 

Interpolation properties. Let L* and Lt be two logics, L* < Lt. We say 
CRAIG(L*, Lt) holds if whenever K1,K2 E PC(L*) and K1 n K2 = 0 then 
there is K3 E EC(Lt) such that K1 c K3 and K3 C K2 (K2 the complement of 
K2 with respect to L-structures). 

We say A-Int(L*, Lt) holds if whenever K1,K2 E PC(L*), K, n K2 = 0 
and K1 U K2 = str(L) (= all L-structures) then K1 = K2 E EC(Lt). A(L*) is 
the smallest extension Lt of L* such that A-Int(L*, Lt) holds. (For its 
existence and construction, cf. [MSS].) 

Definability properties. We say that BETH(L*, Lt) (WBETH(L*, Lt)) 
holds, if given qg E L*, L1 = L U {P), P an n-ary predicate symbol, every 
L-structure has at m6st (exactly one) expansion <%, P> k p; then 

{< W, a>IW has an expansion <W, P > k qg and a ePw) C EC(Lt). 

Joint consistency. T C L* is L*-complete if whenever T is a set, W k T and 
e t T then W _ O(L*). We say that ROB(L*, Lt) (WROB(L*, Lt)) holds if 
whenever T C Lt is Lt-complete, L1 = L U {P), P an n-ary predicate 
symbol, and p,4i C L* are such that T U {rg(P)} and T U {+P(P)} have a 

model, then T U ({q(P), 4i(P')}) ({p(P), 41(P')}) has a model (where P' is a 
new n-ary predicate symbol not in L1 and 4i(P') is the result of substituting P' 
for P in 4'). 

PROPOSITION 2.1. Assume ILI < ,, ILtl < , for some infinite ,u and that Lt is 

(p,u, w)-compact; then the following are equivalent: 
(i) CRAIG(Lt, L/), 
(ii) ROB(Lt, Lt) 

(iii) WROB(Lt, Lt). 

The proof is left as an exercise. 
Let DEF be any of the prefixes CRAIG, BETH, WBETH, ROB, WROB or 

AInt. The following is immediate: 
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THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 221 

PROPOSITION 2.2. If L*, Lt, L**, Ltt are logics, L** < L* and Lt < Ltt, 
then DEF(L*, Lt) implies DEF(L**, Lt). 

THEOREM 2.3. The following diagrams are true: 

CRAIG(L*, Lt) 

AInt(L*, Lt) BETH(L*, Li) (i) 

WBETH(L*, Li) 

CRAIG(L*, Lt) ROB(L*, Lt) (ii) 

WROB(L*, Lt) 

The proofs are left as an exercise. 
Before we can discuss other implications we need some facts from [MSS]: 
Every logic L* has a least extension A(L*) which satisfies 

AInt(A(L*), A(L*)). 

Similarly for BETH(B(L*), B(L*)) and WBETH(WB(L*), WB(L*)). The 
following is taken from [MSS]. 

THEOREM 2.4. Assume that L* is a logic. 
(i) If L* is (K, X)-compact, so are WB(L*) and A(L*). 
(ii) If L* satisfies LS,,(K, X) so do A(L*) and WB(L*). 
(iii) WB(L*) does not preserve the Karp-property (neither do B(L*) nor 

A(L*)). 

It is an open question, whether a similar theorem holds for B(L*). There 
are many ways to define extensions Lt (minimal extensions) of a given logic 
L* which satisfy CRAIG(Lt, Li). The problem is to define one which is in 
some reasonable sense canonical and satisfies an analogue of Theorem 2.4. 

THEOREM 2.5. (i) BETH(L*, Li) * AInt(L*, Li). 

(ii) AInt(L*, Li) 9> BETH(L*, Li). 
So no other inWlication in the diagram of 2.2 does hold. 

PROOF. To prove 2.5 we shall construct two new logics and calculate their 
BETH-closure and A-closure: 

(i) Let LWo = L.J[QwO] be the logic obtained from L. by adjunction of a 
binary quantifier QWxy4p(x,y) which says that p(x,y) well-orders its field. 
LWo satisfies LS(w) since it is a special case of a securable quantifier discussed 
in [Mal]. Note that by Theorem 6.1 below WBETH(LWo, LW') does not hold. 
To calculate B(LWO) we prove: 

LEMMA 2.6. If L contains only unary predicate symbols and equality, then 

Lw = LWo = B(Lwo). 
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222 J. A. MAKOWSKY AND S. SHELAH 

OUTLINE OF PROOF. We prove by induction on the explicit construction of 
B(LWO) that for such L as in the hypothesis there are no formulas satisfying 
the hypothesis of the Beth-property in the nontrivial way. 

To calculate A(LWO) we observe: 

LEMMA 2.7. L(Qo) c A(LWO). 

PROOF. Since <w, < > is characterizable by a sentence of LW? the class of 
finite sets is in PC(LWO), as well as the class of infinite sets. [1 

Now Lemma 2.6 shows us that L(Qo) is not a sublogic of B(LWO), but by 
2.7 it is a sublogic of A(LWO), hence of A(B(LWO)) # B(L?). 

(ii) In [MS3] it is proven that A(L.,[Q1]) does not satisfy Beth's theorem. 
5 

THEOREM 2.8. (i) CRAIG(L*, Lt) # ROB(L*, Lt), 
(ii) ROB(L*, Lt) * WBETH(L*, Lt), 
(iii) AInt(L*, L) =X WROB(L*, L). 

PROOF. (i) Put L* = L,,, Lt = L,,' We have CRAIG(L,,,, L,,,) by 
[Ke2, p. 19] and not ROB(L,,,, L,,,,) by [Ke2, exercise 4, p. 22] (cf. also 2.14). 

(ii) Put 

L* = L,,,,, and Lt= Loooo. 

Malitz showed that WBETH(L,,,,,,, L..) fails (cf. [GH, Theorem 2]). To 
prove ROB(L,,,,,, L..) we note first that a complete theory in L.. o is 
always categorical, so the Robinson-property follows trivially. 

(iii) Hutchinson (cf. [MSS]) showed that A(L,,,(Q1)) (with quantifier "there 
exist uncountably many") does not satisfy Craig's theorem, in fact not 
CRAIG(Lw(Q), A(Lz,(Q))). But A(L,(Q)) is (w, w)-compact, so by Prop- 
ositions 2.1 and 2.2 the result follows, with L* = Lt = A(Lj(Q)). Ol 

THEOREM 2.9. (i) BETH(L*, L) *- WROB(L*, L). 
(ii) All possible relations between two definability properties are exhibited. 

PROOF. (i) Let Lcf 1 be the logic obtained from L,, by adjunction of a 
binary quantifier Qcf lxyep(x, y) which says that q(x, y) orders its field in an 

WI-like way. As in 2.4(i) we need a lemma. 

LEMMA 2.10. If L contains only unary predicate symbols and equality then 
B(Lcf 1) = Lcf 1 = Lw, 

The proof is as for Lemma 2.6. To end the proof of 2.9 we need: 

PROPOSITION 2.11. Lcf 1 does not satisfy WROB(LCf 1, Lcf 1). 
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PROOF. By Lemma 2.10 and first order model theory the L-theory Tinf of 
infinite sets for L = { = } is complete in Lcf I. Let q'i say that an ordering < 1 

of a model is wx-like and let P2 say that an ordering <2 is a proper initial 
segment of an wx-like ordering (using additional predicates). Clearly Tinf U 
{<P} has a model for each i = 1,2, but Tinf U {9Pi, cP2} has no model. EO 

To prove (ii) of 2.9 one uses a finitary checking argument. [1 
For the rest of this section we look at Karp-logics, modifying results of 

Barwise. 

THEOREM 2.12. Let L* be a Karp-logic (hence L* <Th LOO,). 
(i) BETH(L*, Lo..) implies WROB(L*, L.,,3. 
(ii) WROB(L*, L.(,) implies that L* satisfies LS(w). 

COROLLARY 2.13 [Ba]. If L* is a Karp-logic and CRAIG(L*, L*) holds then 
LS(w) holds. 

The corollary follows from the theorem via Proposition 2.2. 
PROOF OF THE THEOREM. (i) will follow from Theorem 5.3 taking L* = Lt 

= Lo 

(ii) By 1.2 and 1.5 we may assume that <w,< > is characterizable by 
qg E L*. Assume for contradiction that 4, is a formula in L* with no 
countable but some uncountable models. Clearly {(p, A,) has no model. Let T 
be the L,,,,-theory of infinite sets. Since all infinite sets are partially isomor- 
phic, T is Loo.-complete. But T U {4p} and T U {(4) have models, a con- 
tradiction. E 

THEOREM 2.14. Assume L* is a Karp-logic, ROB(L*, L*) holds andfor every 
L-structure 1, Th*(R) is equivalent to a set. Then L* = Low. 

PROOF. Again we can assume that <w, < > is characterizable by a sentence 

gp in L*. Put E1 = <w,<, .... > and J2 = KC,c,a: a < w1>, a pure set with 
equality and xl-many distinct constants. 

Put No = lwol and El = IwI. Using the Back and Forth characterization 
of -, (cf. [Bal]) we get that [R1, 21J2, 03?] P [E1, V2' P31]. Put 

T = ThLj[9l, 02, P3?] = ThLj[WZ1, 2' El3], 

so T can be assumed to be a set and T is complete. Let 4{i say that g, is a 
bijection from JIVJ to I131 (i = 1,2). Clearly T U {(4,) has a model (i = 1,2) 
but T U {OI, 4/2) has no model since P1 k qg and therefore 01 is countable 
and V2 is uncountable, a contradiction. E 

COROLLARY 2.15. Assume L* S L,X. and ROB(L*, L00.). Then L* = Lww 

PROOF. Note that for every structure M, ThL (M) is equivalent to a set, 
and repeat the proof of 2.14. [1 
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224 J. A. MAKOWSKY AND S. SHELAH 

3. Feferman-Vaught-type theorems. One basis construction in abstract 
model theory is the operation of taking sums of given models. In its simplest 
form we have the operation of pairing which associates with two structures 
%, the structure [v, 3] for the language L which is the many-sorted disjoint 
union of the languages of W and 0, respectively. Similarly one can form 
triplets, etc., or more complicated objects, of which one will be studied in ?5. 

DEFINITION. Let L1, L2 be languages and L,*, Li (i = 1, 2) logics with 
Li* < Lit. Let 9fi, 9i be Li-structures. We say that FVp(L*, Lt) holds if, 
whenever 91, 91(L,) for i = 1,2 and L3 is the language of the pair [W%, %I] 
then [W21 2]-[ 1 9f](L*). We say that WFVp(L*, Lt) holds whenever 

FVp(L*, Lt) holds for L1 = L2 = L and 91- 2(L1) (F stands for Fefer- 
man, V for Vaught and W for Weak). 

Remember that the pair [91,, 2] iS the structure with the universes from W1 
and from 2 and relations acting on the appropriate universes. It is, loosely 
speaking, the disjoint union of the structures W, and 2 with variables ranging 
over the universes of W, and variables ranging over the universes of 9f2. 

Note that if L** < L* and Ltt > Lt, then X(L*, Lt) implies X(L**, Lt) 
where X is one of the properties above. 

THEOREM 3.1. Assume L* is a logic which satisfies WBETH(L*, L*) and 
WFVp(L*, L*) and LS(X) for some X < :,ck. Then <w, < > is not characteriz- 
able by a single sentence. 

PROOF. We give a proof for the case that X < :%,, the general case being 
essentially the same but more complicated. Assume for contradiction that 
zp E L* does characterize <w, < >. By assumption and 1.6 there are at most 
22-_many theories over countable types. Consider the structure W= 

< V, w, P'(w), E> where V= Ukw,Pk(W), n E , such that 22 < n, and 
Pn(W) is the nth iteration of the power set operation. Now consider the 
structure [vt, %] and let 4, be the formula which says "w is standard" using qp: 

"F is a partial map from V of the first sort (i.e., V1) to V of the second sort 
(i.e., V2)"; 

"F and F-1 preserve e"; 
"F is hereditary, i.e. if F is defined on x andy E x, it is defined ony"; 
"The domain of F is maximal". 
Clearly 4i defines F implicitly and 4i is in L*. Since there are at most 

22 -many theories we may find two structures t1 = V1, w, P1, e> and t2 = 

K V2, w, P2, e> such that WC1nt2(L*) and P1 P2 but P,P2 c (). 
So by WFVp(L*, L*) we have [M1, 2] [91, 91](L*). But assuming that 

O(x, y) defines F explicitly in L* we get that O(x, y) defines a map with 
domain P1 on [9f1, %J, but not on [9f1, %2], a contradiction. So <w, < > is not 
characterizable in L. In fact with more coding it suffices to assume that 
X < ;wick a 
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THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 225 

COROLLARY 3.2. The following properties characterize L,: 
(i) LS(w), WFVp(L.., L..) and WBETH(L,, L.). 
(ii) The Karp-property, WFVp(L.., L..) and WBETH(L., L,). 

Compare 3.2 also with 4.2. 
The following is an abstract version of a result of Malitz [Ml] cf. also [GH]. 

THEOREM 3.3. Let L* be a set for all languages L and assume that 
LO c Lt c L* are three logics such that WBETH(LO, Lt) and 
WFVp(Lt, L*). Then the class of well-orderings is not EC(L0). 

PROOF. Let a </3 be two infinite ordinals such that <a, e> <13, e>(L*). 
They exist for L* is a set. Now look at two-sorted structures of the form 
[9[, 3] where W and e are well-orderings and let F be a binary function 
symbol with domain 9t and range S. Assume for contradiction that the class 
of well-orderings is EC(LO).Let 0 be a sentence expressing that: 

(i) 9t and e are well-orderings, 
(ii) F is an order-preserving map which is one-to-one, 
(iii) either F is an embedding of 9t into e or of e into 9t. 
Now 0 satisfies the hypothesis of WBETH(LO, L'). Therefore there is 

qp(x, y) in Lt, L the language of [vt, 3] without F, defining F. Now put 
9 = <a, e>, e = <13, e>. By WFVp(Lt, L*) we have [vt, 3] _ [0, 9](L1). Put 

T, to express that (p(x, y) is an embedding of 9t into e and T2 that (p(x, y) is 
an embedding of e into 9t. 

So we have [vt, 3] k qPi A - 
qP2 and [0, 9t] k qP2 A - qgP, a contradiction. 

Theorem 3.1 can be easily generalized to: 

THEOREM 3.4. Let L* c Lt c LO be three logics, such that 
WBETH(L*, Lt) and WFVp(Lt, LO) and L satisfies LS(X) for some X < 
Then <w, < > is not characterizable by a single sentence of L*. 

In many cases, where FVp does not hold, it may still hold for specially 
chosen structures. How this is used is shown in [MS2], [MS3]. 

4. Uniform reduction. In Feferman [Fe2] and Makowsky [MN2] a property 
of logics is studied which has two advantages: It comes nearer to the original 
Feferman-Vaught theorem and it is directly related to Craig's theorem. 

Let 9tI be an Li-structure (i = 1,2) and let L3 be a language for [ %,2] = 

P(M1 %2). For a logic L* we say that URp(L*) holds if for every sentence g 
of L* there exists a pair of sequences of formulae 1, ... , 4i,l of Lj* and 
44, ... ., 42 of L* and a Boolean function B E 2"1+n2 such that 

This content downloaded from 131.172.36.29 on Tue, 22 Dec 2015 17:04:45 UTC
All use subject to JSTOR Terms and Conditions

Sh:62

http://www.jstor.org/page/info/about/policies/terms.jsp


226 J. A. MAKOWSKY AND S. SHELAH 

where 

a =T if Wi kn i 
J' 1 if W91 

THEOREM 4.1. Assume URp(L*) holds for a logic L*. Then FVp(L*, L*) 
holds. 

The proof is left to the reader. We now want to generalize URp (uniform 
reduction) to a more general class of operations. Let L, (i = 1, . .. , n E w) be 
languages, 91i be Li-structures and R an n-ary relation on structures such that 
the ith argument is an Li-structure. Let Lo be the language for a structure 

[p, ... ., 9j]. R is said to beprojective in the logic L* if there is a PC'-class K 
for L* such that R(1, ... , 91) iff [9f, . .. , 91JE] E K. A sentence zp E L"* is 
said to be invariant on the range of R if for all %1, . .. *, , W9',, with 

R(%11, Wn- 1 fn) and R(911, . . ., 9n- 1, 9) we have 9n , k iff 9nt k p. 
An n-tuple of sequences of formulas 4'l, ... * *, - l with 'k = 4, .... , * { 

and %hk in Lk* together with a Boolean function B E 2', m = XC-jOmk is called 
an associate pair for g on the domain of R if for all 91, . , gn- 1, n we have 
that R(9 ,...,9n) implies 91n k q iff B(al,... , am,' a a,. ,,a-l)= 1 
where 

aj= O otherwise. 

A logic L* is said to satisfy URn(L*) (uniform reduction for n-ary relations) if 
for every n-ary relation R which is projective in L* and for every qp in Ln* 
which is invariant on the range of R there is an associate pair for qp on the 
domain of R. 

THEOREM 4.2. (i) UR1(L*) iff CRAIG(L*, L*). 
(ii) UR2(L*) implies URp(L*). 
(iii) UR2(L*) implies URn(L*). 

The proofs of (i)-(iii) may be found in [Fe2] and [Mal]. 

COROLLARY 4.3. If L* is a logic with UR2(L*) and the Karp-property and L* 
is a set, then L* = Lcow. 

PROOF. Use Theorems 4.2 and 2.14. O 

5. Constructing implicit definitions. In this section we study a construction 
which enables us to obtain implicit definitions. The construction originates in 
the ideas of Friedman [Fr] and Gregory [Gr]. Shelah realized that the 
construction can be formulated in an abstract setting. 

Let L = Lo U { P} be a language with a distinguished predicate symbol P 
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THEOREMS OF BETH AND CRAIG IN MODEL THEORY. I 227 

(unary for simplicity). Let M = L U {f, C) where f is a unary function 
symbol and C a constant, both not in L. Let X, e be L-structures. 

We define now SP,(, 3) (i = 0,1). 
(i) Sp(9f, 0) is an M-structure with universe N of cardinality card(Wf) + 

card(e) + No 
(ii) f is a function on N such that 
(a)f(x) = xiffC= x, 
(b) for all a e N there is n e w withf"(a) = C, 
(c) f is onto. 

Denote f -(a) - { a} by Na (see Figure 1). 

r 

lf 

f 

FIGURE 1 

(iii) There is a bijection ia: e Na (i = 0,1) where e is either 9t or S. 
ia makes Na naturally into an Lo U {P }-structure which we shall denote 

also by Na 
(iv) for each relation symbol R E L (or function symbol) put Ra to be its 

interpretation on Na and put RN = U aENRa its interpretation on N. 
(v) PN is defined by a E PN =o Na 9' a PN X Na- 

(vi) C e PN if i = 1, C E PN if i = O. 
Spo(%, e) and Sp(%, 0) differ only with respect to NC. Sp(9, 9) is a tree 

with root C and nodes Na. At the node Na it splits INal-many times. Each 
branch has length w. Na =t ifff(a) E P and Na 9 iff f(a) ff P (see 
Figure 2). 

Now we put Tp(9, 93) := Sp(9, 3)\Lo u {f, c}. We say that 
WFVT(L*, Lt) holds if t _=3(Lt) implies that Tpo(t, 93) _=Tp(, 93)(L*). 

PROPOSITION 5.1. If <w, < > is PC(L*). Then UR2(L*) implies 
WFVT(L*, L*). 
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228 J. A. MAKOWSKY AND S. SHELAH 

f 

~~~~~~~f since a cP 

FIGURE 2 

PROOF. S;(9, 3) is a projective operation via the characterization of 
<w, < >, if we replace it by a ternary operation Sp(9f', 9X, 3) restricted to the 
cases 21' 21 or 21' -2, so that the first argument describes Nc and the 
second argument describes Na for a E P, the third Na for a a P. E1 

LEMMA 5.2. Let L* be a logic, L a language and Pi (i = 0, 1, 2) be unary predicate 
symbols not in L. 

Let p, (i = 1,2) be sentences having a model but { PI, P2) has no model. Then 
there is a sentence 4, E (L U { f, c, PO})* (f, c not in L) such that: 

(i) Every L U {f, c}-structure W has at most one expansion 21* k 4,. 
(ii) Sp,(91, 2) t 4 provided 1t k Pgl and 2 k P2 where P, and P2, respectively, 

are substituted for PO. 

PROOF. (i) Let 4, be Ali A 4,2 with 

P1: f(c) = CA f(x) = x X X = C A "f is onto"; 

4,2: a E PO Na = Kf'l(a) - {a}, L U { f, c, PO}> k1, 

a 4 Po= Na = Kf-1(a) - {a},L u {f,C,PO})>srp2. 
Note that Al, E L.. and 42 EG L*. Now let W be an L U {f, c}-structure and 
<21, Pi> t 4, (i = 1,2) (ignoring substitutions of Pi for PO in 4,). We have to 
show that P, = P2. If a E P1 then Na k 4pl, if a 4 P2 then Na k 9P2 so 

(f-'(a) - {a}, L U {C, cF, P2}? ki A P2 

a contradiction. 
(ii) is obvious by the construction of Sp(9f, 3). 

THEOREM 5.3. Let L* < Lt be logics pi (i = 1,2) as in Lemma 5.2 and 
assume that there are Wi k qPi such that SP?(210, 1k) -Sp,(910, %1)(Lt). Then 
BETH(L*, Lt) fails. 
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PROOF. By Lemma 5.2, 4' defines P implicitly. So assume for contradiction 
there is 9 in Lt, an L U {f, c}-formula, such that, for all L U {f, c}- 
structures X, W h #(a) iff there is an expansion %* t 4 A P(a). 

Then we have Sp?(W%, %I) k -' 0(c) and Spl(W%, %I) k 0(c) which contradicts 
Sp?(W%, %I) =Sp(W, Wj)(Lt). n 

The abstract version of 5.3 is the following: 

THEOREM 5.4. Assume Lo < L* < Lt are logics such that 

(i) BETH(L?, L*), 
(ii) WFVT(L*, Lt). 

Then WROB(L?, Lt) holds. 

PROOF. Assume WROB(L?, Lt) does not hold then we have cpi (i = 0,1) as 
in Lemma 5.2 (if the Pi are not unary we have the obvious modification of the 
definition of Sp'(,, )). Also there are 9tI t rPi such that % -{1(L1) and 
Spo(%,0, =_ Sp(%0, 31)(L*), so we can apply Theorem 5.3 and 
BETH(L?, L*) fails. O 

Note that we have BETH(L,,, L..X) and WFVT(LQ0Q,, Lo,,) but not 
ROB(Lw,wq Loo) (by 2.15), so the theorem cannot be improved (cf. ?8). 

6. Compactness and definability. The aim of this section is to find sufficient 
conditions for a logic to be compact, more precisely to study definability 
criteria which imply compactness. It was Lindstr6m who observed that: 

THEOREM 6.1. If L* = Lww1Qi]in<w is finitely generated and 
WBETH(L*, L*) holds, then <w,< > is not characterizable by a single 
sentence. 

This implies that L* is recursively compact, i.e. if I is a recursive set of 
sentences, such that every finite subset of L: has a model, then I has a model. 

PROOF OF 6.1. Assume for contradiction that , EG L* characterizes <W, 
<, R> with L = { K, R,, ... , R,,,) including enough number theory. Let 
L = L U {c} and {(4jn E@ c} a recursive enumeration of L1 where c is a 
constant-symbol. (Here we use the fact that L* is finitely generated.) 

Consider the set of formulas of L2* (L2 = L1 u {P)): 2 = {P(n),4, X A c 
= nln E w} where P is an unary predicate symbol not in L1. L: is recursive; 
therefore it is replaceable by some formula 4D(P, n) using a trick due to 
Kleene which has been generalized by Lindstrom for finitely generated logics 
([Kl], [MSS]). Now 4 A 4, defines P implicitly, since the only model of l: is 
<w, <, R > and we have enough number theory. 

By assumption there is 9(c') E L * such that for every L2-structure tC we 
have 9I 1 P(c) 4 0(c'). But -- 0(c') is 4Am for some m E w. So we have 
W k P(m) iff W k 9(m) iff 9[ k -' 4Am(m) iff W F -- P(m), a contradiction. [] 

Vaainanen has observed that this can be generalized to an extended version 
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230 J. A. MAKOWSKY AND S. SHBIELAH 

of BETH(L*, L*) where sentences are replaced by countable sets of 
sentences in the hypotheses only. The conclusion of 6.1 then changes to L* is 
(w, w)-compact. 

The main result of this section is: 

THEOREM 6.2. Assume L* = 
L( - [QIj and 2o < 2nfor some n E w. If L* 

satisfies ROB(L*, L*) and FVp(L*, L*) then L* is (K, w)-compact for every K. 

Theorem 6.2 is due to Shelah and we shall see in Theorem 6.8 and 
following that the precise set-theoretic conditions. Here the hypothesis that 
L* is countably generated is for simplicity only. The proof of 6.2 involves two 
aspects: a set-theoretic one and a model-theoretic one. Instead of proving 
compactness we study a related notion. 

DEFINITION. L* is ,u-rc (,-relatively compact) if for any two sets of 
sentences 2,21 E L* with 121 = ,u and 12:1 arbitrary, if for every 20 c l: with 
I2 o < ,u, o0 u 21 has a model then 2 U 21 has a model. 

The following collects some simple facts about ,u-rc logics. 

LEMMA 6.3. (i) If ,u is regular, L* is ,u-rc and T, (i < ,u) an increasing family 
of theories of L* such that each T, has a model then U ,<, Ti = T has a model. 

(ii) If L* is (cf u)-rc then L* is ,u-rc. 
(iii) If L* is u-rc then L* is (L, u)-compact. 
(iv) L* is (X, u)-compact iff for all K with X > K > u L* is (K, K)-compact. 
(v) If L* is K-rc for all K X > K > u then L* is (X, u)-compact. 

PROOF. (i) Let Pi (i < u) be unary predicates not in T and 4, be 3xP,(x). 
Put I I = {4i -> pIi < u and p c T,} and 2 = {4i,Ii < }. Since L* is u-rc we 
verify that 2 and 2, satisfy the hypothesis of u-rc. 121 = u by definition of E. 
Now let 20 c I121 <,u. W.l.o.g. 2 is well-ordered of order type u and :0 is 
an initial segment say 20 = 2 r[. We have to show that :0 U 21 has a model. 
Let M be a model of Tx and expand to M' such that PiM # 0 for i < X. 
Obviously M' k 20 U 2 . Using u-rc we conclude that 2 U E: has a model, 
hence T has a model. 

(ii) Let 2,21 satisfy the hypothesis required for ,u-rc and L* be cf ,u-rc. 
There is 2'a <,u such that U a<cf< a = , and ja < . Now put , a = a 

U 21. Each E2a (a < u) has a model, so, by (i), U a<cfd2a has a model. 
(iii) is obvious, taking 21 = 0. 
(iv) easy. 
(v) Use (iii) and (iv). L 

DEFINITION. A cardinal K is weakly characterizable in a logic L* if there is a 
language L4 containing { E) and a theory FK in L,K* such that: 

(i) there is an expansion WK Of <K, E> satisfying IK* 

Let ai be the name of i E K; 
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(ii) whenever e k F1K U {a,Eaj: i < j < K) then {ai: i < K) is unbounded in 
K. 

We say that such a 
'K 

weakly characterizes K. 

LEMMA 6.4. (i) If u is regular then L* is ,u-rc iff <,u,< > is not weakly 
characterizable in L*. 

(ii) If L* is ,u-rc but not X-rc, X regular and X < u then there is a uniform 
ultrafilter D over u which is X-descendingly complete. 

PROOF. (i) Assume L* is u-rc, u-regular and let W = < ,u, < .... > be any 
expansion of <,u, < >. Put 2, to be any subset of the L*-diagram of W and 
E = { > aIa E u} where ( is a new constant symbol. Clearly E has cardinal- 
ity u and satisfies the hypothesis of u-rc. So 2 U 2 has a model which is not 

,u-like. 
Now assume L* is not u-rc and let 2:,2 be a counterexample, 2 = {ma: 

a E /u}, 1I = {(Pa a < 8). Put U to be a new unary predicate and E a 

binary relation, say 
(a) "E is a linear order on U"; now let R be another new binary relation, 

say 
(b) "R(x, y)-* U(x)". 

Denote by qpR(t,x) the relativisation of p to the set R(t, x), where ( acts as a 

parameter. Say 
(c). .a(a,x) f> pR(a,x),, for each / < a < u and (Pa, 9P E Y 
The set 2' defined by (a), (b), (c)y has the same cardinality as y. Put 

1= {R(a,x) . E 21,'a E U}. 

CLAIM. 2' U ' weakly characterizes ,u. 
First we construct a model. Let Ey be a model of 21 U 2y, which exists by 

assumption. Put B = u U U y<,,By where the unions are disjoint. Now put 

e = <B, U, E, R,... > where U' = u, E is the membership of u and 

R < U xy<,,By such that R(y, b) iff b E By. The other relations are naturally 
taken from the S Now let 9J k 2' U Y U {a,Eaj: i <j < u}. Then {ai: 
i < K} is unbounded in U9, for 2, U 2 has no model. 

(ii) Let J be a rich and sufficiently large structure such that H(,u+) is 

contained in E. Let 2, be a subset of the L*-diagram of 1 weakly 
characterizing <XM,< > and put 2 = {a < ( < u Ia E u} where ( is a new 

constant symbol. Again 2 and 21 satisfy the hypothesis of u-rc. So there is a 
model 9J such that E < 9I(L,,) and 9J = 2 U :. Furthermore we can 

assume that XM is cofinal in XN, usin,(i). Now define D on y by A C D iff 

A EM (A is a set of M), A cu, A = ,u and N k E AN. Now assume 

(Ai)ie is a descending sequence of sets of D, Ao = u and n i<xAi i D (i.e., 

w.l.o.g. ni<AAi = 0). Let f be a function in U from u into X defined by 
f(a) = iiffa EAi -Ai+. 

Now we have 9J k Va E u (a < a=f(l) > a) since Ji k ( C n Ai, hence 
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we have 9 k 3xVa E , (a < a8=f(x) > a) and since SR < 91SR k 3xVa E , 
(a < a=4f(x) > a). But since XM is cofinal in XN, we conclude that nAi # 
0, a contradiction. LI 

PROPOSITION 6.5 [KP], [CC]. Let ,u be regular and D be a uniform ultrafilter 
on +'. Then 

(i) D is ,u-descendingly incomplete, 
(ii) if X < u, X regular and D is X -descendingly incomplete, then D is 

X-descendingly incomplete. 
(iii) [JK] Assume V = L (or -iO# or LI). Let K be regular and D be a 

uniform ultrafilter on K. Then D is X-descendingly incomplete for all infinite X. 

Now we can characterize u-rc. 

THEOREM 6.6. (i) L* is (K, ,u)-compact for all K and given A iff L* is K-rc for 
allK > U. 

(ii) If L* is ,+-rc and ,u is regular, then L* is ,u-rc. 
(iii) If Ka is regular, n E w, and L* is Ka+n-rc, so L* is (Ka a)- conpact. 
(iv) (V = L or --# or -1LI). If L* is ,u-rc then, for all X < cf(,u), L* is 

X-rc. 

PROOF. (i) One direction is trivial. Now assume L* is K-rc for all K > . We 
show for each X > , that L* is (X, ,)-compact. X = , follows from 6.3 (iii), 
X > , from 6.3(iv). 

(ii) Assume not, then by 6.4(ii), there is a uniform ultrafilter D on IL+ which 
is ,u-descendingly complete, but this contradicts 6.5(i). 

(iii) Again, assume not; so, by 6.3(iii), L* is not Ka-rc, so, by 6.6(ii), L* is 
not KHa +-rc for each n E w. 

(iv) is proved with 6.5(iii) and 6.4(ii). L1 
After this set-theoretic digression we go back to model theory. We shall 

need an old result of Rabin. 

PROPOSITION 6.7 [Ra]. Let t0 be the first measurable cardinal. For every 
K < l0 there is a structure K = <A, < > and a language L K such that 

(i) P E L,K <P -, < .> <,< >, 

(ii) whenever e > W (L K ) then <P , <Z> is nonstandard. 

Now we are in a position to prove: 

THEOREM 6.8. Let L* be a logic such that IL*I <A ofor each L with ILI <I0 
and such that ROB(L*, L*) and FVp(L*, L*) hold. Then L* is (w, w)-compact. 

PROOF. Let B1, B2 be two infinite sets of different cardinality, 3,8, #23 
respectively, such that, for L = { = }, <B1> _<B2>(L*). 

Since IL*I < p we may assume that 18,f2 < 0 using a Hanf-type argu- 
ment. Now we fix K > max{ 8, I82} K < p. Put K' = <K9fK PI Q, a>a%e 
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where 9K is from 6.7, P,Q are unary and IPI = I8 , IQI = I82. Now assume for 
contradiction L* is not (w, w)-compact. Then %K can be expanded to W" such 
that ThL*(%KZ) is categorical (using 6.7 and 1.3). Now by FVp(L*, L*) we 
have K B1]-[%, B2](L*). We put now T = ThL*[%K, B1]. Let p denote 
the sentence which says that "F1 is a bijection from Pw' into B (the universe 
of the second sort)". 

Let 4 say "F2 is a bijection from Q9 into B". Obviously T U {q}, 
T U {4} have models [%, B1], [%, B2, respectively, but T U {q, 4) has 
none since fl1 # /82 and ThL*(%Kf) is categorical. L 

The same proof works under the following hypothesis (cf. 2.15): 

COROLLARY 6.9. If L* is a Karp-logic and ROB(L,., L*) hold then L* is 
(w, w)-compact hence L* = Lww (by 1.2). 

PROOF. [%, B1] -P [%, B2] since <B1> -p <B2> and since L* is a Karp- 
logic we have [%, B1]- [, B j(L*). Obviously 1'92 are in L,,. 

THEOREM 6.10. Let L* be a logic such that 2L*jI < 2"a+n whenever L is finite 
(for some fixed regular Ka and L* satisfies ROB(L*, L*) and FVp(L*, L*)). 
Then L* is K-rc for each K > Ka with cf(K) > Ka. 

PROOF. Assume first K is regular and for contradiction L* is not K-rc. So by 
6.6(ii) L* is not K+-rc. For any S C { 1313 E K+ and cf(f3) = K} = CK put 

S = <K+, E, S>. Assume K > Ka+n. For Ka < Ka+n we argue with 
6.6(ii) iteratedly. Since 21L*j < 2"-+n there are stationary sets S1,S2 E CK with 
(S1 - S2) U (S2 - S)= S3 stationary and T Js,= s2(L*). Put now W = 

<K+, E, S1, S S3 C_> with cf(a) = cf(a). Since L* is neither K-rc nor K+-rc 
we can expand W to a structure S0 and find a theory I' in the expanded 
language M such that 

(i) 0okr I, 
(ii) I' weakly characterizes K +, 

(iii) F weakly characterizes K, 

(iv) for every a E K + with cf(a) = K I' weakly characterizes a. 
Put S0 = <00, b E B>. By FVp, [O', sj1] [o, JI2](Mo*) where Mo is 

the appropriate language. Now put T to be the MO*-theory of [RN, Vs,] and 
let cpi (i = 1,2) be the sentence which says "Fi is an isomorphism between 
<(K +)S"o, E?O, S?O> and RsD" where F1 # F2 both not in Mo. Obviously 
T U { %p} is satisfiable in [e0, uflsj. 

CLAIM 1. T U {1', 92} has no model. Assume, for contradiction, T U 

{91 992} has a model [0, 0]. Now 

<(K ), E, SI > -F, P -F2 <(K ), E, S2 >, 

put f = F1 o F2. Without loss of generality f is a monotone map f: (K +) 

(K +), for any such isomorphism g is piecewise monotone and a monotone 
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234 J. A. MAKOWSKY AND S. SHELAH 

map can be constructed from g. Now put 

AO = (a E (K+)3: a E K+} and A,,, =f(An) 

A =U n<An 
CLAIM 2. A is f-closed, <A, E> is a K +-like ordering and A0 is cofinal in A. 
Call X C A c.u.b. if X n Ao is c.u.b. in Ao and X < A stationary if X 

meets every c.u.b. set in A. 
CLAIM 3. S, n A (i = 1,2,3) are stationary in A. Now we distinguish 2 

cases: 
Case 1. There is a c.u.b set C C A on which f is the identity. Then 

S, n A = S2 n A but Ao is c.u.b in A, hence Ao n S3 #0, a contradiction. 
Case 2. There is a stationary set S C A such that f: S - A is regressive 

(otherwise take f-). We shall prove an analogue of Fodor's theorem. 
CLAIM 4. There is ( c A with f'(() stationary in A. Assume there is no 

such (. Then for each ( c A there is a c.u.b C, C A such that, for all 
Cq c c n S,fQq) # (. Let 

D = {E C A: VtEq (q f Ce)} 

Then D n S = 0, so we shall obtain a contradiction if we show that D is 
c.u.b in A. D is clearly closed (i.e., D n Ao is closed in Ao). Now fix y c Ao. 
Let yo = y and Ya+ C Ao be some element of Ao such that yaEya+ and 

Ya+ E fl { Ce: (EYa} (which is c.u.b in A). For limits similarly, if cf(a) < K. 

So we obtain a sequence {ya+: a C K) < Ao, which has a supremum 8 in Ao. 
By property (iv) of I' 3 is also a supremum in A. So we conclude that 8 c D. 

This proves Claim 4 and shows that f is not injective, which ends the proof 
of Claim 1. 

If K iS singular and Cf(K) > KM, L* is cf(K)-rc and by Lemma 6.4(ii) L* is 
K-rc. OJ 

Piecing this together we now prove Theorem 6.2: The set-theoretic condi- 
tions fit into the framework of 6.8 and 6.10. So L* is w-rc and since we can 
take a = 0 in 6.10 L* is K-rc for each K > W. With 6.6(i) we get the 
conclusion. O 

Using 1.6 the condition on the size of L* can be replaced by a suitable 
Lowenheim-Skolem property. Also Theorems 6.8 and 6.10 can be rephrased 
with several logics; e.g.: 

THEOREM 6.10' (GCH). Assume L? c L* are two logics s.t. 
(i) L* satisfies LS(Mn)for some n c w, 
(ii) FVp(L?, L*) holds, and 
(iii) ROB(L,,, LO) holds. 

Then L0 is (K, w)-compact for all K > W. 
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THEOREM 6.10". (V = L or -,O). Assume LO c L* are two logics s.t. (ii) 
and (iii) from 6.10' hold, then LO is (K, w)-compact for all K > W. 

PROOF. Use 6.6(iv). LI 

COROLLARY 6.11. Assume L* = LJ Q'i],, and 2`0 < 2 for some n E w. 
Then if ROB(L*, L*) and FVp(L*, L*) hold then also CRAIG(L*, L*) holds. 

Using the following theorem of Lindstrom [Li3] we get another character- 
ization of L,. 

THEOREM 6.12 (LINDSTROM). Assume L* is (K, co)-compact for each K and 
T(L) (the union of any L-elementary chain is an L*-elementary extension of 
each member of the chain) holds then L* = L,a. 

COROLLARY 6.13. L,, is characterized by 
(i) T(L), 
(ii) ROB(L, L), 
(iii) VP(L, L), 
(iv) L* = LwJQ 'ien provided 2N0 < 2#n for some n E w. 

One might ask whether there are proper extensions of L., satisfying ROB 
and FVp. Under the hypothesis of 6.10 such a logic is fully compact and 
hence satisfies Craig's theorem. In fact we conjecture 

CONJECTURE 6.14. Let L* = L,,,,(Q')iE,,, be a logic which satisfies ROB and 
FVp. Then L* = Lw. 

If the Q' are all monadic quantifiers, i.e. quantifiers of the form 

Q ixl, * X* , (p1(xI), 2(x2), . .. ., (X,)) 

then we have: 

THEOREM 6.15. Let L* = L,,(Q')ie, be a logic with ROB, FVp, each Q 
monadic and KM strong limit. Then L* = L,@. 

PROOF. By 6.9 and 6.7 L* is (K, co)-compact for each K > co. Now let K be a 
class of monadic structures, i.e. W e K is of the form 

W = <A 1~ . . . W An; PP * * * W PK > 

where Ai are universes and Pj are unary predicates. Using FVp we can restrict 
ourselves to one sorted structures. W.l.o.g. K is a class of cardinals. It suffices 
to show that K E EC(L*) implies K E EC(L,,,,). Now assume there are 
infinite cardinals K,/L with K E K, u M K and K E EC(L*). Put T = 

ThL*([K, ,u]), T1 = ThL*(<K>) and T2 = ThL*(< ,u>). By compactness T1 and T2 
have arbitrary large models. Let pl(f) say that "f is an injection of the first 
into the second sort" and P2(g) say that "g is an injection of the second into 
the first sort". Clearly T U {,i} (i = 1,2) has a model. For let K' be such that 
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<K'> k T, and K' > U, so [K', U] can be expanded to satisfy pg and, by FVp, 
[K', ,] k T and similarily for P2. But then by ROB T U {q, P2} has a model 
[K", p"] so by the Cantor-Bernstein Theorem K" = u". But by FVp, K" E K, 
,u" E K a contradiction. So w.l.o.g. K contains only finite cardinals, hence, by 
compactness, the cardinals in K are bounded by some natural number n E w 
and K E EC(L,). E1 

The argument above can still be extended (cf. [Ma5]). Let K be a class of 
structures A of the form <A, E, P, ... , PF,,> where A is the universe, E is an 
equivalence relation and Pi are monadic predicates. If K is closed under 
isomorphism and K e EC(L*) for L* = L,,(Q')i<,<, the Qi arbitrary 
quantifiers, L* satisfies ROB and FVp and M. strong limit, then K E 
EC(L,,). Here we use that two equivalence relations with K equivalence 
classes, each of cardinarlity K, are isomorphic. 

This proves Conjecture 6.14 for some special classes of quantifiers. The 
problem remains of how to extend the above proof to arbitrary quantifiers. 

Note that Caicedo [Ca] got a weak version of 6.15 without set-theoretic 
assumptions and FVp but using (w, w)-compactness (cf. [Ma5]). 

7. The definability of the syntax-structure. In this section we present without 
proofs two abstract theorems due to Burgess and Paulos on the weak 
Beth-property. We follow [Fe2] for terminology. 

THEOREM 7.1 (BURGESS). Let L* be an absolute, normal logic, L* C H(W1) 
such that WBETH(L*, L*) holds. Then the class of countable well-orderings is 
not PC(L*). 

THEOREM 7.2 (PAULOS). Let LED c LO be two logics such that LO is adequate 
to truth for LO and WBETH(LO, LO) holds, then no syntax-structure of LO is 
LO-definable. 

Theorem 7.1 is a slight generalization of Paulos' theorem [Pa]. The main 
reason we quote these theorems here is that combining the methods of proofs 
together with 6.1 Gostanian and Hrbacek [GH] produced uniformly rather 
tricky counterexamples to WBETH(L*, LO) for 

L*=L G L?-LGL 

L*=L,,,, LO= L 
L* = LK+4., LO = LA for all regular X which are LK+,. accessible. 

8. Some direct applications. In this section we present some applications of 
the abstract theory. Less direct applications may be found in [MS2], [MS3]. 
The table below shows how much can be drawn from the abstract approach. 

Most of the notation of the table is self-evident. L G is the logic obtained 
from L,,, adding the game quantifier. LH is the logic obtained from L. 
adding the Henkin quantifier. In fact any nonlinear partially ordered quanti- 
fier will lead to the same situation (cf. [Wa]). 
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CRAIG ROB BETH WBETH WFVp 

Lww)(2 yes [Ke2] yes [Ke2] yes yes yes 

LWIW(LA) iyes [Ke2j no 2.14 yes yes no 3.2 

A countable [LE] (but yes for 
countable 7) 

LG no [GH] no 2.14 no [GH] no [GB] no 3.4 

yes for 
countable T 

LK+ K > WI no 2.12 no 2.14 no 2.12 no 3.4 no 3.4 
or 6 [GH] cf(K) > X 

L(QK) K > )1 no [Fe] no no 5.4 yes [Wo] 
(compactness) and [Wo] 

L(QK) K = C. no 3.2 no 2.15 no 3.2 no 3.2 yes [Wo] 
2.3 2.3 

LH no 6.1 no 1.5 no 6.1 no 6.1 no 8.1 
2.3 2.14 2.3 

or 6.1 

LPJ L(aa) no [MS21 no (comp) no [MS2] yes Lp 
no L(aa) 

L(Q<n) no [Bd] no (comp) no 5.4 9 yes [Bdl 

Ln nno 5.4 no 6.2 no 5.4 no 6.1 yes [MS2] 

L" no 7.2 no 6.2 no 7.2 no 7.2 no 8.1 

Finally LP is positive logic and L(aa) stationary logic (cf. [BKM], [Ma4] 
and [MS2]). L(Q <") is the Magidor-Malitz logic from [MM], Ln is negative 
logic (cf. [BKMJ, [MS2]) and L", is second order logic. 

To make the table below more complete let us finish with a last observa- 
tion. 

Let Exy(4(x), Ap(y)) be a binary quantifier binding two formulas and 
expressing that 0 and 4' define sets of the same cardinality. 

PROPOSITION 8.1. Let L* be a logic which is a set for each L and which 
extends L,,,(E). Then WFVp(L,,(E), L*) fails. 

Examples for such L are LH or L" (cf. [KL]). 
PROOF. Let A,B be two sets of different cardinality such that A _ B(L*). 

Such sets exist by a Hanf type argument. But [A, B] m [A, A](L*) using the 
quantifier E. E] 

ADDED IN PROOF (June 25, 1979). If we redefine ROB by allowing arbitrary 
theories T,, T2 over arbitrary sets of predicates P instead of q(P), +(P), the 
results of this section can be improved. 

THEOREM. Under the same set-theoretic hypothesis as in 6.10 if L* satisfies 
ROB, then L* is K-rc for each K > $a. 

In the forthcoming paper by the same authors the amalgamation property 
of logics will be studied. We shall show that under much weaker assumptions 
than in 6.10 the amalgamation property implies full compactness. This will 
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238 J. A. MAKOWSKY AND S. SHELAH 

give us also some answers to Problem 2 in the introduction to this paper. The 
above version of ROB was suggested to us by a preprint of D. Mundici. 
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