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Abstract Using elementary methods we find bounds for the function 2%«

for 8, = «. Using only ZFC without additional assumptions, when e.g., X, is
strong limit of uncountable confinality:

(1) If there is no weakly inaccessible below &, then there is no such cardi-
nal below 2%«,

(2) If R, is the first cardinal such that A = R, with ¢f\ = &}, then 2%« <
k when « is the first cardinal such that x = X, with cofinality (22K')+.

We shall also reprove some of Galvin and Hajnal’s results. We do not
require any knowledge of earlier results on the subject.

Introduction We shall deal with the following problem: Given a cardinal \,
what are the possible values of 2*? More exactly, given R, our task is to find
an ordinal «(*) as small as possible which will satisfy R, ) = 2%,

Let us write some basic facts concerning the power operation:

0) o < B =28« < 2%,
(1) For every a 2%« > R, (Cantor’s theorem).
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(2) For every o cf(2%) > &, (follows from Zermelo Konig’s).
(3) If R, singular, and there exist v < « such that for every y < 8 < o 2% =
2%+ holds, then 2%v = 2%« (Bukovski-Hechler).

P. Cohen proved that on 2% there are no more restrictions.

Easton generalized Cohen’s theorem and investigated the possible functions
for 2%« when R, is regular. He proved that any function satisfying (0)-(2) is
possible. Therefore the problem we are left with in this connection is what is the
situation when R, singular? Are there any bounds to the size of 2¥«?

We shall deal here with the problem in ZFC without any additional
assumptions and will find more bounds. We are not the first to face this
problem —many people have worked on it including Scott, Solovay, Silver [11],
Galvin and Hajnal [4], Magidor [8]-[10], Baumgartner and Prikry [1], Jech and
Prikry [6], Devlin and Jensen [2], Dodd and Jensen [3], and Shelah [13].

We shall present our results independently of the above. We begin by
presenting an elementary proof to our results.

As preliminary knowledge we assume less than the first 60 pages from
Jech’s book [5] or the basic part from Levi’s basic book [7].

We shall reprove some of the results of Galvin and Hajnal [4]. In order to
explain the motivation for our ideas we shall refer to their paper.

A disadvantage in the above-mentioned works is that they could not deal
with cardinals of the form o = R, in ZFC (without additional assumptions).
From the results of Jensen, if R, is a strong limit and 2%« > R, +1, then some
strengthenings of ZFC are consistent. Moreover they have a natural model (class
with the usual € relation). The results of [11] and [4] gave us this impression.

Smallness Thesis When you have R, singular, cfa > R, and a strong limit
is “small”, then also 2%« is “small”.

We shall prove here some examples of this smallness thesis also for cardi-
nals satisfying X, = a.

In Theorem 6.2 we prove that if below R, there is no weakly inaccessible
cardinal, then such a cardinal also does not exist below 2*« (we assume ¥, sin-
gular, strong limit, ¢f(X,) > 8, and for simplicity only assume that ¢fX, =
x1 ) .

In Theorem 6.6 we prove: If A = &, when M\ is the first cardinal such that
¢f\ = R, and 8, = \, then 2" < « when « is the first cardinal such that « = X,
and cfx = (22")*.

In Section 1 we define some basic definitions and quote two theorems
which we shall use in what follows.

In Section 2 we prove a theorem from [4]: For R, satisfying ¢f 8, = X,
and 8 < a = 8} < X, the inequality X}! < X *)+ holds. The presentation
largely follows [13].

Because our purpose is to prepare theorems for the rest by generalizing [4]
almost disjoint transversals, our substitute is the cardinal Ty (f).

We define a norm of ordinal functions into the ordinals with respect to a
filter D and denote it by |f|p. By |a|p we denote the norm of the constant
function whose value is «. | f|p is the least ordinal such that for all g <p f,
lelp < |flp holds (the definition of <p is in Section 1.3. For the reason this
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definition is possible, see Lemma 2.9 —we shall work with 8, complete filter
D).

Galvin and Hajnal proved for the abovementioned function «(*) that
a(*) < |a|p when D is the filter generated by the closed unbounded sets of ¥,
(we work here with cardinals of cofinality X;, therefore D will be over X,).

|flp can be defined in an equivalent form by a game G, (D, f, o) between
two players I and II, which we define as follows: Player I begins and in his first
step chooses a function f; <p f. Player Il in his first step chooses an ordinal
a; < a. In general, player I in his n’th step chooses f,, <p f,_; and player 11
replies by choosing «, < «,_;. Because o > a; > ap >...is a decending
sequence of ordinals it must be finite. So there is a stage when player II cannot
continue. Player I cannot continue if the function from the previous step satisfies
{i: fu_1 (i) = 0} belongs to D or even is # & mod D. Player I wins the game if
player II cannot reply, and player II wins when player I cannot continue in his
turn.

What is the connection between the above norm and the game G,,(D, f,
«)? It is easy to see that player I wins in the game G,,(D, f, «) if and only if
Iflp = «a.

Our method to improve Galvin-Hajnal’s result is generalization of | f|p;
for this analysis we use games of types similar to the abovementioned game.

In Section 3 we define a game G (D, f, «) which is a little harder for player
II than the previous game G,, (D, f, «), and later define the game G(D, f)
which is easier for player II than G(D, f, «).

We prefer player II because he provides us a bound on the norm. In Sec-
tion 3 we shall see some basic properties of these games.

A variant of these games was studied (independently of our study) in an
unpublished work of M. Magidor and R. Solovay. They used these games to
prove the same bound Galvin and Hajnal found, before Galvin and Hajnal had
the result. The disadvantage was that they used existence of Ramsey cardinals.

In Section 4 a filter D over ®; will be found such that player II has a win-
ning strategy in every game G(D, f) for every f: 8; — Ord.

Our method is to use an additional assumption to ZFC (it is formulated
at (4.1)) in order to: (i) prove the existence of a filter E over a set I; (ii) trans-
late this filter to a filter Dy over R,; and (iii) show that Dg has the property we
want from D. In the next stage we use Dodd and Jensen’s result to show that
if 2%« violates the continum hypothesis, then Assumption 4.1 holds.

In Section 5 we study different notions of rank-functions and their inter-
connections, i.e., the function | f|p and the functions which we get by taking
the first ordinal « such that player II wins the game G(D, f, o), and connect
this to the cardinality of D —almost disjoint transversals from Section 2.

We also prove Theorem 5.5 which will help us to prove our theorems from
Section 6. This theorem is similar in form and role to Theorem 2.10.

In Section 6 we prove the two theorems already reviewed and, to make our
paper really independent from [4], we reprove one of their lemmas (6.5).

The results were announced in [16], where Theorem 6.6 was stated
explicitly, and it was claimed that: (*) the method was strong enough to prove
any instance of the thesis “let &, be strong limit of cofinality > R, if ¥, is
‘small’ 50 is 2%«””, The author checked several cases: smaller than first inacces-
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sible, first Mahlo; before X, there are few inaccessibles; X, is small in the class
of fixed points of {X,: o} (e.g., the first R, R, = &, ¢fa = K ), similarly for
fix points of fix points. However, the above claim (*) is wrong, as discovered
by Hajnal.

For a class C let C' = {« € C: the order type of CN « is a}. Let Cgy be the
class of infinite cardinals, C,.; = C;.

Now Hajnal, using partial information on the proof, reconstructed the
proof for Cy, Cy, carried the induction for the C,, and found out that it does
not work for C, = [ C,.

n<w

Hajnal’s Question Suppose \ is the w,-th member of C,, is strong limit. Is
2* smaller than the (22"')*-th member of C,? Or can we have any bound bet-
ter than the first inaccessible?!

We would be able to answer positively if we can prove that for every A, not
only for some D but for a majority of D (majority for an &;-complete filter on
the family of suitable filters), Lemma 5.5 holds.

Other natural questions are: In Theorem 6.6 can we replace (22 )t by
(2%1)*? Can we buxld models of ZFC in which the first A = &, of cofinality X,
satisfies 251 < A < 22", (vu < N) u®1 <\, and A™ is bigger than the first inac-
cessible cardinal?

1 Preliminaries

1.1 Definitions and notations about filters Let D be a filter over I (see [5]
or [7] for definition of filter), so D € ®(I): D is a subset of the power set of
I. For B < [ we say B is of measure zero and write B = mod D iff I — B &
D. B is of positive measure or B # 0 mod D iff BN A #0 for all A € D. And
if {i € I|Q(i)} € D where Q is some property and Q(i) means Q holds for i,
then we say: for almost all i, Q(i) holds. A filter D is said to be 7-complete

(where 7 is an infinite cardinal) iff ﬂ A, € D whenever u < 7and A, € D for
a<p

all o < p. In case 7 = R; we say D is countably complete rather than
X,-complete. For a set of ordinals B and a function f defined on B, fis regres-
sive iff f(a) < o for all nonzero « € B. In case I = N\, where A is a cardinal, we
say a filter D over \ is normal iff whenever B # 0 mod D and f is a regressive
function on B, then for some B’ € B, B’ + 0 mod D and f is constant on B’
(see 1.6).

Let £ < ®(I) and assume the intersection of any finite subset of E is non-
void. Then the filter generated by E is the collection {B < I for some
Xi,..., X, in E B2 X, N...N X,}. (It is understood that n < « and
{X1,...,X,} is a finite subset of E.) Now for B€ I, B+ 0 mod D, D + B
denotes the filter generated by {B N X|X € D}; i.e., D + B is the filter gener-
ated by the set D U {B}.

We ask the reader to prove that the intersection of finitely many sets of the
form B N X where X € D is again of that form, hence that D + B is a proper
filter. The following lemma is also left to the reader.



Sh:111

ON POWER OF SINGULAR CARDINALS 267

1.2 Lemma

A. If D is a normal filter then D + B is normal too.

B.If A+ & mod D and B+ @ mod D+ A then AN B+ & mod D and (D +
A+ B=D+ ANB.

C.If B— B =J mod D (i.e., BS B’ “almost” holds) then D+ B’ < D + B.

1.3 Reduced products The Cartesian product II;c; A; is the set of functions
fon I such that f(i) € A, for all i € I. An equivalence relation is defined on the
Cartesian product by (D is a filter over I) f =p g iff {i € I|f(i) = g(i)} € D,
Il,c; A;/D is the set of equivalence classes thus obtained.? If {((A4;, <;)|i € I) are
partially ordered sets (posets for short) we can define a preorder (called also
quasiorder) =p on the Cartesian product by f <p g iff {i € I|f(i) =, g(i)} €
D. =pis a preorder in the sense that f <, g and g <p, fimply f =p g, but not
necessarily f = g. Transitivity and reflexivity are easily checked. <p, is a partial
preorder; it might well be that none of f < g or g <p f holds. In case 4; =
Ord (the class of ordinals) ‘Ord is the class of all functions f: I — Ord. Taking
the natural well order of the ordinals, we get a partial preorder <p defined
above on ‘Ord. An equivalence class now is not a set and this is why we pre-
fer to deal with (partial) preorder rather than with a (partial) order defined on
the equivalence classes. This means that we cannot speak about the least upper
bound for a set (even if it exists, it is not necessarily unique). (Recall that a €
P is a least upper bound of A € P where < is a partial preorder of P iff: (1)
e<aforall e€ A and (2) if a’ also satisfiese < a’ foralle€ A thena < a’.)

We also define f <p g iff {i € I|f(i) <, g(i) and f(i) # g(i)} € D. Now
<p is an irreflexive partial order. Remark that f <, g and —(f =, g) do not
imply f <p g. Define f #p g iff {{ € I|f(i) # g(i)} € D. Then f <p g and f #p
g imply f <p g. But if D will be an ultrafilter then = (f =p g) and f #p g are
equivalent.

1.4 We will use the Erdos-Rado Partition Theorem which says that if Fis a
function defined on [(2*)*]? (the class of two elements subsets of the cardinal
(2M)*) and which takes values in A, then there is H < (2*)*, of cardinality A*
which is homogeneous for F, namely F({«, 8}) is the same for any distinct «,
B € H. (See [5], [7], or any other textbook for the full Erdos-Rado theorem and
its proofs.)

1.5 We shall also use (only in Section 6) Hajnal’s theorem on free sets. We
shall need it not only for regular cardinals.

Hajnal’s theorem If N\ is regular cardinal and p < \ a cardinal and f a func-
tion such that f’s domain is N and (YVa < N) [|f(a)| < w], then there exists
B <\, |B| =\ and B is a free subset, i.e., x + y € B= x & f(»).

A proof for this theorem is quoted in [15] in the combinatorial appendix
as Theorem 2.8.

1.6 Recall that for an ordinal 6, ¢f(é) is the minimal order type of an
unbounded subset of 6. A cardinal A is regular iff ¢fA = \; otherwise it is called
singular. Also ¢f8 is always a regular cardinal, any successor cardinal is regu-
lar, and X is an inaccessible cardinal if it is limit regular and > R,.
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If A > R is regular, by Fodor’s Lemma, the family of closed unbounded
subsets of A generates a normal filter.

2 Generalized almost disjoint transversal In this section our purpose is to
prepare the ground for the rest of our work. We first give a general description
of this section. In Section 2.1 we begin the detailed exposition. In order to dem-
onstrate these preparations, we shall prove the following theorem from Galvin-
Hajnal [4]. If R, is singular, o < &, ¢f (8,) > ¥, (for simplicity only we shall
assume that ¢f (R,) = 8, and is strong limit therefore satisfies § < a = Rj! <
R, ; notice that from our assumption on &, follows that 2%« = R¥1) then 2%« <
Rja*

Let us review the proof of this theorem (Theorem 2.11): Assume that
2%« = Ko #1)+ and choose a regular cardinal X such that 2%« = \ = & |ox)+ and
N\ > 281 This can be done because if 2%« < 2! then the conclusion of our the-
orem is trivial and 2%« > Ko xi)+ because ¢f (2%) > R, > (|a[*")", which
holds as o < R, and the hypothesis on &,,.

In Definition 2.7 for a filter D over R,, f € *10rd we define a cardinal
Tp(f)—the power of a maximal set of functions less, by <p, than f and dis-
tinct on a large set (€ D). This is not the definition in the section (Definition
2.7 gives a more general concept) but for our needs here this will be sufficient
(by the second claim in the proof of Theorem 2.10).

In Theorem 2.3 we evaluate Tp,, (X, ). Here, instead of the function f, we
take the constant function from ®; whose value is X,. D,,, is the filter generated
by the cobounded subsets of X,. We shall get T , (R,) = KX (= 2% when R,
is strong limit).

Now we can apply Theorem 2.10 which for a given X,-complete filter D
over 8, and a function f € ¥1Ord such that Tp(f) = \, gives us an X;-complete
filter D’ 2 D (over &,) and an increasing sequence of length \ in *1Ord/D’
below f. If we substitute f = &, (i.e., f(i) = 8, for i < w;), D = D,;, we shall
get an increasing sequence of length \ in the reduced power X8 _/D’; this will
be a contradiction to Theorem 2.6 where it will be proved that in the re-
duced power M&,/D’ there cannot be increasing sequence of length \ (remem-
ber A = K(|Q|N1)+).

The other theorems are preparations for Theorems 2.6, 2.8, 2.10. Most of
the theorems appear in a more general form than we quoted above; instead of
a filter over X; we work with filter over a set /, and in part of the theorems we
deal with reduced products of partial preorders instead of reduced power of
ordinals.

Now we shall review Theorems 2.6, 2.8, and 2.10. In Theorem 2.6 we prove
more than mentioned; we prove existence of an ordinal y < (|«|/’!)* such that
in the reduced power /8&,/D (D a filter over I) there is no increasing chain of
length X, .

We prove this by contradiction. Assume that for every y < (Ja|"!)* there
exists an increasing sequence of length X, .. Define a mapping y - f7 from a
set of cardinality (|a|’')* to a set of cardinality ||/l as follows: For each v
choose an increasing sequence of length X, ., (exist by the assumption) take a
supremum f” with the following additional property: If g <p f” then there
exist f; in the sequence such that g <p, f;; the existence of such a supremum is
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promised by Theorem 2.3. Now define f7 (i) = ¢f(f(i)) and our aim is to get
a contradiction to the assumption by proving that v — f¥ is one to one.

For this purpose in Definition 2.4 we introduce cofinality of a function rel-
ative to a filter (this is a direct generalization of cofinality of an ordinal), evalu-
ate ¢f (f7/D) and get X, ,; this together with the technical Lemma 2.5 proves
that v — f7 one to one.

In the proof of Theorem 2.8 there are no problems; it is a direct compu-
tation.

Given an R,-complete filter D over 8, a regular cardinal A\ > 2%, and a
function f € ¥10rd such that Tp(f) = N\, Theorem 2.10 gives us an &;-com-
plete filter D’ 2 D over R, and an increasing sequence {g;: i < \) in *'Ord/D’.
The proof is divided into three steps:

In step zero choose f* € ®*1Ord such that f* <p f, Tp(f*) = A\, and is
< p-minimal with these properties (possible as <p well founded by Lemma 9).

In the first step define the filter D’ 2 D and prove its &; completeness.

In the second step find a set H< M Ordsuchthat h€ H=h <p f*, h *
thHﬁ hl *p hy, and |H| = A

In the third step define by induction an increasing (in <p-) sequence of
length N\ of functions which are smaller (in <p) than f*; for this it suffices by
regularity of A to prove the following:

If g <pf*then |{h € H: = (g <p h)}| <.

2.2 Theorem Let D be a filter over \. Assume that for every § <\, (Q,
<¢) is N*t-well ordered then (Ilze) Q;, <p) is (2*)*-well ordered.’

Remark: A general treatment of 7-well ordered preorders (= quasiorder) can be
found in [14].

In what follows X is any cardinal.

2.2 Theorem Let D be a filter over \. Assume that for every ¢ <\, (O,
<¢) is N"-well ordered then (Il;c) Q;, <p) is (2M)*-well ordered.?

Proof: Let {fi|li < (2*)*) be a sequence of length (2*)* in Mie) Qr. We want
to find / <j such that f; <p f;. Actually we will get i < j with even {£ € \|f;(¥)
< f;j(£)} = N\. Assume that no such i < j exists. Then for any i < j < (2*)*
there is £ € A such that ~(f;(§) < f;(£)). Define F({i, j}) = ¢ to be the min-
imal such £ < \. By the Erdos-Rado theorem we get H < (2*)* of cardinality
N* such that for some &, whenever i, j € H, i # j = F({i, j}) = £, hence i €
HnrjE€ Hni<j= ~(fi(§0) =g Si(£0)). In other words (f;(£o)|i € H) con-
tradict the assumption that (Qy,, <) is N*-well ordered.

The above theorem will be applied in the case where (Q;, <;) is an ordi-
nal with its well ordering €. Surely no infinite decreasing sequence of ordinals
can be found so that the theorem assumption holds in this case.

2.3 Theorem Let D be a filter over N\, u a cardinal whose cofinality at least
(2M)*, (f; € MOrd|i < uy an increasing sequence in <p, i.e., [i<j<p=f <p
f;1. Then {fii < u} has a least upper bound f* in (*Ord, <p) such that for
any fENOrd [f <p f* = f <p fifor somei< pl.
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Proof: First, define by induction on « (as long as you can) functions g, € AOrd
such that:

1. fi<peg,foralli<u.
2, For B< a —(g <p &)-

8o can easily be defined by go(£) = U{f;(£)|i < u}. By Theorem 2.2 there is no
sequence {g;|i < (2M)*) such that = (g, <p gs) holds for & < 8 < (2*)*, so at
some ordinal oy < (2)* there is no 8a satisfying conditions 1 and 2. The con-
struction of the g, is stopped at g, say. Let A = {g,(£)|a < o, £ <A}, then
A is a set of no more than 2 ordinals. Because Range(g,) € A, for any i < u
and £ < \ f;(£) is bounded by an ordinal in A4, so that the following definition
makes sense: f7(§) = min{f € A|f;({) < B}. So f* € " and f; <p f} of
course.
Now | = [A]* = (2" = 2*, remember ¢fp = (2M) ", soaspu = |J

* )\A
{i < u|f* =/} for some f* € A the set {i < p|f/ =/} is unbounded in u.eWe
will now prove that this f* is one that satisfies the requirements of the theorem.

S is an upper bound of {f;|j < p}: For any j < u there is i > j such that
fi=f" asf;<pfiand f; <p f we get f; <p f*.

f* is a least upper bound of {f;|j < u}: If g is also an upper bound of
{filj < u}, then at stage ap, g was also considered and failed. But it can fail
only because of requirement 2. So there exists 8 < o such that gg <p g. Choose
i < psuch that f* = f7, and let C* = {£ < \: fi(§) < g3(£)}, C? = {£ < \:
gs(£) = g(£)}. As we know that f; <p gz (by gg’s choice) clearly C? € D. As
g <p &, clearly C® € D. Now by the choice of 4, and f, [£ <\, f;(§) <
gs(8) = f7(£) < gs(£)], hence for £ € CT N C® f*(§) = £} (§) < g (£) < g(§).
As C* N C? € D, clearly f* <p g as required.

IffE€™0rd, f<p f*then i< p) f<pf*Fori<pletC,={t<
NAE) < f,(§)}. If C; € D for some i < u then f <p, f; and the proof is finished.
So we assume C; & D (hence A — C, # 0 mod D) for all i < u and seek a con-
tradiction. Now C; € \, there are 2* subsets to A and 2" < ¢fu hence for some
C* < \ and an unbounded U< pu, C;=C* for alli € U. And C* & D as we
said before. Now define f’ € *Ord by

Lo [fE) Eex-c*
7® {f*(é) tecr

The contradiction will follow once we show that f’ is an upper bound to
{fili < u} and that f* <p f’ does not hold (because then f* is not a least upper
bound). For any i € U f;(¢§) < f*(§) for almost all £ < X and f;(£) < f(§¢) for
all £ € N\ — C* (by definition of C; = C*). This shows that f; <, f’ for any i <
u because U is unbounded in u. But f* <, f’ does not hold, because if it did,
then as f <p f* we would get f <p f'—that is, f(§) < f'(¢) for almost all £ <
AN—but f(§) =f'(¢) for £ €N — C* and A — C* is not a measure zero set. Con-
tradiction.
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2.3A Remark: Clearly in 2.3 f* is unique, i.e., if f’ satisfies the conclusion then
S+ =p f. Even a least upper bound, if it exists, is unique.

2.4 Definition For f € 'Ord and a filter D over I, ¢f(f/D) is the least
cardinality « of a collection {f;|¢ < «} with the following properties:

1. fe <p fforall § <«
2. If g <p fthen g <p f; for some £ < k.

(Such a collection always exists [e.g., {g: g <p fand (V& € Ig(¥) = f(§)}],
hence one with a minimal cardinality can be found.)

2.4A Remark: (1) If we can find such {f;: £ < cf(f/D)} with [{< ¢ = f; <p
J¢] then the cofinality is a regular cardinal. (See the proof of Theorem 2.6.)

2.5 Lemma If f, [ €0rd and {i € Icf(f(i)) = ¢f(f'(i))} € D then
¢f (f/D) = cf (f'/D).

2.5A Remark: If k = ¢f (f/D) > 2! then « is a regular cardinal.

Proof: From the fact that f; =p f, = ¢f (f;/D) = ¢f (f,/D) we conclude that
it is possible in the proof to replace the functions f, f’ by functions f;, f, which
satisfies f =p f; and f’ =p f,. Therefore we can assume that [ = {i: ¢f (f(i)) =
cf(f'(i))}. W.lo.g. {i: f(i) # 0} € D (otherwise ¢f (f/D) = cf(f'/D) = 0),
hence w.l.o.g. for every i € I, f(i) > 0 and f’(i) > 0. Recall also that the cofi-
nality of a successor ordinal is 1 and the cofinality of 0 is 0. For each i € I pick
S; of order type cf (f(i)) cofinal in f(i) (i.e, for any x < f(i) there is y € S,
X < y) and similarly pick S; € f’(i) cofinal and of order type ¢f (f'({)), let ¢;:
S, — S/ be an order isomorphism. It suffices, by symmetry, to prove ¢f (f/D) <
cf (f'/D), and for this it suffices to show that: whenever « is a cardinal with a
collection {f;|& < «} satisfying 1 and 2 of Definition 2.4 for f, there is a col-
lection of the same cardinality for f’. Well, given {f;|¢ < x} we can assume
Se (i) < f(i) for all i € I and & < k. Now define {f{|¢ < «} as follows: f{(i) =
t;(y) where y € §; is the first ordinal in S; which is = f; (/). Of course f; <p f".
Now, if g’ <p f’ it means that for almost all i € I g’(i) < f’(i) and then for
some s € S} g’(i) =5 < f’(i). It follows that g* can be found, g’ <p g* <p f’
such that g*(i) € S/ for (almost) all i € I. Now define g by g(i) = ;7! (f*(i)).
Clearly g <p f, so by property 2 (from Definition 2.4) there is f; with g <p f;.
This implies that g* <p, f¢, so g’ < f, as required to show that {f{|¢ < «} has
properties 1 and 2 for f”.

For D a filter on I, we have

2.6 Theorem If a is a cardinal =2 ('R, <p) does not contain an increas-
ing sequence of length R y1y+. Moreover there is v < (lee|"1y* such that there
is no increasing sequence of cardinality X, .

Proof: Assume to the contrary that for every ordinal vy < (|a|’l)* an increas-
ing sequence (f; |§ < &,,,) of length X, exists in /K,. Now |y| < &, is true
for any ordinal v, so for 2!/l <y < (|a|/)*, clearly 2!/ < &, holds. We know
R, 41 is a regular cardinal, and Theorem 2.3 can be applied to obtain a least
upper bound f” to ( fg’ |¢ < K., with the additional property stated in that
theorem.
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2.6A Claim cf(fY/D) =R, ;.

Proof: Now ¢f (f7/D) < R, because the family {// | <X, } shows it. [f}
<pfYandif g <pf" then g stg for some £ < R, ,]. To see that ¢f (f"/
D) =R, ,; we argue as follows: If {/;|¢ <«} k <R_,, is a family of functions
exemplifying ¢f (f¥/D) < k < R, 4, then for any £ < K., (asfg <pf7) there
is £* < k with fg <p h;-. By regularity of X, ; we find an unbounded U S R, ,,
and £, < « such that for § € U £* =&, i.e., fi <p hy, for all £ € U. But then
as (fg |€ < X,41) is an increasing sequence, fg <p hg, forall £ <X, ,, yet kg,
<p f”, contradicting the choice of f” as a least upper bound of that sequence.

The claim is proved and we continue the proof of the theorem. The func-
tions f; are in /8, so that f7 can certainly be assumed to be in (R, + 1).
Hence ¢f (f7(i)) € {0, 1, Rg|B < a}. This is why if we define £ (/) = ¢f (/7 ()
then £} € {0, 1, R4|8 < a}. Hence {f;|2""' < v < (Ja|/"")*} has cardinality
<|a + 21l = ‘al'lf. On the other hand, c¢f (f1(i)) = ¢f(f"(i)), for i € I
implies ¢f (f1/D) =¢f(f"/D) =&, (by Lemma 2.5 and the claim above). So
v #v'=f1#f{ (they have different cofinalities), i.e., vy — f is one to one
from a set of cardinality (|a|’')* to a set of cardinality < |«|!!. Contradiction.

Notice that if o« = X, this theorem does not give any valuable information
because then |8, = ||/l < Ry ii+).

2.7 Definition For a filter D over I and f € ‘Ord, define Tp(f) =
sup{|H||H < 'Ord, [h € H= h <p f] and [h; # h, € H= h; #p hy]}.

2.7A Remark: D S D’ and f <p f’ implies Tp(f) < Tp-(f’). (See Lemma 1.2
©.)

For simplicity, from now on we will concentrate on the case = &; and D
denotes a filter over &; that extends the filter of co-bounded subsets of K,
(X € R, is co-bounded iff &, —X is bounded). Let &, be singular cardinal,
say ¢f (Ry) = K;. Assume 8 < a = Rj! < R,. Note that if &, is strong limit
then RX! = 2% (See [5], Lemma 6.5.) As « is a limit ordinal and ¢f (o) = Ry,
pick an increasing sequence {o;|i < w;) such that o = U «;, then we have

IT 8., = 5! Define h(i) = 8% < K,,. e
<Ry
2.8 Theorem Let %, D, h be as above, then Tp(h) = R¥1,

Proof: Let A; = I;.; 8, for i < Ry. Then |4;| < |'R,| = R30 = h(i), take ;:
A; = h(i) a one-to-one map. Now for any f € II,.x, R,,, define g; € Xix, by
gr (i) = t;(f1i) < h(i). If f# f then for some j, < R, f(jo) #.f'(jo). Hence
for all i > j, g7 (i) # g (i) so {ilgs (i) # g (i)} is a co-bounded subset of X,
hence gr #p gy . The family {g/|f € II,cx, Ro} is of cardinality R}' and this
vshows Tp(h) = &1, Of course Tp (k) < REL,

2.9 Lemma If D is R,-complete filter over R, then there is no infinite
descending sequence in (*'Ord, <p). Hence any nonvoid A < *10rd has a
minimal element. (f € A is minimal iff for f' € A, = (f’' <p f).)

Proof: If f, € ®1Ord and f,.| <p f, for n < w, then {i € R;|f,4, (i) < f, (i)} =
B,eDand B= n B, € D. But then B # ¢ and any « € B gives a decending

n<w
sequence [ (a) < f>(a)...of ordinals. Contradiction.
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2.10 Theorem (1) Let D be an &,-complete filter over X, X\ > 2% a regular
cardinal and f € ¥ Ord with Tp(f) = \. Then there is D' 2 D an R,-complete
filter over R, and there is a <p-increasing sequence {g;|i < N) such that g; <p
£+ (2) Instead of \ regular, cf (\) >!/! suffices.

Proof: First we need a simple observation.
2.10A Claim If B = U B; is a disjoint union and B; #+ & Mod D and g;

i<w
<p+s; & and g satisfies g B; = g;1 B;, then g <p.pg’'.
Proof: g; <p.p, & means that {« € X;|gi(a) < g’'(a)} 2 B; N E; for some E; €
D.Set E= () E; € D then fora € BNE, g(a) < g'(a) s0 g <psp &’
i<w

Next, from Lemma 2.9 we obtain a minimal element f* in the class {g €
X1Ord|g =p fand Tp(g) = \}. So f* <p f, Tp(f*) = N\ and if g <p f* then
Tp(g) < \. Define now: A € R, is small iff A = & mod D, or there is g <p,
f* with Tp,4(g) = \.

2.10B Claim Let D’ denote the set of all A S R, such that Ry — A is small,
then D’ 2 D is an K;-complete filter over K.

Proof: We rather show that the small sets form an X;-complete ideal extending
the ideal dual to D. As for [4’ € A4 and A4 small = A4’ is small], this follows
from 2.7A. That R, is not small is due to the minimality of f* and D + R, = D.
If A = & mod D then A is small by definition. The only substantial claim is to
show that if A;, i < w are small then U A; is small. Well, given a family of
i<w
small subsets 4;, i < w, we can assume that the 4, are disjoint (otherwise,
A =A;— |JA;aresmalland |J 4,= | A4/), we can also assume that A4; #
J<i i<w i<w
0 mod D (first take the union of those A; = & mod D and then add it to some
A; # @ mod D, trivially A U B is small if A4 is small and B = & Mod D, because
D+ AUB=D+ A). Let g exemplify that A; is small, i.e., g <p4,f* and
Tp+a; (&) = \. Say A = |J A;, define g € "1Ord by g A; = g; and g! (8, —
i<w

A) is the constant function zero. We prove that g shows A is small. Now g
<psaS*is dueto 2.10A. To prove Tp, 4(g) = A take any cardinal 7 < \, we
seek for a family |H| > 7 as in Definition 2.7. For any i < w, Tpy4,(g;) > 7 50
there is a family H' C "1Ord, |[H'| =1+, [h€ H' = h <p. 4, & and {h; # h,
in H' = hy #py4, h;]. Enumerate H' = {h{|¢ < r*}, then define h, € *10rd
by requiring h; | A; = hi 1 A; and h; I (R, — A) is constantly zero. Now h; <p, 4
g and h; #p.4 hy when £ # {. This ends the proof of the claim. (It can be
proved that D’ is normal if D is normal.)

We need a second claim.

2.10C Claim Let D be a filter over R, and f € *10rd.

(1) If Tp(f) > 2%, then the supremum in Definition 2.7 is obtained.

(2) Moreover, if H is a family of functions such that {h € H= h <p, f], for h,
hy, € H [hy #+ hy = h| #p hy], and H is maximal (with respect to inclusion),
then Tp(f) = |H|.
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Proof: (1) follows from (2).

(2) If not, there exists a family of functions G such that [g€ G = g <p f],
for g1, &2 € G, (g, # & = & #p &1, and |G| > 2¥1 + |H|. Because of the
maximality of H for every g € G there exists h, € H which satisfies ~(g #p
hg). Now by |G| > 2%1 + |H]| there exists A* € H such that G’ = {g € G: h, =
h*} has greater cardinality than 2%! + |H|. For every g € G’ define A, = {¢ <
wi: g(§) = h*(£)}, note that A, # @ modD. Ay € w, so |{A,: g€ G'}| =25,
therefore there exists g,, g, € G’ g, # g, such that Ag; = Ag, so {{ < w;:
g1(§) = g2(§)} 2 A, for some g € G'. Hence g, g cannot be distinct on a
large set contradiction to the definition of G. This ends the proof of the claim.

Remember that Tp(f*) = A, so by the last claim let H be as in 2.10C rel-
ative to f*. We continue the proof of Theorem 2.10 with a fourth claim.

2.10D Claim If g <p f* then |{h € H|~(g <p h)}| <.

Proof: Assume on the contrary that S = {h € H|—(g <p- h)} has cardinality
. For any h € S as (g <p- /) there are sets A, B< R, suchthat AUB #0
mod D’ and

(*) A= {i€ R ()< g}
B = {i € ®,|h(i) = g(i)}.

But the number of such pairs 4, B is 25! and A\ > 2%! is regular, so there
is one pair Ay, By S R; and Sy € S, |So| = A such that (*) holds for any 4 € S,.
Easily By = 0 mod D: just take h # h’ in Sy, then h #p h’ and if By # 0 mod D
we get | € By such that A(i) # h’'(i) yet both are equal to g(i). But g <p f*
(which implies g <pia4, f*) and Tpy4,(g) = N\ (by |So| = N\) implies A, is
small, contradicting Aq U By # 0 mod D’.

The proof of the theorem itself now follows. Construct inductively an
increasing sequence g;, i < X such that g; <p f*and i<j= g <p g

Assume {g;|i <j}, j < \ have been found for any i < j; the previous claim
tells us that appart of less than A many functions in H, g; <p- A for all the rest.
Now |H| =\ is regular and j < \, so we get that except a subset of H of cardi-
nality <A, all the rest of the functions satisfy g; <p & for all i < j, pick any
such 4 to be g;.*

2.11 Theorem If ¢f (Ry) =Ry and o < R,, and B < a = RJO < R, then
xﬁ‘ < N(|a|xl)+.

Proof: Assume R3' = R(jo%1y+. Then we have 251 < &, (if 2% = &, then 8%! =
22X < Ripwy < R(jo*1)+). Take D to be an &, complete filter over &, (for exam-
ple the filter of the co-bounded subset of X, ).

Let o = |J a; be as in 2.8, define A(i) = R0, Tp(h) = 8X! by Theo-

1<w;

rem 2.8 (and the supremum in the definition of 7 (4) is actually obtained, see
2.10C(1)). So Theorem 2.10(2) can be applied by choosing a cardinal A satisfy-
ing A = Kjo%y+, we get D’ 2 D an R,-complete filter over ¥, and (g; <p
hli <Ny such that [i <j= g <p- g;]. But this contradicts Theorem 2.6 which
just says (X, ) does not contain a <p~increasing sequence of length R(ja®1)+
(=< A by assumption).
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Remark:
(1) If R, is a strong limit 2%« # & l«[¥1y+ (compute their cofinalities).
(2) Remark that in case 8, = « this theorem is not informative and it is toward
this case that we direct now our attentions.
(3) Note that the assumption of 2.11 implies:

(a) if 8, is strong limit || < R, then ¢f (RX!) > R, > (|a[*")™, hence
x;" * N(Miﬂﬁ

(®) if |o*1 = R, then 851 < (Ja|*) " < Rjopy+.

3 Games G(D, G, a) and G(D, g) As we explained in the introduction, in
this section we define the games G(D, g, @) and G(D, g).
We shall prove some easy lemmas, and the important conclusions are:

Conclusion 3.7 For given D, g, player II wins in G(D, g) if and only if 1I
wins in G(D, g, B) for every or some 3 = (25! + |II;x, g(i)/D|)™.

In Lemma 3.8 for given D, g, if player I wins in G(D, g) then I wins in
G(D, g') for some g’: w; — (22°H)*.

Conclusion 3.9 proves that if II wins in G(D, (22"')*) then II wins in
G(D, g) for every g € M Ord.

3.1 Definitions

(1) D will be from now on a normal filter on &,. For g € ®1Ord and « € Ord,
we define a game G(D, g, a) played by two players as follows: Denote D = Dy,
g = g, a = ag. Player I begins, and in the first move chooses A; € 8, A, #
@ modDy and g; € X1Ord, g, <p,+4, 8- Then player II for his first move
chooses D; 2 Dy + A, (D, is a normal filter on X; by our convention about the
use of the letter D) and also an ordinal «; < «.

In general, in the nth move, player 1 chooses A, # & mod D,_; and g,
<p,_,+4, &—1, and player II answers in his nth move with a normal filter
D,2D,_+A,and a, < a,_;. Of course it might be that player I or II can-
not make any move; player I cannot move if g,_; (/) = 0 for D,_;-almost all
i € R; and player II cannot move if «,_; = 0. A play in the game G(D,, gy, o)
is a sequence of moves beginning with Dy, g,, og and ending when one of the
players cannot make a move in his turn. Any sequence of moves played in this
game must be finite because oy > «; > ... form a descending sequence of ordi-
nals, so a play is finite. That player who cannot make a move in his turn loses
the play and the other wins. A strategy for player I (player II) is a rule (i.e., a
function) which tells I (II) what should be his nth move depending on the
sequence of moves previously done by the players and (D, g, a). A strategy is
a winning strategy in G(D, g, ) for I (II) if whenever I (II) plays in accordance
with this strategy he wins all plays in G(D, g, «). A game G(D, g, «) is deter-
mined if either there is a winning strategy for I or a winning strategy for II in
G(D, g, a).

(2) Now we define the game G(D, g) which is played by two players as follows:
Denote Dy = D, g, = g. Player I begins, and in the first move chooses 4; S w;,
Ay # & modDy and g, <py4, &- Then player II in his first move chooses
D, 2 Dy + A, a normal filter on X;. In general, in the n’th move player 1
chooses A, S w; A, # & modD,_, and g, <p,_,+4, &—1. Player Il in his n’th
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move chooses D, 2 D,_; + A,, a normal filter on X,. Player I loses if he can-
not go on, i.e., he cannot choose g,. If the game continues w steps then player
I wins the game.

3.2 Remark: It is easy to see that the games G(D, g, o) and G(D, g) are deter-
mined.

Note also that the game G(D, g) is almost as G(D, g, «), the only differ-
ence is that it is easier for player II because he does not have to choose an
ordinal.

3.3 Remark: If player I (II) wins the game then we can assume that the winning
strategy does depend only on the last move made by the opponent and not on
the previous moves [as this is true for every open (or closed) game]. Also, the
fate of the play does not depend on A4, but on D,_; + A, and not on g, but on
&n/D,_, (i.e., taking g, =p, _, g, does not change).

3.4 Lemma If II wins in G(D, g, a), A + 0 modD and g’ <p,4 g and
o' = o then Il wins in G(D + A, g’, a’).

Proof: In Lemma 1.2 we stated that if A +# @ modD and A, # & mod D + A
then (D+A)+ A =D+ (ANA;)and D+ A<D+ (AN A;). So if player
I chooses A; # @ mod (D + A) and g; <(p+4)+4, & then player II “pretends”
that he plays G(D, g, «) and that player I chooses A N A; and g, <piana, &
His winning strategy provides him with a suitable answer: D, 2 D + A N A,
and o; < o = «’. Now II is in a winning position.

3.5 Lemma If II wins in G(D, g, o) then for some o’ < (281 + Miex, (8(0) +
1)/D\|)* player II wins in G(D, g, a’).

Proof: Say p = |I;ex, (g(i) + 1)/D| (see 1.3), this means that there is a family
{he|a < u} € X10rd such that h, (i) < g(i) for i < Ry and (vh) ({i < K|A(i) =
g()} ED= (3a<p) h=ph,).

Now player II has a winning strategy for G(D, g, a). Look at all possible
plays in which player II played in accordance with his strategy and player I
played anyway. So the moves of player II are determined by its strategy.
What freedom remains for player I1? Choosing A, € 8, and g, € ¥ Ord. As all
g satisfies g, <p, ,+4, & we can assume that g, (/) < g(/) holds for all i <
R; (by Remark 3.3) and then find h, =p g,, so of course h, =p,_,+4, &
(because D < D,_; + A, ) hence we can assume player I makes his choices from
{hy|a < u}. Concluding, we see that there are 2%1-y possible situations, hence

Y (2%t.p)" = 2%1.4 plays. From this we deduce that

new

A = {B| There is a play in which player II used his winning strategy
in the game G(D, g, o) and 8 was chosen by player II in one
of his moves in that play.}

has cardinality 2*1- 4, hence order type o’ < (2%1-u)*. Why does player II win
in G(D, g, o’)? Well, let 0: A U {a} > a’ + 1 be an order-preserving map of
AU {a} onto a’ + 1. Then provide player II with the following strategy: when-
ever you are presented with D, + A,, g,, a,_;, look at D,,_; + A4,, g,
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o '(a,_;) and ask what your original strategy says, if it gives you D,,, 8 and
B € A then answer with Dn’ O'(B) Now, (Ala gl), (Dly Oll), (Az, gz), (Dz,
o). ..is a sequence of moves in G(D, g, «) in which player II used his origi-
nal strategy iff (A;, g1), (D1, 0(1)) (A2, &) (Dy, o(az)) .. .is a sequence of
moves in which player II used the new strategy for G(D, g, o’): Hence II wins
in G(D, g, a’).

3.6 Lemma For any D, g, «, if player I wins in G(D, g, o) and a =
(281 |;ex, (g(i) + 1)/D|)* then player I wins in G(D, g).

Proof: Again, let yu = |Tl;ex,(2(/) + 1)/D and H = {h,|a < p} € *1Ord as in
the previous theorem’s proof. We assume, by the argument given there that
player I is directed by his winning strategy to play in his moves only with mem-
bers of H. We describe now a winning strategy for player I in G(D, g). While
playing G(D, g), player I speculates on plays in G(D, g, ). For the first move,
player I gives A, g, as directed by his winning strategy for G(D, g, a). Now,
if player II replies with D, 2 D + A, (they play G(D, g)), player I asks for each
B < 2%.w)* < «, “What would my winning strategy for G(D, g, «) say if
player II had replied with D,, 8 to my first move A, g,?” The answer is a pair
A%, g8 which depends on 3. But the number of such pairs is 2%1-p < (2% p)*,
so there is a fixed pair A4,, g,, such that {8 < (2%1-p)*|4, = 45, g, = gzﬁ} is
unbounded in (2*!-u)* (a successor hence regular cardinal). In his new
strategy for G(D, g), player I answers with these 4,, g,.

In general, player I plays his new strategy in such a way that at the nth
move the following holds:

For any y < u* thereare o, < a,_; <...< ay < o; < ¥ p) ¥, y <«
such that if the play (in G(D, g)) until now is supplemented by the ordinals «;,
o, . .. ,a, as though given by player II in his successive turns, then the resulting
game in G(D, g, «) is one that was played by player I in his winning strategy.
The argument given for the second move shows that player I can stick to this
strategy. A play that continue w moves is a victory for player I, hence we get
a winning strategy for player I in G(D, g).°

3.7 Conclusion The following are equivalent for given D, g:
1. II wins in G(D, g)

2. II wins in G(D, g, (2 + |;cx, (g(i) + 1)/D])™")

3. For some «, Il wins in G(D, g, o)

4. I wins in G(D, g, B) for all B = (2% + |, (g(0) + 1)) ™.

Proof: 1 = 2 by Lemma 3.6 (as the game is determined Lemma 3.6 says: not
2) = not 1),) 2 = 3 trivial. For 3 = 4: by Lemma 3.5 if player II wins in G(D,
g, a) then player 1I wins in G(D, g, «’) for some o’ < (28|, (8(7) +
1)/D)™*, hence by Lemma 3.4 player II wins in G(D, g, 8) for all = o’.

4 = 1 because G(D, g) is easier for player II than G(D, g, B).

3.7A Remark: We can add
5. 11 wins in G(D, g, B) for some 8 < (2% + Ik, (g(7) + D) 7.

3.8 Lemma For any D, g, if player I wins I;{l G(D, g) then I wins in G(D,
g’) for some g’ satisfying (Vi € R;)g’'(i) < (22 )*.
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Proof: Look at all plays in G(D g) where player I used a fixed winning strat-
egy. At each move, II has <22"" answers (thls is the number of fllters onR,),
so the number of plays is = (22" 1)"0 22" Let E be the set of all g* € *10rd

which appeared in one of the 22" plays. Set A = U Range(g*).

A is a set of ordinals of cardinality not greater than 22" Leta: A> A’ <
(22 ')* be the collapse of A to an ordinal A’ (so ¢ is one to one order preserv-
ing onto A’). For any g* € E we define o(g*) by (o(g*)) (i) = o(g(i)). For
g’ = o(g) we get that player I has a winning strategy for G(D, g’): using o, this
strategy is just the translate of the winning strategy for G(D, g). Instead of
answering with A, g*, player I answers A4, o(g*).

In the following conclusion we write G(D, (22 DY) 1nstead of G(D, f)
where f is the fixed function on &; having the single value (22 .

3.9 Conclusion If II wins in G(D, (22"')*) then II wins in G(D, g) for
any g € ¥10rd.

Proof: Otherwise if for some g, player I wins in G(D, g) then by Lemma 3.8,
player I wms in G(D, g’) for some g’ with g’(i) < (22"')*. That player I wins
in G(D, (22 ')*) follows now easily by Lemma 3.4.

4 There exists a filter D such that player I wins in every G(D, g) Here fol-
lows a general description of Section 4. The detailed exposition starts in 4.0. Our
aim in this sectlon is to prove the following Theorem 4.15: Let &, be a singu-
lar cardinal > 22", ¢f (R,) = R,, and assume that [§ < o = RE < R, if RE! >
R,+1, then there exists an almost nice D; i.e., a normal filter D over R, such
that II wins in G(D, g) for every g € ¥1Ord. How shall we prove it? Assume
by negation that for every D as above there exist a g € *1Ord such that player
I wins in G(D, g). Hence by Lemma 3.8 there exist g’: &, - (22 )t such that
player I wins in G(D, g’); the winning strategies of I (for all such D, g) can be

encoded by a set 4 such that A S (22x1) (this is the number of filters and func-
tions in the game). Now apply a theorem of Dodd and Jensen and get a tran-
sitive model for ZFC V't which contains the ordinals and 4 € V', and there
exists a cardinal \ in V' such that it satisfies Assumption 4.1.

In a model which satisfies Assumption 4.1 we shall construct a filter E over
I specified there (this is not ®;) and prove that E is &;-complete and normal (we
shall quote the definition of normality of a filter over a general set, this nota-
tion is an extension of the usual notation of normality for filters over ordinals).

Later define a filter Dg over &, which is determined by £ and a measure-
preserving mapping F (relative to these two filters), and show that Dg normal
filter.

In Theorem 4.13 we prove for D = Dg that II has a winning strategy in
every game G(D, g, (22"")*) for every g: X, — (22"')*; therefore by Conclu-
sion 3.9 II wins in G(D, g) for every g (in particular in the model V' *); there-
fore II wins also G(D, g’) in V¥Vt but A € V' so in V' there is a winning
strategy for player I in the game G(D, g’). Contradiction.

4.0 For a cardinal A we look at algebras of the form M = (|M|, f,,),e., Where
M| < X\ and f,, is a k,-place function from |M| to M|, (|M] denote the uni-
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verse of the algebra M and |M| its cardinality). Let A € M mean that 4 is a
subalgebra of M, i.e., |A| € |M| and |A4] is closed under the functions f; f;, !
|A|: |A| - |A|. We assume that \ is a Ramsey cardinal, actually we only use and
assume that \ satisfies the following:

4.1 Assumption on A\ Foﬁr any algebra M = (\, f,)ne, there is a subalgebra
A S M such that |A| = (2*")*" and |A| N w, is countable.

4.1A Remark: If A\ is Ramseyxthen Assumption 4.1 holds; we shall show that
it follows even from X\ — ((22')*)5“.

Proof: For any n < w define g,(ay, . ..,a,) = sup [w, N the subalgebra of M
generated by {a;,. .., }]. Now define g, (a, . . .,a,-1) as the truth value
of {g, (oo, ..., 0k,1) = &n(,,-..,0,-1)]. Now apply the above partition

relation to the functions {g,: n < w} and the subalgebra 4 * of M generated by
the homogeneous set A for these functions has the property required in Assump-
tion 4.1.

4.2 Definitions

a. I={Sc\||S| = (2*™)* and S N w, is countable}

b. For an algebra M = (N, f,,) <o, let J(M) = {|A| |A is a subalgebra of M and
|A| € I}

c. E={X < I| for some algebra M = (N, f,)ncw, X 2 J(M)}.

Remark: Such E were first considered (and their basic properties proved) in [10].
4.3 Lemma E is a filter over I, countably closed.

Proof: By our Assumption 4.1 on \, E is not trivial (&J & E). Assume X, € E,
n < w, we want to prove ﬂ X, € E. For all k < w there is an algebra M, =

n<w
(N, ) 1<, such that Xz 2 J(My). Let M = (), f,’,‘),,,k@, then ﬂ Xy 2J(M),
k<w
because if S < \ is closed under all functions fX, n, k < w surely, for any &, it

is closed under fX, n < w, so S € X,.

4.4 Definition For X € I we say f is a choice function on X iff f: X — \ is
such that f(S) € S for all S€ X.

4.5 Lemma Let X< I, X + & modE and f be a choice function on X then
for some a < \, {S € X|f(S) = a} #+ & modE. (We say that a filter over I is
normal if it satisfies the lemma, so Lemma 4.5 says that £ is normal.)

Proof: Assume to the contrary that for any o < N there is M, = (N, /7 )n<o
such that f~(a) N J(M,) = &: If S € J(M,,) then either S & X or f(S) # a.
By rearranging the functions and permitting dummy variables we can assume
that £ is an n place function on \. Define an » + 1 place function f by f, («,
Opyeeny0y) =f¥(aty,. .., 0,) then look at M = (N, fi)n<o-

Because X # & mod E, we get XN J(M) # O. Pick S € XN J(M) then
S € X and f(S) = « for some o € S. So S & J(M,). But on the other hand,
S e J(M) so S is closed under the functions f,,. Hence, as o € S, S is closed
under the functions f%, so S € J(M, ). Contradiction.

4.6 Assertion: One can easily see that if £* is a normal ideal over / and X # &
mod E* then E* + X is normal.
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4.7 Lemma For any vy < wy, X, = {S € I|S N w, is a limit countable ordi-
nal above v} € E.

Proof: We have to find an algebra M rich enough so that X, =2 J(M). Well, for
any i < v + w throw to M the function which has the constant value i. Also, for
any ordinal o < w; pick an enumeration {a,|b < w} = «a, then define f(«, n) =
o, if a < w; and 7 < w and f(«, n) = 0 otherwise; define also f(¢) = £ + 1.
Now if M has all these countably many functions described above then for S €
J(M), SN w; is an initial segment closed under the successor function, hence
a limit ordinal above «.

4.8 Definition Define a function F: I — w, by F(S) = sup (SN w;). By the
preceding lemma, for almost al S, F(S) =S N w;.

4.9 Lemma Let E* 2 E be a filter over I. Set Dg- = {F” X|X € E*} where

F” X = {F(S): S € X}, then:

(@) Dg~+ generate a filter over w; which we call again Dg~

(b) For YS wy, Y # @ modDg+= F~'(Y) ={S€I|F(S) € Y} # 0 modE*.
And for W+ & modE*, F" W # & mod Dg-

(¢) Dg- is normal if E* is normal.

Proof: (a) Follows from F” X, NF” X, 2 F” (X; N X,). To prove (b) let Y #
0 mod Dg+. We have to show F~(Y) # @ mod E*, and this is true because for
XEE* F"XEDg-.SoF" XN Y # @ and hence XN F~(Y) # &. On the
other hand if W # & modE* then for any Z € Dg«, Z 2 F” X for some X €
E*SoWnNX+Jand F” WNF” X+ &. Hence F” WN Z # &. This proves
F” W + & mod Dg-.

(c) For the normality, let Y # & mod Dg~ and f: Y — w,; a regressive func-
tion. F~'(Y) # @ mod E* is concluded by (b) above. Now define f*: f*(S) =
S(F(S)) for s € F~1(Y). Let X, be the set defined in Lemma 4.7, then X, €
E*. For S € X, N F~'(Y), f*(S) € S. Hence assuming E* is normal and
because X, N F~1(Y) # @ modE*, we get ¢ € w; such that X = {S €
F~YY)|f*(S) = £} # & modE*. Using (b) again, we see that F” X # @
modDg+, F” X € Y and f is constantly £ on F”X.

4.10 Notation: For g: w; — (221'(')+ define g: I— N, a choice function for I, by
£(S) = the g(F(S))-th members of S (in the natural order of S € \).

4.11 Lemma For a filter E* 2 E over I and g,, g,: w; — (22"')*, g1 <pg-
82 ® 81 <g+ &
Proof: Trivial because g, (F(S)) < g, (F(S)) iff §,(S) < £,(S).

4.12 Lemma Let E* 2 E be a filter over I, YC R, Y # @ mod Dg~, then
Dg+yp-'(yy = Dg+ + Y.

Proof: If B € Dg+.r-1(yy then B2 F” X for some X € E* + F~!(Y). But
X € (E*+ F7I(Y)) implies X 2 X, N F~'(Y) for some X, € E*. So F”X 2
F"X; N Y hence F"X € Dg+«+ Y but B2 F”X hence B € Dg- + Y. For the
other direction, let B € Dg++ Y. This means B2 F”X N Y for some X € E*,
SO F Y (B)2F Y (F" XNY)2XNF~'Y. Getting F~'(B) € E* + F~(Y)
we conclude B € Dg«,p-1(yy.
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4.13 Theorem Let D = DE For any g: X, — (22 Yt player II has a win-
ning strategy in G(D, g, (2*")*).

Proof: By Lemma 3.5 it suffices to show that player II wins in G(D, g, \).
Recall that player I is choosing in the n» move A,, g, and player II has to
answer with D, 2 D,_; + A, and «, < a,_,. In the first move, player I gives
A # @ modD and g, <p44, & Player II makes first some side calculations: he
knows that F~! A, #+ @ mod E (Lemma 4.9(b)), then he gets from Lemma 4.12
that setting £, = E + F~' 4,, Dg, = Dg + Ay, and E, is normal (this is by
Assertion 4.6). Now £, is a choice function on F~! A, € E, so Il finds X, <
F~' A, X, # @ modE, such that g, is constant on X; and «, is the unique
value of £, on X,. II responds now with D, = Dg, x, and «;. Dg,x, 2 Dg +
A, = Dg, is due to E + X 2E+F1(A4)) =E,.

Generally, II chooses for himself at the n stage X, S F~ ! 4,, X, # O
mod E such that g, has the constant value o, on X, and responds with D, =
Dg. x, and «,. Let’s see that this is a feasible strategy. Assume inductively the
n move is done and player I gives in his n + 1 move A4, # & mod D,, and g,
<D,+4,,1 &n- Then player II knows that D, = Dg, x,, he sets E,,, = (E +
X,) + F~'(A,,,) and concludes with Lemma 4.12 (where E* is E + X,,) that
D+ x,)+F "V (Aps1) = DE+xy T Ant1 = Dn+ Apy1- And Gnpi <pix,+F(4p1)
g, by Lemma 4.11, II then finds X,,, # @ modE X,,; < X, N
F YA, ) N {S EIg,41(S) < £,(S)} such that g,,, has the constant value
Aty ON X,y . Now II answers with D,y = Dg,x,,, and a,4;. @,p < @y
because £,,; and g, are constant on X, and g, is less than g, there (and
Xns1# D). Dyyy 2D, + A,y because X, € X, N F'(A,,,) implies E +
X1 2E+ X, NF Y (A,.1) =(E+X,) + F'A,,, (see Lemma 1.2). Hence
Dgix,., 2 DE+x,)+F—14,,; = Dn + Apyy. Finally, as II can always answer
and o, < o, a decending sequence of ordinals, the victory for II is not late
to come.

Theorem 4.13 was proved under the Assumption 4.1. Now we drop this
assumption and get a general conclusion.

4.14 Conclusion Suppose for any A S (22")* there is a transitive class

= V' } which is a model of ZFC containing the ordinals, A € V* and V* E
“There is a cardinal \ satisfying 4.1”. Then there is a normal filter D over w,
such that player II wins in G(D, g) for any g: w; - (22 Ht.

Proof: If the conclusion is false then for any filter D over w, for every function
g w — (22 )* player I has a winning strategy in G(D, g). The number of all
possible pairs D, g is (22 'Y* and a winning strategy for I in G(D, g) is a func-
tion defined on filters D, over R, taking values pairs A4,,, £,+1. SO we can
find 4 < (22 ")* which encodes in some convenient way all such D, g and
strategies for player I in G(D, g), so that if A € V* is a model of ZFC contain-
ing the ordinals then V'* contains ®(®(X,)) and for any D, g in V* player I has
a winning strategy in G(D, g). Let V* = V' }, so by the hypothesis of 4.14. But
in V* there is a cardinal A satisfying 4.1 by our assumption so that Theorem 4.13
apphes in V* and for Dg = D, player II has a winning strategy in G(D, g,
(22"')*) and a fortiori in G(D, g) for any g. Contradiction.
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We quote now a theorem of [3].

4.15 Theorem If there is a cardinal R, > 22Kl, cf(R,) = & such that K% >
R then the assumption in Conclusion 4.14 holds (in fact in V* there is a mea-
surable cardinal).

Remark: Dodd and Jenson proved the assumption of Theorem 4.15 implies exis-
tence of an inner model with a measurable cardinal \. But since every measur-
able is also Ramsey cardinal (a well-known fact, proof of which can be found
in Theorem 7.0 in [S]), so by the remark after Lemma 4.3 we have that \ exem-
plify requirement 4.1. What we are really doing here is repeating their proof of
the covering lemma not for K and V but for K(A) and V.

From now on let X, be a singular cardinal of cofinality &, 8, > 22'{‘, and
(VB < «a) xgo < R,. We seek some information on KX! even if o = &,. If
K% = R} then we have an excellent estimate on R¥!, it has the lowest possible
value. So we can assume

Hypothesis For some a, 8, = 22" and 8% > R .
and then the theorem quoted above yields by Conclusion 4.14 that:

4.16 Conclusion There is an almost nice D over w; which shall mean: D a
normal filter such that player II wins in G(D, g) for any g € “1Ord.

(Conclusion 4.14 speaks only about g: 8; - (%ZK’)+ but we know (Lemma 3.8)
that if II wins in G(D, g) for all g: 8; — (22"')* then II wins in G(D, g) for
any g € ¥10rd.)

5 Rank of functions  We give some general remarks and the detailed expo-
sition begins in the paragraph before 5.1. The main Theorem 5.5 is in certain
sense similar to Theorem 2.10: if 7 a cardinal ¢f(7) > (22')*, g € ¥10rd,
Tp(g) = 7, and assume that Player II wins in G(D, g), then there exists a
normal filter D" 2 D over 8, and an <p~-increasing sequence (g;: £ < 7) in
®1Ord/D’ such that Tp(g;) < 7 and moreover [A # & mod D’ = Tp, 4(g;) <
7] for é <.

For this proof we define a number of different notions of rank functions
relatively to an R;-complete filter (this in addition to Galvin-Hajnal rank
already introduced in the Introduction). We define rkp(g) = min {«: II wins in
G(D, g, @)} rkp(g) = min {rkp-(g): D* 2 D normal and II wins in G(D*, g)}.
We shall show that rk’ behaves in a similar form as Galvin-Hajnal’s: [f <p
g=rkp(f) <rkp(g)]. This is Lemma 5.3(2).

We shall study also the relations between the distinct ranks: By Lemma
5.2(1) and Lemma 5.3(3) | flp = rkp (f) < rkp(f).

In Lemma 5.4 we connect these ranks with T, (f); and shall get T (f) <
Iflp-

If IT wins in G(D, g) then for all high enough 3, II wins in G(D, g, 3)
(Conclusion 3.7), so the following definitions make sense.

5.1 Definitions of rank Let D be a (normal) filter over X,, g € ¥10rd and
assume II has a winning strategy in G(D, g).
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1. rkp(g) = min {«| Il wins in G(D, g, «)}. So II wins in G(D, g, rkp(g)) but
not in G(D, g, «) for a < rkp(g).

2. rkp(g) = min {rkp-(g)| D* 2 D is a normal filter over w; such that player
Il wins in G(D*, g)}.

So if rkp(g) = B then II wins in G(D*, g, ) for some D* 2 D but for no
D’'2Dand o < B Il wins in G(D’, g, a).

3. We say that D is g-good if 11 wins in G(D, g) and rkp(g) = rkp(g).

So D is g-good iff rkp(g) = B is the minimal ordinal such that II wins in G(D*,
g, B) for some D* 2 D.

5.2 Lemma Let D and g be such that II wins in G(D, g) then

1. rkp(g) = rkp(g).

2. A winning strategy for Il in G(D, g, rkp(g)) is to choose at the n’th move
D, 2 D,_, + A, such that rkp_(g,) is minimal and o, = rkp,(g,). (In this
case D, is g,-good.)

3. rkpia(g) < rkp(g) for A # @ modD, and equality holds in case D is
g-good.

Proof: 1. is immediate as the minimum in the definition of rk’ is taken over a
larger set of ordinals than that of rk.

2. II can play and win according to this strategy because if II wins in
G(D,_, &g1—1, a1 ) then for any choice made by I of 4,, # 0 mod D,_, and
&n <D,_1+4, &—1, player II can use his winning strategy (the one we assume he
got)to get D* 2 D,_; + A, and « < «,_; such that II wins in G(D*, g,, «).
It follows that rkp-(g,) < o < a1, hence if Il chooses D, 2 D,,_; + A4, with
minimal rkp,(g,) then «, = rkp,(g,) < a,— and (D,, g,, o,) is @ winning
position for II.

3. Follows because if II wins in G(D, g, «) then II wins in G(D + A4, g,
o) (Lemma 3.4). If D is good for g then rkp(g) = rkp(g); by definition, this
means rkp(g) < rkp-(g) for any D’ 2 D (a normal filter with II winning in
G(D’, g)), in particular rkp(g) < rkp,4(g).

5.3 Lemma For a filter D and a function g such that II wins in G(D, g) the
following holds:

1. If <sp g then rkp(f) < rkp(g) and rkp(f) < rkp(g).

2. Iff<pgthenrkp(f) <rkp(g).

3. rkp(g) = |g|p, where |g|p is the Galvin-Hajnal degree (see [4)) defined by
lelp = Sup{|flplf <p g} (In this definition we used the fact that & <p fis a
well founded relation (Lemma 2.9). Note also that the use of the capital letter
S in Sup means that if a set of ordinals A contains a maximal ordinal v then
SupA=vy+1.)

Proof: 1. Il wins in G(D, g, rkp(g)), so Il also wins in G(D, f, rkp(g)) (see
Lemma 3.4); hence rkp(f) < rkp(g). For rk’; rkp(g) = rkp-(g) for some
D* 2 D, but we just saw that rkp-(f) < rkp-(g), and rkp(f) < rkp~(f) by
definition, so rkp(f) < rkp(g) follows.

2. For some D* and «, rkp(g) = rkp+(g) = o where D* 2 D and for any
D' 2 D, o < rkp (g). So player II has a winning strategy in G(D*, g, «).
Assume f <p, g (and then f <p- g). Let player I play as first move in G(D*, g,
o), the set A; = 8; and the function f; = f. Player II uses his strategy and gives
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back D** 2 D* and ordinal «; < «. So II wins in G(D**, f, «;), from this
rkp««(f) < a; and rkp(f) < «, follows. Hence rkp(f) < oy < a = rkp(g).

3. Prove by induction on ¢ € Ord that if |g|p = £ then rkp(g) = £. This
is immediate using part 2 above and the definition of |g|p.

5.4 Lemma If 7 is a cardinal, 7 > 2% and g € *10Ord with Tp(g) = 7 then
> 7.

Proof: Assume |g|p = ¢ < 7, we will find a contradiction. Set x = |£] + 25! <
7. As Tp(g) = 7 we can find, by the definition of Ty (g) a set H < ¥1Ord,
|H|=x"suchthat [h€ H=h <pg]l and for h+ h'in H, h #p h’. But if h
<pgthen |h|p<|glp<x™, sowecan find H* € H, |H*| = x™* and an ordi-
nal ¢ < |g|p such that |h|p = ¢ for he H*. Set H* = {h;|i < x*}. Now by The-
orem 2.2 (that one which was an application of Erdos-Rado Theorem) as x * =
(2%1)* we can find i < j < x* with h; <p h;, but h; #p h;, hence h; <p h;. This
clearly contradicts |h;|p = |A)]p-

The following theorem is central in our theory.

5.5 Theorem  Let 7 be a cardinal cf (1) > (2*°)*, g € ¥10rd and Tp(g) =
Tor|glp=Tor 7 <rkp(g). Assume that player II wins in G(D, g). Then there
are g € *10rd (for ¢ < 1) and a normal D' 2 D such that:

l.gs <ngf0r$<7

2.$<§‘<’r=>g£ <ng§

3.Tp(gr) <7tfortE<r

4. If A+ D modD’ then Tp  4(g;) <7for&<r

5. E<rkp(g) =rkp(g) <7tfort<r.

Proof: If rkp(g) = v let D* = D. If |g|p = 7 by Lemma 5.4 and rkp(g) = |glp
by Lemma 5.3(3). Now rk(g) = rkp-(g) for some D* 2 D (by Definition 5.1).
So always rkp+(g) = 7. Look at the set K of all plays in G(D*, g, rkp+(g)) in
which II is conducted by the winning strategy described in 5.2, i.e., at the n move
player II chooses the minimal ordinal «,, such that for some D, 2 D,_; + A4,
player II wins in G(D,, g, @), in other words o, = rkp,(g,) is minimal. Set
ag = rkp+(g).

5.5A Claim Every ordinal v < rkp+(g) = «q is some «, played by II in
some play in K.

Proof: Assume y < «q is not obtained in any play. If there is « > v below «
which is obtained in a move of 1I, let a be the first such ordinal, otherwise set
a = ap. In either case, o = a, = rkp,(g,) for some D,, g, which appear in a
play in K. So we have a winning strategy for II in the game G(D,, g,, o) which
furnishes only ordinals below v (as no ordinal in the interval [y, a) is ob-
tained), so this is actually a winning strategy for G(D,, g,, v), contradicting
rkD,, (&n) = a.

Applying the claim we get for any o < 7 a filter D, 2 D* and a function
&« <p, & such that (D,, g, «) appears in a play in K (D, as D, g, as g,, «
as a, in the » move in a play in K). By the strategy II is supposed to use we
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get that rkp_(g,) = rkp,(g,) = . The number of filters over w, is < 22" and
cf(r) > 22"; this implies that S € 7 exists, |S| = 7, and one filter D’ can be
found such that for« € S, D, = D’.

We now prove that the collection {g,|a € S} satisfies the following 1-4.

1. g, <p g, because g, is g, and D’ is D, for n > 0 in some move in the
game G(D*, g, rkp+(g))-

2. Let 8 < o in S. Claim: gg <p' g,. Proof: Otherwise 4 =% {i <
Rilgg(i) = go (i)} # & modD’, a = rkp(g,) and D’ is g,-good, hence a =
rk(p+ay(8y). Similarly 8 = rkp,4(gs). But g, <p44 gp hence a =
rkp 4 4(8y) < rkpy4(gs) =B by Lemma 5.3(1), contradicting 8 < a.

3. Tp(g,) < 7. Because Tp-(g,) = 7 would imply |g.|p- = 7 (Lemma 5.4).
But |g.lp = rkp(g,) by Lemma 5.3(3) and rkp-(g,) = o as we know, so
|l8«lp’ = @ < 7. Contradiction.

4. If D” is any filter containing D’ such that II wins in G(D”, g,), the
arguments in 3 above work again to deduce that o = rkp-(g,) = |8.|p- and
hence Tp-(g,) < 7. But as D’ is g,-good player 1I wins G(D’ + A, g,) when-
ever A S R,, A + & mod D’ hence for such ATp; 4(8) < 7.

Finally, as |S| = 7 we can reenumerate the functions g, so that the index
set is of 7.

6 On the power of singular cardinals Here is a general description, and the
detailed exposition begins with 6.1.
Here we shall present our main results which have meaning also when

X, = a. In the first Theorem 6.2 we prove for X, singular > 22’(', cf(R,) =
R, [B<a= NEO < R} that if there is no weakly inaccessbile cardinal below
R, then there is no such cardinal also below X1,

Assume by negation that there exist a weakly inaccessible 7 below RX!
(=2%«if & is strong limit).

Our assumptions satisfy Theorem 5.5 (for the filter D from 4.15—the win-
ning filter for II in all the games G(D, g)).

Take the sequence of functions of length 7 from the theorem. By Theorem
2.3 we can define g,: 8, — &, which is their supremum. Now we assumed that
below R, there is no weakly inaccessible, so for i < &, g,(/) can be successor
ordinal, zero, Ry, singular ordinal, or a successor cardinal. Denote the sets of
ordinals i < &, such that g(i) is one of the five types of ordinals as mentioned

5
above by A,, A,, A3, A4, As, respectively; since X, = U A, there must be
n=1

1 < k < 5 such that A, # 0 mod D. We check each of the five possibilities and
shall get contradictions.

By X, (8o) denote the first cardinal Xz such that Rz = 3, and ¢f (Rg) = \.
In order to be independent from other works we shall introduce a lemma of Gal-
vin and Hajnal from [4]. We then prove Theorem 6.6 which for ¥, (Rq)
strong limit will give us the inequality 2%« (80> < R 22*1y+ (Rg). The proof will
be simple by using again Theorem 5.5 and the mentioned lemma.

6.1 Definition A cardinal 7 is called weakly inaccessible iff 7 is a limit reg-
ular uncountable cardinal.
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6.2 Theorem Let R, > 22" pe of cofinality &, and R° < R, for all B < a.
Then: There is no weakly-inaccessible 1 < 8, = There is no weakly-inaccessible
< &Y,

Proof: R, is a singular cardinal hence « is a limit ordinal and ¢f (%, ) = ¢f (a) =

®;; let {a; < a|i < w;) be an increasing sequence cofinal in «, i.e., @ = U a;.
I<w
Let D be the filter we obtained in 4.15: II wins in G(D, g) for any g € “‘Olrd.
Define g: 8; — 8, by g(i) = X9, then Tp(g) = RE' (Theorem 2.8).
Suppose by contradiction that although there is no weakly inaccessible
cardinal below &,, there is a weakly inaccessible 7 < R}!. Let (g:|f < 7) and
D’ 2 D be given by Theorem 5.5, i.e.,

l.gi<pgfori<r
2, E<{=8<p &
3. Tpya(ge) <7forany A # @ modD’ and £ < 7.

Let g, € "1Ord be the least upper bound of {g;|¢ < 7} given by Theorem
2.3, 50 g: =<p-g, (we can assume g; (i) < g, (i) for all i < X, ) and not only g, is
a least upper bound of {g;|£ < 7}, but also if 4 <p- g, then & <p- g; for some
¢ < 7. Because g, <p- g we can assume (Vi € 8;) (g,(i) < X, ) so that g, (i) is
either a successor ordinal, or zero or 8y, or a singular ordinal, or a successor
cardinal (one of the form p*). But g, (i) is never a weakly inaccessible cardinal
as there are none in X,. So there are just five possibilities which will be ruled
out, bringing a contradiction.

Possibility I A, = {i < ®,|g, (i) is a successor ordinal} # & modD’.
g.()—-1 i€A,.

8o (i) I & A

As gy <p' &, h <p &, so for some ¢ <7, h <p g <p- &, but this means that

for D’-almost all i < Ry, h(i) < g: (i) < g,(i). Yet fori€ A, h(i) = g, (i) — 1,
contradiction. We can assume that g, (i) is never a successor ordinal.

Possibility II Not I but A, = {i < R{|g,(i) = 0} # & modD’. This case is
impossible because [gy <p' & = g,({) > 0 for almost all /]. We can hence
assume that g, (i) is always a limit.

Possibility III - A3 = {i < Ry|g, (i) = Ro} # @ modD’. Now g; <p g; for all
£ < 7 and there are only < 2% functions in “38,. So for some ¢ < ¢ < 7: for all
i € Aj g () < Ry iff g¢ (i) < Ry and then g; (i) = g.(i). Hence g; <p g; <p- &
rule out possibility III.

Define, A(i) = {

Possibility IV A, = {i < Ry|g, (i) is a singular limit ordinal} # mod D'.

cf (g-(i)) i€ A,

i A,
Then e <p g,, therefore (3§ < 7) (e <p &) and as Tpry4,(8:) <7, Tprya,(e) <
7. Say x = Tp-ya,(e). First pick ¢; cf (g,(i)) — &, (i), for i € A4, each ¢; increas-
ing and continuous such that the range of ¢; is cofinal in g, (i) and ¢;(0) = 0. For

each g; define g <p e as follows.

Define e(i) =
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We define g (i) = @ iff: i € A4 and 8 < e(/) is the unique ordinal such
that g; (i) is in the interval [c;(8), ¢;(B + 1)), or i & Ay, | < w;, B = 0. Obvi-
ously gf <p-4a, €: Let H < {gf|¢ < 7} be maximal with respect to the property
that [hy # hy = hy #pya, h2]. Then |H| < x = Tp.,4,(e). For any ¢ < 7 there
is h € H such that {i < 8;|gf(i) = h(i)} # & mod D + A, (by maximality of
H). Now 7> 2¥1.x is regular and that implies the existence of SS 7, |S| =17
and A # & modD’' + A4 and h € H such that gf'A =h!A for £ € S. If
now we define 4(i) = ¢;(h(i) + 1) for i € A4 and h(i) = 0 for i & A,, then
8 <pr4ag+a h follows for all £ € S. But this implies Tprya,44(h) = |S| =
7 (because [£ # &' = g; #p gl and D' S D" + A4 + A). Yet h <p. g; hence
h<p &, for some { <7, so that Tp.y 4,+4(g;) = 7. Contradiction to 3 above.

Possibility V. As = {i < R,|g,(i) is a successor infinite cardinal} # & mod D'.
u where g (i) = ut if i € As.
0if i & As.

Then f <p- g,, and so f <p g; for some ¢ < 7, so that f <p g; for all ¢’ = ¢
(as the sequence of g; is increasing). For each £’ = £ for (D’ + As)-almost all
I <Ry f(i) < g (i), g,(i) =f(i)*. Hence |g; (i)| = | f(i)| for (D’ + As)-almost
all i < 8. This easily shows that Tp-, 4,(g;') = Tp14,(f). But the g for { <
7 are increasing, thus Ty, 4,(g;/) = |€']. Yet f <p- g; implies p’ =4 Tpia(f) =
Tpyas(g;) <7, and when § < &' < 7, |§'| < Tpya,(g:) = Tpaas(f) = p,
hence 7 < (u')*, but 7 is a limit cardinal contradiction.

Define f(i) = {

6.3 Notation Let us define Rg(X,) by induction on B3: Ro(X,) = K,
Ri(Ry) = Royx, [s0 when o < Ry, 81(R,) = Ry ], Rgyp (Ry) = Ri(Rg(R,)),
and for limit 8 = §, R5(R,) = U R, (Ry).
v<é
Note that ¢f (Rg41(8,)) = ¢f (Rg(R,)), and for limit ordinal 6 ¢f (8s(X,)) =
cf6; and also N = Rs5(R,) = A = R,.

6.4 Notation If f: w; — Ord, define a function R, by R,(i) = R, and let us
define f: f(i) = Ry, (Ro). For such fand ordinal o, f* = o + fif Dom f= w, and
S = o+ f(0).

6.5 Lemma (Galvin—-Hajnal)  If p = Tp(Rg) = 2% then Tp(Rpys) < ptlVio,

Proof: By induction on | f|p = . When « = 0; it is easy because the choice of
p. For a positive denote N = p*1/10 and assume that {4;: i < X\*} exemplify that
Tp(Ry) = N*. For every i let A; = {j: h; <p h;}.

First possibility There exists an 7 such that |A4;| = N\ > 2%!; therefore
(1) Tp(h)) = A
As h; < Rgys, {i:f(i) =0} = O. There is a function g; <p fi such that s, <
RB+gi. So
(2) Tp(h;) = Tp(Rp+g)
from |g;|p < | filp and the induction assumption it follows that:
(3) Tp(Rgn) < p*1il0;
As g <p fi, l&ilp < | fi]p. Hence, #+||gi|lD < ﬂ+||fi||D =\
but (1) + (2) + (3) implies A < pu*/12, contradicting the choice of \.
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Second possibility For every i, |A;] <\, by Theorem 1.5 there exists B S \*,
|B| = N\* such that [i #j € B =i ¢ A;] but 21 < X* and this is impossible by
Theorem 2.2.

6.6 Theorem Assume that R, (Ro) is a strong limit, then 2%« (%) <
R22*1)+(Ro).

Proof: By Theorem 2.8 (take D as the filter generated by the closed unbounded
subsets) there exists a function fy: w; = ¥, (8o), TD(fo) = xwl(xo)"l. Without
loss of generality there is f: wl — w; such that f, = 1.

Assume that Tp( f )= X = x(zz 1+(Ro) and we shall get a contradiction;
by Lemmas 5.3(3) and 5.4 Tp(f) < | flp < rkb (f).

Now apply Theorem 5.5 for regular cardinals u, (22 1) < u < x, so we get
{f}: i< p}and D, 2 D such that the following holds:

1. |i| = Tp, (f’) < u, D, is a normal filter on X;.

2. 1<rkD(fu) and f0r1<j<p,,f# <p, f#

3. Replacing D, by D, + A for A #0 ModD does not matter.

4. f# is the supremum of {fi:i<u}, and (‘v’f<D fi) Qi< p) f<p, i)
(by Theorem 2.3).

For each p let g,: w; — w, such that g, =<p, Sk <p, (&, + 1)

For each u we found a pair (D,, g,), the number of such pairs is < 22",
Denote by Sy = {p < x: p a regular cardmal greater than 22" b 1Sol = x5 of x =
(22"')*, therefore there are S; S S, |S;| = x, and g,, D, such that for all y €
$D,=D,and g, = g,.

There exists a first po in S; such that g, <p_fr0. Therefore |&,|p, <
1728 o, = b, = sup rkp, ( fﬂo) =< sup Tp.( fﬂo) = pg. (By the choice of

i<po
&+, po; by (4); by Lemma 5 33) by Lemma 5 4; by (1) above respectively.) So
there exists a bound on |g.|p

Fact A: (g, + 1) = R, ,. (by definition of (g, + 1))
Fact B: Tp ((g, + 1)) = x.
For each p € S, f <p, (g, + 1); if u %k € S; and = (f% #p- f¥) then there

exists an A such that f} =p_. 4 f¢ (remember that by 3, replacing D, by D, +
A does not matter) but

p=Tp (fl) =Tp+a(fl) = Tp,+a(fi) = Tp,(f¥) = «.
A contradiction arises because we have chosen u # k. So {,u < 81 7 (ff #p
(g, + l)} has cardinality <2%! and hence {fl: fl <p. (g* + 1), p € S} has
cardinality |S,| = x and exemplifies Fact B.
Fact C: |g«|p, = R,, < x and rk’(g,) <X,

[The first inequality by the paragraph before Fact A, the second inequality as
uo € S hence pg € x and (Vi < x) (8, < x) and the third inequality like the
first.]

Now we summarize our facts. By Fact A:

Tp,((g, + 1)) = Tp,(Rg,44,),
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by Lemma 6.5. Tp, (R, +g,) =< Rjg, 14.1p.» €aSily g, + &,|p, = rkp, (g« + &) <
rkp. (g+) + rkp (g.) hence by Fact C rkp (g, + g,) < x, hence (as x = R,)
Rigi1e.1p. < X. Together Tp ((g, + 1)) < x which is a contradiction to fact B.

Open Problem Can the bound from the last theorem be improved? l.e., is
it true that 2%1(X0) < R ,xi)+(8,); Jech and Prikry proved this inequality using
an additional hypothesis to ZFC in [6].

7 The use of forcing  Silver’s proof [S] used forcing, and only after it, “ele-
mentary” proofs (giving stronger results) were found. In fact, our original obser-
vation was that we can eliminate the “elementarity” from the results of [4]. So
we shall see here how things are done with forcing.

7.1 Lemma Suppose P is a forcing notion, D a P-name of an ultrafilter of
the Boolean algebra ®(w,)’ = {A S w: A € V}, such that:

(1) forany pe P, D, ={A S w;: p kp “A € D”} is a normal filter on w,
(2) for A € w\, A # & modD, there is q = p, such that D, 2 D, + A.

Let G S P be the generic set, so D[G] = U D,
PEG

Suppose further that \ > |P| is a regular cardinal (in V) then:

(A) In V[G], there is no decreasing sequence f,/D[G], f, € V, a < |P|", f,:
wp ™ Ord.

(B) If for each a <\, f, € V, and (in V[G)) f,/DIG] < f3/D[G] a < 8 (and
(fou: a < N) € V[G]); then {f,/D[G]: a < N\) has a least upper bound
S/DIG], fe V.

©) If f€V, f: w, = Ord then the power (in V[G)) of {f/Dg: f/Dg < g/
Ds(fe V)}is Ma();c Tp,(g), provided it is > |P|.

VASS

D) VeY/Dg = {f/Dg: fE V, f: w, — V} is an elementary extension of V, but
is not necessarily well founded.

Proof: (A) we can replace (f,: a < |P|") by a cofinal subsequence which be-
longs to V, and then as it is decreasing in V[G], there is p € P which forces
this. By condition (2) of Lemma 7.1 f,/D, < fgD,, for 8 < a, but D, is normal
hence is ®;-complete. Contradiction.

(B) Choose (working in V[G]) by induction g; € V, such that: f,,/Dg <
gi/Dg < gi/Dg for o < N, j < i. If there is a last g; we finish, otherwise let g; be
defined for / < §; hence by part A, 6 < |P|*. There is po € G which forces this
situation. Let

F = {g € Ord“": for some a <6, p € P, plp “g =g.”}.

As in (A) w.lo.g. {f,: a« < \) € V, hence f,/D, is increasing.

For g€ F, a < Nlet Ay, = {i: f,(i) < g(i)}, 50 Ag o/Dp, is (not strictly)
decreasing. It is eventually constant, otherwise as \ is regular > |P| we get a con-
tradiction to condition (2) of Lemma 7.1, so there is oy < A such that for o, <

a <\, Ag o/Dpy = Ag o, /Dpy. S0 a(*) = Sup ay, < \. Define g*: w; — Ord by:

8,0g
gEF
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g*(i) is min{g(i): g € F, g(i) > fu(» ()}
if defined, zero otherwise.

It is easy to check that g* is a least upper bound.

(C) Clearly if 7Tp,(g) = X\ and p € G then the set F' = {f/Dg: f/Dg <
g/Dg (f € V)} has power =\ (> |P]). Suppose (fi: i <\) is a P-name of A
distinct elements of F, A regular >|P|. We can find p; € G, f; € II(g(i) + 1),
pilFp “fi =f:.” For some SS\, |S| =Nand p =p,; forevery i € S. Sop IFp
“fi/Dg # f;/Dg” for i # j € S.

By condition (2) of Lemma 7.1, this implies f; #p f; (i.e., {a: fi(a) #
fi(a)} € D,), hence Tp,(g) = A, so we finish.

7.2 Definition For a filter D on w;, P(D) is the following forcing notion:
the conditions are A € w,, A # & mod D, and the order is inverse inclusion.
This forcing gives naturally a name D of an ultrafilter on ®(w;)".

7.3 Fact: For D a normal filter on w,, P = P(D) satisfies the assumptions (1),
(2) of Lemma 7.1 when we choose D, = D + A for A € P so Dg is just G.

7.4 Lemma If \ is regular > 228', then there is a normal filter D on w,;
such that in V¥1/Dg = V/G(G < P(D) generic) there is an “ordinal” which
defines a N-like initial segment. We call V“'\/Dg Vp.

7.4 Remark: This applies to other suitable forcing.

Proof: By Theorem 4.16 player II wins in the game G(D, A) for some normal
filter D on w;. By Theorem 5.5 there are g; € X1Ord (for £ < \) and normal
filter D, on w; extending D satisfying (1), (2), (3), (4) from Theorem 5.5. By
Theorem 2.3 (g:/D;: £ < \) has a strict least upper bound which we name
g/Dl .

As for £ < { <\, g <p, & <p, & clearly Tp, (g) = \. Hence =on] “in
V*/Dg, there are = A ‘ordinals’ smaller than g/Dg”. To conclude the proof
we should show that:

*) If A€ P(D), f: wy— Ord, (f€ V), then A g5 “if f/Dg < g/Dg
then before f/Dg there are (in V“'/Dg) less than X\ ‘ordinals’”.

Suppose A, fis a counterexample then A =ven) J/Dg < g/Dg, hence by
Lemma 7.1(2) f <p,+4 & as & #p, 0 (remember f <p, g) w.l.o.g. f <p, &
Now by Theorem 5.5(4) for every B # 0 mod D, Tp,+5(f) < \. So by Lemma
7.1(2) we get that (*) holds.

7.5 Definition

(1) Let g denote a sequence of the form {g,: n € u), u € fc(“w) = the family
of nonempty subsets of “”w closed under initial segment, g, € “10rd. Let Dom
&=u, Rangeg = {g,: n € u}.

(2) Let & denote a sequence {a,: 7 € u), o, an ordinal, u € fe(“w). If o, < @,
when » < n, @ is called decreasing.
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(3) We say g (or (g, @)) is decreasing for D if n <»v = g, <p g, (and & is de-
creasing).

7.6 Definition

(1) For D a normal filter on X;, @ decreasing, g decreasing, we define a game
G*(D, g, &). It is played by two players, I and II, as follows. Denote D = Dy,
& = 8o, & = &g, Up = Dom gy.

Player I begins and in the first move he chooses A; € R, A, # & mod D,
and uy, ug € 4, € fc(“<w) and functions g,(n € u; — uy) from R, to the ordi-
nals such that {g,: n € u;) is (D + A,)-decreasing. Then player II for the first
move chooses a normal filter D; on X, extending Dy + A4 and ordinals o, (1 €
u; — up) such that =a, (o, : 7 € u,) is decreasing.

In general in the nth move player I chooses 4, + & modD,_; u,, u,_;
u, € fe(“”w) and functions g,(n € u, — u,_;) from &, to the ordinals such that
{8,: m € u,) is (D,_, + D,)-decreasing. Then player II chooses a normal filter
D, on R, extending D,_; + A, and ordinals «, (1 € u, — 4,_;) such that {a,:
7 € u,) is decreasing. This play is finished when player II has no legal move or
after w moves. (Player I always has a legal move.) If player II has no legal move,
he loses. If the play lasts w moves, player II wins.

Convention: We write g instead of g for g = (g,: n € {()}) &, = &, and «
instead of g when g is constantly «. (This applies to Definitions 7.5 and 7.6.)

7.7 Definition For D (a normal ultrafilter on &,) and D-decreasing g we
define a game G*(D, g). Let D, = D, g, = g. In the nth move, player I chooses
A, S w, A, # D modD,_, and g,, extending g,_; (i.e., g§,_, = g,/ Domg,_;)
such that g, is (D,_; + A,)-decreasing and player II chooses D, extending
D,_+ A4,.

In the end player II wins if U Dom g, has no infinite branch.

n<w
7.8 Claim

(1) Every game G*(D, g, &) is determined. Moreover, the winner has a win-
ning strategy whose decision depends on the present situation only (and not on
the series of moves leading to it).

(2) For G*(D, g, &) we can make player I choose D,_, + A, instead of A,,
and g,/(D,_, + A,) instead of g, (see comparison with Remark 3.3).

(3) If player II wins in G*(D, g, &), A + & modD, u = Domg = Doma,
(Vn €Eu) (ay = a,Agy <p &), &8 ={&n n € u) is (D + A)-decreasing and
a’ =<{ay,: 1 € uy is D-decreasing then player II wins G*(D + A, g’, &’) (com-
pare with Lemma 3.4).

(4) If player Il wins in G*(D, g, &) then we can find a decreasing &' = {a:
n € u) (u=Domg = Doma) such that (¥n) [, (8¢ (1) +1) +2")" > o]
and player II wins G*(D, g, @’) (compare with Lemma 3.5).

(5) Suppose D and g = (g,: n € u) are given, and for any decreasing & = {c,,:
n € u), satisfying oy, < (2% + (g, (i) + 1))* player I wins G*(D, g, &).

Then player I wins in G*(D, g) (like Lemma 3.6).

(6) If player I wins G*(D, g, &) then he wins G*(D, g) (player II will play
“in the side” a play of G*(D, g, &) in which he uses his strategy).

(7) The following are equivalent for a given D and D-decreasing g = (g,: n €
uy.
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(A) Player II wins in G*(D, g).
(B) Player II wins in G*(D, g, a) for some decreasing a = {a,: 1 € u),
o < (28 + (g () + 1)
(C) For some & player II wins in G*(D, g, &).
(D) Player II wins G*(D, g, a) whenever & is decreasing, o, = 2% 4+
II(g(, (i) + 1))* for each 7.
[Proof: (C)= (B) by Claim 7.8(4)
(D)= (C) trivial
(B) = (D) by Claim 7.8(3)
=(B) = —(A) by Claim 7.8(5) as the games G*(D, g, &) are
determined
(C)= (A) by Claim 7.8(6).]

(8) Each game G*(D, g) is determined (by Claim 7.8(7) or use Borel deter-
minancy).

(9) For any D, g if player I wins in G*(D, g) then I wms in G*(D, g’) for
some g satisfying (¥q € Domg') (Vi < R,) [g'(i) < (22"")*] (Proof like
Lemma 3.8.)

(10) If player II wins in G*(D, &), § = gy, &> = o whenever a < (22 ) then
player II wins in every G*(D, g). (Proof: like Conclusion 3.9.)

7.9 ClaimK
) If 2" <p g, and player II wins the game G*(D, g) then D is nice
where

7.10 Definition We say that (a normal filter) D (on w,) is nice if player II
wins in every game G*(D, g).

7.11 Lemma

(1) If for some \, E (from Definition 4.2) is nontrivial (i.e., D¢ E) E*2 E
is normal then Dg- (see Lemma 4.9) is nice. (Proof: like Theorem 4.13.)

) If for any A < (22 'Y* there is a transitive class V} which is a model of
ZFC containing the ordmals A€ Vjand V*E “there is \ satisfying Assump-
tion 4.1” (e.g., \—> ((22 )*)559) then there is a nice D. (Proof: like Conclu-
sion 4.14.)

(3) For a universe V of set theory, if (3 > 22 "y Nt > X* then there is a nice D.®

7.12 Lemma If player II wins G*(D, a, {y)) P collapse the |a|*! to R,
then there is a P-name D so that Lemma 7.1(1) and (2) hold and |5 “{g/Dg:
g€V, g <p; «} is well ordered of order type <.

Proof: For notational simplicity let P be the levi collapse of |a|! to K.

Let u = ||*! and w.l.0.g. @ = 2. Let {f;: i < u} be a list of the functions
from w; to . Let {A;: i < 2%} list all subsets of w,.

Note that p € P iff p is a function from some n = n(p) < w into u. Also,
p=gqiff pcq. So Domp={0,...,n(p) — 1}.

We now define by induction on n < w, for every h € P with n(h) = n, the
following g%, A”, &”, D" such that
*)
(l) ghfl’ Ahfl’ Olh“, thl; ghFZ, AhTZ’ &hTZ’ thZ,‘ . is a play of G*(D, «,
{v)) in which player II uses a winning strategy.
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(2) A" is Ay if h(0) <281 and Ay (o) # @ mod D, and w, otherwise. For m >
0, A"+ s 4, (m) if h(m) < 2% and Ay # @ mod D" and A" =
otherwise.

(3) "™ is D"'™-decreasing, Rang(g""") = {f;: i € Rang(h)} and if n €
Dom(g"'™), i € Rangh then either gh'™ <pnim f, or f; € {ghth: 77y €
Dom(g""™)}.

The generic G € P provide us with the ultrafilter Dg =% U Dp on the
PEG
Boolean Algebra ®(w;)" and with a witness for the well foundedness of {g/Dg:

g e q},

7.13 Theorem (Galvin-Hajnal) If 8 is a limit ordinal of cofinality &, 2% <
Rs, (Vo < 8) REO < Rs, [8]"1 < Ry then RE' < Rjppiy+.

Proof: By Definition 7.10(3) there is a nice D (or the conclusion holds trivially).
Let v be such that player II wins G*(D, 6, (v)). By Lemma 7.12 letting P be
the collapse of |5|*! to R, there is Dg (a P-name) satisfying its conclusion. Let
G < P be generic over Vin V[G] we can compute the power V* = V*1/Dg,
and j be the natural embedding of Vinto V*. This is a model of ZFC, not nec-
essarily well-founded, but it is well-founded below j(6), moreover it has order
type <v. Now we can prove by induction on a, V* k “q an ordinal < j(§)” that
{f: V*F “f < R,”} has power <X, where y(a) is the order type of {a":
V*Ea <aj.

7.14 Theorem Suppose [8 < 6 = 83° < R;], 6 a limit ordinal of cofinality
R, and 22" < R,.

(1) If ¢ < wy and there is no weakly inaccessible {-Mahlo cardinal p < R, then
there is no such cardinal < {§1.

Q) If ¢ < w, there are < k weakly inaccessible {-Mahlo cardinals < R then there
are < k2" such cardinals < {¥1.

(3) If there is no weakly inaccessible w,-Mahlo cardinal < Rs then there is no
weakly inaccessible (2*)*-Mahlo cardinal <R (really ¢-Mahlo for some { <
(2")M).

Proof: (1) Let A < 83! be a counterexample.

By Lemma 7.4, for some D (a normal ultrafilter on w,), letting P(D) be
as in Definition 7.2, G € P(D) generic over V, in V“!/G there is an “ordinal”
a which defines a A-like initial segment of the “ordinals” of V“!/G. Now for
a closed unbounded set of cardinals u < A, if ¢fu > 2! there is a “cardinal” a,
V<1/G, which defines a u-like initial segment of the “ordinals” of V“!/G (see
Definition 7.7(B)). Now we can prove by induction on ¢ < ¢{ that:

*) If a, is defined, u a weakly inaccessible £-Maho cardinal then V<!/G E
“a, is a weakly inaccessible (£/G)-Mahlo cardinal”.

For ¢ = { we get a contradiction (to the relevant variant of last theorem).
(2) Left to the reader.
(3) Combine the proofs of Theorem 7.14.

7.14 Definition Let:
RG(N) = N
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RFL(N) is defined by induction on a:

1+l()\) =2\
REVTON) = Rixiriog+(REFT(N))
x5 = U 8N

a<d

REN) = U REON) (for £ a limit ordinal).
{<¢

7.15 Fact:

(1) 8, (M) is a monotonically increasing function of i, o,  (but not necessar-
ily strictly).

(2) RL,(N\) =\, «, and when o > 0, also = .

(3) 8%, (M) is strictly increasing in a.

(4) {R§*'(N\): 6 a limit ordinal} is equal to {u: R, (N) = u} (i.e., set of fixed
points of R%(N\) (as a function in x).

(5) For £ limit

{%§(N\): 6 a limit ordinal} is equal to {u: NL()\) = u for every i < &}.

(6) Riig(N) = RE(RL(N)).
7.16 Theorem Suppose vp < 82 (Ro) [;t"o < R2,(Ro)], 22 < K2, (Ro).
Then (82,(80))"! < 8F(8o) for some & < 23",

Proof: As usual we can assume that there is a nlce D (normal filter on w,). Let
Eo < w be such that 22 ! < NEO(XO) For E < (22 )+ let pe = RE (x()) and so B
is mcreasmg continuous, pzi; = 8 (“£)+(u£) Let for £ < (22 Dt < RES Bec
be R (ug) 50 e, LT x(y.g ) (Hg )

Clearly for & = 50, Re by > 22" (when deflned) we assume that the con-
clusion fails.

By Theorem 2.8 there is a function f € M, such that (82 (%0))"! =
Tpo(R7 (X)) Do = {ACw: le Al = xo} By Theorem 5.5, Theorem 2.3 for
each £ < (22")*, £ = &, £ < ui, v < u; there are g; ;, and a normal filter
Dg,g-’,y on w; such that:

gE,g‘,'y SDe’g—,yf’
Tp, ;. +a(80y) = pi. ;. for every A # & mod Dy .,

To, i +4(8) < pig g,y fOr every g <p, . 44 8.ty
A+ I mOdDzyg-’,y.

For o< £ < (2¥")*, ¢ < uf, as py,, > 2% there is Dy, ; such that:
Se,e = {v <wi¢: Dy, = Ds ¢} has power pf
and for £, < £ < (22"')* there is D; such that
Sy = {¢ < pf: D; ¢ = D;} has power p;
and there is D such that
S={f: £y < £< (22, D; = D} has power (22')*.
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Now we use V* = V*/D[G] (as in Lemma 7.12’s proof: G S P generic
over V, D a P-name of an ultrafilter on ®(w;)" satisfying Lemma 7.11(1), (2).)

In it for each y € S; ¢, €S, £ €S: {a: VpF “a < g ¢,.,/G a an ordi-
nal”} is pf ( ,-like. Let g; . /D be the least upper bound of {g; . ,/D: vy €
S¢.4} (clearly easily).

Now suppose ¢ € S, {1, { € S; then from the outside we know that the
number of {a: V*F “a < g;,/D[G] a is a cardinal”} is larger than {a: V" E
a < g ,/D[G] a an ordinal}.

Hence V* k “g: /DI[G] > g: ¢ /D[G]”. Continuing, we get V* k
“f/DIG] = R2,(R)” and {a: Vp F a < w,} has power <2%, a contradiction.

8 Framework for preservative pairs

8.0 Context Let V be our universe, let P be the forcing of collapsing of 2%
to Ry. Let G < P be generic. For every normal filter D over w, in V, we can
find in V[G] a filter D* on the Boolean algebra ®(w;)" = {A: A€V, A S w,
(of V)} extending D, such that D* is a P-name satisfying Lemma 7.1(1), (2)
(work as in Lemma 7.11). We let Vp be V“1/D* (i.e., the set is {f/D*: f a
function in V from w; to V}.

So Vp is an elementary extension of V, but it is not well-founded. Let the
natural embedding be j,. We denote cardinals of Vp by 6, 0. We still know,
that

(a) Its set of “ordinals” have quite large well founded initial segment (more
than w;, in fact at least w,; because the oth element is f,,/D, where for
some g: w; = a, £, (i) = order type of {g(j): j < i}), and we can
choose D* such that {a: a < w;} w, € V< Vp will be well ordered, if
D is good enough, and we can restrict ourselves to such D’s but this is
immaterial here).

(b) If « is an ordinal of V, {a € Vp: a < jp(«), a an ordinal in Vp} has
the power < |a|®! (computed in V' or equlvalently in V[G]).

(c) By Fact 7.3, for every regular A\ > 22 for some D, Vp has a cardinal
6 = 6(\, D), such that {a€ VP:a< 0} is N-like (= has power \, but
every initial segment has power <\). We write 6 = (A, D) also for
singular. Clearly for each A and D there is at most one such 6 (this justi-
fies writing 0 = 6(\, D).) Also, for given § and D for at most one A,
f = 0(\, D) and then we write A = (6, D).

8.0A Definition We let TC(Vp) = {6 € Vp: {a: a < 6} is N-like for some A},
TC'(Vp) = {\(8, D): 6 € VP, \(8, D) defmed} So by Fact 7.3 U TC' (Vp)
include all regular cardinals of V[G] above (22 Y.

We also prove (Lemma 7.1B):

(d) For every regular cardinal A > 2*! of V, and an increasing sequence of
ordinals of ¥} of length A which belong to V[G], the sequence has a
least upper bound (among the ordinals of Vp).

We shall use those propositions only [(c) is the main point].
For a € Vp let pow(a) = |{b € Vp: b € a}| (power taken in V[G]).
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8.1 Definition A pair of functions (f, g) of V (i.e., view it as a class of V
or a definition) from cardinals to cardinals, is called preservative provided that
f, g are monotomc A=pu=f(N\) =f(n), gN\) < g(u)) and for any regular
cardinal A > (22"') in V for some D there is 6 € T C (Vp), A < A(6, D) and

pow[£(8)"P] =< g(N).

8.2 Claim The pair (g,g) is preservation for the following function g (and
similar others):

g(N) =X, g1(N) = Min{u: u > \ is weakly inaccessible}

g(N\) = Min{u: u > N\, p weakly inaccessible Mahlo} for o < ¥,

g% (N\) = Min{u: p > N\ u a weakly inaccessible a-Mahlo}.

Proof: Trivial for a reader who arrives here.

8.3 Definition For a (monotonic) function (from cardinals to cardinals) f,
we define f¢*’ by induction on the ordinal a:

FON =N PN = T
(the ()% is a technical point only, usually absorbed)
for 6 limit £ (\) = |J ().

a<d

8.4 Definition For f (as usual) f* is defined by
SXON) =f P (Ro).

8.5 Claim If (f, g) is preservative then so is (f*, g) where p = (22"")*
and (22 )* is interpreted as a member of Vp by jp.

Proof: Let A > 22", X\ = pow (b) and let A, = g**(\), so for & successor
(ordinal) A, is a successor (cardinal). For each o + 1 (by Definition 8.1) there
are D,y and 0,y € T C (Vp,,,), such that N(0y41, Das1) = Ngs1, and
pow[f(0a+l) D] <g( oz+l)

The number of possible D,s is 22" , so for some D, C={a + 1: D,y =
D} has power (22"')*. Now for « < 8 in C, look in Vp:

Pow[f(8.)1"P < g(\a) < Ag,
but Ag = A(g, D), 63 € T C(Vp); hence, as (f, g) is preservative,
(*) VD t: “f(ea) < 0[3”-

Now working in ¥, for each a € C, for some v(a) < (22°)* in Vp o, €
[£@(N), FY@D+D (X))"P (a close-open interval), as otherwise our conclu-
sion holds and we finish.

Moreover by fact (d), 0, (¢« € C) has a least upper bound 6*. Clearly,
6*€ T C'(Vp), N(6*, D) =\, (remember pu = (22 )"), so our aim is to show
that Vp E “f (0,) < 6*” for o = Min C. If this fails, we can have: Vp k
‘y(a) = v*” for every o € C holds for some y* € Vp, such that Vp E “y* <
no.

So for some v € Vp, C’' = {a € C: y(a) = v} has power u (the power
22" s computed in ¥, C’ is defined in V[G], but it has a subset in V of the
same power; we usually do not bother with such things). But this gives easy con-
tradiction to the statement (*) above.
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8.6 Claim If (f, g) is preservative then so is
2%1 * 2¥]
(()CTDD, (g7 @)

Proof: Let \ be a regular cardinal >22"". Let A\, = g*(«) for a < (22"), and
Pa, g = g% (\,) for B < \,. For each successor o, 8 < \,, there is D,sand o, g
such that s < x(0a,5, D) and pow[f(0,,5)"?] < g(ka,p)-

For fixed a, successor o (> 22" if you like), N, is successor > 22", hence
for some D,, C, = {B: B < N4 successor, D, s = D,} has power \,,
and for some C = {a: o < (22"')* successor, D, = D} has power (22"')*. Now
for « € C, B € Cy, v € Cyy B <y as pow(f(04,5)"P] < &(Ba,p) = Ha,, Ut
)\(aa,ﬁ’ D) = Uy, B85 Oa,B eTC (VD) hence VD E “f(ooz,ﬁ) = Oo,y+

Let B, = minC,, 6, = 04,5, 50 Ny =< N(fy, D). Now we can similarly
prove that if o; < ap < o3 are in C then

*) Pow[f*(8,,)"P] = Noy < N(be,, D)
the second inequality holds by choice, for the first look at g, 5 (8 € C,,) their
number is > = Ny, > N(0,,4,,, D) = etc.

So now, letting C¢ = {a € C: o N C has even order type}, we get o; < @,
in C¢ implies “f*(0,,) < 0,,” hold in Vp. The rest is as in Claim 8.5.

8.7 Claim If (f, g) is preservative, Kand Sfwy) is a limit cardinal (VN <
S(@1)) N < flwy), then fw) < g((227)).

Proof: Look at Vp, as in Definition 8.7. This has an ordinal o whose order type
is w, of ¥V (but is considered countable). It is easy to check that f(«)" isin T C
(Vp) and its cardinality is f(w;). But as
V< Vo, Vo F fla)¥1 < flw'P) < f2"') )P < g ((22™)*) but
pow[f(2*")")] = g(22")*), and
V,

Pow(f(a)*1"?) = flw)™

combining we finish.
Unfortunately, the Milner Rado [12] Paradox generalizes

8.8 Definition For a class C of cardinals we define by induction on n, a
function Sucg from cardinals to cardinals

Sucd(N\) = min{u € C: p > \}

Suc*! = (Sucl)*.
8.9 Claim If p is smaller than the first inaccessible cardinal, then {\:
\ < u* a cardinal} can be decomposed to C,(n < w) (i.e., |J C,={\: A<

n<w

u}) such that Sucf, (8o) > \.

Proof: By induction on A; for first A(Xy) and for successor; no problem
(w.Lo.g. (Vx <) (vn) [Sucf,..<n3(x) < \].
For A singular let \ = U N p = c¢fA\, N\ (i < p) increasing continuous,
i<
No = Ro, Ny > u. Let {u: ,u.#< N} = U G, as above (by the induction
hypothesis). n<w
Let Cy, = C;, Cons1 = |J Ci. Checking is easy.

u>i>1
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NOTES

1. On this see [17]. On the powers of singular cardinals of countable confinality see

[18]. On theorems similar to the ones presented here for N of cofinality &,, such
that u < X\ < u®0 for some u, see [19].

Note that Galvin and Hajnal’s bound is based on: if (i) = g(i)* (both cardi-
nals), then Tp,,, (f) < (T, (g))". We get that for each regular \; for some normal
filter D on w,, and g, {f:f<p g} is N-like, and on this base our bounds. To get
such D we use as a hypothesis that N*! > \* for some \ > 22" (using the covering
lemma), but if this hypothesis is missing then our conclusions are trivial.

2. We want that {i € I: A, = B;} € D implies [[ A,/D =[] B./D. So we should change

iel i€l

the definition for the case & # {i€1: A, = D} € {I\NA: A€ D}. Solet [ A,/D =
(#/D:fe ] (A,U {@})/D, and {i € I: f(i) € A} € D}. e
el

3. Of course, if D is a filter on A, (Q;, <) is x-well ordered for £ <\ and p— (%),

then [T (¢;, <;) is p-well ordered.
E<N

4. Proof of 2.10(2): So w.l.o.g. \ is singular. Still 2.10B holds. Let A= 2 \a,

a<cf N
S A< N <N, [a<B =N <Ngl. As ¢f (\) > 2/, for every g <p f there is N, <\
such that for every nonsmall 4 € 7, Tp,4(g) < Ag. So for some a(g) <cf\, A\, =<
N Let Hy = {g € H:a(g) < a;

*) |H,| <\ for a < c¢f\.

Clearly H = | {H,:a < ¢f\} and H,, increases with «. By the Hajnal free subset
theorem, we now define by induction on 3 < ¢f A and ordinal y(8) and functions
2P (j <\g) such that:

(1) v(B) <¢fN, and [B, <B=7v(B)) <7(B)]
) g € H,

(3) if By < B, j(1) < N, then g, <p gf
(4) if j(1) </, then gf,, <p- &f.

Arriving at 8, as H= |J {H;:vy <cf(\)}, (by(*)) for some v, J v({) <y <cfA
+ §<B
and |H,| > (Z A\ + )\)) , we now let v(8) =+ and choose gf(j< A,) from
<8
H ) by induction on j (as in the proof of 2.10(1)).

. This is the proof of the omitting-types theorem (and nondefinability of well order-
ing) in model theory.

. Of course, we can restrict ourselves to using only nice filters on X, (in the strategy,
and so in the game).
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