
The Journal of Symbolic Logic
http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

On polynomial time computation over unordered structures

Andreas Blass, Yuri Gurevich and Saharon Shelah

The Journal of Symbolic Logic / Volume 67 / Issue 03 / September 2002, pp 1093 - 1125
DOI: 10.2178/jsl/1190150152, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200009452

How to cite this article:
Andreas Blass, Yuri Gurevich and Saharon Shelah (2002). On polynomial time computation over
unordered structures . The Journal of Symbolic Logic, 67, pp 1093-1125 doi:10.2178/jsl/1190150152

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JSL, IP address: 128.210.126.199 on 23 May 2015

Sh:760

THE JOURNAL OF SYMBOLIC LOGIC

Volume 67. Number 3. Sept. 2002

ON POLYNOMIAL TIME COMPUTATION OVER UNORDERED
STRUCTURES

ANDREAS BLASSt, YURI GUREVICH, AND SAHARON SHELAH*

Abstract. This paper is motivated by the question whether there exists a logic capturing polynomial

time computation over unordered structures. We consider several algorithmic problems near the border

of the known, logically defined complexity classes contained in polynomial time. We show that fixpoint

logic plus counting is stronger than might be expected, in that it can express the existence of a complete

matching in a bipartite graph. We revisit the known examples that separate polynomial time from fixpoint

plus counting. We show that the examples in a paper of Cai, Fiirer, and Immerman, when suitably padded,

are in choiceless polynomial time yet not in fixpoint plus counting. Without padding, they remain in

polynomial time but appear not to be in choiceless polynomial time plus counting. Similar results hold for

the multipede examples of Gurevich and Shelah, except that their final version of multipedes is, in a sense,

already suitably padded. Finally, we describe another possible candidate, involving determinants, for the

task of separating polynomial time from choiceless polynomial time plus counting.

§1. Introduction. We shall be concerned with computational problems whose
inputs are finite structures (for a fixed, finite vocabulary T) and whose outputs are
"yes" and "no" (or 1 and 0, or t rue and fa lse) .

When T contains a binary relation symbol ^ interpreted in all input structures as
a linear ordering of the underlying set, then these structures admit an easy, canonical
encoding as strings. In this situation, one defines polynomial time computation on
ordered structures to mean polynomial time Turing machine computation using as
inputs the string encodings of the structures. Of course, polynomial'time is robust,
so equivalent definitions could be given using other computation models in place
of Turing machines.

Turing machines that include a clock to stop the computation after a specified
polynomial number of steps thus form a computation model capturing PTime on
ordered structures. They constitute a logic in the broad sense defined in [12].
Immerman [17] and Vardi [20] showed that PTime on ordered structures is also
captured by a logic with the look and feel traditionally associated with logics,
namely fixpoint logic FP. (We shall review in Section 2 the definitions of FP and
other logics mentioned in this introduction.)

For unordered input structures, the situation is quite different. One can encode
such a structure as a string by first choosing a linear ordering of the underlying

Received February 6, 2001; revised December 12, 2001.

tPartially supported by N S F grant DMS-0070723 and a grant from Microsoft Research.

•t Partially supported by US-Israel Binational Science Foundation.

© 2002, Association for Symbolic Logic
0022-4812/02/6703-0016/S4.30

1093

Sh:760

1094 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

set. Thus, the same structure has many string encodings, and no efficient way is
known to choose a preferred encoding. Following Chandra and Harel [9], one says
that a problem having unordered structures as inputs is solvable in polynomial time
if there is a PTime Turing machine that solves the problem when given any string
encoding of the input structure (arising from any ordering of the underlying set).

This does not provide a logic in the sense of [12], because that sense requires the
sentences of a logic to form a recursive set. In the case at hand, the "sentences" would
be PTime Turing machines whose output is the same for any two inputs encoding
the same structure. This invariance property is undecidable, so the recursivity
requirement is violated.

Nor does fixpoint logic FP capture PTime on unordered structures. It cannot
even express "the universe has an even number of elements" when the vocabulary
T is empty.

It remains an open problem whether there is any logic at all (in the sense of [12])
capturing PTime on unordered structures. It was conjectured in [12] that there is
no such logic.

There have been, however, continuing efforts to find logical systems capturing at
least large parts of PTime, if not all of it. These efforts have looked primarily in two
directions.1 One direction involves adding to FP additional constructs, usually in
the form of quantifiers, to permit the direct expression of certain easily computable
properties of unordered structures, for example the property "the universe has an
even number of elements" mentioned above. The most popular of these extensions
has been to add counting to the logic. There are several ways to formalize this
extension; we choose the one described in [18, Ch. 4]. It involves adjoining to
the input structure a second sort, consisting of the natural numbers up to the
cardinality of the input set, and adding to the language terms of the form "the
number of elements x satisfying <p(x)."

The second direction taken by the search for a PTime logic involves combining
a standard computation mechanism with additional logical (rather than arithmeti­
cal) facilities. The generic machines of Abiteboul and Vianu [1] are of this sort,
combining a Turing machine and first-order logic. Another model of this sort,
more directly relevant to our purposes here, is choiceless polynomial time, CPT,
introduced in [6]. Here the abstract state machine model of computation [13, 16] is
applied in a set-theoretic context, allowing essentially arbitrary data types over the
input structure. It is shown in [5] that CPT is strictly stronger than PTime generic
machines, but even so it cannot compute the parity of an unstructured set [6]. It
thus appears that this second direction produces unduly weak models. On the other
hand, we shall see that CPT is capable of computing some things that are beyond
the reach of FP plus counting.

It is therefore reasonable to combine the two directions and consider computation
models (or logics) like CPT+Card, which is CPT augmented with the ability to
compute cardinalities. This model was already proposed in [6, Subsection 4.8] as
worthy of further study. The present paper contains the first results of that study.

'A third direction, studied by Gire and Hoang [10], involves a form of restricted nondeterminism.
This direction looks promising, but we do not address it in this paper.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1095

The main problem, which remains open, is whether CPT plus counting captures
polynomial time on unordered structures.

Most of the results we present here are concerned with specific algorithmic prob­
lems that are solvable in PTime but appear to be at the borderline of expressibility in
logics like CPT plus counting. Several of them are possible candidates for separating
PTime from CPT plus counting.

We begin with work motivated by the result from [6] that bipartite matching is not
in CPT. The proof of this involved exceptionally simple instances of the bipartite
matching problem. In the traditional picture of bipartite matching, where the input
consists of a set of boys, a set of girls, and a (symmetric) "willing to marry" relation
between them, the instances used in [6] can be described as follows. First suppose
there are In boys and 2n girls, divided into two gangs of n boys and n girls each;
a boy and a girl are willing to marry if and only if they belong to the same gang.
Obviously, a complete matching exists in this case. Next suppose one of the boys
defects from his gang and joins the other, while all girls remain in their original
gangs. Obviously there is no matching now. But a CPT program cannot distinguish
these two situations if n is sufficiently large compared to the program ([6, Thm. 43]).
This specific deficiency can evidently be removed by adding to CPT the ability to
count, but it seems that this success depends on the very simple structure of the
"willing to marry" relation. There seems to be no way to extend this result to
general instances of bipartite matching. Thus, there was some hope that bipartite
matching would serve to separate PTime from CPT+Card. That hope is dashed
here in Section 3, where we present a CPT+Card algorithm to decide whether a
bipartite graph has a complete matching. In fact, we show the rather surprising
result that the existence of a complete matching can be expressed in FP+Card.

In an effort to separate PTime from CPT+Card, we next turn to the two known
types of examples separating PTime from FP+Card. These examples involve certain
graphs defined by Cai, Fiirer, and Immerman [8] and structures called multipedes
introduced by two of the present authors [15]. For the reader's convenience, we
recapitulate the relevant information from [8] and [15]. Then we discuss how the
constructions from these papers lead naturally to queries that are in PTime but not
in FP+Card. We show that, for suitably padded versions of the examples from [8]
and also for the so-called 4-multipedes of [15] (without padding), these queries are
in CPT even without counting. Thus, these examples show that FP+Card does not
include CPT and is strictly included in CPT+Card.

There are very similar queries, using the graphs from [8] without padding or
using the 3-multipedes from [15], which are still in PTime (by somewhat trickier
proofs than the versions in the preceding paragraph) but which we do not see how to
express in CPT+Card. So perhaps one of these will give the conjectured separation.

Finally, motivated by the use of linear algebra modulo 2 in some of the arguments
for multipedes, we consider the computation of (suitably presented) determinants.
We show that the question whether a matrix over a finite field or over the integers
is singular (i.e., has zero determinant) is in FP+Card. It is not in CPT, even over
the two-element field; the proof of this uses the zero-one law proved by one of us
in [19] and discussed by the other two in [2]. The computation of determinants (in
contrast to merely deciding whether they are zero) over the prime field Z//> for an
odd prime p is in PTime, but we do not know whether it is in CPT+Card.

Sh:760

1096 ANDREAS BLASS, YURI GUREVICH. AND SAHARON SHELAH

REMARK 1.1. What's so special about counting? There is a psychological reason
for wanting to add it to any complexity class that doesn't contain it: Counting is
such a fundamental part of our thinking process that its absence in a computation
model strikes us as a glaring deficiency. Mathematically, any isomorphism-invariant
PTime property of structures could be added instead; thus, one might study CPT
augmented by the ability to decide whether bipartite graphs have complete match-
ings. Cardinality is special in being an isomorphism-invariant property of the
simplest structures, mere sets. Furthermore, it is a complete invariant; that is, two
sets are isomorphic if and only if their cardinalities agree. To do something really
analogous for more complicated structures, say graphs, one would want a complete
invariant, that is, an object associated to each graph in such a way that two graphs
are isomorphic if and only if the associated objects are the same. But it is unlikely
that such an invariant can be computed in polynomial time. (See also [3, 4, 14]
for the relationship between invariants, the decision problem for isomorphism, and
related matters.) So it appears that the notion of cardinality deserves a privileged
position among the possible additions to CPT (or to other complexity classes and
logics). Of course, this does not mean that other possible additions should be
ignored, but it-makes sense to study counting first.

§2. Background. In this section we review the logics and the computation models
relevant to this paper, namely

• fixpoint logic (FP),
• finite-variable infinitary logic {L%, m) ,
• choiceless polynomial time (CPT),

and their extensions by counting, FP+Card, C^m, and CPT+Card, respectively.
(The notation "+Card" stands for adding cardinality to the logic.) We refer the
reader to [18] for details about FP, FP+Card, Lu^m, and C£w and to [6] for details
about CPT and CPT+Card.

Fixpoint logic FP is obtained by adding to ordinary first-order logic the (infla­
tionary) fixpoint operator defined as follows. If X is an r-ary relation symbol not
in T, if <p(X, x) is a formula of the vocabulary T U {X}, and if x is an r-tuple of
distinct variables, then F P ^ y is used as an r-ary relation symbol. It is interpreted
as the fixed point obtained by starting with the empty relation and iterating the
operation

R^ RU{x : <p(R,x)}.

(For a precise formulation, one should fix an T-structure and values for all free
variables of tp except x, and then the operation above should be interpreted using
these data; see [18].)

Fixpoint logic with counting, called FP+C in [18] but FP+Card here (to conform
with the notation CPT+Card), is obtained from FP by the following modifications.
First, every input structure 21, with underlying set A, is replaced by a two-sorted
structure 21* in which one sort is 21 and the other is the initial segment { 0 , 1 , . . . , | .41}
of the natural numbers with the successor function. Second, for each variable x
and formula tp{x), there is a term {$x)ip{x) denoting the number (an element of
the new sort) of values of x that satisfy <p{x). Fixpoint operations are allowed to
define relations on either or both sorts; in particular, addition and multiplication

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1097

are definable on the number sort insofar as their values don't overflow the available
range of numbers.

The infinitary logic L ^ ro is obtained from ordinary first-order logic by making
two changes. First, allow conjunctions and disjunctions of arbitrary, possibly
infinite sets of formulas. (The logic resulting from this first change is called Loo,e>-)
Second, require each formula to use only a finite number of variables, where both
free and bound variables are counted but the same variable may be re-used, i.e.,
it may occur both free and bound and possibly bound many times. L ^ ffl is the
sub-logic in which the number of variables in a formula is required to be at most the
natural number k. It is known (see for example [18, Cor. 1.30]) that FP is included
in L^ w in the sense that, for every formula of FP, there is a formula of U^ m that
is semantically equivalent, i.e., satisfied by the same tuples of elements in the same
structures.

The logic L°^ m could be extended by counting terms just as FP was extended to
FP+Card, but we shall instead follow [18] and use the more traditional counting
quantifiers. The logic C^ w is obtained from U^ m by adding the quantifiers 3 - m

for all natural numbers m, semantically interpreted as "for at least m values of". It
is shown in [18, Cor. 4.20] that C£ r a includes FP+Card.

Since CPT is newer and less widely known than the fixpoint and infinitary logics
discussed above, we describe it in somewhat more detail, but for a full definition we
refer to [6]. CPT is the polynomial time fragment of a programming language, BGS,
defined as follows. Inputs to a computation are finite structures for a vocabulary T;
each program is associated with a fixed T, but different programs can use different
T's and thus admit different sorts of inputs. A computation proceeds in discrete
stages, the state at any moment being a structure of the following sort. Its underlying
set HF(7) consists of the underlying set / of the input structure (regarded as a set
of atoms, i.e., non-sets) plus all hereditarily finite sets over / , that is, all subsets of
/ , all sets whose members are either such subsets or members of / , etc. In other
words, HF(/) is the smallest set having among its members all its finite subsets and
all the members of/. Notice that HF(7) contains the natural numbers, coded as
von Neumann ordinals,

0 = 0 , 1 = {0}, . . . , n = { 0 , 1 , . . . , « - 1},

For computational purposes, this representation of the natural numbers is equiva­
lent (in the BGS context) to unary notation for the natural numbers. So we assume
from now on that natural numbers (and in fact all integers) are available, in unary
notation, along with the basic arithmetical operations. In Section 6, we shall also
need binary notations; details about that representation will be given there.

We use 0 and 1 to represent the truth values fa l se and t rue , respectively. Thus
predicates can be regarded as {0, l}-valued functions. The structure giving a state
of the computation has the following basic functions:

• the functions and relations of the input structure, relations being regarded as
{0,1 }-valued functions, and all functions being extended to have value 0 when
any input is not in / ,

• the logical functions: = , t rue , fa l se , -i, A, V,
• the set-theoretic functions e, 0 , Atoms, (J, TheUnique, Pair,
• finitely many dynamic functions, including Halt and Output.

Sh:760

1098 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

Here Atoms means the set / of atoms (as opposed to sets) in HF(7). The function |J
sends any x to the union of all the sets that are members of x, TheUnique(x) is the
unique member of x if x is a set having exactly one member (and 0 otherwise), and
Pair(x, y) is the set {x, y}. The dynamic functions are constant with value 0 in the
computation's initial state but acquire more interesting values as the computation
proceeds. The vocabulary of a BGS program has symbols for all these functions.
The symbols for the input relations (as opposed to functions), the logic symbols, e,
the dynamic functions Halt and Output, and possibly some other dynamic function
symbols are called Boolean; their values are always 0 or 1. (If we were interested in
computing results other than "yes" and "no", then we would not declare Output to
be Boolean.)

The meaningful expressions of the programming language BGS are terms and
rules. Terms are built from the function symbols described above and variables in
the usual way, with the addition of the term-forming construction

{t(v) : v G r : (p{v)},

where t and r are terms, ip is a Boolean term (i.e., one whose outermost constructor
is a Boolean function symbol), and v is a variable not free in r. (By writing v in
the contexts t(v) and <p{v), we mean to indicate only that v is allowed to occur free
there, not that it must occur free, nor that other variables cannot occur free.) The
interpretation of the term {t(v) : v e r : ip(v)} is the set of values of t(v) for all
values of v that are members of the value of r and make (p true. When ip is t rue ,
we sometimes omit it from the notation and write simply {/(«): » e r} .

We note for future use that there are terms representing the union of two sets,

aUb = \JPmr(a,b)

and the traditional set-theoretic coding of ordered pairs

(a, b) = {{a}, {a, b}} = Pair(Pair(a, a), Pair(a, b)).

Rules are built by the following inductive construction. Each rule defines, in an
obvious way, a set of updates of the state, provided values are specified for the rule's
free variables.

• Skip is a rule (producing no updates).
• If / is a dynamic function symbol, say y'-ary, and to,t\,..., tj are terms, with

to Boolean if / is, then

f(h,...,tj):=t0

is a rule.

• If RQ and R\ are rules and ip is a Boolean term, then

if tp then RQ e l se R\ endif

is a rule.
• If Ro(v) is a rule, v is a variable, and r is a term in which v is not free, then

do f o r a l l v £ r, RQ(V) enddo

is a rule.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1099

The notion of free variable, used in these definitions, is defined in the usual way, with
the term constructor {t(v) : v £ r : (p(v)} and the rule constructor do for a l l v G
r, RQ(V) enddo binding the variable v.

A program is a rule with no free variables. To fire a program in a state is to modify
the dynamic functions of the state according to all the updates produced by the
program except that, if two of these updates are contradictory (i.e., update the same
dynamic function at the same tuple of arguments to different values), then none of
the updates are executed. A run of a program on an input is a sequence of states in
which the first state is the initial state determined by the input structure (as above,
with all dynamic functions constantly 0) and each subsequent state is obtained from
its predecessor by firing the program. The result of the computation is the value of
Output at the first stage where Halt has the value t rue (i.e., 1). (It would do no
harm to automatically stop all runs whenever Halt has the value t rue or to insist
that programs produce no updates in this situation.) If Halt never becomes t r u e
then the computation fails to produce an output.

A PTime bounded BGSprogram is a BGS program II together with two polyno­
mials p(n) and q(n). A run of (II, p(n), q{n)) on input / is a run of II consisting
of at most p(\I\) stages and having at most q(\I\) active elements. We do not re­
produce here the definition of "active" from [6] but remark that, roughly speaking,
an element of HF(7) is active if it is either involved in an update during the run or
a member of something involved in an update, or a member of a member, etc.

For the purposes of this paper, we define CPT as the class of Boolean queries
decidable by PTime bounded BGS programs. (A broader definition, using a three-
valued logic to accommodate computations where Halt never becomes true, was
used in [6], but we will not need to use it here. Once we add counting to CPT,
we can equip our programs with clocks to terminate the computation when a
specified polynomial time bound is reached. Then the motivation for the three-
valued approach in [6] disappears.)

We observe that CPT includes the expressive power of first order logic. The
propositional connectives were included among the basic functions on HF(7), and
the quantifiers over the input structure can be simulated because (3v e I)<p(v) is
equivalent to

0 e {0 : v e Atoms : <p(v)}.

Furthermore, CPT includes the expressive power of fixpoint logic, for the iteration
defining a fixpoint can be simulated by the iteration involved in the notion of run.
In fact, it was shown in [6, Thm. 20] that CPT can simulate the PTime relational
machines of Abiteboul and Vianu [1]; it is known that these can compute all FP-
definable queries.

We shall need several times the observation that CPT includes all PTime (and in
fact exponential time) computations on sufficiently small parts of the input structure.
Specifically, if the input structure has a definable subset P with |P|! < |/ | , then a
BGS program can first produce, in a parallel computation, |P|! subprocesses each
of which knows a linear ordering of P. Then each of these subprocesses can run
a PTime algorithm on its ordered version of P. If the PTime algorithm produces
the same answer for all orderings, then these subprocesses will all give Output that
value, so the overall algorithm produces this answer. And the inequality \P\\ < \I\

Sh:760

1100 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

implies that this is a PTime bounded BGS program, so the result of the computation
is in CPT. For the details of this argument, see the proof of [6, Thm. 21]. Similarly,
under the weaker assumption that 2l-pl < |/ | , a BGS program can produce, in
polynomial time, all the subsets of P.

To add counting to CPT, we simply include, in every state, the additional function
Card that sends every set to its cardinality (considered as a von Neumann ordinal)
and sends atoms to 0. The resulting complexity class is called CPT+Card.

The cardinality function makes it possible to carry out, in a single step, the
operations of addition and multiplication on von Neumann ordinals. Indeed, we
can express a + b as the cardinality of

aU{{0,x) : x G b},

and ab is the cardinality of the cartesian product

a x b = \^_j{{{x,y) : x G a} : y G b}.

REMARK 2.1. Theorem 8 of [6] says, roughly speaking, that every object activated
during a run of a PTime BGS program was "looked at" during that run. This is
no longer true when we add Card to the computation model. The ordinal Card(x)
can be active in a state without all its predecessors being looked at. For example,
if the input is a linearly ordered set of size n, a computation can, since addition is
available, initialize a miliary dynamic c to 1 and then perform n steps doubling c at
each step. Then 2" is active in the final state, but most of the ordinals below it have
not been looked at.

Intuitively, the computation just described should not count as polynomial time,
for it involves parallel processes indexed by sets of size exponentially big compared
to the input. Our definition of PTime in the BGS context agrees with this intuition,
for the number of active elements in this computation is exponential. (The number
of critical elements, in the sense of [6] is only polynomial, so it is important to
include members of critical elements, their members, etc. in the definition of active
elements and thus in the definition of PTime.)

REMARK 2.2. BGS was designed for theoretical purposes. Some of its conven­
tions were designed to simplify analysis of programs and thus are unnatural from
a programming point of view. In this paper, we retain those conventions and work
around them where necessary. But for actual programming, these conventions
should be modified. In particular, arithmetic should be available directly rather
than being coded in the von Neumann ordinals. The input itself should in general
be a metafinite structure in the sense of [11].

The following diagram indicates the relationships between the various logics and
complexity classes considered here. Arrows represent inclusion relationships, where
a logic is identified with the complexity class of its definable classes of structures.

PTime
T

cZ,m <- FP+Card - • CPT + Card
t ' T T

L%c,m FP CPT

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1101

In the following sections, we consider various specific problems and try to determine
which of these logics and complexity classes contain them.

Concerning the left side of the diagram, we recall two well-known facts:
• The inclusion of L^m in Q ^ is proper, because the former logic cannot

express "the cardinality of the univese is even."
• Z^,m is not included in PTime, because it can express "(X,<) is a linear

ordering whose length is in A" for any set A of positive integers, even a non-
recursive set.

These facts show that some of the inclusions in the diagram are proper; the examples
considered in this paper will show the same for all the inclusions in the diagram
except the top one, from CPT+Card to PTime, whose properness remains an open
problem.

§3. Bipartite matching.
3.1. Statement of the problem.

DEFINITION 3.1. A bipartite graph consists of two finite sets A and B with an
adjacency relation R C A x B.

We denote a bipartite graph by (A, B, R). It makes no difference whether we
regard it as a two-sorted structure with one binary predicate R or as a one-sorted
structure with, in addition to R, unary predicates for A and B. Even if we adopt the
two-sorted viewpoint, we assume whenever convenient that A and B are disjoint.

DEFINITION 3.2. A matching in a bipartite graph {A, B, R) is a partial one-to-one
function M from A into B which, considered as a binary relation (a set of ordered
pairs), is a subset of R. We call a matching complete if its domain is all of A.

DEFINITION 3.3. Bipartite matching is the following decision problem. The input
is a bipartite graph (A,B,R) and the question is whether it has a complete matching.

In these definitions, we did not require \A\ = \B\, so a complete matching may
have its range strictly included in B. Everything we say about the bipartite matching
problem remains true if we restrict the inputs to be bipartite graphs (A,B,R) with
\A\ = \B\.

It was shown in [6] that the bipartite matching problem is not in CPT. The proof
of this fact exploited the inability of CPT to count. For the particular graphs used
in that proof, the decision problem would become easy if counting were available,
but this observation does not apply to more general instances of bipartite matching.
The question thus arises whether the bipartite matching problem is in CPT+Card.

We present here a somewhat surprising affirmative answer. In fact, we show that
bipartite matching is expressible in FP+Card.

3.2. Known algorithms. In this subsection we describe two well-known approaches
to the bipartite matching problem. Neither provides a solution in CPT+Card, but
both will play a role in the solution.

The first is an algorithm which we call the path algorithm. It works with (incom­
plete) matchings, starting with the empty one and at each stage either replacing the
current matching by a larger one or determining that no complete matching can
exist.

Sh:760

1102 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

To describe a step of this algorithm, let M be the current matching. If it is
complete, then output "yes" and halt. If it is incomplete, then proceed as follows.
Consider the directed graph whose vertex set is Ai)B (we invoke our standing
assumption that A and B are disjoint whenever convenient) and whose directed
edges are

• all (a, 6) G R- M and
• the converses (b, a) of all (a, b) G M.

In other words, start by regarding all pairs {a, b) G R as directed edges from a to
b, but then reverse the direction of those pairs that are in the current matching M.

If this directed graph has a directed path from a vertex a € A — Dom(M)
to a vertex b G B - Range (M), then choose one such path, and let P be the
corresponding set of pairs in R (i.e., take the edges in the path and reverse the
direction of those that are in M, so as to get pairs in R). Notice that, except for
the endpoints a and b, every vertex in our path has two incident edges in P, one
of which is in M and the other not in M; the endpoints, of course, have only one
incident edge (each) and it is not in M. This implies immediately that the symmetric
difference M A P is a matching of cardinality one greater than that of M. Proceed
to the next step with M A P as the current matching.

If the directed graph has no path from a vertex a £ A — Dom(M) to a vertex
b £ B - Range(M), then output "no" and halt.

This completes the description of the algorithm, but it should be accompanied
by an explanation of why the "no" answer in the last situation is correct. (All other
aspects of correctness — eventual termination and correctness of the "yes" answers
— are obvious.) So suppose that, at some step of the algorithm, there is no directed
path of the required sort. Since the algorithm has not yet halted with "yes", there
are points a e A - Dom(M); fix one such a. Let X and Y be the sets of all
vertices in A and B, respectively, that are reachable from a by directed paths in the
digraph under consideration. By assumption, Y C Range(M). Furthermore, by
the definition of the digraph, X contains all the points that are matched by M with
points in Y. In addition, X contains the point a, which isn't matched with anything.
Therefore, \X\ > \Y\. It is easy to check, using again the definition of the digraph,
that every pair in R whose first component is in X has its second component in
Y. Thus, if there were a complete matching for (A, B, R), it would have to map X
one-to-one into Y, which is impossible as \X\ > \Y\. Therefore, no such matching
can exist, and the algorithm's "no" answer is correct.

The preceding discussion not only establishes the correctness of the path algo­
rithm but also essentially proves the celebrated "marriage theorem", often called
Hall's theorem. For the history of this theorem see [7, page 54].

THEOREM 3.4 ("Marriage"). A bipartite graph (A, B, R) admits a complete match­
ing if and only if, for every X C A, its set of R-neighbors

Y = {b G B : (3x G X) (x, b) G R]

has cardinality \Y\ > \X\.

PROOF. AS mentioned above, a complete matching must map every X one-to-one
into the corresponding Y, so \Y\ > \X\. This proves the "only if" part of the
theorem.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1103

For the "if" part, suppose (A, B, R) has no complete matching. Then the path
algorithm must eventually output "no," and when it does it has found, according to
the discussion above, an X (namely the set of points reachable in the digraph from
an a € A — Dom(M)) for which the corresponding Y has | Y\ < \X\. H

A second approach to the bipartite matching problem would be to check the con­
dition in the marriage theorem. This second approach is clearly not in polynomial
time, for there are exponentially many A"s to check. It is choiceless, as the compu­
tations for all A"s can be done in parallel (after all the X's have been generated, in
another parallel computation), but, as pointed out in [6], choicelessness is hardly
relevant in the absence of a bound on the number of activated sets. (There is a
little bit of relevance, since to simulate choice by parallel computation one generally
needs to activate n\ sets, where n is the input size, and the algorithm based on the
marriage theorem activates only approximately 2" sets.)

The path algorithm, by contrast, clearly runs in polynomial time, since it will
terminate after at most n steps and each step consists mainly of testing the existence
of paths between certain vertices, which can be done in polynomial time. Unfortu­
nately, this algorithm requires arbitrary choices. Whether the required path exists at
any step can be decided choicelessly (see [6, Section 1]), but the algorithm requires
choosing one such path in order to form the matching M A P for the next step to
use.

In fact, since the path algorithm not only decides whether a complete matching
exists but, when the answer is "yes," produces one, it clearly cannot be choiceless, for
some bipartite graphs have complete matchings but none that are invariant under
all the graph's automorphisms. For example, consider the case where \A\ = |J5| > 2
and R = A x B.

We record for future reference that, if the input is given with a linear order (i.e.,
if each of A and B is linearly ordered), then no further choices are needed by the
path algorithm. When it searches for a path, it can do a depth-first search, going
through vertices in the given order, and use the first path that it finds.

3.3. A choiceless polynomial time algorithm. In this subsection, we describe a
CPT+Card algorithm that solves the bipartite matching problem. The description
will be informal, but it should be clear that the algorithm could be programmed
in BGS augmented by the cardinality function Card and that it would run in
polynomial time. Thus, it shows that bipartite matching is in CPT+Card. Later,
we shall prove, somewhat more formally, that the algorithm enables us to express
"there is a complete matching" in the language FP+Card; this implies formally that
the problem is in CPT+Card.

The algorithm proceeds in three phases, given a bipartite graph (A, B, R) as input.
In phase 1, we partition A and B into subsets At (r G /) and Bj (j e J)

respectively in such a way that

• for each i and each j , all the vertices in At have the same number of R-edges
to Bj. That is,

(Va,«' € At) \{b G Bj : {a,b) e R}\ = \{b e Bj : (a',b) G R}\,

• symmetrically,

(Vb,b' G Bj) \{a G A, : (a,b) e R}\ = \{a € A, : (a,b') G R}\,

Sh:760

1104 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

and

• the index sets / and / have canonical linear orderings.

This is achieved by the following procedure, called the "stable coloring algorithm"
in [18].

We proceed in steps, having at each step a partition of A and a partition of B,
together with, for each of these partitions, a linear ordering of the blocks. As long
as the current partitions are not of the desired sort, they will be refined, i.e., replaced
with new partitions each block of which is included in a block of the corresponding
old partition. We begin with each of A and B trivially partitioned into a single piece
(so there is no question about the linear ordering of blocks).

Suppose, at some stage, we have a partition that does not satisfy the requirements
listed above. Since we have linear orderings as in the third requirement, there must
be a violation of one or both of the first two requirements.

Replace each block At by a sequence of subblocks determined as follows. To
each a G At assign a vector consisting of the cardinalities \{b G Bj : (a,b) € R}\
listed in order of the blocks Bj. Each vector so obtained will give one subblock,
consisting of all the a G At that produced that vector. The subblocks within At are
ordered according to the lexicographic ordering of their vectors. Subblocks coming
from different blocks A\ and Ati are ordered as those blocks were ordered in the
given partition.

Replace each block Bj by subblocks and linearly order these subblocks analo­
gously.

Since at least one of the first two requirements was violated, at least one of our
two partitions will be properly refined. Thus, the number of steps of this sort is
bounded by (slightly less than) the number of vertices in AOB. Therefore, phase
1 must terminate, and when it does it has provided partitions satisfying all our
requirements.

In phase 2 we first replace R by the following (possibly) larger relation:

R+ = \J{A{ x Bj : {At x Bj) HR^0}.

In other words, as soon as one vertex in At is R-joined to one vertex in Bj (and
therefore, by the requirements on the partition, every vertex in At is joined to at
least one vertex in Bj, and vice versa), R+ joins every vertex in At to every vertex in
Bj.

Then, using the linear ordering of the blocks produced in phase 1, we create an
isomorphic copy (A', B', R') of (A, B, R+) in which the vertex sets A' and B' are
equipped with canonical linear orderings. To do this, let A' consist of triples (0, /, r)
where i G / and r is a natural number in the range 0 < r < \Ai\. The idea is that
the \At | triples whose second component is i act as a substitute for the members of
Aj. Define B' analogously, using triples (l,j,s), and let

((0,i,r),(l,j,s))eR' < ^ (a,b) G/?+for some (all) a e At, b e Bj

-$=>• (a, b) G R for some a G At, b G Bj.

Notice that (A', B', R') is isomorphic to (A, B, R+), but there is no canonical choice
of an isomorphism. To choose a specific isomorphism we would need to choose a

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1105

linear ordering of each of the sets At and Bj. Fortunately, the algorithm doesn't
need any isomorphism, so it remains choiceless.

Finally, in phase 3, we apply the path algorithm to determine whether (A',B',R')
has a complete matching. No arbitrary choices are involved here, since A' and B'
are (unlike A and B) canonically linearly ordered: Their elements are triples whose
second components come from the index sets / and / , for which phase 1 provided
a linear order, and whose first and third components are natural numbers. So we
can use the lexicographic order on the triples.

Output "yes" or "no" according to whether (A1, B', R'} has a complete matching
or not.

This completes the description of the algorithm. It should be clear that it is in
CPT+Card, but there is a real question about its correctness. The next subsection
addresses that question.

3.4. Correctness proof. If the algorithm presented in the last subsection outputs
"no," this means that there is no complete matching in {A', B', R'}, hence no com­
plete matching in the isomorphic graph (A, B, R+), and hence no complete matching
in the original graph (A, B, R), because R C R+ so any complete matching for R
would also be one for R+.

If, on the other hand, the algorithm ouputs "yes," then there is a complete
matching for (A,B,R+), but this need not be a complete matching for (A,B,R),
since it could use edges from R+ - R. Thus, the following lemma is needed to
establish the correctness of the algorithm.

LEMMA 3.5. In the situation of the preceding subsection, if (A, B, R+) has a com­
plete matching, then so does {A, B, R).

PROOF. Fix a complete matching M for {A, B, R+).
We first define a (reasonably fair) allocation of responsibility, among the edges

{a, b) e R, for the edges (p, q) e R+. By definition of R+, the fact that it contains
(p, q) is caused by the presence in R of some edges {a, b) between the same blocks
At and Bj. If the number of such edges in R is n,-y, then we allocate responsibility
for (p, q) equally among them, assigning each such {a, b) the amount l/n,; of
responsibility. Thus, the total responsibility (of all (a,b)) for one edge (p,q) is 1,
and the responsibility is shared by the J?-edges between the same blocks as {p,q).

If (p, q) is an edge in R+ between blocks At and Bj and (a, b) is an edge in R but
not between blocks At and Bj then the responsibility of (a, b) for (p, q) is zero. If
S is a subset of R then the responsibility of S for an edge (p, q) e R+ is the sum of
the responsibilities of the edges in S for {p,q). The responsibility of 5* for a subset
of R+ is the sum of the responsibilities of S for the edges in the subset. Further, a
vertex v gives rise to a subset S{v) ofR, namely the set of edges of R incident to that
vertex. A set V of vertices also gives rise to a subset of R, namely the union of the
sets S{v) where v ranges over V. This allows us to speak about the responsibility
of a vertex or a set of vertices for an edge or a set of edges in R+.

Because all vertices in At have the same number of R-edges to Bj, they all have
equal responsibility for any (p, q) joining these blocks in R+, namely responsibility
1/ |^, | . (In more detail: Each of these vertices is incident to n^/|/i,-| edges to Bj,
and each of these edges bears responsibility l/n,7 for (p, q). So each vertex has
responsibility l/\At\ for (p, q).)

Sh:760

1106 ANDREAS BLASS. YURI GUREVICH, AND SAHARON SHELAH

Let X be an arbitrary subset of A, and let Y be, as in the marriage theorem, the
set of all vertices in B that have an edge in R from some vertex in X. We shall prove
that \X\ < \Y\; then the marriage theorem will provide the required matching for
(A,B,R).

Temporarily restrict attention to one block Aj. We consider the total responsi­
bility of vertices in X n At for the edges of M (the fixed matching for R+) that
connect At with B. As noted above, each vertex in At has the same responsibility
l/\Aj\ for each such edge, so the vertices in I n At have proportionate responsibility
\X n At \/\Ai I for each such edge of M. There are, since M is a complete matching,
exactly \At\ such edges. Therefore, the total responsibility of all vertices i n l n At

for edges in M (from At to B) is \X C\At\. We wrote "from A, to B" in parentheses,
because it can safely be omitted; vertices in At have, by definition, no responsibility
for edges (of M or otherwise) originating in other blocks At>.

Now consider all the blocks, and sum over i the result of the preceding paragraph.
The total responsibility of all vertices in X for all edges in M is exactly \X\. Recalling
how responsibility of vertices was defined, we can restate the result as: The total
responsibility, for edges in M, of all .R-edges originating in X is exactly \X\.

Now we repeat, as far as possible, the preceding two paragraphs "from the other
side," i.e., starting with a fixed block Bj in B and computing the total responsibility
of the vertices in Y n Bj for the edges in M (from A to Bj). It is their proportionate
share, \Y C\ Bj\/\Bj\, of the total responsibility of Bj for the M-edges that end in
Bj. So far, this is exactly analogous to the preceding argument, but the next step is
slightly different. Although the domain of M is, by completeness, all of A, its range
need not be all of B. Thus, the number of M-edges ending in Bj is < \B,-\ (as M is
one-to-one), but equality need not hold. Therefore, we can conclude only that the
total responsibility of Y n Bj for M-edges is < \Y <1 Bj\.

Summing over all blocks Bj, we find that the total responsibility for M-edges of
all vertices in Y is < \Y\. As before, we rephrase this in terms of responsibility of
edges: The total responsibility, for edges in M, of all R -edges ending in Y is < \Y\.

Finally, we recall that, by definition of Y, every R-edge originating in X must
end in Y. Therefore

\X\= total responsibility for M-edges of

edges originating in X

< total responsibility for M-edges of

edges ending in Y

< \Y\.

This completes the verification that (A, B, R) satisfies the condition in the marriage
theorem and therefore has a perfect matching. H

3.5. Fixed-point logic with counting. In this subsection we indicate how to express
the existence of a complete matching in the extension FP+Card of first-order logic
by fixed-point operators and counting.

First, observe that what Otto calls the stable coloring in [18, Section 2.2] amounts
to the partitions {At : i G / } and {Bj : j € / } produced by our algorithm together
with the linear ordering of index sets construed as a pre-ordering of A and B. The
pre-ordering has x -< y if and only if x is in an earlier block than y. (Technically,

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1107

Otto works with one-sorted structures, so his stable coloring also has a convention
for the relative ordering of A and B, say a -< b whenever a e A and b e B. This
technicality will not matter in the following.)

By [18, Theorems 2.23 and 2.25], the stable coloring is definable in the logic
C£,ieu, and its equivalence classes, our Ai's and 5 /s , are exactly the equivalence
classes with respect to C^M -equivalence. Therefore, the invariant Ici as defined
in [18, Section 3.2] encodes all the following information (plus more information
that we won't need):

• The blocks At and Bj, regarded as points.
• The linear ordering of these blocks.
• For each pair of blocks At and Bj whether there is an R-edge joining them.
• The cardinality of each block.

Recall from Section 2 that, for the logic FP+Card, structures 21 (like our graphs
(A,B,R)) are enriched with a new sort containing the natural numbers from 0 up to
and including the size of 21, with the standard successor function, and the resulting
structure is called 21*. The standard linear ordering of natural numbers is easily
FP-definablein2l*.

According to [18, Lemma 4.14(h)], the invariant Ici of 21 is FP+Card inter-
pretable in 21*, as a structure on the new, numerical sort. This means that the linear
ordering of the blocks of Ici is used to replace these blocks by numbers, the rest of
the structure of lci is transferred to this copy, and the result is FP+Card-definable
in 21*.

Once we have this form of /C2, we essentially have the structure that we called
(A',B', R') in our description of the algorithm in Subsection 3.3. We can take A'
to be the set of pairs (0, i, r) where / is the number representing a block At and
r < \Ai\, and we can take B' to be the set of pairs (l,j,s) where j represents a block
Bj and s < \Bj\. R' joins (0, i, r) to (1, j , s) if there was an ^-edge from A{ to Bj
— information that we saw is available in Ici.

Thus, we have a copy of (A', B\ R'), with linearly ordered underlying set (since
it's in the numerical sort), FP+Card-definable in (A,B,R)*. To apply the path
algorithm to this copy is to apply a polynomial time algorithm to an ordered
structure. So the result, the decision whether there is a matching, is expressible in
FP+Card, in fact in just FP, over this copy. Therefore, the decision is expressible in
FP+Card over {A,B,R}*, as claimed.

REMARK 3.6. It is natural to ask whether, when a bipartite graph does not ad­
mit a complete matching, one can compute in CPT+Card the size of the largest
(incomplete) matching.

Our definition above (and in [6]) of BGS programs allowed only Boolean output,
so technically one cannot compute in CPT+Card anything other than Boolean
queries. But this restriction in the definition was only a matter of convenience. The
BGS computation model and thus the complexity classes CPT and CPT+Card can
and should be extended to allow non-Boolean output whenever this is useful.

Once this extension is made, it is easy to show that the size of the largest matching
in a bipartite graph is computable in CPT+Card. Indeed, (A, B, R) has a matching
whose domain contains all but s elements of A if and only if there is a complete

Sh:760

1108 ANDREAS BLASS. YURI GUREVICH. AND SAHARON SHELAH

matching in the graph obtained by adding s new elements to B and enlarging R so
as to relate all elements of A to the s newly added elements.

The algorithm presented in this section depends on the fact that we deal with
a bipartite graph. The notion of matching makes sense more generally. In any
undirected, loopless graph, a matching is a family of edges no two of which have
a common endpoint. A matching is complete if every vertex is incident to an edge
from the matching. Whether a given graph has a complete matching can be decided
in polynomial time by a variant of the path algorithm. But we do not know whether
this decision can be computed without using choices or an ordering.

QUESTION 3.7. Is the existence of complete matchings in general (non-bipartite)
graphs computable in CPT+Card?

§4. Cai-Fiirer-Immerman graphs. In describing the Cai, Furer, Immerman con­
struction, we follow, with a minor modification, Otto's presentation [18, Exam­
ple 2.7], which is itself a minor modification of the presentation in [8].

Let G be a finite connected graph; we shall need only the special case where G
is the complete graph on some number m + 1 of points, but the construction is no
harder to present in the general case. For each vertex v of G, let Ev be the set of
edges incident with v. Fix a linear ordering •< of the vertices of G. Using G, we
define a new graph G* as follows. Each vertex of degree d in G gives rise to 2d

vertices of G* and each edge of G gives rise to two vertices of G*. Specifically, we
let the vertices of G * be

• pairs (v, X) where v is a vertex of G and X is a subset of Ev, and
• pairs (e, +) and (e, -) where e is an edge of G.

For each vertex v of G, we write U(v) for the set of associated vertices (v, X) of
G*, and similarly for each edge e of G, we write U{e) for the pair of associated
vertices (e,±). (For vertices (v,X) £ U(v), we chose to use, as members of the
second component X, edges {v, w} e Ev rather than simply the distant vertices w
of those edges. The main reason for this choice is to match a visualization in which
U(v) is given in terms of "local data" at v if edges are viewed as line segments.)

The edges of G* are also of two sorts; whenever edge e and vertex v are incident
in G, we

• join (v, X) to {e, +) if e e X, and
• jo in(v ,*) t o (e , -) i f e £ X.

In addition, we transport the linear ordering •< of the vertices of G to a pre-
ordering, also called •<, on the vertices of the form (v, X) in G*; that is, we put
(v, X) •< (v', X') just in case v < v'.

Before proceeding with the construction, it is useful to analyze the automorphisms
of the structure (graph with a linear pre-ordering of some of the vertices) ©* =
(G*,<). Preserving -<, such an automorphism a must map each U{v) into itself.
Then, to preserve adjacency, it must map each U(e) into itself, for vertices in
different U(e)'s have neighbors in different U(v)'s. Thus, a gives rise to a subset S
of the edge set of G, namely

S = {e : a interchanges (e, +) and (e, -) } .

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1109

Obviously, S determines the action of a on vertices of the form (e, ±) . In fact,
it completely determines a, for a vertex (v, X) is determined by which (e, ±)'s are
adjacent to it. More formally, we have

a(e,±) = \{.e'll ^ H and a{v,X) = (v,X A (S n Ev)).
I (e, ±) if e f 5

(As before, A denotes symmetric difference.) Conversely, for any set 5 of edges of
G, the preceding formulas define an automorphism of©*.

The Cai, Furer, Immerman graphs are subgraphs of G* obtained as follows.
For any subset T of the vertex set of G, let GT be the induced subgraph of G*
containing all the vertices of the form (e, ±) but containing (v, X) only if either
v £ T and \X\ is odd or v £ T and \X\ is even. An analysis exactly like that in the
preceding paragraph shows that any automorphism of any 25T (meaning of course
(GT,-<)) and in fact any isomorphism from one 25r to another 25r must be given
by the formulas above, for some set S of edges of G. To describe which 5"s give
isomorphisms between which 25r's, it is convenient to use the notation

Odd(S) — {v : The number of edges in S incident to v is odd.}.

Then the a associated to S maps GT to GT just in case T A T' = Odd(S')
(equivalent^, T' = T A Odd(S)).

At this point we must recall two well-known facts from graph theory. The first
is that Odd(S) always has even cardinality. Indeed, the total number of incident
point-edge pairs (v, e) is even because every edge e contributes two such pairs. But,
classifying the same pairs according to their vertex components v, we find that the
number of these pairs is J2V degree(w). Modulo two, this sum is congruent to the
number of odd summands, i.e., to the cardinality of Odd(»S). So this cardinality
must, like the sum, be even.

The second fact to recall is that for connected graphs, like our G, there is a
converse to the first fact: Any set consisting of an even number of vertices is
Odd(5) for some set S of edges. To see this, pair off the vertices in the given set
(arbitrarily) and choose for each pair a path joining them. Of course, if P is the set
of edges of one of these paths, then Odd(P) consists just of the two endpoints of
that path. Summing up this information over all the chosen paths P and reducing
modulo two, we find that our given set of vertices is Odd(S') where S consists of
those edges that occur in an odd number of the paths P.

Applying these facts to our situation, we see that 25r and 0T are isomorphic if
and only if |T| and \T'\ have the same parity. We write 25° (resp. 61) for © r when
17"| is even (resp. odd). Thus, 25° and 25' are well-defined up to isomorphism and
are not isomorphic to each other.

In fact, 25° and 25' can be distinguished by the following simple property. In G°
it is possible to choose one from each pair of vertices (e, ±) corresponding to an
edge of G, in such a way that each block U(v) contains a vertex (v, X) adjacent
to precisely the chosen vertices in all the pairs U(e) for e adjacent to v in G. This
is easiest to see if we think of G° as G0\ then we simply choose (e, -) from every
(7(e). (If we think of G° as GT for some other T of even size, then we should fix
an S with Odd(>S) = T, and we should choose (e, +) if and only if e G S.) On the
other hand, no such choice is possible in G'. Indeed, let us represent G' as G T for

Sh:760

1110 ANDREAS BLASS. YURI GUREVICH, AND SAHARON SHELAH

a specific T of odd size, and suppose a successful choice of (e, ±)'s had been made.
Let S be the set of edges e where the choice was (e, +). Then we would have, for
each vertex v of G, that (v, S n Ev) e GT, which means that

« £ T < ^ ISn-E^isodd <=^ v e Odd(S).

So T = Odd(S), which is absurd as \T\ is odd and |Odd(S)| is even.
Let us now specialize to the case where G is the complete graph onm + l vertices.

Let f)°m and f)x
m be padded versions of 0° and &', obtained by adjoining 2m isolated

vertices, not in the field of the pre-ordering ^ .

PROPOSITION 4.1. There is a polynomial time BGS program that accepts $rpm and
rejects 55„ for all m.

PROOF. The program checks whether there is a choice of one vertex (e, ±) from
each U(e) such that each U(v) contains a vertex whose neighbors were all chosen.
We saw above that such a choice is possible in ¥)%, but not in 55„- To write the
program in BGS, think of it as consisting of two phases. In the first phase, it goes
through all the blocks U{e) in order (i.e., in the order induced on edges e by ^) ,
splitting into parallel subcomputations each of which has one choice of vertices
from the t/(e)'s. Then in the second phase, each of these subcomputations goes
through the U{v)'s in order, checking whether there is a vertex whose neighbors
were all chosen.

The number of edges in G is (m + \)m/2 < m2. So the number of parallel
subcomputations is no bigger than 2m . The padding in the definition of Sj'm ensures
that this is a polynomial in the input size. It easily follows that a PTime version of
this BGS program does what is required of it in the proposition. H

In contrast, Lemma 2.8 of [18] (see also Corollary 7.1 of [8]) shows that Sj^ and
Sjl

m cannot be distinguished by any sentence in C^w. (Our graphs differ from Otto's
in two ways. Where we have a single vertex (e, +) or (e, —) joined to vertices in
two U(v)'s corresponding to the two endpoints of e, he has two adjacent vertices,
each joined to vertices in just one U(v). And his graphs are not padded with
isolated vertices. Neither of these differences affects the proof that the graphs are
cZ,w -equivalent.)

Thus, these examples of Cai, Fiirer, and Immerman, with sufficient padding, show
that FP+Card does not include CPT; so CPT+Card properly includes FP+Card.

Since the padding looks very artificial, it is natural to ask what happens if we
omit it. Writing &m for & in the special case where G is a complete graph on
m + 1 vertices, we still have that &°m and <&l

m are C^w-equivalent, just as before.
But the proof of Proposition 4.1 breaks down, since the computation is no longer
PTime bounded. The input structures <3'm have size only (m + l)(2m _ 1 + m), so
polynomial time would mean time bounded by 2cm for some c. This is insufficient
for generating all the choices of (e, ±)'s. We do not know whether CPT or even
CPT+Card can distinguish all the &°m'& from the <Si,'s, but an argument from the
proof of Corollary 7.1 of [8] can be adapted to give the following result.

PROPOSITION 4.2. The isomorphism closure of the class {©JJ, : m e N } is in PTime.

PROOF. We must exhibit a PTime algorithm which, given a structure X of the
appropriate vocabulary and given an ordering of its underlying set, decides whether
X = 0° for some m.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1111

It is straightforward to check whether X = <&'m for some m and some /: First
count the number of vertices and use it to compute m. Then check whether •< is a
linear pre-ordering with m + 1 equivalence classes U(v), each of size 2 m _ 1 . Then
check whether the remaining vertices come in pairs U{e), one for each pair of v's.
Label the vertices in each pair U(e) with + and —, say using + for the earlier one in
the given ordering of the set of vertices. Then label each vertex in each U(v)by the
sequence of +'s and —'s describing which vertices from the U(e)'s it is adjacent to.
(We can do this, with sequences because of the ordering of vertices.) Then check
whether the sequences associated to any two distinct vertices from the same U(v)
differ in a nonzero even number of locations. X has the form X = &m if and only if
all these computations and checks succeed.

It remains to distinguish <5°m from &l
m. This is done by a slight variant of the

approach used above in the padded case (Proposition 4.1). From each pair (e, ±)
choose the vertex labeled (e, -) above. Label a block U(v) "good" if it contains a
vertex adjacent only to chosen vertices and "bad" otherwise. Of course, if all blocks
are good, then our graph X is, up to isomorphism, ©^.

The same holds if the number of bad blocks is even. Indeed, in this case, there
is a set S of edges of the complete graph G such that Odd(S) is exactly the set of
vertices corresponding to bad blocks. If we choose (e, +) instead of (e, —) at the
edges e £ S, then the new choices have the property that every U(v) contains a
vertex adjacent only to chosen ones.

On the other hand, if the number of bad blocks is odd, then a similar argument
shows that X = &m.

It remains to observe that we can determine in PTime which blocks are bad and
(thanks to the ordering) how many of them there are. So this algorithm works in
PTime and accepts precisely (the isomorphs of) the graphs <S°m. H

QUESTION 4.3. Can CPT+Card (or even CPT) distinguish <S°m from &m for all
ml

If the answer is negative, then we have a separation of PTime from CPT+Card.
If the answer is affirmative, then we merely have another separation of CPT+Card
from FP+Card, which we already had using S)'m. The new separation would be
aesthetically preferable, since it avoids padding.

§5. Multipedes. In this section, we study Boolean queries concerning the multi-
pedes introduced in [15]. We begin by recalling the relevant definitions and results
from [15]. That paper uses five notions of fc-multipede, for k = 1,2~, 2, 3,4. We
shall not need the first two of these, so we begin with 2-multipedes.

DEFINITION 5.1. A 2-multipede is a finite 2-sorted structure, the two sorts being
called "segments" and "feet," with the following data.

• A function S from feet to segments, such that every segment is the image of
exactly two feet.

• A family of 3-element sets of segments, called "hyperedges." (This family is
coded as a totally irreflexive and symmetric ternary relation.)

• A family of 3-element sets of feet, called "positive triples" (similarly coded).

These data are subject to the following requirements.

Sh:760

1112 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

• If P is a positive triple of feet, then its image S(P) is a hyperedge. In particular,
S is one-to-one on P.

• If H is a hyperedge then, of the eight triples of feet that S maps onto H,
exactly four are positive.

• If P and P' are positive triples of feet with S{P) = S(P'), then \P - P'\ is
even.

Notice that, for any three-element set H of segments, there are exactly eight
three-element sets of feet mapped onto H by S. These eight are partitioned into
two sets of four by the equivalence relation "even difference." The positivity relation
picks out one of these two equivalence classes for each hyperedge H.

DEFINITION 5.2. A 3-multipede is a 2-multipede together with a linear ordering <
of the set of all segments.

DEFINITION 5.3. A 4-multipede is a 3-multipede together with a third sort, called
"sets," and a binary relation e between segments and sets such that every set (in
the ordinary sense) of segments is {s : sex} for a unique set (in the sense of the
structure) x.

In other words, up to isomorphism, the sort of sets is exactly the power set of the
sort of segments and e is the membership relation.

DEFINITION 5.4. A multipede is odd if, for every nonempty set X of segments,
there is a hyperedge whose intersection with X has odd cardinality.

The value of oddness and of the linear ordering in the definition of 3-multipedes
is the following result, combining Lemmas 4.1 and 4.4 of [15].

PROPOSITION 5.5 ([15]). Odd 3-multipedes and odd A-multipedes are rigid.

PROOF. Consider first an automorphism a of an odd 3-multipede. Because of the
linear ordering, it must fix every segment. So all it can do with feet is to interchange
the two feet in S"1 ({•?}) for certain segments s. Let X be the set of segments
s whose two feet a interchanges. Since a preserves positivity of triples of feet,
the intersection of X with each hyperedge must have even cardinality. Since the
multipede is odd, this means X = 0 , and so a fixes all feet.

In the case of a 4-multipede, we see as above that an automorphism fixes all
segments and all feet. In order to preserve e, it must also fix all sets. H

The main work in [15] involves the notion of a &-meager multipede (for k e N);
we omit the definition here because we shall avoid needing it. We do need two
trivial (given the definition) and two deep properties of meagerness. The trivial
properties are that meagerness depends only on the segments and hypergraphs and
that fc-meagerness implies /-meagerness for all I < k. The deep properties are the
following two results from [15]; the first is Theorem 3.1 and the second combines
Lemmas 4.2 and 4.5 of [15].

PROPOSITION 5.6 ([15]). For any positive integers / > 2 andN, there exists an odd,
l-meager multipede with more than N segments.

We observe that it doesn't matter in this proposition whether "multipede" refers
to 2-, 3-, or 4-multipedes. Once we have an odd, /-meager 2-multipede, we can
expand it with an arbitrary linear ordering of its segments and we can adjoin an
appropriate universe of sets to get an odd, /-meager 4-multipede.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1113

PROPOSITION 5.7 ([15]). No formula of Cj^^ can distinguish between the two feet
of any segment in an l-meager multipede.

The purpose of these results in [15] was to exhibit a finitely axiomatizable (in
first-order logic) class of structures, namely the odd 4-multipedes, such that all
structures in the class are rigid but no C^m formula can define a linear ordering
on all structures of the class. The addition of sets, in going from 3-multipedes to
4-multipedes, served to make "odd" first-order definable.2

In the present paper, our interest is in definability (or computability) of Boolean
queries, not linear orderings. To apply the ideas of [15] in this context, we make one
additional definition, intended to apply to 2-, 3,- and 4-multipedes simultaneously.

DEFINITION 5.8. A multipede with a shoe is a multipede with a distinguished foot,
called the "foot with a shoe" or simply the "shoe." In the case of 3- and 4-multipedes,
it is further required that S of the shoe is the first segment in the order <.

The first Boolean query we shall consider is the isomorphism problem for 4-
multipedes with shoes. The input here is a pair of 4-multipedes, each with a shoe.
(Since 4-multipedes are 3-sorted structures, it is convenient to regard a pair of them
as a 6-sorted structure.) The question is whether the two are isomorphic.

THEOREM 5.9. The isomorphism problem for 4-multipedes with shoes is in CPT.

PROOF. Since the segments of a 4-multipede are linearly ordered, any isomor­
phism is uniquely determined on segments and therefore on sets, and it is easy to
check in choiceless polynomial time whether the hyperedges in the two multipedes
match up properly. The only real problem is whether the feet can be matched up so
as to preserve 5 and positivity.

If the input multipedes have n segments each, then there are 2" ways to match up
the feet while preserving S, since for each of the n pairs of corresponding segments
in the two multipedes, there are two ways to match up their feet. The problem is
whether any of these 2" matchings preserves positivity.

Because of the universe of sets in a 4-multipede, the input structures are larger
than 2". So a PTime bounded BGS algorithm has enough time to construct, in
parallel, all the relevant matchings of feet and to check whether any of them preserve
positivity. H

In this proof, the role of the sets is to serve as padding, making "polynomial time"
long enough to carry out the algorithm. The only reason we didn't have to resort to
explicit padding here (as we did in the case of the Cai, Furer, Immerman examples
above) is that the necessary padding was already done, for a different purpose,
in [15]. Of course, this raises the question of what happens without padding, i.e.,
with 3-multipedes; we shall return to this question after the next result, which
completes our discussion of 4-multipedes.

THEOREM 5.10. The isomorphism problem for 4-multipedes with shoes is not in
Qo.co and therefore not in FP+Card.

PROOF. Suppose we had a sentence 6 of C^m expressing isomorphism between
4-multipedes with shoes. Fix / so large that 0 is in C^^, and let M be an odd,

2The linear algebra technique in the proof of Theorem 5.11 can be used to show that, for every
3-multipede, "odd" is PTime computable and thus FP definable.

Sh:760

1114 ANDREAS BLASS. YURI GUREVICH. AND SAHARON SHELAH

/-meager 4-multipede, which exists by Proposition 5.6. Let SD?o and Tt\ be the two
expansions of M with shoes, i.e., one of the two feet of the first segment is the shoe
in £DTo and the other is the shoe in Tl\. By Proposition 5.5, SD?o and M\ are not
isomorphic, for an isomorphism would be a non-trivial automorphism of 9K. Thus,
9 must be false in the structure 9Jto + SDti but true in 9Jto + 9Jto.

This means that the Spoiler has a winning strategy in the C' game for the pair
of structures OT0 + OTi and 9Jt0 + 9#o- (See [18, Theorem 2.1].) We obtain a
contradiction by exhibiting a winning strategy for the Duplicator in this game.

The proofs of Lemmas 4.2 and 4.5 in [15] provide a winning strategy for the
Duplicator in the Cl game for the pair of structures OJto and 9Jli. And the Duplicator
has a trivial winning strategy for the pair Wl0 and Wlo: just copy whatever the Spoiler
does. Combining these two known strategies, we get a winning strategy for the
Duplicator for the pair 9JTo + 9DTj and 9Jto + 9Jto as follows. When Spoiler picks a
subset of one of these structures, think of it as two subsets, one in each of the two
component multipedes. Apply the known strategies to find two subsets of the same
cardinalities in the component multipedes of the other board, and play the union of
these two subsets. Then, when Spoiler picks a point in one of these subsets, pick a
point on the other board by consulting the appropriate one of the known strategies.

In effect, Duplicator is playing the C1 game for 9Jl0+9Jli and MQ+Wlo by playing
separately the trivial game for the first components VJla and 9Jto and the game for
the second components 9Jl0 and 9Jl\. Since he wins in both components, he also
wins the overall game. H

The last two theorems give us, once again, a CPT computable query that goes
beyond FP+Card.

Turning to 3-multipedes, we see that Theorem 5.10 remains true with the same
proof. But the proof of Theorem 5.9 no longer applies, because a 3-multipede
with n segments has only 3n elements and so polynomial time is inadequate for
producing all possible matchings of the feet. As a result, we do not know whether
isomorphism of 3-multipedes with shoes is in CPT or even in CPT+Card. But we
do have the following weaker result.

THEOREM 5.11. Isomorphism of 3-multipedes with shoes is computable in PTime.

PROOF. We must present a PTime algorithm which, given a structure 21+03 where
21 and 03 are 3-multipedes with shoes, and given a linear ordering •< of their union,
decides whether they are isomorphic. There is a slight possibility of confusion
between the different orderings here, the linear orderings of segments that are part
of the 3-multipede structure of 21 and 03, and the additional ordering •< of the whole
combined structure. The latter will be used only to distinguish between the two feet
of any segment (in either component multipede); we'll call one the left and the other
the right foot. We fix the terminology so that the left foot is -< the right except that
in both multipedes the shoe is declared to be the left foot of its segment regardless
of what •< does. For the rest of the proof, any mention of an ordering refers to the
orderings of segments that are part of the 3-multipede structure.

As in the proof of Theorem 5.9, thanks to the orderings of segments, there is no
difficulty deciding whether the hypergraph structures on the segments agree. The
problem is to decide whether the feet can be matched appropriately. If there are
n segments then there are 2" possible (i.e., respecting the function S) matchings,

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1115

and the algorithm lacks the time to check each one to see if it preserves positivity.
Instead, let the algorithm proceed as follows.

Take one specific matching ju, namely the one that maps left feet to left feet and
(therefore) right feet to right feet (of the corresponding segments, of course). If
it happens to preserve positivity, then output "yes" (or ignore this obvious answer
and proceed as in the general case). For each of the two multipedes 21 and 23, list all
its hyperedges in lexicographic order (with respect to the ordering of segments). Of
course, the two multipedes have the same number, say m, of hyperedges; otherwise,
the algorithm would have detected non-isomorphism earlier and we wouldn't be
looking for a matching of the feet. Form an m-component vector v of O's and l's,
where the ktb entry is 0 if /u preserves positivity of triples of feet at the kth hyperedge
and 1 otherwise.

Any other possible matching is obtained from ju by reversals at some set X of
segments of 21. Call the result fix- (So JU = ju0.) In order for jux to be an
isomorphism, i.e., to preserve positivity at all hyperedges, X must have an odd
intersection with those hyperedges where /u failed to preserve positivity and an even
intersection with the other hyperedges. We reformulate this criterion as follows.
Represent any X by an n -component vector of zeros and l's, where the Ith entry is 1
if and only if the Ith segment is in X. Also, let A be the segment-hyperedge adjacency
matrix; it is the m x n matrix whose (k, I) component is 1 if the kth hyperedge
contains the Ith segment. Then the condition for fix to preserve positivity is simply
that Ax = v, where both x and v are considered as column vectors, and where
arithmetic is done modulo 2.

Thus, the isomorphism question is reduced to the question of solvability of a
system of linear equations Ax — iTover the field Z/2. But such questions are easily
solved in polynomial time, by Gaussian elimination. H

We repeat the main question left open by the results in this section.

QUESTION 5.12. Is isomorphism of 3-multipedes with shoes computable in
CPT+Card or in CPT?

A negative answer to the CPT+Card version of the question would separate
PTime from CPT+Card. A positive answer would only give yet another separation
of CPT+Card from FP+Card (without any unpleasant padding).

§6. Determinants. The use of linear algebra modulo 2 in the proof of The­
orem 5.11 suggests that this topic or more generally linear algebra over finite
fields may lead to interesting problems at or near the border between PTime and
CPT+Card. In this section, we consider problems of this sort, related to computing
determinants or at least deciding whether a given matrix has zero determinant.

6.1. Matrices and determinants. The method of Gaussian elimination, i.e., reduc­
ing a matrix to echelon form by row or column operations, computes determinants
of n x n matrices in 0{ny) arithmetical operations. When the matrix entries come
from a fixed finite field (or commutative ring), this observation shows that deter­
minants are computable in polynomial time. (If the matrix entries come from an
infinite field or ring, then one must take into account how the entries are presented
and how complex the arithmetical operations are. We shall discuss the infinite case
briefly below.)

Sh:760

1116 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

Matrices are usually regarded as having their rows and columns given in a specified
order, and the Gaussian elimination algorithm makes use of this order in deciding
which row operations to apply. Our concern in this section will be with "matrices"
in which the rows and columns are indexed by unordered sets; thus Gaussian
elimination cannot be used. We use matrices as inputs to computations, so, in
accordance with the conventions of BGS, we shall code matrices as structures.

There are two inequivalent ways to make precise the notion of a matrix with
unordered rows and columns.

DEFINITION 6.1. Let / and J be finite sets, and let R be a finite commutative ring.
An I x J matrix with entries from R is a function M : I x J —> R. We regard M
as a two-sorted structure, the sorts being / and J, with basic relations

Mr = {(iJ)eIxJ:M(i,j) = r}

for all r e R.

DEFINITION 6.2. Let / be a finite set, and let R be a finite commutative ring. An
I-square matrix with entries from R is a function M : I x I —> R. We regard M as
a one-sorted structure with underlying set / and with basic relations

Mr = {(i,j)eIxI:M(ij) = r}

for all r G R.

An alternative but equivalent way to code matrices as structures would be to
include R as an additional sort, to have the matrix itself as a function I x J —> R
or / x / —> R, and to include in the vocabulary names for all members of R.

Notice that, even when | / | = |./|, an / x J matrix differs in an essential way from
an /-square matrix. An ordering of (the structure representing) an / x J matrix
independently orders both / and / ; an ordering of (the structure representing) an
/-square matrix merely orders / .

Thus, an /-square matrix has a well-defined determinant in the following sense. If
one linearly orders / then one obtains a matrix in the usual sense. The determinant
of this matrix is independent of the ordering because if one changes the ordering
the effect is to permute the rows and the columns in the same way. If the row
permutation is odd and therefore reverses the sign of the determinant, then the
column permutation reverses the sign again, restoring the original value. In contrast,
even when | / | = \J\, the determinant of an / x / matrix is defined only up to sign.
One gets a square matrix in the usual sense by fixing any orderings of / and / , but
changing to different orderings may change the sign of the determinant.

We observe that the question whether a matrix has zero determinant makes good
sense not only for /-square matrices but also for / x / matrices as long as | / | = \J\.
Although the determinant is defined only up to sign, the sign doesn't matter if we
only care whether the determinant is zero. Similarly, it makes good sense to speak
of the rank of an / x J matrix (whether or not | / | = \J\).

REMARK 6.3. One can view an /-square matrix as an / x / matrix together with a
specified bijection between / and / . Every structure of the latter sort is isomorphic
to one where / = / and the specified bijection is the identity; if the isomorphism is
required to be the identity on / then it is unique.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1117

6.2. Determinants modulo two. In this subsection, we consider determinants of
square matrices with entries from the two-element field Z/2. For this particular
field, an /-square matrix M can be regarded as a directed graph with vertex set /
and arc set M\ = {(/, j) G I2 : M(i,j) = 1}, for the other relation, M0, in the
structure representing M is then determined as the complement of M\. In other
words, any square matrix over Z/2 can be regarded as the incidence matrix of a
directed graph. The graph here may have loops and may have pairs of opposite arcs
(i,j) and (j, i) but cannot have parallel arcs; an arc is simply an ordered pair of
vertices.

Another simplification resulting from the restriction to Z/2 is that the problems
"compute the determinant" and "is the determinant zero?" are equivalent, since
there is only one possible non-zero value. We shall consider the problem in the form
"is the determinant zero," for it is in this form that our results generalize to other
finite fields.

A third simplification is that determinants are well-defined for / x / matrices
with | / | = \J\. The sign ambiguity described earlier disappears in characteristic 2
where x = -x. Nevertheless, the algorithm presented in this subsection applies to
/-square matrices only. From the point of view described in Remark 6.3, we shall
make real use of the given bijection between the rows and the columns. Later, we
shall consider ways to avoid this.

THEOREM 6.4. The determinant of the square matrix over Z/2 represented by a
finite directed graph is definable in FP+Card.

Here we identify the possible values 0 and 1 of the determinant with the truth
values, so that the determinant becomes a Boolean query.

PROOF. We describe an algorithm for deciding whether any /-square matrix is
non-singular. The algorithm is easily seen to be formalizable as a polynomial time
algorithm in BGS+Card. Afterward we sketch how to convert the algorithm into
a definition in FP+Card.

We begin with a preliminary observation. Given two /-square matrices M and
N, we can compute the product matrix MN, which is also an /-square matrix.
Indeed, (i,j) is an arc in the graph MN if and only if the cardinality of the set

{kel : (i,k) G Mj and {kj) G N^}

is odd. Since the parity of a natural number (which may be regarded as a von Neu­
mann ordinal — see Section 2) is easily in CPT, it follows that all entries of the
product matrix can be computed in CPT+Card.

Next, we observe that we can compute powers of a matrix, even when the exponent
is so large that it is given in binary notation. We first describe how binary notation
for natural numbers can be handled in the BGS context.

The idea is that the binary representation of a natural number r, say of length
/ = lg(r), amounts to a subset C of { 0 , . . . , / - 1}, namely the set of places where a
1 occurs in the binary notation. Thus r = J^cec 2'' • We remark that, for non-zero
r and therefore nonempty C, the largest element of C is easily computable from C,
namely as [j C (where natural numbers are identified with von Neumann ordinals).

Suppose we are given an /-square matrix M and an integer r in binary notation,
i.e., the set C as above. Then we can compute Mr in time polynomial in | / | and

Sh:760

1118 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

lg(r). The computation of Mr is done by repeated squaring, i.e., by applying the
recursion formulas

(M if r = 1

(Mr/2) if r > 2 is even
(M(r-D/2\ .M i f r > 2 i s o d d .

Here is a BGS program for this algorithm, using matrix multiplication as an "ex­
ternal" function, which means that for the complete algorithm one should replace
all matrix multiplications here by the algorithm described above,
do in p a r a l l e l

if Mode = 0 then
do in p a r a l l e l X := M; p = max C; Mode := 1 enddo

endif;
if Mode = 1 and p = 0 then Halt: =true endif
if Mode = 1 and p ^ 0 and p - 1 e C then

do in p a r a l l e l X := X • X • M; p := p — 1 enddo
endif
if Mode = 1 and p ^ 0 and p — 1 g C then

do in p a r a l l e l X := X • X; p '•= p — 1 enddo
endif

enddo
As a final preparatory step, we compute the order of GL„(Z/2), the group of

non-singular n x n matrices over Z/2. This order is
g = {2" - 1)(2" - 2)(2" - 4) • • • (2" - 2""1) = JJ(2" - 2').

;=o
To see this, we use the fact that an n x n matrix is non-singular if and only if its
columns are linearly independent vectors in (Z/2)". If we imagine the columns
being chosen one at a time, the first column of such a matrix can be any non-zero
vector in (Z/2)"; the second can be any vector different from the first and from 0;
the third can be any vector that is not a linear combination of the first two; and in
general any column can be any vector not a linear combination of the previously
chosen columns. Thus, there are 2" — 1 choices for the first column, each leaving
2" — 2 choices for the second, each leaving 2" — 4 choices for the third, and so on.

Now given an /-square matrix M, in the form of a digraph with vertex set / ,
we can determine whether it is non-singular as follows in CPT+Card. First, use
the cardinality function to determine the von Neumann ordinal n = \I\. From

2

this, compute the group order g in binary notation. Notice that g < 2" , so the
length of this binary expansion (max C in the notation above) is bounded by n2.
Our formula for g above makes the computation of this binary expansion a simple
matter, easily programmed in BGS (without further use of the cardinality function).
Next, compute Mg; as indicated above, this can be done in CPT+Card. Finally,
output 1 if Mg is the identity matrix (i.e., if the arcs in the digraph Mg are exactly
the loops (/, /) for all i € /) and 0 otherwise.

To see that this algorithm gives the correct answer, recall from elementary group
theory the fact (a special case of Lagrange's theorem) that the order of an element

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1119

in a group always divides the order of the group. Thus, if M is non-singular then
the matrix obtained by ordering / arbitrarily is an element of GL„(Z/2), so its gth

power is the identity matrix, and the same follows for M. If, on the other hand, M
is singular, then so are all its powers; in particular none of its powers is the identity
matrix. This completes the proof that non-singularity of square matrices over Z/2
is computable in CPT+Card.

Finally, we briefly indicate why this algorithm yields a definition in FP+Card.
Since the input is a structure (directed graph) of size n, FP+Card works with a
two-sorted structure 21* consisting of the input graph and the natural numbers
up to n. The algorithm above used natural numbers up to n2 (to produce the
binary expansion of g), but these can be coded as pairs of numbers below n. The
computation of g (in binary form) is a polynomial time algorithm working on a
numerical input (the second sort of 21*), so it can be expressed in FP. The repeated
squaring algorithm for computing Mg can be cast as a definition, using the fixed-
point operator, of the ternary relation

{V,j,q):(i,j)£M*<}

where gq means the integer represented by the q most significant digits in the binary
expansion of g. (More precisely, this is a quaternary relation because, as indicated
above, q is represented by a pair of elements of the numerical sort in 21*.) Finally,
the comparison between Mg and the identity matrix is expressible in first-order
logic. H

To complement the previous theorem, we show next that the cardinality function
is essential in this or any choiceless algorithm for determinants over the two-element
field.

THEOREM 6.5. The determinant of the square matrix over Z/2 represented by a
finite directed graph is not computable in CPT.

PROOF. Temporarily fix a positive integer n. As we saw in the proof of Theo­
rem 6.4, the number of non-singular n x n matrices over Z/2 is

n-\

g=n(2B-2'').

Since the total number of n x n matrices over Z/2 is 2" , the probability that such
a matrix, chosen uniformly at random, is non-singular is

£-n('-?)=n('4)-
i=0 x 7 j=\ v 7

This product is therefore the probability that a random (with respect to the uniform
distribution) directed graph on an «-element vertex set has, when viewed as a matrix,
determinant 1.

Now un-fix n and let it tend to infinity. The asymptotic probability that a large,
random, directed graph has determinant 1 is

n(-*)-

Sh:760

1120 ANDREAS BLASS, YURI GUREVICH, AND SAHARON SHELAH

This infinite product is obviously strictly smaller than 1. It is strictly greater than
0 (i.e., it converges in the conventional terminology) because the series X^/U/^)
converges. (Recall the standard proof: 1 - x > e^2x for all positive x < \. Apply
this to x = \/2i and take the product over j , obtaining a convergent sum in the
exponent.)

But the zero-one law proved by Shelah [19] (see also [2]) implies that any property
of digraphs computable in CPT must have asymptotic probability 0 or 1. Therefore,
"determinant 1" is not such a property. H

6.3. Other finite fields. The FP+Card definition of "non-singular" given in the
preceding subsection for square matrices over Z/2 works, with minor modifications,
over any finite field F. Of course, when the field has more than two elements, the
"non-singular" question is weaker than the problem of actually evaluating the
determinant.

To indicate the minor modifications explicitly, let F be a finite field of character­
istic p and cardinality q = pe. Then to decide non-singularity of square matrices
over F, we can use the algorithm described above for the special case q = 2 with
the following two changes. First, the order of the group GL„(F) is

n-\

g = (qn- \){qn - q)(qn - q2)... (qn - qn~l) = \{(qn - q');
i=0

i.e., q replaces 2 in the earlier formula.
Second, multiplying matrices becomes slightly more tedious but remains straight­

forward. Given two /-square matrices M and N, to compute the (/, j) entry of a
product matrix MN, first do the following for each element z & F. Consider the set
Pz C F2 of pairs (x, y) whose product in F is z. Since F is fixed in this discussion,
our BGS program or FP+Card formula can contain a complete listing of all the
P- 's. Use the cardinality function to obtain the numbers

mz = \{k el : (M(i,k),N(k,j)) e Pz}\

and then, in a trivial polynomial time computation, reduce these numbers modulo
p to obtain mz = mz mod p. Then the (i, j) entry of MN is the element of F given
by the sum

2_Jmz • z = 2_.™z • z.
zEF zEF

Since there are only finitely many {pq) possible functions z H-> WZ, our program or
formula can contain a table giving, for each of these functions, the value of the sum.

The following proposition summarizes the preceding discussion.

PROPOSITION 6.6. For any finite field F, there is an FP+Card definition of non-
singularity for square matrices over F.

At two points in the preceding discussion, we used that the field F is fixed, so
that our FP+Card formula can contain complete descriptions of the sets Pz and the
sums associated to the functions z *-^ mz. It is not difficult, however, to adjust the
algorithm to work uniformly over all finite fields F, in time polynomial in \F\ = q
and the size of the matrix. In the first place, the table of all the Pz's is essentially
the multiplication table of the field; its size is only quadratic in q. So this table can
be computed as part of the algorithm.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1121

There isn't enough time to compute the sums associated to all possible functions
z i—> m:, since there are pq of these functions. But when multiplying a particular
pair of matrices, we need the sum for only one such function per entry. Each single
sum is easy to compute provided we are given an ordering of F. So there is no
difficulty computing, in polynomial time, the n2 sums actually needed. Thus, we
obtain the following uniform version of the preceding proposition.

PROPOSITION 6.7. There is an FP+Cardformula defining non-singularity of square
matrices over finite fields, where the input structure consists of a finite field F, a linear
ordering of the set F\a set I, and an I-square matrix M : I2 —> F.

To avoid possible confusion, we point out that there is no necessary connection
between the linear ordering of F and the field operations.

QUESTION 6.8. Can the determinant of a square matrix over a finite field be
computed in CPT+Card? Can it be defined in FP+Card?

6.4. Integer matrices. In this subsection, we apply the preceding results to matri­
ces with entries from the ring Z of integers. Since we require inputs of computations
to be finite structures for finite vocabularies, we must modify the representation of
matrices as structures described in Definitions 6.1 and 6.2. Those definitions would
yield an infinite vocabulary whenever the underlying ring is infinite, and if we rep­
resented the matrix by a function (as in Proposition 6.7) instead of a family of
relations then the vocabulary would be finite but the underlying set of the structure
would be infinite. To avoid this difficulty and also to reasonably reflect what hap­
pens in actual computation, we adopt the convention that matrix entries are to be
written in binary notation. Recall that this means that an entry r is represented by
a set C of natural numbers, the set of locations of ones in the binary expansion.
Thus, each matrix entry is to be a set of natural numbers, and therefore the matrix
itself amounts to a ternary relation, M{i, j , s) with the meaning "the coefficient of
2s in the binary expansion of the (i,j) entry of M is 1." There are. two problems
with this set-up.

The smaller problem is that we have not taken into account the signs of the matrix
entries. So we shall need a second relation, a binary one, with the meaning "the
(z, j) entry of M is positive."

The more serious problem is that, although the first and second arguments of the
ternary relation M are atoms, namely indices for rows or columns of our matrix, the
third argument is a natural number. Both BGS and FP+Card are set up so that the
numbers (von Neumann ordinals in the case of BGS, the numerical second sort in
the case of FP+Card) are not part of the input structure. So M is not appropriate
as an input in BGS or FP+Card. We therefore include in the input structure a
copy of enough of the natural number system to allow coding our binary numbers.
Our official representation of integer matrices will thus involve surrogate natural
numbers 6 , 1 , . . . , k, although for practical purposes, it does no harm to think of
0 , 1 , . . .,k instead.

That is, an /-square matrix M will be regarded as a two-sorted structure with
underlying sets / and a set of indices { 0 , 1 , . . . , k}\ the relations on this structure
are the linear ordering 6 < 1 < • • • < k on the second sort, the ternary relation
M(i, j , S) defined by "the coefficient of 2s in the binary expansion of the absolute

Sh:760

1122 ANDREAS BLASS. YURI GUREVICH. AND SAHARON SHELAH

value of the (/, j) entry of M is 1," and the binary relation "the (/, j) entry of M
is positive." (By including only the order structure on our surrogate numbers, we
make them behave computationally rather like numbers written in unary notation.
So it would be unrealistic to use simply these surrogate numbers as our matrix
entries; the size of a matrix would then exceed the actual numbers in the matrix
rather than only their bit lengths. Our use of binary notation avoids this error.)

The number k in this representation of a matrix M would ordinarily be taken as
small as possible, so it is essentially the logarithm of the largest absolute value of
the matrix entries.

THEOREM 6.9. There is an FP+Cardformula which, on matrices M over Z repre­
sented as structures as above, defines "M is non-singular."

PROOF. We describe an algorithm for deciding whether a square matrix over Z is
non-singular, and we show that it works, without arbitrary choices, in polynomial
time. The details of formalization in CPT+Card or in FP+Card will, however, be
left to the reader.

Given a square matrix M, represented as above by a structure with underlying
sets / (indexing the rows and columns) and {0,1, r} (indexing the digits in each
entry), the algorithm proceeds as follows. First, find the cardinalities | / | and r + 1
of these two sets, and let n be the larger of the two. Thus, the size of the matrix is
at most n x n and each entry is at most 2" in absolute value. The entire algorithm
will take time polynomial in n.

Second, generate a list of the first In1 prime numbers. (For a BGS algorithm, the
primes are represented as von Neumann ordinals. For an FP+Card definition, they
are represented by rather short tuples of elements from the numerical sort; in fact,
triples will suffice — see below.) This list can be produced by applying the sieve of
Eratosthenes. The time required by the sieve of Eratosthenes is polynomial relative
to the prime numbers involved (though it is not polynomial relative to the lengths
of the primes in binary notation). And the primes involved here are, according to
the prime number theorem, below «3 provided n is large enough. Therefore the time
needed to generate this list of primes is polynomial in n.

Third, go through all the primes p in the list, checking for each one whether M
reduced modulo p is non-singular as a matrix over "L/p. The results of the previous
subsection show that this can be done in polynomial time.

Finally, output "yes," meaning that M is non-singular, if and only if it was
non-singular modulo at least one of the primes p on the list.

This algorithm can clearly be programmed in BGS with the cardinality function,
and it runs in polynomial time. It is a routine matter to formalize it in FP+Card.
It remains to show that it gives the correct answer.

If M is singular, i.e., if its determinant is zero, then its reduction modulo p has
determinant zero for every prime p. Conversely, suppose M is non-singular, and let
its determinant be d ^ 0. Of course, then M is non-singular modulo some primes,
for example any primes larger than \d\, but we must show that it is non-singular
modulo at least one of the first 2«2 primes.

For this purpose, we first estimate how big \d\ might be. The determinant of a
k x k matrix is the sum of k\ terms, each of which is the product of k of the matrix's
entries. In our situation, this means that d is the sum of at most n\ terms, each the

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1123

product of at most n numbers, each at most 2" in absolute value. Thus, each of
these n\ products is at most 2" . Therefore,

\d\ <n\-2"2
 < H " - 2 " 2 < {2nf -2"1 = 22n\

Recall that the list of primes used by our algorithm consisted of the first 2n2

primes. Since each prime is > 2, the product of the listed primes is larger than 22"~
and therefore larger than \d\. Thus, \d\, being non-zero, cannot be divisible by this
product of primes. That means that at least one prime p on our list fails to divide
\d\, i.e., that M is non-singular modulo p, and therefore the algorithm gives the
correct answer. H

REMARK 6.10. The algorithm described in the preceding proof does more than
the theorem claims. It determines exactly which primes divide the determinant d of
M. Indeed, it checks this divisibility directly for the first 2n2 primes, and the proof
shows that no larger prime can divide d unless d = 0.

The algorithm does not quite determine the value ofd, for it does not determine
its sign nor does it determine, for primes p dividing d, whether p2 or higher powers
also divide d. We do not know whether the determinant of an integer matrix can
be computed (as a signed binary expansion) in polynomial time by a BGS program
with the cardinality function.

6.5. Rows and columns may differ. In the preceding discussion of determinants,
we have dealt only with /-square matrices. Up to a sign, determinants make sense for
I x J matrices when \I\ = | / | , and it makes sense to ask whether non-singularity
of such matrices can be computed in CPT+Card or defined in FP+Card. The
algorithms from the preceding subsections do not suffice for this purpose, for they
depend on taking powers of the given matrix, and M2 is well-defined only when the
rows and columns of M are indexed by the same set. Nevertheless, these algorithms
can be modified to work when the rows and columns are indexed by different sets
of the same size.

THEOREM 6.11. There is an FP+Card formula defining non-singularity of matrices
over finite fields, where the input structure consists of a finite field F, a linear ordering
of the set F, two sets I and J with \I\ = \J\, and an I x / matrix M : I x J —> F.

PROOF. Let M be an / x / matrix as in the statement of the theorem. Although
M2 is not defined when I ^ J, M • M' is defined, where the superscript t means
transpose. Furthermore, M • M' is an /-square matrix. Its entry in position
(/,;') is Yljej M{i, j)M(i',j) which makes good sense for any i,i' e / . So by
Proposition 6.7 we can define non-singularity of M • M' by an FP+Card formula.
But this is the same as defining non-singularity of M, since the determinant of
M • M' is the square of the determinant of M. H

REMARK 6.12. An alternative proof of the theorem uses, instead of M • M', the
block matrix

0 M \
M< 0 J '

If/ and / are disjoint (otherwise replace them by / x {0} and / x {1}) then this
block matrix is an (/ U J)-square matrix. Its (x, y) entry is 0, if x and y are both
in / or both in 7; M(x, y), if x e / and y e / ; and M{y, x) if x e / and y e / .

Sh:760

1124 ANDREAS BLASS. YURI GUREVICH, AND SAHARON SHELAH

Proposition 6.7 allows us to define non-singularity of this block matrix, but again
this is the same as non-singularity of M, since the determinant of the block matrix
is the square of the determinant of M.

§7. Open problems. The main problem that remains open is whether there is a
logic, in the sense of [12], that captures polynomial time on unordered structures.
It was conjectured in [12] that the answer is negative.

A special case of the main problem is whether CPT+Card captures PTime. Of
course a negative answer here is even more likely, but we have not been able to prove
it. In view of the results in this paper, a negative answer for the special case would
follow from a negative answer to any of the following questions.

• Can a CPT+Card program distinguish between the (unpadded) Cai, Fiirer,
Immerman graphs <S°m and &l

m (as defined in Section 4) for all ml
• Can isomorphism of 3-multipedes with shoes be decided by a CPT+Card

program?
• Can a CPT+Card program decide whether a given graph (not necessarily

bipartite) admits a complete matching?
• Can a CPT+Card program compute, up to sign, the determinant of an / x /

matrix over a finite field (where | / | = | / |)?

We point out that, although we have formulated these questions for CPT+Card,
the logic in which we are primarily interested, the first two of them are open also
for CPT, and the last two are open also for FP+Card (though we haven't thought
much about the latter).

We also point out that, except for the open problem whether CPT+Card captures
polynomial time, all the other inclusions in the diagram at the end of Section 2 are
known to be proper. Indeed, the bipartite matching problem, being in FP+Card
but not in CPT and not in L^iC0, witnesses the properness of the three inclusions
represented by the lower vertical arrows in the diagram, separating logics with
counting from those without. The isomorphism problem for 4-multipedes with
shoes and the problem of distinguishing between padded Cai-Furer-Immerman
graphs, being in CPT but not in C^0J, witness the properness of the inclusions
represented by arrows pointing east. Finally, the properness of the inclusions on
the left side of the diagram, separating the infinitary logics U^ w and Q£>(U from
the others, is witnessed by any of a number of problems that can be expressed in
L ^ w but are not even recursively decidable.

Additional open problems concern the connections between the various compu­
tational problems we have considered. For example:

• If we add to CPT+Card the capacity to decide the existence of complete
matchings in general graphs, can it then compute determinants over finite
fields?

• If we add to CPT+Card the capacity to compute determinants over finite fields,
can it then decide the existence of complete matchings in general graphs?

REFERENCES

[1] S. ABITEBOUL and V. VIANU, Generic computation and its complexity. Proceedings of the 23rd A CM
Symposium on Theory of Computing. 1991, pp. 209-219.

[2] A. BLASS and Y. GUREVICH, Strong extension axioms and Shelah's zero-one law for choiceless
polynomial time, to appear.

Sh:760

POLYNOMIAL TIME OVER UNORDERED STRUCTURES 1125

[3] , Equivalence relations, invariants, and normal forms, SI AM Journal on Computing, vol. 13
(1984), pp. 682-689,

[4] , Equivalence relations, invariants, and normal forms, II, Logic and Machines: Decision
Problems and Complexity (E. Borger, G. Hasenjaeger, and D. Rodding, editors), Lecture Notes in
Computer Science, vol. 171, Springer-Verlag, 1984, pp. 24-42.

[5] A. BLASS, Y. GUREVICH, and J. V. DEN BUSSCHE, Abstract state machines and computationally
complete query languages. Information and Computation, An abridged version appeared in Abstract
State Machines: Theory and Applications, (Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele. editors).
Lecture Notes in Computer Science, vol. 1912, Spinger-Verlag, 2000, pp. 22-33.

[6] A. BLASS, Y. GUREVICH, and S. SHELAH, Choiceless polynomial time. Annals of Pure and Applied
Logic, vol. 100 (1999), pp. 141-187.

[7] B. BOLLOBAS, Graph Theory: An Introductory Course, Springer-Verlag, 1979.
[8] J. Y CAI, M. FURER, and N. IMMERMAN, An optimal lower bound on the number of variables for

graph identification, Combinatorica, vol. 12 (1992), pp. 389-410.
[9] A. CHANDRA and D. HAREL, Structure and complexity of relational queries. Journal of Computer

and System Sciences, vol. 25 (1982), pp. 99-128.
[10] F. GIRE and H. K HOANG, An extension offixpoint logic with a symmetry-based choice construct.

Information and Computation, vol. 144 (1998), pp. 40-65.
[11] E. GRADEL and Y GUREVICH, Metafinite model theory. Information and Computation, vol. 140

(1998), pp. 26-81.
[12] Y. GUREVICH, Logic and the challenge of computer science. Current trends in theoretical computer

science (E. Borger, editor). Computer Science Press, 1988, pp. 1-57.
[13] , Evolving algebras 1993: Lipari guide. Specification and validation methods (E. Borger,

editor), Oxford University Press, 1995, pp. 9-36.
[14] , From invariants to canonization. Bulletin of the European Association on Theoretical

Computer Science, vol. 63 (1997), Also as Logic in Computer Science, in Current trends in theoretical
computer science: Entering the 21st century, (G. Paun, G. Rozenberg and A. Salomaa, editors). World
Scientific, 2001, pp. 233-436.

[15] Y GUREVICH and S. SHELAH, On finite rigid structures, this JOURNAL, vol. 61 (1996), pp. 549-562.
[16] J. K. HUGGINS, ASM Michigan Web page, http://www.eecs.umich.edu/gasm/.
[17] N. IMMERMAN, Relational queries computable in polynomial time. Information and Control, vol. 68

(1986), pp. 86-104.
[18] M. OTTO, Bounded variable logics and counting: A study infinite models. Lecture Notes in Logic,

vol. 9, Springer-Verlag, 1997.
[19] S. SHELAH, Choiceless polynomial time logic: Inability to express, Computer Science Logic 2000

(P. Clote and H. Schwichtenberg, editors), Lecture Notes in Computer Science, vol. 1862, Springer-
Verlag, 2000, paper number 634, pp. 72-125.

[20] M. VARDI. The complexity of relational query languages. Proceedings of the 14th A CM Symposium
on Theory of Computing, 1982, pp. 137-146.

MATHEMATICS DEPARTMENT
UNIVERSITY OF MICHIGAN

ANN ARBOR. MI 48109-1109. USA
E-mail: ablass@umich.edu

MICROSOFT RESEARCH
ONE MICROSOFT WAY, REDMOND. WA 98052, USA

E-mail: gurevich@microsoft.com

INSTITUTE OF MATHEMATICS
HEBREW UNIVERSITY OF JERUSALEM

GIVAT RAM, 91904 JERUSALEM, ISRAEL
and

MATHEMATICS DEPARTMENT
RUTGERS UNIVERSITY

NEW BRUNSWICK, NJ 08903, USA
E-mail: shelah@math.huji.ac.il

Sh:760

http://www.eecs.umich.edu/gasm/
mailto:ablass@umich.edu
mailto:gurevich@microsoft.com
mailto:shelah@math.huji.ac.il

