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(Communicated by Andreas R. Blass)

Abstract. We show that there are two models M C N such that by forcing

with (Random)^ over N we add dominating reals. This answers a question of

A. Miller.

Let R he the random real forcing. It is well known that R is an aAw-bounding

forcing notion, that is

(V/ e/n VR3g eco^n V)(Vn e co)(j(n) < g(n)).

For more detail and notation the reader should see [Ku]. The following is also

known [BJ2]:

In VRxR there are Cohen reals over V.

From this we can conclude the following.

There are models M c N such that in NRnM there are unbounded reals

over N. (Take N = MR and use the previous result.)

After this it was natural to ask:

(1) Are there MC JV such that in NRnM there are dominating reals over

TV?
Let us introduce more notation. Let / be an ideal of subsets of R. Then we

define KA(I) as the cardinality of the smallest family of elements of / whose

union is not in /. Kg(I) is the cardinality of the smallest covering of the reals

by elements of / . A3 is the cardinality of the smallest family of functions from

to to co, which is unbounded. Miller [Mi] proved that

cof(Kb(Meager)) > co.

More generally, Bartoszynski and Judah [BJ 1 ] proved that

cof(.rvB(Meager)) > ^(Measure zero).

It is an open problem if

cof(KB(Meager)) > /^(Meager).
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268 HAIM JUDAH AND SAHARON SHELAH

After the Miller result it was natural to ask

Is cof(KB(Measure zero)) > co?

This question remains open and has produced a lot of development. The only

positive result in this direction is the following theorem of Bartoszynski [Ba]:

cof(Ae(measure zero)) > co   if b > Kb (measure zero).

When we started working on this problem we proposed the iteration

Q = (Pa,Qp-:a>K(O+l,fi<K(0+i)

satisfying

(i)   ^ "Qo adds N^-many Cohen reals",

(ii)   \=Ff "Q# is a subalgebra of Random reals of cardinality less than Nw ";

(iii) The sequence is generic enough in order to force with every possible

subalgebra of Random reals.

Our conjecture was

K^w+i Ih "Kb (measure zero) = Nw".

After hard work we started thinking that maybe we were missing something and

we asked:

Maybe V****! Ih Aj > Nw?

It is easy to see (by [Ba]) that this is true if for some fl < ttw+x

\r~Pp  "Q/3 adds a dominating real".

Therefore the question was: Does there exist R' C R such that

\\-r'  "add a dominating real"?

We show in [JS2] that under CH, or under Ag (Meager) = 2K°, there exists

such subalgebras of R. And using this and Bartoszynski's result, it is not hard

to see that

Vp*«»-x 1= AB(measure zero) = Xw+X.

The construction in [JS2] was not strong enough to solve Miller's question (1).

That is, our example was not the random algebra restricted to some inner model:

therefore, we thought that we could change condition (ii) of the iteration to

(ii)*   Ih^ " QB = M n R for some inner model M 1= 2N° = N„ , for n < co ".

Again we were unable to show that this new iteration gives the desired model,

and we recalled Miller's question (1).

In this work we will answer Miller's question (1) positively by showing:

There are two models M C N such that forcing over N with R n M we

add dominating reals. We sketch the construction as follows: We start for

simplicity with V = L . Then we add n2 Cohen reals. After this we add, with

finite support iteration, a sequence (r,:/ < cox) of positive sets by a forcing

notion, which is Souslin (see [JS1]) and has the appearance of Amoeba forcing.

Then we let M = V[(rt: i < to,)] and /V = F[K2 - Cohen][(r,: i < co)].
The notation is standard and the rest of the paper is devoted to building the

models.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:374



ADDING DOMINATING REALS WITH THE RANDOM ALGEBRAS 269

1. Assumption. Let W = (Wn:n < to) be a sequence of pairwise disjoint

subsets of co. We also assume

(0) Wn is infinite.
(1) For every n < co, m < co, and Ac < co there are i < j < co such that

(a)   {Jl¥nW,n[i,j] = 0;

(h)   22*' <min[{jl^nWl\[0,i)};

(c) 2-2'.l>E{2-':/e^n[i,J]};

(d) There is uCWnn [i, j] satisfying |w| > [22'2 ]m+x;

(e) a > Ac .

2. Definition, (i) X c w> 2 obeys u c co if there exist ux c u, p„ e"2 such

that X = {pn'.n e ux].

(ii)   X almost obeys u if it obeys u U {0, 1,...,«} for some n .
(iii)   (W2)W = {Jp€X(w2)W = {u:oew2A (3p)(p e X A p c v}.

(iv)   X obeys W if it almost obeys each [)l>n Wl.

Let LbMs denote Lebesgue measure on 2W .

3. Definition.  Q = Q(W) is defined as follows:
(I) A condition has the form (t, X) where

(i)   t is a function from n^2 to Q n [0, 1) and 24^ • t(p) is an integer

forall pe"^2;
(ii)   A:(f7) = f(A7A(0)) + A:(A/A(l)) for nen>2;

(iii) for pen2, t(p) < LbMs(r2)M\r2_lxx);
(iv)   X is a finite union of sets obeying W.

(II) fa, Xi) < (t2,X2) iff tx C f2, Ii c I2, and if a/ e Dom(?2)\Dom(A,)
and i|eli, then f2('/) = 0.

4. Claim.  Q 1= Souslin.

5. Claim.  Q t= ccc.

Prooj. Let ((fa, Xa):a < <wi) be an coi-sequence of members of <2- W.l.o.g.

ta = tp for a ^ fi < tox . Now let r£ be a positive rational satisfying

r£ < ta(p) - LbMs(C2)W\C°2)W).

Therefore w.l.o.g. r£ = rpB for a ^ fl < cox .  Let mp he such that 2~m? <

r£/4W . Let m = max{mp: p e Dom(AQ)}. Also w.l.o.g. we may assume that

Xa \ m = XB \ m . Then it is not hard to see that ((ta , Xa): a < tox) is a set of

pairwise compatible members of Q.   D

6. Notation. Let Dom+(0 = {n e Dom(t): t(n) > 0}. T = lJ{Dom+(f): (t, X)
eGn) is a Q-name.

7. Claim. If X„ obeys W„ for n < co, each X„ finite (X„: n < co) e V, then

in V® the following hold:

(i)   T is a perfect subset of a>2 .

(ii)   LbMs(limT) = t(0) for some (any) (t, X) e GQ .
(iii) For some Ac , T is disjoint from Un>£ %n ■

(iv) Therefore, lim(T) n C°2)[U,>t x"] = 0 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:374



270 HAIM JUDAH AND SAHARON SHELAH

Prooj. Clear.   □

Now we will introduce a technical device that we will use in order to build

our models. After this we will show a theorem about finite support iteration

forcing.

8. Definition. Let A be a cardinal, and n an integer. We call X (X, n)-big if

(i) X is a family of subsets of w>2 each one obeying W;

(ii) If Xr, e X for C < X are pairwise distinct then for every m, Ac there are

[i, j] and u such that

(a) \)i¥nWlr\[i,j] = 0;
(b) uClV„n[i,j];

(c) |«|>[2222'r+1;

(d) min(U/^^/\[0,A])>2222J;

(e) 2      • £ > 2_/gw„n[/,7]2    \

(f) for every (pf.l e u) e Y[leul2 there is £ such that for each leu,

Xrnl2 = {pl};

(g) i>k.

9. Lemma. Assume that

(i)   Q = (Pj, Qj.i < a, j < a) is a finite support iteration and cof(A) =

X_>K0, X>a = (Ja^0.

(ii)   X is (X,n)-bigin V.

(iii) For each i<a, X is (X,n)-bigin Vp<.

Then in VPn we also have that X is (X,n)-big.

Proof. Trivial (X > a!).   D

10. Lemma.   Q preserves "X is (X, n)-big" when cof(A) = X > No •

Proof. Suppose that p \\-q "(X^C < X) is a counterexample". Choose by in-

duction on fi < X, Ce < X, X( , XB , Pb such that p < pB e Q

pB\x--XC0=XBAXB^{Xr:y<fir.

Let pB = (tB,YB), w.l.o.g. tB = t, Dom(A/?) = n'^2YB = (jl<k. YByl, and

each YByl\e^2 obey \Jl>n W,. Let ac1 > ac* , Ac such that 4aa* < Ac1 , and let

mx = m+1 . We know that X is (X, n)-hig in V ; therefore, we can find [/, j],

n, and (C(~p):pe Yii€n'2) satisfying conditions 8(i), (ii) for kx , mx .

11. Claim. There is uxCu such that |«i| > (22" )m+1 and there is a function

H'-Thm't^Uie*'2 satisfying

(a) (H(p))\ui=]>;
(b) for every pxp2 e Y\ieu '2 we have

(Yr{HCPi)hl D '>2:/ < k*) = (YC{H{-Pi))J n '>2: / < Ac*).

Proof. We know that / > Ac1 > Ac*; therefore, 22" is bigger than the number

of possibles (Y^/ 0^2:/ < Ac*). This means that the function G:n/e,/2 -»

Range(G), given by

G(p) = (TCW,/n'>2:A<AV*),
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ADDING DOMINATING REALS WITH THE RANDOM ALGEBRAS 271

22' 2'

satisfies |Range(/?)| < 22 .On the other hand we have \u\ > (22 )m'+1 and

mx = m + 1. From this we have that there are a sequence of disjoint sets

(ue:e e Range(G)), each ue c u satisfying

IM>(2222>+1.

Fix an ordering of Range(G). By induction on ee Range(G) we will try to

pick ~jf satisfying

(i)  7^IW2;
(ii) If p e Ylleu l2 and~pe = p\ue and for each ex <e~pe — p \ ue. , then

G(~p) ± e . If we can do this induction then let p* = UeeRange(G) ~F > and

clearly G(p*) ^ e for every e e Range(C)—a contradiction.

Therefore there exists the first e e Range(G) such that we cannot pick ~pe

satisfying (i) and (ii). This means that for each p e Y\leu l2 there is vp e

rj/Gu l2, p = vp \ ui, and G(vp) = e . This clearly defines H.    □

Now we will finish with the proof of Lemma 10.

Let ux,   H be given by the claim. It will be enough to show that

(t,X) = lt,   (J   YaH{-p))\
\       l<k' I

P&u\

is a condition.

By assumption on ux and H

X\~\l>2= |J YaH(p))yl
i<k-

(for some (any) p e n/€„, 72).
We should check only 3(1)(iii). We know that for each n e t

(a) t(n)>2-4"'.

Also we know that

{fi) t(n)-LbMs(r2)W\r2)W)>0;

therefore, for each p e X nl>2 and p compatible with rj

(y) ffa)-2-w>o,

(S) 2i-,(t(n) - 2-M) is an integer.

Therefore
t(n) - LbMs((w2)M\(w2)^n'>2]) > 2-('-".

Now by assumption 8(e)

LbMs(C°2)lil n (~2)lXn"'Jl2') < 2-2'

and also
LbM,((w2)W n (~2)^n'"^2)) < 2-1.
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272 HAIM JUDAH AND SAHARON SHELAH

Thus
t(n) - LbMs((w2)W n (°>2)W) > 0.   D

Let V \= CH, and let W = (Wn: n < co) satisfy the condition from 2, each

W is infinite. Let Q = (Pj, Qj: i < cox, j < cox) be a finite support iteration.

Qo adds N2 Cohen reals. We interpret it as adding (X^n:C, < co2, n < co),

where Xrytl C w>2 obeys Wn . Each Qi+X is Q from Definition 3.

12. Claim. For each n < co

VQ° + "(Xryn:t<w2)is(K2,n)-big".

Proof. Clear using the properties of W .   □

Therefore Vri \=u(Xr.,„:C < (*>i) is (K2, n)-big for each aj ". Let (Jj+i:i<
Wi) be the reals (perfect trees) given by the Q, 's. Clearly (Ti+X:i < cox) is

generic for an &>■-iteration of Q. This is an &Ai-iteration of Souslin forcing

satisfying ccc; therefore, (Ti+X:i < cox) is also generic over V. Let

K- = F[(jy+I:i<a»i>],

Vb = V[(Xry„: C<co2,  n< to)][(Tl+x: i < tw,)].

Then
Va\=CH,        Va is a class of Vb.

For each C < N2, Xry„ C °»2, so Iry„ = {(co2)^: p e X[yn} is a subset of

(Random)*"" (but not in Va\\).
We want to show that "for every large enough C,, 1^ „ is a predense subset

of (Random)v"".

If Iryn is a counterexample, then there are e > 0 and perfect Trytl C w2 in

V, such that (limrc>„)n|J/c,n = ° and LbMs(limTryfl) > e . But Va\=CH,
so for some  7",  u = {£ < N2: 7j „  is well defined and = T}  has cardinality

13. Claim.   {Xr.y„:C,eu} contradicts {X^yf,:C<to2} is (N2,Aj)-big.

Proof. Clearly Ufe»?^C." contains '2 for arbitrarily large / (by using 8(e)).

Therefore T n '2 = 0 . But this contradicts LAAfs (lim 7") > 0 .    □

So for each n < co for every large enough £, /^„ is predense in (Random)v".

So for some C this holds for every n (really by homogeneity of forcing this

holds for ever £ and we can use Qo being one Cohen real).

Let h„:Iryn -» <u be such that A„(r2)^"l) = hn((w2)^x) iff /», and />2

are comparable. So (h„:n < co) describes a (Random)^-name h, namely,

h(«) = h„((a2)W) if (^Pl e ICyn and (a2)W e Generic set. This will be the

name of generic real.

Let Bo e (Random)v", j:co —* co in Vb . We want to prove that for some

Bx, Bo C Bx e (Random)^ and Bx Ih / <* h. Let Yn = {p e Xryn: p minimal

in Xry„ (i.e., p\l?XCy„ for l<lg(l)) and hn(C2)W) < f(n)}. Clearly Y„
is finite and obeys Wn (Yn C Xq n). Therefore \Jn<(0 Yn almost obeys each

\Jn>k Wn for each Ac . Hence it obeys W.

Also \Jn<w Yn S VPm\ , so for some i <cox, it belongs to VPi, w.l.o.g. a > 0.

Now for some pe w>2, LbMs((w2)M n B0) > 2-'"l(l - 1/100).
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ADDING DOMINATING REALS WITH THE RANDOM ALGEBRAS 273

On the other hand, by genericity we can find j e [i, tox) such that for

some Ac , t(p) = (1 - l/100)2~l/,l and (t, 4>) is in the generic subset for Qj.

Therefore 7)+1 satisfies LbMs(lim Tj+X n (W2)W) = (1 - 1/100)2-^ . So Bx =
Bo D lim Tj+X > B0 is a condition in Random Va (because 7)+1 eVa). But it

is also forced that for some n , T,• n (\Jk>n Yn) = 0 by 7(iii). And this implies

Bx Ih / <* h. This finishes the proof of the theorem.

Remark. Recently, Janusz Pawlikowski, motivated by this present work, showed

that if you adjoin an "infinitely often equal" real and then force with the random

algebra of the ground model, you get dominating reals (in fact Hechler-generic).
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