
ISRAEL JOURNAL OF MATHEMATICS, Vol. 67, No. 3, 1989 

THE CONSISTENCY STRENGTH OF 
"EVERY STATIONARY SET REFLECTS" 

BY 

A L A N  H. M E K L E R  a,* A N D  S A H A R O N  S H E L A H  b,~ 

aDepartment of Mathematics, Simon Fraser University, Burnaby, B.C. V5A 1 $6, Canada; 
and blnstitute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel 

ABSTRACT 

The consistency strength of a regular cardinal so that every stationary set 
reflects is the same as that of a regular cardinal with a normal ideal .jr so that 
every J-positive set reflects in a .q-positive set. We call such a cardinal a 
reflection cardinal and such an ideal a reflection ideal. The consistency 
strength is also the same as the existence of a regular cardinal x so that every x- 
free (abelian) group is x +-free. In L, the first reflection cardinal is greater than 
the first greatly Mahlo cardinal and less than the first weakly compact cardinal 
(if any). 

The  question we consider  in this paper  was raised by  trying to find the 

equiconsis tency strength o f  the existence o f  a regular cardinal  x so that  x-free 

abelian group is x ÷-free. Let x be the least such cardinal.  By a well known 

argument ,  x is ei ther  the successor o f  a singular cardinal  or an inaccessible 

cardinal.  I f x  is the successor o f  a singular cardinal  then there are inner  models  

which have  measurab le  cardinals.  Since weakly compac t  cardinals  have  the 

desired proper ly ,  the search for the least consis tency strength can focus on a 

regular l imit  cardinals.  Although the quest ion was asked for abel ian groups,  

the p rob lem and the solution are the same if  instead we consider  groups or 

t ransversals  o f  families of  countable  sets. 

The  key not ion in our  considera t ions  is the not ion o f  reflection for  a 

s ta t ionary  set. A s ta t ionary  subset S c_ x reflects i f  there is some l imit  ordinal  

7 < x so that  S ¢q 7 is s ta t ionary  in 7- I f  there is a s ta t ionary  subset  o f  x which 

does not  reflect then by s tandard  construct ions  (e.g. [Ek]), we can build a x-free  
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abelian group which is not x+-free. So the consistency strength will be at least 
that of a cardinal such that every stationary set reflects. As well, it is easy to see 
(and well known) that if every stationary set reflects in a regular cardinal then 
every x-free abelian group is x+-free. So the problem reduces to two set- 
theoretic problems, the consistency strength of a regular cardinal in which 
every stationary set reflects and the consistency strength of a regular cardinal 
in which every stationary set reflects in a regular cardinal. Fortunately these 
two principles have the same consistency strength. In fact, 0 # does not exist 
implies that if x is a regular cardinal such that every stationary subset of x 
reflects, then every stationary subset of x reflects in a regular cardinal. 

There has been quite a bit of work related to this problem. Kunen [Ku] 
showed that it is consistent that there is a regular cardinal which is not weakly 
compact such that every stationary set reflects. However, in Kunen's model the 
cardinal is weakly compact in L. So his proof requires the consistency of a 
weakly compact cardinal. Baumgartner [Ba] showed that it is consistent, 
assuming the consistency of a weakly compact cardinal, that every stationary 
subset of R2 consisting of ordinals of cofinality to reflects. Later in [HaSh], it 
was shown that this statement is equiconsistent with the existence of a Mahlo 
cardinal. So there was hope that the consistency strength of the statement of a 
regular cardinal such that every stationary set reflects is less than that of a 
weakly compact cardinal. It should be noted that there is a limit to the results 
that Can be proved. Magidor [Ma] has shown that the existence of a regular 
cardinal such that every two stationary sets reflect in a common ordinal is 
equiconsistent with the existence of a weakly compact cardinal. (In [Ma] the 
result is stated for stationary subsets of R2 consisting of ordinals of cofinality 
09, but the proof establishes the result we have stated.) 

One might also want to get many cardinals in which every stationary set 
reflects (without assuming the consistency of weakly compact cardinals). The 
idea would be to iterate the forcing that we use here. Not surprisingly the 
forcing can be iterated a finite number of times. However the existence of R0 
regular cardinals such that every stationary set reflects implies the consistency 
of weakly compact cardinals. More precisely Magidor (unpublished) has 

proved the following result. 

If 20 ,21 , . . . , 2n , . . .  are regular cardinals so that any stationary set 
consisting of ordinals of cofinality to1 (or any larger cofinality) reflects 
then all but finitely many of 20, 21 . . . . .  2n , . . .  are weakly compact in L. 

A related question which we will not deal with here is full reflection. A set S 
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fully reflects in T if for every stationary S' ___ S, {8 ~ T: S' ~ ~ is not station- 
ary} is non-stationary. Magidor [Ma] showed that it is equiconsistent with the 
existence of weakly compact cardinal that (a < o92 : c f a  = 09} full reflects in 

{a<o92: c f a =  COl}. For more on equiconsistency results concerning full 

reflection see [JeSh]. 

Suppose for the moment that we have a cardinal x in which every stationary 

set reflects. Then the non-stationary ideal witnesses that x has the following 

property. 

There is a proper x-complete normal ideal J on x such 

that i f X ~ a t  + then (a :  X A a is stationary in a } ~ J  + 

We call such a cardinal a reflection cardinal and an ideal as above a reflection 
ideal. Here at+ denotes the at-positive sets (i.e. the sets not in at). A reflection 

ideal has the property that every positive set reflects in a positive set. 

If a cardinal is a reflection cardinal, it is possible to give a more concrete 

description of a reflection ideal. Define a sequence of normal ideals on x. Let J0 

be the normal ideal generated by the sets which do not reflect in any limit 

ordinal. (Notice that ~ contains the non-stationary ideal.) If ~ has been 

defined then let ~+1 be the least normal ideal extending ~ which contains 

every set X such that (fl : X ~ fl is stationary in fl } is in ~ .  At limit ordinals 

take the normal ideal generated by the union. Let at = t,,J~<~+ ~ .  Then x is a 
reflection cardinal if and only if at is a proper ideal. In that case at is a 

reflection ideal. 

PROPOSITION 1. There is a HI formula which defines being a reflection 
cardinal. 

PROOF. The statement that x is not in the set at defined above is HI. [] 

COROLLARY 2. I f  It is weakly compact then It is the limit o f  reflection 
cardinals. [] 

THEOREM 3. I f  x is a reflection cardinal, then x is a reflection cardinal in L. 

PROOF. Let at be the ideal described above and J be the ideal defined in 

the same way in U Since ,¢ ___ at, J is a proper ideal. So x is a reflection 
cardinal in L. [] 

There is another large cardinal notion which is similar to the notion of  a 

reflection cardinal, namely that of  a greatly Mahlo cardinal. A cardinal is 
greatly Mahlo if there is a proper x-complete normal ideal at on x such that at 
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concentrates on regular cardinals and if X ~ J *  then { a : X  O a is stationary 

in a)  ~ 5" .  Here 5 *  denotes the dual filter. We can also describe greatly Mahlo 

as one of a family of notions of Mahlo cardinals. Fix x an inaccessible cardinal. 

Define a sequence of subsets of  x as follows. A0 is the set of  regular cardinals 

less than x. If A~ has been defined let Ao+ ~ = (fl ~A~ : A~ Ofl is stationary 

in fl}. At limit ordinals ~ of cofinality :/= x, let A, = A . < 6 A . .  Finally i f~  is a 

limit ordinal of  cofinality x, choose (a~ : v < x) an increasing sequence cofinal 

in ~. Let A6 be the diagonal intersection of(A~, : v < x). Note that the sets A, are 

uniquely determined modulo the non-stationary ideal and modulo the non- 

stationary ideal the sequence (A, : a < x +) is decreasing. The cardinal x is said 

to be a-Mahlo ifAp is stationary for all fi < a. x is greatly Mahlo if and only if 

each of the sets A~ is stationary. We will have occasion to refer to these sets 

relative to other cardinals/t. In which case we will denote by Ap,~ the set A~ 

defined by the same rules relative to g. 

THEOREM 4. Assume (V = L). Suppose that x is at most the first greatly 

Mahlo cardinal. Then r, is not a reflection cardinal. 

PROOF. For/1 < x define sequences of ordinals ag, fii as follows. Let ao be 

minimal and fl0 be minimal for a0 so that 

L, o ~ "g is not flo-Mahlo". 

Note that since ~t is not greatly Mahlo, a0 and fl0 are defined and less than/z 4. In 

general if ai has been defined let a~+~ be the least ordinal if any and fl;+~ 

minimal for a~ + t so that 

L .... ~ "~ is not fl,- + ~-Mahlo and fl~ + 1 < ]~i "" 

Since the sequence fl0 . . . . .  fli is decreasing there is some nu where the sequence 

terminates. Let n = nu. We claim that for each Ft there is a closed unbounded 

set C such that if a regular cardinal 2 E C then nx > n. Choose a club 

(My:7 </~) of elementary submodels of L~. Let C = ( / ~  : y </z }. If ;t ~ C, 

then n~ >_- n. We now must see that for all but a non-stationary set of  2, 2 is not 

(n(fl,) - l)-Mahlo where n is the Mostowski collapse of M. (Note that fl and, 

hence, n(fl) are always successor ordinals.) 

This fact is an immediate consequence of the following claim. Before we can 
state the claim we need to point out an easy fact about L. Suppose that/ t  is a 

cardinal and fl < g +. If for/z, fl < a 

L~ ~"fl < # ÷ "  

Sh:367



Vol. 67, 1989 CONSISTENCY STRENGTH 3 5 7 

and M < Lo is such that M n # = 7 where 7 is a cardinal and fl E M ,  then n(fl) 

is independent of  a and M. Here n denotes the Mostowski collapse. This fact 

lets us speak about n(fl) without specifying M ifp and 7 is understood. If there 
is a danger of ambiguity we will write n u or nu~. 

CLAIM 4.1. Suppose that # is fl-Mahlo. 

(a) Then for all a < fl and almost all 7 EA~u, Y is n(a)-Mahlo. 
(b) For almost all 7, is 7 i f  r~(/3)-Mahlo then 7 ~A#u. 

When we assert that something holds for almost all ordinals less than some 

regular cardinal, we mean that there is a club in that cardinal such that the 

statement holds. 

PROOF (of Claim). The proof is by induction o n / t  and for fixed p by 

induction on ft. The result is trivial for fl = 1 and at limit ordinals. So we can 

assume that we have the result for p and fl = p  + 1. We first show (a). Let 

(Mp : p < / t )  be an increasing continuous chain of elementary submodels of Lu+ 

such that fl ~M0 and each My has cardinality </~. There is a club D so that for 

each 7 E D, My n/1 = 7. Further, for each a < p  we can fix a club C~ as 

guaranteed by the inductive hypothesis and assume that if a~My then 

C, E M r. (Of course, if we choose the least possible Ca then this statement is a 

consequence of the induction hypothesis.) From now on we will restrict our 

choice of ordinals to those in D. 

Suppose now that 7 is in Apu and for all a~My i f a  < p  then 7 EA~u a n d A ,  is 

stationary in 7. Consider ~ < g(p). Choose aEM~ such that It(a) = ~. Since 
7 E A , ,  the induction hypothesis implies that 7 is 6-Mahlo. By the induction 
hypothesis (b) there is a club C in 7 so that if a ~ C and a is ~t,(O)-Mahlo then 

o" EAa~. Suppose now that t7 ~ C n C~ n Aou. Computing we have 

~,,(,~) = ~ , ( ~ . ~ ( ~ ) )  = n~,(~). 

So by (b) of  the induction hypothesis, a ~A,, y. Hence 7 is n(p)-Mahlo. 
Next we consider part (b). Suppose 7 is as above and 7 is n(fl)-Mahlo. 

Consider a < f l  such that a E M  r Let 6 = n(a). Let C be a club in ~, so that if 
a E C and o" ~ A e  then a is ny(@)-Mahlo. Now consider a ~ C n C~ n A,~. By 

the induction hypothesis, a is ~,(O)-Mahlo. Hence by computing the collapse 

maps it is ltu,(a)-Mahlo. Hence by the induction hypothesis, it is in A,,. So A ,  

is stationary in 7, which completes the proof of the claim. 

Given the claim we can partition the inaccessible cardinals < x into R0 

pieces by letting X, = {/t : n u = n }. It is easy to see that X, ~ ~ + ~. Finally by a 
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theorem of Prikry and Solovay [PrSo], the singular ordinals in x can be written 

as a diagonal sum of sets which only reflect in regular cardinals. So x ~ ~,+1. 
[] 

COROLLARY 5. The consistency strength o f  the existence o f  a reflection 
cardinal is strictly between that o f  a greatly Mahlo cardinal and a weakly 

compact cardinal. [] 

We could prove by the same means that there is in L a hierarchy of  greatly 

Mahlo cardinals below the first reflection cardinal. But we will not investigate 

this hierarchy here. 
Now we want to prove that the notion we were looking for is that of  a 

reflection cardinal. In the proof of  the theorem we will use a lemma from 

[GiSh], which we state below. 

LEMMA 6. Suppose )t is a regular cardinal andQ is a notion offorcing which 

satisfies the )t-c.c. Suppose J is a normal )t-complete ideal on )t. For all J -  

positive sets S and sequences o f  conditions 4 = (q~ : a ~ S), there is a set C whose 

complement is in the ideal so that all a ~ C N S, 

q~ [[-- "T~ is positive with respect to the ideal generated by ~ . "  

Here z~ is the name for ( a : qo E G} where G is the Q-generic set. [] 

This lemma is actually stated for the ideal of  non-stationary sets, but the 

same proof works for any normal )t-complete ideal. Note as well that the ideal 

generated in the extension is just the closure of  J under subsets and is a normal 

)t-complete ideal. 

THEOREM 7. I f  it is consistent that there is a reflection cardinal, then it is 
consistent that there is a cardinal so that every stationary set reflects at regular 

cardinal. 

PROOF. Since any reflection cardinal is also a reflection cardinal in L, we 

can assume that (V = L) and that x is a reflection cardinal. Let J be a reflection 

ideal. Since we are working in L, J - m o s t  ordinals are strongly inaccessible 

cardinals. We first do a preparatory forcing. The forcing will be an iteration 

with Easton supports of ((~a : 2 < x and 2 is inaccessible). We let Q~ be the 

name for the forcing which adds )t + Cohen subsets of)t. Denote this prepara- 

tory forcing as R and as usual let Ra denote the poset resulting from the 

iteration up to 2, etc. Let G be an R-generic set. 
We want to work in L[G] but first we must see that x is still a reflection 
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cardinal. Since the forcing is x-c.c., the ideal consisting of the subsets of  J is a 

normal ideal. For simplicity we will continue to refer to this ideal as J and 

hope that the context will make it clear which ideal we are referring to. It must 

be shown that this ideal is in fact a reflection ideal. Suppose that S is the name 

for a set which is forced to be J-positive. Let p be a fixed condition. For every 

possible a, choose p~ extending p so that p~ 1[-- a ~ S. Let T be the set of such a. 

Since T is forced to contain ~q, T ~ J  +. Let W be the set of inaccessible 

cardinals such that for all 2 E W, T n 2 is stationary and for all a ~ T O 2, 

p, ERa. Since J is a reflection ideal, W E J +. Consider any 2 E W. By Lemma 

6 applied to Ra and the ideal of  non-stationary sets, there is qa ~ { p~ : a < 2 } 
which forces "{a < 2: p~E (~} is stationary". Notice that q~ forces in R~ that 

"S N 2" is stationary. Then since the remainder of the iteration of R is 

2 +-complete and so preserves stationary sets, q~ forces in R that "S n x" is 

stationary. 
Now apply Lemma 6 to J .  There is 2 so that qa forces "{pE W: qp~G} is 

J-positive". So q~ forces that "S reflects in an J-posit ive set". Since qx extends 

p and p was arbitrary we have shown that J is a reflection ideal in L[G]. 

Now work in L[G]. We will define an iteration of  length x + with 

< x-support which will put a closed unbounded set through the complement of 

every non-reflecting set. If  we can show that the forcing does not add any new 

functions from p to x for any p < x, we will be left with an easy enumeration 

problem. We will define the iteration P,  by induction. The posets will be 

contained in the set of  functions, p, with < x-support so that for all ~, p (fl) is a 

closed bounded subset of  x. At stage a, we will be given a name S, for a 

non-reflecting set and P~+~ will be those functions p so that p t aEP~ and 

p t a I[- "p(a) is disjoint from S~". 

The key notion in the proof is that of  a good ordinal for a. Consider a, let N 
be an expansion (H(x + +), E)  by the sequence used to define the forcing up to 

P,. Fix a closed unbounded set (Ma : it < x) of elementary submodels of N so 
that if 2 is inaccessible then <aM~ _ M~. We say that it is good for a if for all 

/ / ~  Ma n a then there is a Pp n Ma-name for a closed unbounded set in Ma n x 
disjoint from ~qp n Mx. Of course such a name will not be in Ma. The definition 

of the good ordinals depends on the choice of the sequence of  models but the 

set of good ordinals is uniquely determined modulo the non-stationary ideal. 

We say a is nice if J - m o s t  ordinals are good for a. Notice that if it is good fora,  

then, using the notation above, P ,  n Ma is essentially 2-closed (i.e. contains a 

dense subset which is it-closed). We give a justification of this statement below. 

The proof is completed by proving two claims. 
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CLAIM 7.1. For all a < x + and p < x, i f  a & nice, then forcing with P~ adds 

no functions from It to x. 

PROOF (of Claim). Fix a sequence (M~. : 2 < x) as above such that f E M o  

where f i s  the name for a function from/~ to 2. Let X be the set of inaccessible 
cardinals with the property that for all 2 E X, Ma n 2 = 2. (All but a non- 
stationary set of ordinals have this property.) By the hypothesis there is an 
inaccessible cardinal 2 > / t  which is good for a and such that X n 2 is 
stationary in 2. Choose C = ((~ : p EM~ n a) a sequence of names for clubs as 
guaranteed by the fact that 2 is good. Since there are two notions of forcing to 
consider, the large posets and their intersection with M~, we will let ][-x denote 
the forcing relation for the restricted posers. Consider the structure (MR, C', I[-~). 
Choose an inaccessible cardinal p < ;t so that (Mp, C n Mp, 1[-~) < (M~, C, [[-a). 

The point here is that looking at Mp n P,  we have an iteration of essentially 
p-complete forcings. To see this note first that Mp is closed under sequences of 
length < p. As well if for some 7 < P we are given an increasing sequence 
(P~: ~ < 7 )  of conditions which satisfy for all f l ~ d o m  p~, p~ tfl I[-~ "Cp is 
cofinal in sup pa(fl)", then the sequence has an upper bound. Again since Mp is 
closed under sequences of length < p  there is an Mp-generic set G for P ,  O Mp. 
Further this generic set can be taken to have the additional property that if 
fl E Mp n a then 

(7: there is p @ G such that p t fl Ik y Ca ) 

is unbounded in p. 
Having made this choice we can now take the union of the components of G. 

This is a sequence of closed unbounded sets in p. Let p denote these closed 
unbounded sets with p added. More formally p is the function whose domain is 

{fl < a : fl ~ M p )  and p(fl) = Uqeo q(fl) u {p}. We now prove by induction on 
fl that p t f l~P~  and p tfl  [~-p#ASp. To see this note that the induction 
hypothesis implies that p t fl E Pp n MR. Since Alp is the restriction of  an 

elementary submodel of (MR, C', [ha), we have that p P fl I[-z P E Cp, which 
completes the proof  of  the subclaim. Finally to complete the proof  of  the 
claim notice that p decides the value of the function (and forces it to be 

bounded by p). 

CLAIM 7.2 For all a < x +, a is nice. 

PROOF ( o f  Cla im) .  The proof  here is similar to the proof  of  the last claim. 
Only the successor case needs to be worried about since the limit cases are 
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handled either by taking intersection or diagonal intersection. Assume the 
result for a. First we can fix a sequence of models (M~:2 < x) of  the 
appropriate structure. Next we suppose that X ~ at + is a set of inaccessibles 
which is not good with respect to the chosen sequence and for 2 E X, M~ N x = 
2. Choose Y Eat  + so that X reflects in Y and Y consists of inaccessible 
cardinals. Now choose 2 ~ Ywhich is good for a (with respect to the sequence). 
Expand M~ by a sequence of names (C~ : fl < a) for the closed unbounded sets 
and the forcing at ).. Find p E X so that Mp is the restriction of an elementary 
submodel of the expanded version of M~. 

Since forcing with/~P * 1 adds no new subsets of p, it is enough to work in the 
extension we get by forcing Rp * Qp. Work first in L[Gp]. Here the interpre- 
tation of (2p is the poser for adding p ~- Cohen subsets ofp .  By adding p of these 
subsets we can assume that Mp, S~ (1 Mp and (Cp t~ Mp : fl < a) are in L[Gp]. In 
this universe Mp A P~ is essentially p-closed. Since we have added Cohen 
subsets o fp  to L[G,], we have added generic subsets for Mp M P~. In fact every 
condition extends (in L[G]) to a generic set. Consider any such generic set 
which is in L[G]. As in the previous claim this set can be extended to a 
condition in P~. As well this generic set (and so the condition) determines the 
value of S~ ~ p. Since S~ is forced not to reflect there is a closed unbounded 
subset of p which does not intersect the decided value of S~. Since the 
remainder of the forcing does not destroy stationary subsets of p, such a club 
must exist in the generic extension of L[Gp] by the Cohen subset ofp.  We have 
shown that every condition in Mp (1 P~ is contained in a generic set, such that 
when we extend L[Gp] by that generic set, the interpretation ofS~ t~ Mp is not 
stationary. So there must exist a name for a P~ f~ Mp-name for a club which is 
disjoint from S~ N Alp. But this shows that p is good for ot + l (with respect to 
the model Mp). This contradicts the choice of X and Y. [] 

There remains the question of  how large the first cardinal such that every 
stationary set reflects can be. In [Ma], it is shown assuming the consistency of 
infinitely many supercompacts that it is consistent that every stationary subset 
of ~,o + ~ reflects. As well in [MaSh], it is shown, assuming the same hypothesis, 
that it is consistent that every Ro,~+~-free (abelian) group is R,o~.2-free. Both 
these results are the optimal consistent with ZFC. On the other hand if we 
don' t  want to use large cardinals the restrictions on the first cardinal such that 

every stationary set reflects. 

PROPOSITION 8. Assume "1 3 0 *~. I f  x is a regular cardinal such that every 
stationary set reflects, then x is og-Mahlo. 
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PROOF. It is enough to show that there is a stationary set of regular 

cardinals. Since 0 *~ doesn't exist, x is an inaccessible cardinal and so contains a 

closed unbounded set of  cardinals. As well, i f#  is a cardinal and regular in L, 

then/t is regular. Assume that there is no stationary set of  regular cardinals. By 

the previous remark, x contains a closed unbounded set consisting of cardinals 

which are singular in L. By [PrSo], there is a stationary set which does not 

reflect. (More exactly reflects only in a set of regular cardinals in L, which by 

our assumption is a non-stationary set.) [] 

The optimal value for the first cardinal such that every stationary set reflects, 

a s s u m i n g ,  3 0 r, can be achieved. 

THEOREM 9. I f  it is consistent that there is a reflection cardinal then it & 
cons&tent that every stationary subset of the first o3-Mahlo cardinal reflects. 

PROOF. First force as above to get a cardinal x so that every stationary set 

reflects. Define an iterated forcing of  length x with Easton support as follows. A 

condition p is a partial function which is trivial except at inaccessible 

cardinals. If 2 is an inaccessible cardinal and 2 E d o m p  then p(2) is a 

P P 2-name for an element which is either the empty set or a pair (a, C) where Jq 

is a natural number and 2 is r~-Mahlo (in the ground model) and C is a closed 

bounded subset of 2 disjoint from the n-Mahlo cardinals below 2. If  n is a 

natural number we will denote by (n, C) the name for the pair whose first 

element is forced to be n and second element is forced to be C. Suppose 2 is an 

inaccessible cardinal and consider the conditions which extend ((2, (n, ~ ))}. 

This can be viewed as a three stage iteration the first being 2-c.c. The next stage 

shoots a club through the ordinals which are not n-Mahlo and so preserves any 

stationary set which contains no n-Mahlo cardinals (in the extension). The last 

stage of  the iteration is 2 +-closed. 

From the comments above it is not hard to prove that the forcing preserves 

cardinals and cofinalities. Next we want to show that for any inaccessible 

cardinal 2 < x if p(2) = (m, (~) and n < m, then p 1~- 2 is n-Mahlo. We prove 

this by induction on n. For n = 0 the result is clear. Suppose n = k + 1. Let 

q ~ P t 2 be any condition extending p P 4. For every 2 > p > sup dora q, such 

that/ t  is k-Mahlo, let r, = q U ((#, (k, Z~ ))}. By Lemma 6 and the induction 

hypothesis, some r u forces (in P r 4) that there is a stationary set of  k-Mahlo 

cardinals below 4. Hence 2 is forced by P P 2 that 2 is k + 1-Mahlo. But the 

following stages of  the iteration preserves this property. 

A similar argument shows that x itself is forced to be the first to-Mahlo 
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cardinal. It remains to see that it is forced that every stationary subset of  x 

reflects. This is proved much as above. Suppose S is the name of a stationary 

subset ofx .  Suppose q is a condition. For each possible a choose p~ I[- " a ~ S "  

and p~ extends q. By extending p~ further, we can assume that there is a natural 

number me such that p~ I~" "a is not m:Mahlo" .  Let T be the set of  these 

ordinals. Clearly T is stationary (since it is forced to contain ~¢). Choose a club 

C so that if fl E T, a ~ C and fl < a then sup dom p# < a. Choose an inacces- 
sible cardinal 2 so that T N 2 is stationary in 2. Choose m and a stationary 

subset T~ of T N 2 so that for each a ~  T~, m, = m. By Lemma 6, there 

is p~ which forces in P r2 that { f l E T ~ : p # E G )  is stationary. Finally 

p~. t3 ((2, (m + 1, ~ ))} forces in • that S (3 2 is stationary in 2. [] 

The fact that in the forcing above preserves the property that every 

stationary set reflects could also be proved by appealing to Proposition 1.12 of 

[GiSh]. But the verification that the hypothesis of  the proposition holds would 

be as long as the direct proof. 

There is another related question namely trying to ensure that all stationary 

sets disjoint to a given costationary set reflect. The consistency of this 

statement implies the consistency of a Mahlo cardinal. In fact: 

THEOREM 10. The existence of  a cardinal such that every stationary set 

consisting o f  singular ordinals reflects in a regular cardinal is equiconsistent 

with the existence o f  a Mahlo cardinal. 

This theorem can be proved by methods similar to that of the proof of 

Theorem 7. But this proof can also be done without the use of a preparatory 
forcing, if we use the idea underlying [Shl]. Since this proof may have 

independent interest, we will prove the following stronger theorem. 

THEOREM 11. Suppose that x is a strongly inaccessible cardinal and E c_ x 

is a stationary set consisting o f  regular cardinals. Further suppose that for all 
2 E E ,  <>(4) holds and 2 ~ = x +. Then there is a forcing notion P, so that i f  we 
force with P, E remains stationary, no new bounded subsets o f  x are added and 

every stationary set which is disjoint to E reflects in an element o f  E. 

PROOF. The forcing is an iteration of length x ÷ where we shoot a club 

through every set disjoint from E which does not reflect in a member of E. As 

before, for a < x ÷ we have P~ and S~ a P : n a m e  for a set which does not reflect 

in E. To prove the theorem it is enough to establish the following claim. 

CLAIM 11.1. Suppose a < x  +. Furthermore suppose M < (H(x++),~),  
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M A x = ;t u E, I M I = 2, aM c_ M and the sequences used to define the P~ are 
elements of M. Then there exists (in the ground model) a set, G, which is M- 

generic for M A P~. Also G is the set of restrictions of some condition in P~. 

PROOF (of Claim). We will first give the proof under the assumption that 

a < 2 and then describe the modifications needed to prove the general case. 
First notice that if G is any set which is M-generic then G is the set of  

restrictions of a condition. To see this note that G consists of  a sequence of 

clubs in 2, G determines the value of  Sp N ;t (for fl < a, fl ~ M ) ,  and the flth 
club is disjoint from the determined value of  Sp. Since ,~ is forbidden from 

being in any of the Sp, we can complete each club in 2 to a closed set in x by 

adding 2 and so get a condition. 

Notice as well that i f H  is an M-generic set for some Pp, then since H c a n  be 

completed to a condition and determines the value of Sp N 2, the determined 

value is non-stationary (as SB is forced to be non-reflecting). So there is a club 

Cp in 2 which is disjoint from the determined value of Sp. The naive strategy 

for building a generic set should now be clear. We inductively choose M- 

generic sets Gp for Pa N M. Then at successor stages we can use C a to choose 

extend the generic set (i.e. we define a sequence of closed sets and at every stage 

make sure to include an element of CB). The difficulty with this approach is 

that there is no guarantee that at limit stages we will have a generic set. 

There is another approach, which would work if the forcing were essentially 
2-complete. Namely we enumerate the dense sets in M in order type 2. Then 

we choose a 2 sequence of conditions (which may be functions with domain a) 

and make sure that we meet every element of  the dense. By using <)(2), we can 
combine the two approaches. 

To begin we enumerate as (Dy: 7 < 2) the dense subsets of  Pp which are in 

M, for all fl < a. Let fl(Y) denote the fl so that D r is a dense set of Pp. Next 
choose disjoint stationary sets Xr of  2 so that O(Xr) holds for each 7 < 2. Using 

<>(Xy), predict for each ~ ~Xy a fl(y)-sequence, qr, of  closed subsets of  8. If 

possible choose r6 ~ D r which extends q~. (Note that such an r6 will exist if and 

only if q6 is the restriction of a condition.) By restricting to a club (in ;~) we can 

assume that for all ? and 8 ~ Xy, 8 is > the supremum of 

(sup(sup rp(z) : z E d o m p }  :p <c~}. 

Now we can describe the construction. We will define the generic set G by 

induction on fl < a, where we will produce a set Gp which is M-generic for Pp. 

Suppose we have done the construction for ft. Let Cp be a club which is forced 
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by Gp to be disjoint from Sp. The construction is now carried out in stages to 

define a sequence, (cp :p) of closed subsets of  2 which will give us Gp+ 1. For 8, 

we abuse notation and write Gp O 6 for the sequence of intersections of the 

closed sets with 8. Suppose cp has been defined and the greatest element of cp is 

8. There are two possibilities to consider. First suppose (and this is the most 

interesting case) that Gp O 6 concatenated with cp N ~ is q~ ~ fl + 1 and that r~ 

exists. In this case we let ( be the least element of C a greater than sup r6(fl) and 
define cp + 1 = r~(fl) tO { (}. Notice that if we can carry out the construction then 

r~ t fl ~ Gp. So cp + ~ is forced by Gp to be disjoint from Sp. If we do not have rj as 
above then we just take ~ the least element of C a greater than 6 and let 

Cp+l =cp to 
At limit ordinals we take unions and add the supremum. Since this 

supremum is in Cp, again we have a closed set which is forced by Gp to be 

disjoint from SB. Since we will need to refer to this set of  ordinals, let 

IV# = { SUp Cp : p < 2 } .  

To complete the proof we will show by induction on fl < a that Gp is 

M-generic. We will only do the limit case as the successor case is similar. 

Notice that the induction hypothesis implies Ga can be extended to a con- 

dition. Consider now any dense subset of  Pp which is in M. I.e. consider D r 

where f l (7)=f t .  Notice that W = no<  wo is a club. By <>(Xy), there is 
6 E W O Xy so that q6 = Gp O 8. Since Gp can be extended to a condition, so 

can q,. Hence r6 is defined. In the construction, we guaranteed r, E Gp. So 

Gp n D r is non-empty. 
We now describe the modifications necessary if a > 2. Since I a I = x, there 

is a one-to-one and onto map g ~ M  from a onto r .  (Note that g n M is a 

one-to-one and onto map from M O a to 2.) We can replace our poset P~ with 
an equivalent one. At stage fl, rather than trying to force a club which is 

disjoint from Sp, we try to force a club subset of  [g(fl), r )  which is'disjoint to 
the set defined to be {g(fl) + v : v ~Sa}. The effect of  doing this is to guarantee 

that for a club of  6 < 2 and for any condition p ~ P~, p O 6 is contained in a set 
of  cardinality 8. So we can use 0 as before. The other change in the proof is in 

the definition of W. In this case we want that 6 ~ W, for all tr such that 

g(a) < 8. Since this is a diagonal intersection, the proof can be carried out as 

before. [] 

In contrast with the difficulties involved in iterating the forcing which makes 

every stationary set reflect and the results in [JeSh], we can iterate the forcing 
above as ]ong as complement of  the sets all of  whose subsets we want to reflect 
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is large enough. For example, we can prove that for K a class of  strongly 
inaccessible Mahlo cardinals such that/~ = sup (K n/~) > cf/~ implies 2 u = 
/~ +, there is a forcing extension which does not collapse cardinals nor change 
cofinalities such that for every 2 ~ K any stationary subset of {~ < 2 : ~ is not 
inaccessible implies cf ~ >/~ for every/~ E K n 2 } reflects. The key point here 
is that when we consider the forcing as an iterated forcing the iterate from any 
2 on is essentially/~-complete for all/L < 2. Another possibility is that we have 
the class K and a function h so that for all 2 EK, (~ < 2 : ~ is h(~) Mahlo} is 
stationary. Then there is a forcing extension so that for every 2 EK, every 
stationary subset of  {~ < 2 : ~  is inaccessible and ~ is not h(2)-Mahlo or ~ is 
singular and cf ~ >/1 for all/~ ~ K N 2 }. It is possible to get forcing extensions 
with stronger reflection properties if reflection cardinals are used. 
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