Sh:801

The Journal of Symbolic Logic e

http://journals.cambridge.ora/JSL JOURNAL OF
SYMBOLIC

LOGIC

Additional services for The Journal of Symbolic Logic:

(o

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A dichotomy in classifying quantifiers for finite models

Saharon Shelah and Mor Doron

The Journal of Symbolic Logic / Volume 70 / Issue 04 / December 2005, pp 1297 - 1324
DOI: 10.2178/js1/1129642126, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200006678

How to cite this article:
Saharon Shelah and Mor Doron (2005). A dichotomy in classifying quantifiers for finite models . The
Journal of Symbolic Logic, 70, pp 1297-1324 doi:10.2178/jsl/1129642126

Request Permissions : Click here

CAMBRIDGE JOURMNALS

Downloaded from http://journals.cambridge.org/JSL, IP address: 128.210.126.199 on 20 May 2015



Sh:801

THE JOURNAL OF SYMBOLIC LoGic
Volume 70. Number 4. Dec. 2005
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FOR FINITE MODELS
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Abstract. We consider a family 4{ of finite universes. The second order existential quantifier Q.
means for each U € 4 quantifying over a set of n{R)-place relations isomorphic to a given relation. We
define a natural partial order on such quantifiers called interpretability. We show that for every O, either
QOm is interpretable by quantifying over subsets of U and one to one functions on U both of bounded
order, or the logic L(Qwx ) (first order logic plus the quantifier O } is undecidable.
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§1. Introduction.

1.1. Background. In this work we continue [6], but it is self contained and the
reader may read it independently. Our aim is to analyze and classify second order
existential quantifiers in finite model theory. The quantifiers will be defined as
follows:

(*) Let U be a finite universe, and n a natural number. Let K be a class of
n-place relations on U closed under permutations of U. Define Qg to be
the n-place existential quantifier ranging over the relations in K, i.e., the
formula (Qxr)e(r) holds iff w(R) holds for some R € K.
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We will usually work on quantifiers of the form Qg = Qk, where R is a n-place
relation over U and K is defined by: Kz := {R' C"U : (U R) =~ (U, R’)}. We de-
fine below two partial orders on the class of such quantifiers, called: interpretability
and expressibility. It will be interesting to consider the problem for classes K of
n-place relations definable in some logic £, that is such that there exists a formula
@(r) € £ (r is a n-place relation symbol) and R € K iff (U R) = o(r). In [4] the
problem was solved for the case: K is definable in first order logic and U is infinite.
It was shown that in this case Qk is equivalent (in the sense of interpretability) to
one of only four quantifiers: trivial (first order), monadic, quantifying over 1-1
functions or full second order. A revue paper is [1]. If we do not assume K to be
first order definable but keep assuming U is infinite we get a classification of Qx by
equivalence relations. Formally in [5] it was shown:

THEOREM 1.1. Let U be an infinite countable universe, and K be as in (x). Then
there exist a family E of equivalence relations on U, such that Qx and Qp are
equivalent (each is interpretable by the other).

We remark that if U is infinite not necessarily countable then the situation is more
complicated, but if we assume L = V' then we have the same result. [6] deals with
the case U is finite. Under this assumption we get a reasonable understanding of
QOr, we can “bound” it between two simple and close quantifiers {close meaning
that the size of one is a polynomial in the size of the other). We say that O,
is “uniformly” interpretable (expressible) by Q, if the formulas used to interpret
(express) are independent of U and depend on » alone. Let Q) be the existential
quantifier ranging over 1-1 partial functions with domain < A. Formally in the
finite case we have:

THEOREM 1.2. Let U be a finite universe, and R a n-place relation on U. Then
there exist a natural number . = A(R), and equivalence relation E on U such that
uniformly we have:

1. Qr and Q}! are interpretable by Qr.

2. If (U] > A" then Qg is expressible by {Qg, Q}7'}.

3. If |U| < A" then every binary relation on a subset A C U with cardinality
< |U|'?" is interpretable by Q.

In case (2) of the theorem if we want to have “interpretable” instead of “ex-
pressible” then the situation is more complicated and we deal with it in this paper.
Since U is a “large” universe we check the “asymptotic behavior”, that is we con-
sider a class 4l of finite universes with unbounded cardinality. For each U € il let
R[U] C "U be a n-place relation on U. We will see that there is a dichotomy in
the behavior of Qw(u), that relates to cases (1) and (2) of theorem 1.2. Formally we
prove:

THEOREM 1.3. Let R be as above. Then exactly one of the following conditions
holds:

1. Qwquy is uniformly interpretable by 1-1 functions and unary relations both of
bounded cardinality.

2. Foreachm € N, there exist U € U such that we can uniformly interpret number
theory up to m, by Qxuy.
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We prove this theorem in sections 3 to 6. In section 3 we analyze the situation,
and give a condition for the dichotomy. In section 4 we prove that if the condition
of section 3 holds then part (2) of theorem 1.3 is satisfied. In section 5 we prove, for
the binary case that if the condition does not hold then part (1) of the theorem is
satisfied. In section 6 we prove the same for the n-place case. In section 2 we show
that in the finite case we can not get a full understanding of Qg4 similar to what we
have in the countable case (not even for expressibility).

1.2. Preliminaries.

Notation 1.4. 1. sl is a class of finite universes, possibly with repetitions. So
formally: 4l = {U; : i € J} for an index class J and we allow U; = U, for
i # j € 3. We will usually not be so formal and will write U € &l and it should
be understood as i € Jand U = U;. We assume sup{|U|: U € 4} = N,.

2. Aisafunction on Y and for all U € 4, K[ U] is a set of n-place relations on U
(where n = n(f) is a natural number), closed under permutations of U. This
means: if Rj, Ry C"U and (U, Ry) =~ (U, R;) then R, € A[U] & R; € A[U}.

3. Ris a sequence of such functions. We write & = (fy, ... Ry -1)-

4. R is a function on 4 and for each U € U, R[U] is a n-place relation over U
{where n = n(fR) is a natural number).

5. ris a n(R)-place relation symbol.

6. Forall U € 4 if S is a n-place relation on U, and F is a m-place function on
U, then s and f are a n-place relation symbol and a m-place function symbol
respectively. We write (U, S) k= s(@) iff @ € s, and (U F) = f(b) = ¢ iff
F(b) =c. (Thatisforallc € Ua e "Ub e™U).

7. Forall U € 4and n € w, @ € "U is a sequence of » elements in U. We write:
a="{ap..... a,_1), and lg(a) = n.

DerINITION 1.5. For all R asin 1.4.2 we define the second order existential quanti-
fier Q4 to range over all relations in &. Formally we define the logic L(Qg,, - . ., Qa,)
to be first order logic but we allow formulas of the form (Qg, r)p(r) (r is a n(&;)-
place relation symbol) for all 1 < i < m. Satisfaction is defined only for models
with universe U € il as follows: = (Qg,r)p(r) iff there exists R’ € &;[U] such that
(UR%) k= o(r).

DEFINITION 1.6. We say that & (or Qg) is definable in some logic £ iff there exists
a formula ¢(r) € £ (r is a n(&)-place relation symbol) such that for all U € 4 and
RC"AU:

(UR) = ¢(r) < R € /[U].

Notation 1.7. For R as in 1.4.4 we denote by On the quantifier Qg, where
R = A 1s defined by:

f[U] = {R' <"™U : (UR") = (URV))}.
DerINITION 1.8, 1. We say that Qg, is interpretable by Qg, and write Qg, <;u
Qg, if there exist k* € w and first order formulas:
0k (X.F) = or(X0. ..o, X)) =1 700 -+ s Tl

for k < k* (each r, is a n(&,)-place relation symbol) and the following holds:
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(#*) Forall U € 4and R € RI[U] there exists & < k* and Ry, ..., R,_1 €
A>[U] such that (U Ry, ... 1) EDRE) = (X ro. .. .. Fm—1)]-
2. We say that Qg, is expressible by Q_ﬁz and write Qg, <.., Og, if there exist
k* € w and formulas in the logic L{Qm,):

ok (X.7) = (X0, ....x w(8y)—1-T0s - Fm—1)

for k < k* (each r; is a n(£,)-place relation symbol) and () holds.
3. In (1) and (2) if &* = 1 we write Qg, <i—im Qa, and Qgr, <i—exp Ox,
respectively.

4. We write Qg, =i Qg, if Qg, <in O, and Og, <inx Og,. =exp is defined in
the same way.

5. Wedefine Qg < {Qg,.---. Qs _, }asin(1)onlyin () foreach0 < j < m-1,
R; may belong to some &; for 0 < i </ — 1 with n(&;) = n(R;). We write
QR ={Qs:---- leg@_]} when 8 = (R, ... ,R/g@“l). In the same way we
define for <.

6. We define Qz <in Oz if Qur <im Qs foralli < Ig(R") again when Rl =

1
(RY, ... ng(ﬁl)_l) In the same way we define for <,,,.

The following two lemmas are straightforward.

Lemma 1.9. 1. <y and <., are partial orders, and hence =, and =y, are
equivalence relations on the class of quantifiers of the form Qg.

2. Qﬁl >int Qﬁz lmphes QRI >exp Qﬁz n

LemMMa 1.10. Let £ be some logic and assume /L R2 are definable in £ (that is
every R is, see definition 1.6) and O Zexp O then:

1. There exists a computable function that attach to every formula in S(Qﬁ) an
equivalent formula in £(Qz).
2. The set of valid sentences in £(Qxr) is recursive from the set of valid sentences

So <.y gives a hierarchy on on logics of the form £(Q5). i.e., under the assump-
tions of lemma 1.10 the expressive power of £(Q%;) is at least as strong as that

1.3. Summation of previous results. We will use the following results. Proofs can
be found in [6].

DerINITION 1.11. 1. let A be a function from 4 to N such that A[U] < |U|/2.
Define 87 by &7"[U] := {4 C U : || = A[U]}. We denote Qgrn by 7"

2. For A as above define 829" by RZ7[U] := J{&]"" : 4 < A}. We denote Qgn
by Q"or.

3. For / as above define &' by &} '[U] = {f U — U : |Dom(f)| =
A[U). f oneto one}. We “denote Qﬁn ; by Ql

4. For  as above define & by RL][U] := U{&;" : u < 1}. We denote Qg1

by Qg}. .
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5. Let A and u be functions from 4 to N. Define Rj’f# as follows: Ri‘f#[U ]is
the collection of all equivalence relations on subsets of U with exactly A[U]
classes, and the size of each class is 4[U]. We denote Qg by Q5.

Apt .

6. Let A and u be as in (5). Define 87, <, as follows: R"S”L <, 1s the collection
of all equivalence relations on subsets of U with at most A{U] classes. and the
size of each is at most u[U]. We denote Qﬁgsﬂ by Q?A.gp-

Remark 1.12. Ttis an easy fact that Q7" =, Q29" and Q' = QL so we will

usually not distinguish between them.

LeMMA 1.13. Let A be a function from L to N, and & a binary relation on 4 such
that for all U € A\, €[U] is an equivalence relation with at least A[U] classes each of
which has at least A[U] elements (and possibly smaller classes). Then Qf/1 <int Oe.

PrOOF. Straight foreword. The interpreting formula is
w(x. ¥, 50, 51.52) := s0(x, ) A —s1(x. p) A salx, p).
(See [6] for similar proofs). 4

THEOREM 1.14. For every R there exists a function Ay = A(R) from U to N and
a relation Ry withn = n(R) = n(Ry) and |Dom(R,[U])| < AUl +nforall U € U,
such that Qm =i {Qm,, Q3" }

The interpretation is done uniformly, that is the formulas used are independent of
R (depend on n(R) alone).

THEOREM 1.15. For every R there exists a function Ay = A1 (R) from U to N such
that uniformly: Qwn =m {Q7", Qirl, On,, Q¢}. where: n = n(R) = n(R1), 4o
is given by 1.14, and for all U € U, |Dom(R[U])| < n - 41[U] and €[U] is an
equivalence relation on U .

Remark 1.16. In the proof of theorem 3.6 we can assume without loss of general-
ity that for all U € U, |R[U]| < Ao[U] + n(2R), this is true since we can interpret R,
instead of R. Similarly using 1.15 we can assume |R{U]| < 41[U] - n(R). Here we
have an equivalence relation € that can change the bounds but the change will not
be significant. Note also that Q,{;‘ = Q},_"/{I (for all n € w). So in the simple case
of the dichotomy (theorem 5.2) we prove Qm <i {Q7". Q;'} but in the proof we
will not pay attention to the size of the sets and functions we use.

§2. Limitations on the classification of Qg in the finite. In this section we show that
unlike the countable case in which we had an understanding of Qs by equivalence
relations, in the finite case there are classes of relations we can not express.

DerFINITION 2.1. For all n € w define K, by: &,[U] :== {R: R C "U} for all
U el

LEMMA 2.2. Foralln € w: Qg,,, Lexp Os,-

PROOF. Suppose Qg,., <exp Os,. and assume that the formulas used for express-
ing are @, (X, 70, ..., Fme—1) for k < k*. Put m = max{my : k < k*} U{k*} and
let U € Y. Then by these formulas we can express at most m - |[R[U]|" differ-
ent relations. Since |&,[U]| = 2/YI", if we choose U such that |[U| > m. we get
|UI"(|U| — m) > log,(m). hence 2!U"(1VI=m) > 1y and hence 21Y1""" > m - 21U1"m
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So the maximal number of different expressible relations is smaller than [&,.[U]],
a contradiction. ~

We have that for n > 2, Qg, is not expressible by equivalence relations, unlike the
countable case (see 1.1). Moreover we have:

LEMMA 2.3. Foralln > 2:

1. Qﬁn ﬁexp Ql—l'

2. Qﬁ,, ﬁexp Qeq.

PrOOF. We prove (1). again suppose Qg, <., Q' and we use the notations of
the previous proof. Note that &~'[U] = |U|!. and for |U| large enough we have
|U|! < 21U12(1UD¢ where ¢ is some constant. Moreover for all n > 2, for |U| large
enough we have [U| - log(|U|) - em < |U]|". So we get: m - |&'-'[U]|" < 2IY" which
means the number of relations expressible is smaller than [&,[U]|, a contradiction.

The proof of (2) is similar using: A4[U] < |U|IU! < 21Ul eelUD)-¢ .
We get that in the finite case even for n(&) = 2, we can not express every Qg by 1-1
functions and equivalence relations.

§3. Primary analysis. From here on, unless said otherwise, we assume that R is
fixed and 4; = 4;(R) fori € {0.1} (see 1.14 and 1.15).

In this section we start the analysis of Ox. For each universe U we define a natural
number k which is the maximal size, in some sense, of an equivalence relation on U
interpretable by R[U]. The size of k is an indicator of the degree of “complexity”
of . We will show that there is a dichotomy, ether R is very “complex” or it is
“simple”. This is made precise below.

DEFINITION 3.1. Let 7 = {fo0...«\ fm»80. - Smyp. Co, - - - . Cmy } DE @ vOcabulary,
that is f; are n( f;)-place function symbols, s; are n(s;)-place relation symbols and
¢; are individual constants. Define:

1. forall U € Lamodelforzon U is

M=UM . .. sy sMeY M,

5 my o

where fM are n(f;)-place partial functions.

2. amodel for 7 on U denoted by M is a function from U such that forall U € 4,
IM[U]is a model for z on U. Note that the function U — (U, R[U]) is a model
for {r} on 4, we will not be as formal and say that R is.

3. Assume r € 7. We say that 9 expands (or is an expansion of) R if for all
U € 4, ¥ = R[U]. More generally:

4. Let T C 7’ be vocabularies, and let 9t and 99V be models on U for T and 7’
respectively. We say that 9 expands 9 if M'|r = <M. That means for all

Uectiland f; €1, f ?ﬂ,w] =f ?mU], and similarly for relation symbols and
constants.

5. We call 7 simple if it is finite and all the relation and function symbols are
unary.

6. We call M a simple model for 7 on U if:
(a) 7 is simple.
(b) M is a model for t on U.
(c) Foralli < my, fM is a one to one function and |Dom(fM)| < 4[U].
(d) Foralli < my. |sM| < A[U].
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7. We call 91 a simple model for  on Y if for all U € U, 9M[U] is a simple model
forzon U.
8. Let U € Y and R be n(R)-place relation on U. We call M a simple expansion
of R on U for vocabulary 1 if:
(a) rer.
(b) M isa model forton U.
(c) r
(d) The restrlctlon of M to 7\ {r} is a simple model for z \ {r} on U. In
particular 7 \ {r} is a simple vocabulary.
9. We call 9 a simple expansion of R (on i) for vocabulary =, if for all U € 4,
M[U] is a simple expansion of R[U] for t on U.

DerFINITION 3.2. Let 7 be a finite vocabulary, and A a set of formulasin 7. Let M
beamodelforton U, m € w, A C U,and g € "U. Define:

1. The A-type of @ over A in M is:

tpp(a@, A, M) = {p(%.b) 1 p(X.7) € A Ig(X) =m.b € <“A. M }= p(a.b)}.

2. SZ’(A,M) = {tppl@a,. A, M) :a € "U}. if M = (U, R) we write Sy'(4. R).
and similarly in (1).

3.If pe SP(A, M), a’ € "U and p(%,b) € p = M k= p(a’,b), then we say
that a’ realizes p, in particular G realizes 1p,(a, 4. M).

DEerFINITION 3.3. Let 7 be a finite vocabulary and A a set of formulas in z.

1. Forall U € i, 4 C U and M a model for 7 on U, define an equivalence
relation E = E5}/ (we usually write £ where U is understood) on U by:

E:={(x'x") €U :tpy(x', A, M) = tp,(x" A, M)}.

2. Let U € U, m € w and E an equivalence relation on U. We call E m-big, if E
has at least m equivalence classes of size at least m. If F is not m-big we say it
is m-small.

3. Let M be a model for 7 over on 4L, define a function from U to N, kp = kaon
as follows: ka[U] is the maximal number £ such that there exists 4 C U,
|4] < 40[U], and E{™YV is k-big.

LeMMA 3.4. Let M be a simple expansion of SR for a vocabulary t, and A a finite
set of formulas in t. Then: {Qn Q7" O} Zim 0 e

Proor. For all U € U, let 4y C U be the subset the existence of which is
promised by 3.3.3. Let s’ be an unary relation symbol. Define a simple vocabulary
7/ :=tU{s'}, and a formula in 7"

w(x' x") = (vb) /\ {s'(6) — b)) = (x".b)]}
e(x,7)eA

(where (Vb) stands for Vby . . Vb (5)_1- and s’(b) stands for Nicig(s)- s'(b;)). Let

I’ be the simple expansion of 9 for 7’ defined by s’ R - Ay, for all U € 4.
Then forall U € U and a,b € U:

aEy M = M U] = w(a.b).
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Define & by €¢[U] = Ej’U%U]. Since MM is a simple expansion of R we have
Q¢ <in {Qn Q7" Qi,_l} when the interpreting formula is . Now by 1.13 we have
Q¢ Zim Q,‘Z‘:m koo SO by transitivity of <;,, we are done. =

LEMMA 3.5. Let n be a natural number no larger than n(R). Let t be a simple
vocabulary, and I a simple expansion of R for Tt U {r}. Let A be a finite set of
formulas in T U {r}, of the form ¢o(x.7) such that lg(¥) < n. Let U € U and
k = kasm[U). Then there exists A C U such that:

1. |4] < nk.

2. If o(x,7) € Aanda € ¥V U are a formula and parameters, then the formula

(=, @) divides every equivalence class of Ejﬂﬁ[U] into two parts one of which
has no more than (k + 1) - 2™ elements, where m* = |A|(k 4+ 1)"*! . n".

3. There exists at most k types, p € S}(A4,M[U)). realized by at least k - 2"

elements of U each.

ProOOF. Define a natural number m; by downward induction on / < k 4 1:
mip1 = 0, my = |A|(n({ +1))" + my,,. By induction on/ < k + 1 we try to build
aset A; C U suchthat|4;| < nx/,and thereexistsat least / types p € SL(4,. M[U])
realized by at least (k 4+ 1) * 2™ elements each. If we succeed then the existence of
Ay 1 is a contradiction to the definition of k. (We assume here that |4, (| < Ap[U].
but without loss of generality we can assume that as |4, | is bounded. see also
remark 1.16). Let Jy < k& + 1 be such that we have built Ay, ..., 4;, but we can not
build 4;+,. Put 4 = 4. Clearly A4 satisfies (1). We prove (2).

Put M = M[U]. Let (B; : i < ly) be am enumeration of equivalence classes
of Eﬁ'M with at least (k + 1) * 2™ elements. (Note that there are exactly /; such
classes since [y is maximal). Let ¢(x,7) € A and @ € 27U be some formula
and parameters. The relation E4 . divides every class B; to at most 2/A/{4l+»)
parts. Hence by the pigeon hole principle at least one of those parts has at least
MJﬁ;',H,n szul(ﬁiz(lm)" > (k + 1) * 2™+ elements. If for some i there are more than
one part with more than (k + 1) = 2"! elements then define 4;,,1 = A Ua and we
get:

L. |Aps1] < |4yl +1a@l <nxly+n <n(lh+1).

2. There exists at least Jp + 1 types p € Si(Ay+1, M[U]) realized by at least

(k 4+ 1) - 2™+ clements each.
This is a contradiction to the maximality of /. Now assume toward contradiction
that ¢ (—, @) divides some B; into two parts, both larger than (k +1) «2™" (note that
m* > my, so there is no need to check classes smaller than (k+1)%2"" ). Then E 47
divides each part into at most 214/*((b+1)" classes and hence each part contains an

. . m* _ iy
equivalence class of E 4 ; with at least zﬁﬁ(‘n)(foim" > z(lﬁrz}")(’,‘ozm‘;n = (k + 1) * 20
elements, so B; contains two such classes and this, as we saw, is a contradiction. To
prove (3) we note that /o + 1 < k + 1, and m* > my, > my,,| hence the existence of

k + 1 classes with k x 27" elements contradicts the maximality of /. =

THEOREM 3.6. Let 1 be a simple vocabulary, and A a finite set of formulas in tU{r}.
Then one of the following conditions hold:

1. There exists a sequence of worlds: <U,- es:i e w> and a sequence of natural
numbers: (n; : i € w) such that n; — oo and there exists a simple vocabulary
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t'.aformula o(x,y) int'U{r} and a simple expansion ' of R for v’ U{r}, such
that for all i € w: {(x.y) € 2U; : M'[U:] = o(x,y)} is an n;-big equivalence
relation on U;.

2. There exists a natural number k* such that for all U € U and M — a simple
expansion of R[U] for T U {r} on U, there exist A = A@'M C U such that
|A] < k>, Eﬁ_‘?f is k*-small. and for every formula ¢(x.7) € A and parameters
a € ¥y, p(—.a) divides each equivalence class of E ﬁ‘M into two parts one of
which has less than k* elements.

Proor. Define M to be the class of all simple expansions of 98 for t U {r} on {.
For all U € U define:

k7o (U] = max{kaon[U] : 9 € M}.

Next we assume that sup{ky*“[U] : U € i} = Ny and show that condition
(1) is satisfied. Let <U,- e i€ w> be a sequence of universes such that
n; =k74[U;] — oo. Define a simple vocabulary 1" = 7 U {s’} (s’ an unary rela-
tion symbol). We now define 1. For all i € w denote by M; the model for 7 U {r}
on U. for which the maximum in the definition of k{'**[U;] is obtained. Define
M{U;]|r U {r} := M;. By the definition of k s there exists a subset 4, C U; such
that E j/‘M' is a n;-big equivalence relation on U. Let s’ MUY — 4,. That defines M
(obviously the definition on universes not among the U; is irrelevant). We define
@(x, y) to be the formula interpreting E ﬁ;M‘ (see 3.4) namely:

p(x.y) = () N\ {5'(®) = lwlx.b) = y(y.0)]}.

w(xI)€EA

It is clear that condition (1) is satisfied.

We now assume that {k*[U] : U € U} is bounded and let £ by its bound. we
show that condition (2) is satisfied. Let n := max{lg(y) : p(x,7) € A}. We define
k* = max{(k + 1) x 21816+ " (k4 1)}, Now let U € 4, and M a simple
expansion of R[U] on U for vocabulary T U {r}. Let 4 C U be the subset the
existence of which is promised by the previous lemma. Then all the demands of (2)
are clear from the previous lemma and the fact k > ky**[U] > kaom[U]. -

§4. The complicated case of the dichotomy. In this section we assume that ${ and
R satisfy condition (1) in 3.6, that is we can uniformly interpret an arbitrarily large
equivalence relation. We show that in this case we can interpret bounded number
theory in the logic L(Qn). It follows that the logic L(Qmx ) is undecidable.

We make use of the following:

LeMMA 4.1. Let E be an n*-big equivalence relation on a universe U. Then we
can uniformly (that is using formulas independent of U and E) interpret the model
({0,1..... n — 1}:0, 8, 4. ) using a finite number of isomorphic copies of E.

Proor. We will not go in to details, as similar results are known from “history”
(see[3]). Inshort, using a fixed number of of isomorphic n-big equivalence relations
(actually two relations are enough), we can uniformly interpret any graph on »n
vertexes. Now the model ({0.1...., n—1},0,8, +, %) can be easily shown to be
interpretable (again uniformly) by a graph with »? vertexes. -
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From this we conclude:

COROLLARY 4.2. In theorem 3.6 if condition (1) is satisfied then we can uniformly
interpret number theory bounded by n; using a finite number of isomorphic copies of
R[U.]. .

We can now prove our undecidability result:

THEOREM 4.3, In theorem 3.6 if condition (1) is satisfied then the logic L(Qwn) is
undecidable, i.e., the set of logically valid sentences in L{Qw) is not recursive.

Proor. Again we will not go into details. Let ¥ be a finite subset of the axioms of
number theory large enough, so that we can code Turing machines in any model of
Y. Let w* be the conjunction of the axioms in ¥. Now the set of sentences y in the
vocabulary of number theory such that y A w* has a finite model is not recursive.
For each sentences y in the vocabulary of number theory let ¢, be the “translation”
of w A w* to the vocabulary {r|, ..., r»} under the interpreting formulas obtained
from the previous corollary. We then have that w A w* has a finite model iff
(Qmri) ... (Qnrm)p, has a model in the context of the logic L(Qx). Hence the
logic L(Qs) can not be decidable. -

§5. The simple case of the dichotomy. In this section we will interpret O, when
R is “simple” that is when condition (1) in theorem 3.6 is not satisfied. We will
show that in this case there exists a simple model on 4 in which it is possible to
interpret R by a first order formula. In fact we prove Om <um {Q7", ){I"} SO we
get a full understanding of Ox.

5.1. Formalizing the assumptions and the main theorem. In the rest of the paper
we assume that 4 and 2R do not satisfy condition (1) in theorem 3.6. (Note that this
condition is independent of A). Hence from that theorem we get the following:

1. For every simple vocabulary 7, and A a finite set of formulas in t U {r}, there
exists a number k7 = k;(A) and a function that assigns to every U € U and
M — a simple expansion of R[U] for t U {r} on U, aset 4 = A5™ C U such
that condition (2) in theorem 3.6 is satisfied, that is:

(x) 14| < k7, Eﬁ’M is ky-small, and for every formula ¢(x,¥) € A and
parameters @ € 29U, (-, a) divides each equivalence class of E j‘,‘M
into two parts one of which has at most k| elements.

2. For every simple vocabulary 7, and every formula ¢(x, y) in 7 U {r}, there
exists a natural number k5 = k3 (i) such that:

(++) If 9 is a simple expansion of R for t U {r} and U € 4, then the
interpretation of p(x,y) in M[U] (that is {(x,y) € *U : MU} &
@(x,y)}) is not a k3-big equivalence relation.

Remark 5.1. We can increase kJ(A), meaning if m > k}(A) than m satisfies (x)

(for the same function 45™). Hence:

1. If we are given a function A — m(A) then without loss of generality (by

changing the definition of k}) we may assume: k7 (A) > m(A) for all A.

2. If A C A’ then without loss of generality (by redefining k} by induction on
|A|) we may assume kf(A") > k7 (A).

We now formalize the main theorem of this section.
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THEOREM 5.2. There exists a simple vocabulary ©, and a first order formula
elxo,.... Xn()—1) in T, and there exists M a simple expansion of R for T U {r}
on M such that for all U € u:

MU E (VX)[r (%) = o(X)].
COROLLARY 5.3. Qm <in {Q}'. Q7).
ProoF. Straight from the theorem when the interpreting formula is . -

In the rest of the paper we will prove theorem 5.2,

5.2. Proof of the main theorem in the binary case. We prove theorem 5.2 under
the assumption n(9R) = 2. A will be a finite set of formulas with at most 2 free
variables in the vocabulary {r}. In other words r = . Hence the set A3 and
the relation E4* are independent of M, and depend on A alone so they will be
denoted by 4% and E4.

DEFINITION 5.4. Let A be as above and U € 4. Let k* = kj(A) and 4 = A%,
define:

1. Forall p(x,y) € Aand yy € U:
Minority (o, ¢) = {x0 € U : |{x € U : xE§x0 A p(x., yo) = @(x0, 30)}| < k*}.
2. § = §% is the binary relation on U given by:

x0Syo & Xo € U Minority,(yo, ¢).
plry)eA

LEMMA 5.5. Let A be as above. We use the notations of the previous definition and
also k% = k3 (y) where y(x',x") := (Vb) /\(P(xi)eA{s(E) — [p(x".b) = p(x".b)]}
(s an unary relation symbol). Then:

(1) [{x:|x/E§| <2-k*}| <" wherel* = k* . 28K+,
(2) Forally € U: [{x : xSy}| < |A| - (k*)* +I*.
(3) Hx‘: {y: xSy}| > Ak +k5 ) k3 +1*H <|A|- (kz* .k*)z IAIkT k) 4 g

Proor. (1): The number of types p € SA (A, R[U]) is no larger than 2/4114! since
for every formula in A there are at most two free variables. We also have |4} < k*.
So the number of equivalence classes of E4 is no larger than 2/4¢" and (1) follows
directly.

(2): Let x,y € U. Assume |x/E4| > 2-k*. For all ¢ € A we have x/E4{ N
Minority,(y,¢) < k*. Hence |{x' : xE4x" A x'S%y}| < |A| - k*. The number
of equivalence classes of E4 which are larger than 2 - k* is also no larger than k*.
Hence we get: |{x : |x/E4| > 2-k* AxS%y}| < |A]- (k*)2. To this we add at most
1* elements from “small classes” and (2) follows.

(3): We write m = |A|- (k- k*)? - 218" +43) | First we disregard all the elements
of {x :|x/E4| <2-k*} and using (1) we decrease the bounds by /*. So seeking
a contradiction we assume that there are different {xg,....x,} so that for each
i < m there exists different {y{, ..., y;w(kw;).k;} with x;Sy}. Using (2) (with the

bounds in (2) also decreased by /*) there exists a subset of {xp,...,x,,} with at
least k5 elements such that the elements of Yy, := {y* : x;Sy}} are pairwise disjoint
(see figure). Without loss of generality we assume that this set is {xo. . .., x¢; }. For
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Y.

Xo X X0
X1 Yxl

X1
X2 sz

-

X2
Xm Y.,

xk;

every x; the sets of Y, satisfy at most 2/41:™+&5) different types p € Sy (AU{x; : i <
k3},R[U]). Hence there are more than k; elements of Y, that satisfy the same type
(again we assume those are the first elements). In conclusion we get {x,-}fz~ s and
{¥%}ij=0...k; Without repetitions such that the type tpA(yj-, AU{x; 11 < k3}.R[U))
is independent of j, and x;, Sy;? < iy = ip holdsforall i1, i, j < k3. So y with s
taken to represent 4 U {x; : i < k;} interprets a k;-big equivalence relation on U.
This is a contradiction to the definition of k3.

=

LemMA 5.6. There exist a simple vocabulary ©, and a finite set of formulas ® in t,
and a simple model M for © on 4, such that for all U € U and x,x".y,y' € U if
e ((x.9).0.0U]) = tpe((x". '), 0. M[UT) then (UR[U]) = r(x,y) = r(x’,y").

ProoF. We simultaneously define 7 and its interpretation 9 U] for some U € 4.
@ will be the set of atomic formulas in 7 with terms of the form x. f(x), ¢, f(c)
(function composition is not allowed). For brevity we write: M := M[U] and
R := R[U]. Let A := {r(x, y)}. Using the notations of 5.5 we define:

A* =AU {x:|x/E§| <2-k*} U {x : Hy : xSAyH > IAIKTHAT) . g +l*}.

By 5.5 |4*| is uniformly bounded (that is the bound is independent of U). 7 will
contain: private constants for all the elements of 4* ({cx : x € 4*}. ¢M = x),
and unary relation symbols for the equivalence classes of E4. ({s, jes, i x €U }.
SyEs.
Now we look at S*|U \ 4* this is a digraph with (uniformly) bounded degree. that
isforallx € U\ 4*, |{y ¢ A4* : xS2y}|is bounded by 2/AIk"+4). k> 1 I* and for all
y e U\ A" |{x ¢ 4* : xS2p}|is bounded by |A| x (k*)> + /*. Hence we can divide
SAU\ 4% into (S, : m < m*) with: ,,_,.. Sm = SA|U \ 4* and for all m < m*,
Swm 1s a digraph with degree 1, that is a one to one partial function on U \ 4*. To
see this inductively apply Hall’s theorem to the elements of the largest degree. Note

:= x/E4.). Note that the number of such classes is also uniformly bounded.
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that m* is uniformly bounded, in fact it is bounded by the sum of the two bounds
mentioned above. We add to 7, unary function symbols { f,, : m < m*} and define
fu.=5,.

Let (B; : i < i*) be an enumeration of {x/E4 \ A* : [x/E}| > 2-k*}. Note
that i* < k*. Forall y € U and i < i* there is a truth value 7] that is the value
the formula r(—. y) gets for the majority of the elements of B;. Since we deal with
“big” classes (that is with more than 2 - k* elements) we get: forall y € U, i < i*
and x € B;, R(x.y) =t/ & —xS%y. We divide each B; into 2" parts according
to the truth values, 1 : i < i*. This means that for each part, the value of the
vector (1{ : i < i*) is independent of y. For all i < i*, we denote these parts by
(Bj :j <2"). Weadd to . unary relations {s;; : i < i*,j < 2"} and define
sg}[U] = Bj. This completes the definition of  and 9.

We now prove that 9 is as desired. Let a,a’, b, b’ € U and assume

1pg((a,b).0,M[U]) = tpg((a’,b"), 0, IM[U]).
If a € A* then a = a’ (due to the formula x = ¢, ), and the truth value of R(a,b) is

determined by b/Ej.. Moreover b/E}. = b'/E}. (due to the formula s, za (1)),

so we get R(a.b) = R(a’,b’) as desired. Symmetrically we deal with the cases
b.b'a’ € A*. So we can assume a,a’, b, b’ ¢ A*. By the definition of the functions
S,, we have:

aSth < (3Im < m*)aS,b,
a'SA = (3m < m*)a’'Smb’.
But due to the formulas of the form f,,(x) = y, the right hand side of both
equations is equivalent, so we have aS%h < a’S%b’. Assume a € B}. b € B},
Due to the formula s; ;(x) we get a’ € Bj”I b' e Bj’z2 By the construction of the B/
we get:
R(a.b) = t! < —aS"b,
R(a’.b') = tf’]l = —a'S2p’.
But b, b’ € BZ so1) = t{’]/, and as we have seen aSAb < a’S%b’. Hence R(a, b) =
R(a’,b’") as desired. -
COROLLARY 5.7. Theorem 5.2 is true for the case n(R) = 2.
PrOOF. Let 7,® and 9t be as in the previous lemma. For every set of types
D C S2(0,9M[U])) we can easily write a formula yp(x, y) in 7 such that M[U] =
xp{x.y) iff (x,y) satisfies one of the types in D. For all U € { let Dy be the

collection of types tpg,((x, y), 0, M[U]) such that (U R[U]) = r(x,p). Using the
previous lemma it is easy to verify that for all U € {{ and x, y € U we have:

(URU) E r(x.y) <= (UIMU)) k= xo,(x.p).

We now add to © constants: {cme} U {cp : D C S3(0,M[U))). For each U € 4,
Crrpe 18 interpreted in 9M[U] by some element of U. The rest of the constants are
interpreted so thatforall D C C: (c%ﬁw] = MUl o (D = Dy) holds. (assuming

U has more than one element there is no problem to do that). Now the desired
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formula in theorem 5.2 is:

SO(xsy) = /\ [(CD = Ctrue) - XD(X,J’)}
pcce R

§6. Proof of the main theorem in the general case. We prove theorem 5.2 when
n(R) > 2. From here on we assume:

7 is a simple vocabulary. A is a finite set of formulas in 7 U {r}, such that
o(X) € A — Ig(X) < n(R).

First we generalize definition 5.4.
DEFINITION 6.1. Let 7, A be as above. Let U € {l and M be a simple expansion

of R[U] on U for U {r}. Let n < n(R). We denote k* = k7(A) and 4 = A%M
the existence of which follows from 5.1.1 and define:

1. Forall o(x,7) € Awith lg(7) =nand b € "U:

Minorityy 3 (b, p) = {x € U: |{x" € U: xE{™x" Np(x,b) = o(x',b)}| < k*}

2. Define a relation Sty CUX"U:

a8} 1b & a € | J{Minority, ,,(B.9) : p(x.7) € A.lg(F) = n}

Remark 6.2. For i € {1,2} assume 7;, A; satisfy the assumption above, and 9;
is a simple expansion of R on U for 7; U {r}. Furthermore assume 7; C 72, A; C A
and M, = M |7;. By 5.1.2 we may assume k;(Az) > k{(Ay), henceforall U € Uwe

can assume without loss of generality (we can add elements to A?f AU 3¢ needed)
that aS}, on, 1110 == S}, on,[110-

LemMa 6.3. Using the notations of the previous definition:
1. ({x : ‘x/Eﬁ‘M‘ < 2-k*}
2. Forallb e "U: '{x eU: XSX,MB}, <A (k*)* + k* 2181 s) 1,

<k*. 2’A'(n?;>)+1.

PRrOOF. Similar to the proof of 5.5, only in (1) we have at most (n'(‘;‘)) different
choices of parameters for each formula. —

Notation 6.4. Using the notations above we put: /* = [*(A) := |A] - (k*)* + k* -
2181 ) +1,

LEMMA 6.5 (Symmetry Lemma (with Parameters)). Assume t, A satisfy 6, and
Let M be a simple expansion of R for Tt U{r}. Let n < n(R). Then there ex-
ists a simple vocabulary ©' 2 1, and W a simple expansion of M for ' U {r}, and for
i € {1,2} there exists A; = A;(A) such that ©', A; also satisfy the assumption above,
andforall U € U, a,b € Uandé € "~'U:

aSXm[U]bE — (aSX‘—_glﬁ/[U]C_) \/ (bSZz’m/{U]aC—').
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ProOF. First we define a few constants we will use later: m* = kj(¢) (see
assumption 5.1), where ¢ is the following formula in T U {5, ¢1,..., a1} U {r}:
¢ =o(r.y) = (vx) A {s(x) —
W (XY, eIy 1) EA
[w(x.y.cr.....cam) =w(x )y ern o enm1)] }
(s is an unary relation symbol and ¢y,..., ¢, are constants not in 7). We also

define: m; = m(A) := (m*)?- 218" . [*(A) and my = my(A) 1= m* - 21AIm™

Let M. 7" and w(x, x") be the vocabulary, model and formula which interpret
E ﬁ'M (see the proof of 3.4). We define in ¢’ a formula that will interpret XSA onpuy¥ 2
in M'[U] (where lg(Z) = n - 1):

x(x.y.2) = V (FSH O [y (%, x) A (p(x, 3. 2) = o(x, 3, 2))].
p(uv,d)EAlg(w)=n—1

We therefore get:
(+) forall U € h, a,b € Uand ¢ € "' U: M[U] [= x(a,b,¢) <= aS} gp1bC-
Define:

X (x.2) = (F"y)x(x.p, 2),
A =AU {y(x, 2)},
Ay =AU {x(x,y.2)}.

Note that by 5.1.1 we may assume that k; (A) > max{m(A), mz(A)}, and by 5.1.2
we may assume k;(A;) > k7 (A) > m;(A) for i € {1,2}. We now assume toward
contradiction that there exists U € i, a,b € U and ¢ € "~ U such that:

1. “SZ.wt[U]bE-

2. ~(aSy g )-

3. (b8}, o (y@)-

From (3) and k}(A;) > my we can find {by,...,b.,} without repetitions such
that for all i < my: DM'[U] E x(a.b.¢) = y(a,b;,¢). from (1) and (x) we get
that for all i < my: M[U] & x(a,b;,¢). Hence M'[U] | x'(a,é). from (2)
and k7 (A;) > m; we can find {ao, ..., am } without repetitions such that for all
i < mp: MU E x(a,c) = y'(a;,¢). We have seen that M'[U] E x'(a,c)
so by the definition of y'(x,Z) we have for all i < m,, there exists {b,....b}, }
without repetitions such that i < m; A j < my = a,»SZ’m[U]b}E. By the definition
of [*(A) and a repeated use of the pigeon hole principle we can find a subset
of {ao,....am}, {ai....,a; .} such that the sets {{b],..., bk} : | < m*} are
pairwise disjoint. without loss of generality we assume i; = [ for all/ < m*. Using
the pigeon hole principle again we can find for all i < m* subset of {b{.....b},}
with m* + 1 elements (and again we assume this subset is {b,...,b..}) such
that for all @(x,y.Z) € A and ji, j2 < m* we have ¢(a;, b} .¢) & ¢(a;. b}, ).
In conclusion we got: {ay, ..., a,+} without repetitions and for each i < m*:
{b,....bL.} without repetitions such that a;, Sgb;?(? < i] = i, Moreover the
elements of {b}, ..., bi.} satisfy the same formulas of the form ¢(a;,y.¢) € A
(¢ and a; are parameters). Now the formula ¢(y, y’) (where s is taken to mean
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{ayp....,a,~} and the constants ¢; are taken to mean the elements ¢;) interprets
a m* + 1-big equivalence relation on {y; 1 1. j < m*}. This is a contradiction to
the definition of m*. -
We now prove a number of lemmas we need for the proof of the main theorem.
First we show that we can code a delta system of n-tuples by singletons.

DEFINITION 6.6. A set of n-tuples. {a’ € "A : i <i*} (A some set and i* some
natural number), is called a delta system if, there exists some w C {0...., n—1}
such that: [{a! : i< i*}=1forallt € w,and |{a] : i < i*}| =i*forallt ¢ w.

LemMMA 6.7, Let n be a natural number. Then there exists a simple vocabulary t,
and aformula O(x,7) in T with Ig(}) = n such that: for all U € W and delta
system {(a' € "U : i < i*), we have a simple model M for v on U and a sequence
<b, ceU:i<i >such that:

(Vae"U)vb e U)[M = 0(b.a)] if Qi< i*)(b=bNa=a).

Proor. Definer = {c{, ..., CrCls e CnaS0. 81 fh e fu}. Foreachn > ¢ >0
define the formulas:

gt(an_’)ZZyO:CO/\"'/\yr:C'r/\J/tJrlZX/\
yt+2:<ff+2(x)/\"'/\yn:J‘.n(x)
0(x.5):=s1(x) A\ [sole]) — 6:(x. )]

n>1>0

Now let U € 4 and assume (a’ € "U : i < i*) is a delta system. For simplicity
assume we have some n > t* > 0, such that: |[{a! :i < i*}| = lforall 0 <r < r*,
and |{a] : i <i*}| = i*foralln > ¢ > t*. (We can prove the lemma in the general
case of a delta system but this makes the definition of 6 more complicated). We can
now define M:

M M .
¢t ...cp aresome distinct elements of U (we assume |U| > n).

eM = al (for 1 <t < ¢* and assuming ¢* > 0 otherwise the definition of ¢
is 1n51gn1ﬁcant).

M
M= {c} ).
st = {al., : i < i*} (assuming 1™ < n otherwise define 5{ to be some
singleton)

= {(al .al) i< i*} (fort* +1 <t < nandassuming r* + 1 < n
otherwxse the definition of £ M is insignificant).
Note that /M are one to one functions in the relevant cases. In conclusion we define
(bi =al._, :i<i*)(again weassume /* < n otherwise we define (b; € U : i < i*)
to be some constant sequence). So by our definitions we get M = 0,-(b;.a’) for
all i < i*. Moreover if M k= 0,- (b, @) then there exists i < i* such that b = b; and
d = a. Hence 0, M and (b; : i < i*) are as needed. .
We now show that it is impossible to interpret a large order relation on 4.
LEMMA 6.8. Let 7q be a simple vocabulary, and o(X. §) a formula in 7o U {r} (not
assuming lg(x) = Ig(7)). Then there exists a natural number k* = ki = ki(p)
such that for every I a simple expansion of R for 1o U {r}, and for all U € M, it is
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impossible to find sequences (@; € XU 1 i < k*) and (b; € *9)U : j < k*) such
that:
(Vi, j < k*)[IMU] £ ¢(@. b)) < i < j].

PrOOF. Let p(x,y) and 79 be as described. For i € {1,2} let 7;,6; be the
vocabulary and formula used to code delta systems for n = lg(x) and n = Ig(¥)
respectively (i.e., those from the previous lemma). Add to 7y new unary relation
symbol and function symbol, s*, f*. In the vocabulary t = 1o Ut Uy U{s*, f*}U
{r} define the formula:

¢(v,v") 1= (=Fu)(s™(u) A (VZ, X", 7, y){ {01 (. %) A (O1(f " (), x7)
A 0> (0,7) A O (v'. 3] — [p(X.7) = @(F.y) Ap(x.7) = =(x".)")]})
which will interpret a large equivalence relation. For all m,n € w Let Delta(n, m)

denote the minimal number 4 such that every sequence of d n-tuples has a subse-
quence of length m which is a delta system. We can now define k3 (¢):

k* = k3(p) := Delta(lg(x), Delta(lg(7), (k3(¢))?)).

Toward contradiction we assume that there exist 9y a model forrpon U, U € U
and sequences as in the lemma. By the definition of k* there exist subsequences
of length (k;(¢))?, which are delta systems. Put k; := k;(¢). Without loss of
generality we assume these subsequences are: (@ € #*F)U : i < (k2)?) and (b; €
Ig(ﬁ)U 1 Jj < (k2)2>. Let M|, M, <ai celU:i< (k2)2> and <bj elU:j< (k2)2>
be the models and sequences used to code (@; : i < (k2)?) and (b; : j < (k2)*)
(see 6.7). We define M a model for r on U:

Foreachi € {0,1,2}: M|t = M,.
s*" = {ajn 1 €{0. 1,2, ko — 1))

I = (@ A s vmodtka o) T 7 € {0. 1.2, kg — 13},

Note that if 7 is the permutation of {@;% € #¥U : j < ky} defined by n(@; %) =
A((j+1)mod(ks)) -k, » then the formula:

¢'(7.y) =
(237 € (@i, € < kD) [p(R.7) = 9. )) A p((3). ) A = (z(3). y7)]
interprets in M a k»-big equivalence relation on {b; : j < (k2)?} namely the relation
{(bi.b)):i,j€ (ka)2 3 €{0,....ka—1}s. t.i,j e[l.I+]1,....] +ky)} . Hence

by the properties of 6, and 6,, the formula ¢(v, v’) interprets a k,-big equivalence
relation on {b; : j < (k2)?} which is a contradiction. 4
We need one more lemma before we can prove the main theorem.

LEMMA 6.9. Let t be a simple vocabulary and o(x,y,Z) a formula in © U {r}.
Then there exist a natural number k* = kj = kj () such that for every M a simple
expansion of R for T U {r} on AL, and for all U € i, it is impossible to find for each
1< k*: ¢! € BOU and sequences (al € U :i < k*) and (b, € U : j < k*) such
that:

(@) Foralll.i j<k* MUYk olal.bl.cl) iff i =j.
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(B) Forallly <1< k*, the truth value ofcp(af‘,bj‘,?) in MUY is independent
of i, j < k*.

ProOF. Put Ig(Z) = n. Let v’ and 6(x, y) be the vocabulary and formula we get

by applying lemma 6.7 to n. Define a simple vocabulary t* := 1 Ut U {s1. 8, f }.
and formulas in 7*:

s1(x) A s2(p) A (V2)[0(y. 2) — o(x. £ (x).2)],

si(x) A si(x") A (VpVE) (s2(y) A B(.2)) —

[o(x. f(x).2) = o(x, f(x)).2)].

Putk’ := max{k;(y1),k3(y2)}+1. Let k* be large compared to k', we will not give

an exact definition of £* but it should be clear that choosing k* large enough will
give a contradiction. Let U € U and M some simple expansion of R[U] for U {r}.

Assume that for all / < k* there exist ¢/ € "U and sequences (al e U:i< k*)
and (b} € U : j < k*) satisfying (a) and (f). By choosing k* large enough and
using Ramsey theorem and condition («) we can find w C {0....,k* — 1} of size
(k' 4+ 2) - k' such that:

o (cl:le w) is a delta system.

e The truth value of the sentences a’' = aj-z and (,o(a{',b;',g) (in M) for

wi(x, p):
wa(x, x'):

I

li.5,i, j € w depends only on the order type of the indexes.
e Foralll1,5.i1,i € w, afll = allzz = (11 = 12) A (il = iz).

b = b,[j = (L = L) A (i) = id).

e For all 11,12, i1, €w, i
Now using () exactly one of the following conditions hold: either /; < / < k* =
M pla) . bl.c)orly <l<k*= Mk —pla]'. b}, c!). We will deal with the
first case (the second can be dealt with similarly). We have three cases:
1. There exist w’ C w of size k', and i* # j* € w’ such thatforall/ < /) € w’
we have: M = ﬁcp(afl,b?*,?).
2. There exist w’ C w of size k’, and 7 a permutation of w’ without fixed points
such that for all / < /; € w’ and for all j € w’ we have: M |= cp(aj",bi'(j),y).
3. Neither (1) nor (2) hold.

As stated above 7’ and 6(x, y) are the vocabulary and formula we get by applying
lemma 6.7 to n. Let M’ and (¢’ € U : | € w) be the model and sequence we get

by applying that lemma (in U) to (¢! : I € w). For each of the cases (1)-(3) we
define M* a simple expansion of M for 7* U {r} and get a contradiction. In each
case M*|t' := M’. The interpretation of sy, s, and f will be given for each case
separately:

Case (1). Define sM™ = {¢! : 1 € w'}, s}" := {al. : ] € w'} and fM =
{(al..b}.) ;1 € w'}. Then we have ! > I} <= M* = @lal, f(alh).¢) and hence
the formula y(x, x’) interprets in M* an order relation (in the sense of 6.8) on
{c!:1 €w'} x {al. : | € w'}. This is a contradiction as [w’| = k’ and k' is larger
than k3 (y1).

Case (2). Define sM™ = {¢! : I € w'}, s} = {a! : il € w'}and fM =
(al,b! . :il€w'). Thenwehavel # [, & M* k= p(a', f(a"), ¢') and hence
i 7(i) i i
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the formula w5 (x, x') interprets in M* the relation {(afl‘,afj) h=hAihew'}
which is |w’|-big. This is a contradiction as |w’| = k’ and k’ is larger than k3 ().

Case (3). Look at {(c"*2*" : ] < k'), and the sequences <a(12,2) i< k') and

<b51:,2 MK < k! ) for I < k’. Since (1) does not hold for these sequences we get

(choosing i* = 0 and j* = 1) that there exist /* < [} such that

(p( Uy +2)- b(ll +2)- C(/*Jrz).k').

E]

In the same way (choosing i* = 1 and j* = 0) we get that there exist /** < /* such
that . .
alsll +2)- b(l +2)-k’ C[**).

Now look at (¢*"+! : | < k") and the sequences <afk'+’ :j < k') and <b]2<kl+’ :
J < k') forl < k’. Let = be a permutation of {0,... k" — 1} without a fixed
point. We show that these sequences along with =, satisfy the demands of case
(2). Let j < k'and ! < [ <k’ If j < z(j)then j < n(j) < 2k'+1 <
2k' + 5 and 0 < k' < (I*+2)- k' < (I} +2) - k'. Since the truth value of ¢
depends only on the order type of the indexes we get ¢ (a; 2!+ bz" (2K (g

pla (()[ +2) k/,b,((l,‘ K L2k . If n( ) < j we get the same result, only now we

use the 4-tuple 0 < k' < (I** +2) -k’ < (I;* + 2) - k’. In both cases we have

w(afkurh . bf['(‘j/.;rl‘ ¢ +1) as needed in (2). So case (3) can not hold. .

We are now ready to prove theorem 5.2 in the general case. We prove:

THEOREM 6.10. There exist: ¢ a simple vocabulary, (%) a formula in o with
lg(x) = n(R), and M a simple model for ¢ on Y. Such that for all U € i and
aer®y:

Ul E ¢(d) <= (URV)) E r(a).

PROOF. We prove the theorem by induction on n(fR). The cases n(R) = 0 and
n(R) = 1 are trivial. the case n(R) = 2 was proved in 5.7.

Before we turn to the proof of the induction step we pay attention to the following
fact. Let R be as in 1.4.4. We say that “R’ is definable from R by a simple
expansion” if there exist a simple vocabulary 7, a simple expansion 9t of R for
7 U {r} and a formula ¢(xo,..., Xn(o)—1) in 7 U {r} such that for all U € 4 and
a € "®U we have R'[U)(a@) iff M[U] = o(a). Note that if 9’ is definable from
R by a simple expansion then R’ also satisfies assumption 5.1 (or else R does
not satisfy the assumption for we can define a big equivalence relation from R
using ¢ and the model 90t). If R’ is definable from R by a simple expansion and
n(R’) < n(R) then by the induction hypothesis there exist: a¢ a simple vocabulary,
o(X) a formula in g¢ with g(x) = n(R’), and 9 a simple model for a4 on L. Such
thatforall U € tand a € "®)U:

Mo[U] = po(a@) <= R'[U](a).

In that case we will say that 2R’ satisfies the induction hypothesis and that o¢, ¢y and
Ny interpret it.

We now assume #(R) = n + 1 > 2. We prove this case in two stages. In the first
stage we show that we can interpret the relation xS 4,7, so we prove:
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LemMa 6.11. Let A, T be as in 6, and let M be a simple expansion of R for T U {r}
on\L. Then there exist:

o A simple vocabulary og (r € o).

o wolx.7) aformula in oy (Ig(¥) = n).

o Ny a simple model for oy on U.
Such that for all U € A, a € U and b € "U we have: M[U] = @ola.b) —
aSy onponb-

PRrROOF OF LEMMA 6.11. Let 9%, 7*, w(x, x’} and y(x, y,Z) (where Ig(Z) = n — 1)
be the vocabulary, model and formulas interpreting Ej“‘mw] and S} on;1 that were

defined in the proof of the symmetry lemma (denoted there by M. z'). We also
define a formula that will interpret an order relation in 9*:

¢ =¢(%.7) = [x(x0.x1.7) = x(x2. x3. 7)]
where lg(X) = 4and Ig(7) = n — 1. In the vocabulary t* we define a set of formulas:
A* := AU {y, ¢}. For brevity we write M := IMM[U], M* := M*[U], Ny := Np[U]
and similarly for other models, where U € 4l is understood from the context. Next
we define some constants that we will use in the proof:

1. my = m(A) := max{ki(¢).k;(x)} + 1 for the formulas y. ¢ defined above.

2. my = m(A) = (m)? + my.

3. Forall U € Y choose by inductiononn, > 1, 4; = A,U C U such that:

(a) Ap=0.

(b) 4; C A, foralll < m,.

(c) Forall/ < my. r <n+2-m and atype p € Sy.(4,. MM*[U]): if pis
realized in 9M*[U] then it is realized already in A4, .

(d) Foralll < my, |A;,| is minimal under the properties (a)-(c).

4. Wewrite A* = A* = AY..

5. Note that under these conditions there exists a bound on | 4*| depending only
on |A*|,m;.my and n, so in fact the bound depends only on n and |A| and we
can calculate it in the beginning of the proof. We denote this bound by m;. We
do not calculate the value of m3 but note that it increases super-exponentially
as a function of |A|.

6. my = my(A) := I"(A{(A)) + I*(A2(A)) - my (see 5.5 and 6.5).

7. ms:=ms(A) =2 -mg+m3+n+2.

Denote by & = &} oy the n + 1-place relation on U defined by S[U] := {(x.y.Z) €
iy ngm[U]yE}. (We keep using the existing notation and write x&[U]yZ
instead of S[U](x,y.Z), or sometimes write XSR onpy ¥ E as before). Our aim is
to interpret the relation & by a formula in a simple model on 4. First note the
following:

FACT. Assume there exists a number i* such that forall U € &t: "*'U = J,_,. BY .
Assume farther that for all i < i* the relation &; defined by G,[U] := &[U] N BY
is interpreted by the formula p; and the simple model N; for the vocabulary a;. Then
the formula \/,_;. pi(x.y.Z) in the vocabulary \ J; ;. 0; and the model N defined by
(Vi < i*)N|a; = N will interpret G as needed.

We return to the proof of the lemma. Let < piti< i*> be an enumeration of all
the A* types of two variables over a set of at most m; parameters. Formally this
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means each p; is a subset of @ := {p(x. y.u;.....u;) € A* 1k <msji...., Jk €
{0...., m3 — 1}}. Forall U € 4 fix (ap....,a) some enumeration of 4*° (of
course / < m3) and we then write tp,. ((a.b), A*, M*[U]) = p; iff M [U]
pla.b.aj..... aj) e el yuj..... uj,) € p;. Note thati* is uniformly bounded
by 218°1(%) Foralli < i* and U € 4 the binary relation on U defined forall U € 4
by {(x.y) € 2U : tpy.((x.y). 4*" . 9M*[U]) = p;} satisfies the induction hypothesis.
Hence there exist a simple vocabulary ¢’ a formula ¢’ (x, y) and 9t a simple model
for ¢/ on U such that forall U € Yand a.b € U:

N = ¢ (a.b) <= tps.((x. ). 4" . M*[U]) = p;.

Without loss of generality we may assume that ¢’ has only function symbols. We
use a theorem of Gaifman about models with a distance function (see [2]). We get
that ' (x, y) is logically equivalent to some local formula. This means forall U € §{
the truth value of ¢’ (x, y) in M[U] depends only on the type of (x, y) on the set of
formulas @' := ), , 5y @ where:

= {f Vo P00 i) =y f1.... freaie {1, —1}.1 < s},
@ = { Vo f P00 ffx)=x:f1..... frea e €' {l,—1}.1 < s},
@ = {0 P00 G =y f1L.L fiea . ee{l.—1}.1t <s),

and s = s(/) is a natural number that depends only on ¢'. Define for each
Je{1.2,3}: @; := ;. D) and @ = ®; U Dy U P3. Also define o* := (J,_;. o
and M* is defined by (Vi < i*)0*|¢’ := N'. Using Gaifman’s theorem forall U € U
and a,b,a’,b’ € U we have (Q):

=

1pe((a.b).0.N*) = tpy((a’.b'),0.N*) =
tpp.((@.b). A" M*) = 1pp.((a’ . b'), A", M™).

Note that |®] is uniformly bounded. Moreover the bound depends only on |A]
and n. We consider each ® type separately, this means: Let g be a type without
parameters in @ (that is simply ¢ C ®). As we saw the number of such types is
bounded by 2/®. By the fact above we are done if we interpret the relation &,
defined by: S[U]N {(x,p.2) € "H'U : tpe((x.»).0.9[U]) = q}. Clearly the
relation {(x, y,Z) € "t'U : tp((x.),0,M[U]) = ¢} is definable from 9N* by the
formula ¢, (x, y.2) := /\d,eq ® A N\year, ¢ Now one of the following holds:

1. There exist 8{x, y) € ®; suchthatf € gq. Thenforall U ¢ Uand a, b € U we
have:

[tpp((a.5),0, M [U]) = ] = N" |= 0(a.b).
2. Forall§(x,y) € @, 0 ¢ q. Then for all U € U we have:

{(x.y) € 2U : tpp((x.9).0.M*[U]) = q} =
{(x.y) € 4, x B, : WU = N\ -6(x.»)}.
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where we define:
Ay ={x € U :1pg (x, 0.9 [U]) = g N D2},
By :={y € U :1pg,(y.0.[U]) = g N D3}.

Assume condition (1) is satisfied. Note that for all U € 4, 6(x,y) defines in
M*[U] a (graph of a) 1-1 function, denote this function by Y. The relation
defined by {(x.Z) € "U : xSZm[U]fU(x)z‘} is a n-place relation definable form R
by a simple expansion (using the formula (v¢)@(x,t) — yx{x,t,Z)). Hence there
exist a formula ¢ (x. Z), a vocabulary o and a model N interpreting it. Now the
formula 6(x. y) Ap1(x, Z) Ap,(x, y, Z) and the model for o Ug* which is the union
of 9 and N, interprets &, as desired.

We now assume that condition (2) is satisfied. Let U € {and ¢ € "' U. We ask
a question:

ng- Does there exist for all B C U with |B| < ms and B 2 A4*, elements

a.b € U\ B such that aSy} gy b, ¢ and tpg((a,b). 0, M*[U]) = ¢.

Assume that there exist U € tland ¢ € "~' U such that the answer to ¢ is YES.
Choose by induction on j < my a pair (a;.b;) € *U such that:

® a;Sy b

o ipola;,b;),0,N*) =q.

o aj. by g A U{ar k< jU{br k< j}U{co,....cnz2}.
This is possible by the definition of ms and $;. From the sequence {ao. .. .. A, )
we omit all the elements satisfying aiSZR/IA)_m/[ ¢ where A; and 9 are taken from
the symmetry lemma (see 6.5). We omitted at most /*(A;) elements. Now note
that for all j. j2: @, 8% 4 b€ = bjSy (4 gnijuy@ir€- Hence for all a; (after the
change) we have |{b; : a;8% ,,b,¢}| < [*(A,). Hence we can decrease the size of the
sequences by a factor of /*(A;) and get aiSZj‘/l[bjE < i = j. Since the bound on |D|
depends only on 1, |A| we may assume w.l.o.g. (by increasing m, and using Ramsey
theorem) that the ®-type in N* without parameters of (a;,.b;,) depends only on
the order type of (j;. j,). Hence we have sequences (aq, ... am, ) and (bg. ... bm )
such that:

() Forall ji, j» < my: a;, Sy pbj,¢ = j1 = 2.

(#x) For all ji, ja, j3, ja < my:

tp{x<y,x:y}((j11j2)’ w' (Na <)) = zp{x<y,x=y}((j3ﬁj4)a 0* (N, <)) ==
lpd)((ajwb./'z)’ 0, N*) = [p®((a.l'3~bja)* (Z)’N*)'

Now w.l.o.g. we may assume that m; > |®;| (otherwise replace m; by
max{m;, |®|} in the definition of m4). Hence there exists 0 < j* < m; such that:
N*E = Noeyeo, 6(ag. b;~) (remember each 6(x, y) is a function). In addition by
our definition 1pg((a¢. bo). 0. N*) = ¢. hence by condition (2) a9 € 4,. In addition
we have b, € B, as tpg,((a;».b;+).0, N*) = g, and hence 1pg,((ag.bj-), 0, N*) = ¢
(see condition (2)). In the same way we get that there exists 0 < j** < my such that
tpg((@jen byy). 0. N*) = q. So by (xx) we have i, j < m| = tpg,((a;.b;).0.N*) =¢
and by (&) we get:
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(xxx) Forall ji, j2. /3. ja < my:
pp(a),. b)), A* . M*) = 1ppa((a;,. b)), A*, M™).

We now prove:

Claim. There exists m* < my — m; = (m)? such thatif (a’.b’) and (a”,b") are
pairs from 4,,- ., that satisfy the same A*-type over A, in M*, then a’S} , b'¢c =
a’Sh ,b"e.

PROOF. Assume the claim does not hold. Then for all m < m; — my let (al,, b))
and (aj,, b!!) be pairs from A,,,,, realizing the same A*-type over 4,,- in M*, and
—(a’'S} \ b'c = a" Sy \b"¢). Choose ¢™ € " Ay, realizing 1py. (c™, Ay, M*) (this
is possible, see the definition of 4,,.1). Now look at the formula ¢(%, ) € A*.
Ify <l < my — my then (a,’z,bl’z) and (a,’z’bl’z’) realizes the same A*-type over
Aj, in M*. Since ¢/ C Ay, (as I} < b) and since x(x,y,Z) € A* interprets
the relation Sy ,, iiM*’ we get that a,’zSzj‘}bl’zcll = al’z’SZj‘}b,’Z’c" hence M* E
o{(ay, by .ajl byl). ch ). On the other hand if m; + [, < [} < m; then by the choice
of (a,, b},) and (ay/, b}!) as a counter example we have ~(a; S} 5/b1,¢ = ]S} ).
But a;,b; . a;/, b € Aym, C A, and ¢! realizes the same A*-type over 4, as ¢,
so by the definition of ¢ and M* we have M* = —¢((a; . b; . a;!,b}!). ¢h). Hence if
we define (d/ = (a],, .b] - a b)) 1 1 < mi) and (& = ¢/™ : 1 < my). then
¢(x. y) defines an order relation in the sense of 6.8 on them, in contradiction to
mi > k3(¢). This completes the proof of the claim. -
Now let m* be_}he one from the claim above. For all/ < m; we choose from A4,,,- 1741
the sequence ¢/ (al, b’ : j < m)) that realizes the same A*-type over Ay, in M*
astXaj,b;: j<m).

Claim. The sequences (¢! : 1 < m\) and (a] : i < my), (b} : j < my) satisfy the
demands of lemma 6.9 for the formula y(x, y, 7).

PrOOF. (a) follows directly from (x) and the equality of types. For (f) let
Iy <l < m and jy....,js < my. Then (aj-‘],bﬁ-‘z) and (aj;bj;) are pairs from
Am+yy, and from (x+x) and the equality of typeé we get that these pairs realize
the same A*-types over 4,,~,; and in particular over 4,,-. So by the claim we
have ;‘I Sx Mb_i.'zc' = a}‘}Sg. Mbj{‘E. In conclusion as ¢ and c” realizes the same
A*-type over A4,,-,;, and by the interpretation of the formula ¢ in M* we get
aj." SZ.Mbj';F = aj';SZ,Mbj‘l,;F asin (f). -
This leads to a contradiction as m; > k;(x).

We are left with the case where for all U € ttand ¢ € "~! U the answer to [ is
NO.Inthiscase: Forall U € $land ¢ € "1 U thereexist B = B; C U with size < m;
such that there areno u,v ¢ B satisfying uSy gn;,vZ and tpe (1, v), 0, N [U]) = q.
Define ¥ a n-place relation on U as follows. Forall U e {{, a € U and ¢ € "' U:
Z[UJ(a, ¢) iff there exists B C U of size < ms such that:

o There are no u,v ¢ B with: uS} 407 and tpe((u,v), 0, *[U]) = 4.

¢ B is minimal under the previous demand.

e a € B.
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It is clear that ¥ is definable from R in a simple expansion, and hence satisfies the
induction hypothesis. Let 6**, p**(x, Z) and 91** be the formula, vocabulary and
model that interprets T. We define mg := ms - Delta(ms, 3) and show that for all
Uecyandé e " 'U:

{x € U:"[U] | o™ (x. )} < m.

Assume toward contradiction that U and ¢ does not satisfy that claim. Then by the
definition of ¢** we have a sequence (B; C U : [ < my) such that:

1. Forall/ < mq, ms > |By].
2. Forall/ < my, there are no u, v € By s.t. Sy, gn(v¢ and

1o ((u,v).0.9[U]) = g.

3. For all / < m7, B, is minimal under (1) and (2).
4. Forall/<my, B £ Um<,

5. Usem, B = {x : *[U]l = <p**(x, é)}.

To get this sequence we start with a sequence of all the sets satisfying claims (1)~(3)
in some order, and omits those that do not satisfy claim (4). claim (5) follows
straight from the definition of ¢**. Now, by (1) and the assumption we get:

me < [{x :m*™* b= i (x.0)}| = | U Bi| <my-max{|B/|: 1 <my} < mq-ms

I<my

so we have my; > me/ms. By the definition of m¢ and Ramsey theorem we have
B* CUand!l; <lh <l <mysuchthati # j = B, N B, = B*. We prove
that B* satisfies (1) and (2). Since B* & B, this will be a contradiction to the
minimality of By,. Obviously B* satisfies (1), to show (2) take some a,b ¢ B* then
by i # j = B, N B;, = B* we have j € (1,2,3} such that a,b ¢ B, and since B;,
satisfies (2) we get —aSy', b or 1pg,((u, v), 9, M [U]) # q as needed.

We use Gaifman’s theorem again on the formula ¢**(x, Z) (w.l.o.g. o** have only
function symbols). We get that for all U € il the truth value of ¢**(x, Z) in M**[U]
depends only in the type without parameters of (x,Z) in 9**[U] for the set of
formulas ¥ := {J; ¢y 55, ¥/ Where:

W= (Vo fSPo0 fi0 ) =z S fre ™
ae’{l —1},t§s,l<n— 1},
= {500 ff ) =x 1 fr . frEa”
€€ t{l, —1}1 <s},
3 :{fiE(l)Ofg(Z)O"'oftE(t)(Zi) =z;:f1,....f1 €™,
ee{l,-1},t<sij<n—1},
and s is a natural number that depends only on ¢**. Note that || is uniformly
bounded. Again we separate into cases according to the W-types. Let g1,42 be

W¥-types without parameters (formally ¢, g2 € ¥). The number of such types is
bounded by 2/¥! so as we saw it is enough to interpret the relation &,,, ,, defined
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by:

S, UIN{(x.p.2) € "U 1 tpg((x.2).0.M*[U]) = q1 A
tpy((p,2). 0. [U]) = q2}.
The relation {(x.y.Z) € "*'U : tpy((x,2).0. N**) = g1 Atpe((x. ). 0. N**) = q»}

is definable in 91** by a formula denoted ¢y, ,,(x. y.Z). Now, for / € {1,2} one of
the following hold:

1. There exists 0(x.z;) € ¥, such that & € ¢;. Thenforall U € 4, a € U and
¢ € "~'U we have:
[1pe((a.€).0.97*[U]) = q;] = M*[U] = 0(a. ;).

2. Forall 8(x,z;) € ®;, 0 € ¢;, and then for all U € { we have:
{(x.2) € "U : tpy((x.2). 0. M [U]) = q1} =
{(x.2) € 4}, x B} : M [U] = N\ -0(x.z)}.
f(x.z;)e¥,
where we define:
Ay, = {x € U :tpg,(x.0.9*[U]) = ¢y N ¥},
B, = {Z€" U :1pgy (£.0.M*[U]) = ¢, N D3}
Assume that there exists / € {1,2} such that (1) holds. Then, as we have seen,

0(x, z;) defines in each N**[U] (a graph of) a one to one function, denote that
function by f*. the relation defined by:

satisfies the induction hypothesis. Let ¢'(x, y, zo. ..., Zj..... ju—2) be the formula
in vocabulary ¢! that interprets this relation in the simple model 91!. In the same
way we interpret the relation defined by:

{(x,y,20,.... Ziven, Zp2) €U :xSZ,m[U]y,zow..,zi_],fU(y),zi+1,...,zn_z}

using the formula ¢?(x, y, zq. .. ., 2;....,2n—2) in the vocabulary o2 and the simple
model 912. Now the formula

0 (X VD) APy (e D) AP (X ¥ 200 e f2)

in the vocabulary ¢* U ¢** U ¢/ and the union of models: 91**, 9t*, 9V, interprets
the relation G, , 4, as needed.

Assume then that for each / € {1,2} (2) holds. Seeking a contradiction we
assume that there exists U & 4 such that:

b 6‘14‘11‘42[U] 7& @

e Forall/ € {1,2}, |4, | > mg + [¥1].
Sowe have @, b € U and ¢ € "~' U such that Sy U@, b, ). Recall that we are
assuming =&Y, Hence we have M** |= ¢**(a, &)V ** (b, ), because we can choose

q.c°
some minimal B; (there is one because of ﬂogf) and then a, b ¢ B; is contradicting
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the definition of B;. w.l.o.g we assume that 91** = ¢**(a,¢). Now g satisfies (2)
s0 ¢ € By as tpy((a.c),0, N**) = q1. Note that

{a" €4} ;U N\ —Ola.c)}] < [¥i

O(x.z)eV,

(again each 0(x,z) is a function) and hence A4 has more than ms (distinct)
elements {ag,...an} satisfying tpy((a;,¢).0,9**[U]) = q1. But we also have
tpy((a.¢), 0, M [U]) = q1 and N** | ¢**(a,¢), so forall 0 < i < mg, N** =
@**(a;, ¢) which is a contradiction.

Finally we assume that there is no U € 4 satisfying the two demands above. We
then divide U into three parts I, : i € {1,2, 3} such that:

® S upnlUl=0<— U .

o 14,7 < me+ |¥| == U ey

o |4, <mg+|¥i| = U € .
By our assumption U; (12334 = 4. Now foreachi € {1,2,3}itiseasy to interpret
S4.q1.q, Testricted to 4; (using the formula (3x)x # x, or by adding a bounded
number of constants to the vocabulary interpreted as the elements of 4, Yor A, v
and using the induction hypothesis). Assume then that for each i € {1,2,3}
the formula ¢***(x, y, Z) in the vocabulary ¢;** interprets in the model 9**, the
relation &, 4, 4, restricted to U;. We now define 6™** = Ujcq1.23307™* U {51, 52,53}
(w.l.o.g the union is disjoint), and a model M*** for ¢***, such that for each
i€ {1,2,3}: (M |4U)ler = N, and forall U € 81, 57 W £ 0if U € 4;.
(if i # j the definition of (91***|4l;)}o *** is insignificant). Now the formula:

e (x.3.2) =\ (Qusi(u)) — o7 (x,5.)
i€{1.23}

interprets &S, ,, in the model M*** as required. This completes the proof of
lemma 6.11. -

In the second stage of proving theorem 6.10 we interpret R itself. We prove the
following:

LEmMMA 6.12. There exist a simple vocabulary o, and a finite set ® of formulas in o,
and a simple model M for o on $\. Such that for all U € Y and %, x" € "DU if
1po(%. 0. M[UY) = 1pg (¥, 0. M[UY) then (UR[V) k= r(%) = r(¥).

ProOF. Define: A := {r(xo..... X, -1)}. and we denote the first variable by x
and the last # variables by y (so A := {r(x, y)}).

We define o and @ simultaneously and also we define M[U] for some U € Y. Let
a,a’ € Uand b,b’ € "U, and assume that tpg(ab, ), M[U]) = tpe(a’b’. 0. M[UY).
where a, ® and 91 will be defined.

Let a9, ¢o(x, §) and My be those who interpret XS} yp1 7. 1.€., those we get from
applying the previous lemma to A (where ¢ = ) and 9 = R). For brevity we write
M = M[U], NU] = N, M[U] = Ny and R = R[U]. We add ¢ to 7, ¢ to ® and
demand N|og = Ny. Now we have:

aSh b =a'Si b
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We write E = Ei% and define 4* = A%M U{x : |x/E| < 2-k;(A)}. foralla € 4
48

we add to ¢ a constant ¢, and put ¢ := «. In addition for each equivalence class
x/E we add to ¢ a unary relation symbol s,/ and put s)]:; £ ‘= x/E. Note that
both | 4*| and the number of equivalence classes is uniformly bounded. We add to
® formulas of the form x = ¢ and y; = ¢ for each constant ¢ € ¢, and formulas
of the form s(x) and s(y;) for each relation symbol s € 5. Now for each constant
¢ € o the relation class on 4, R, defined by R.[U’] := R[U')(c™MV'], 7) satisfies the
induction hypothesis. That is it is a class of n-place relation not satisfying condition
(1) in theorem 3.6. Hence we can add to ¢ and @ the dictionaries and formulas we
get from applying the induction hypothesis to each R., and expand 91 accordingly.
Assume a € A*, then (due to the formula x = ¢,) we have a = a’. Because of the
formulas we added to @ for the relation R,, we have:

R, [U1B) = R, [U)B).

This implies R(cY.b) = R(cY.5'). Butsince ¢ = a = a’ = ¢ we get R(a,b) =
R(a’,b'), as claimed. This proves the cases a € 4* and a’ € A*.

Now for each x/E (where x ¢ 4*) and j € "U we define t;/E € {T.F} to be
the truth value the formula r(—, ) gets for the majority of elements in x/E. This
means: t;/E = Tiff |[{x" : xEx’ A R(x’, 7)}| > k{(A). Note that this is true as

x ¢ A* and so |x/E| > 2-k{(A). We get:

—aSi b = [R(a.b) = (1 =T)),
and since A has only one formula we get:

aS b = [R(a.b) = (1/F = F)].

For each x/E we have a class of relations R,/g on i defined by R, /£[U'] := {y €

"y t;/ = T}, which satisfies the induction hypothesis. Hence we can add to o
and ® the dictionaries and formulas we get form applying the induction hypothesis
to each R, /; and expand M accordingly. We get for all x ¢ 4™ :

afE a/E

Since a/E = a'/E (due to the formula s,/£(x)), we have /" = 7. Assume
—aS%, ,.b (as we saw aS}, ,,,b = a'S%, ,,,b') the we have:
R(a.b) & (t/F =T) & (14F =T) & (z;‘_,'/E ~T) < R, b
as claimed. If aSg,AM,E then again we get:
R(a.b) & (/* =F) & (4F =F) & (£2/* =F) & R(d". 7).
This completes the proof of lemma 6.12. =

From the lemma it is easy to prove that fR is interpretable by a formula in a simple
model. The proof is identical to the binary case (see the proof of 5.7). This
completes the proof of theorem 6.10. -
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