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ABSTRACT.

LEMMA 1. If X is a cardinal with cf A > u>, then Dx implies that there is a

A+-Aronszajn tree with an ui-ascent path, i.e. a sequence (xa : a < A+) with each

xa = (i" : n < ui) a one-to-one sequence from Ta, such that for all a < ß < A+,

z° precedes x„ in the tree order for sufficiently large n.

LEMMA 2. If X is a cardinal with cf A = oj < A, then Ox implies that there is

a A"*"-Aronszajn tree with an uii-ascent path (replace w by aii, above).

LEMMA 3. If X is an uncountable cardinal, k is regular, k < A, cf A ^ k, T

is a A+ -Aronszajn tree, and (xf : i < k) is a one-to-one sequence from T?(Q) w*th

the property of ascent paths, where c: A+ —► A+ is a monotone increasing function

of a, then T is nonspecial.

THEOREM 4. If X is uncountable, then Ux implies that there is a nonspecial

A+-Aronszajn tree.

THEOREM 5. If X is an uncountable cardinal, k = X+, and k is not (weakly

compact)L, then there is a nonspecial K-Aronszajn tree.

Notation. CH is the continuum hypothesis. Souslin trees are S-trees; /c-Souslin

trees are K-S-trees. Aronszajn trees are yl-trees; /c-Aronszajn trees are n-A-trees.

A /c-wide tree is a tree of height k with node set a subset of n, with no /c-branches.

SHK is the K-Souslin Hypothesis: there are no «-Souslin trees. If k — A+ and T is a

K-wide-tree, then T is /c-special iff there is /: T —» A, such that for any chain C of

T, f\C is one-to-one (a more general formulation of this allows us to generalize the

notion to regular limit cardinals, but we have no use for the generalization here).

SAHK is the /c-special-Aronszajn Hypothesis: all K-.4-trees are «-special. Thus,

SAHK => SHK. BA is Baumgartner's Axiom and BACH is the conjunction of BA

and CH; see [8 and 9, or 10]. Other notation will be introduced as needed or is

intended to be standard or else have a clear meaning.

Introduction. In [7] we proved that CH + SHn2 is a large cardinal hypothesis:

we obtained consistency strength at least that of the existence of an inaccessible (we

will write inaccessible <cons CH + SH«2, and similar expressions; equiconsistency

statements will use ~Cons)- m [4], Laver and Shelah showed that CH + SH«2 <cons

weakly compact; in fact their methods show that BACH + SAH«2 <COns weakly
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888 SAHARON SHELAH AND LEE STANLEY

compact. A natural conjecture, to which we are committed, is that CH + SH«2

~cons weakly compact.

We obtained partial results in this direction in [8, 9] by showing that Mahlo

<cons BACH + SHn2 , improving an earlier result of Gregory that Mahlo <COns

(CH+2^1 = N2 + SHn2) (to our knowledge, no upper bound for the consistency

strength of this theory has been found). Here, we obtain a different kind of partial

result. We show (Theorem 5) that CH + SAHn2 ~COns weakly compact (of course,

by [4] we need only show that weakly compact <COns CH + SAH«2, which is a con-

trapositive of Theorem 5). We should note that in the same spirit (a nonspecial

K-A-tree is a poor man's K-S-tree) Lemmas 1 and 2 can be viewed as improvements

in one dimension (weakening the hypotheses on cardinal exponentiation) but weak-

enings in another dimension (poor man's /c-5-trees in place of real ones) of the

result of Gregory et al. that, e.g., D^ + CH+2Nl = N2, yield an #2-S-tree.

We are grateful to the referee for pointing out several inaccuracies in early ver-

sions of Lemmas 1 and 2 and their proofs. We are also grateful to S. Todorcevic for

many helpful discussions and for pointing out how to obtain an earlier version of

Theorem 5 from a weaker version we had proved. This and other historical points

will be discussed below.

1. Lemma 1. Throughout this section we are assuming that cf A > w and that

(Cg: 0 < 6 = \J6 < X+) is a D^-sequence. We shall construct a nonspecial X+-A-

tree. We may assume (see [1, IV, Lemma 2.10]) that S Ç (6 < A+ : cf 6 = w), S is

stationary in A+ but that, for all positive limits ê < A+, C's D S = 0 (recall that

C'ë is the set of all limit points of Cg except 6).

We construct T\a — (T|a,<), f\a =def f\(T\ot), and (x* : i < a) by recursion

on a < A+, where, as usual, T\a = \J{Tp: ß < a}. We do this so that T|a is a

A-normal tree (each node not on the top level has A immediate successors), and for

ß < a, Tß Ç [A/3, A(/3 + 1)) (ordinal multiplication, ordinal interval). We shall also

have that for i < a, xl = (xln: n < w) is a one-to-one sequence from T,. The xl

form what Devlin and Laver called an ascent path [4], viz (1) below, showing that

the tree T = U {T|a: a < A+} is not special. The function f = \J {f\a: a < A+}

will press down on levels in S, showing that T is a A+-A-tree. In the terminology

of [6, Chapter IX], T is A+-5-st-special.

The construction will have the following properties, which we take as induction

hypotheses.

(1) i<j^xin<xilA {f(z) : z G (xi, a£]«} n Xi = 0,

for sufficiently large n (we use ( , ]< and corresponding notation for <-intervals, here

and below), and if i G C', then this holds for all n; the last assertion will, in fact,

follow from (8) below, for / ^ S, but for perspicacity, we state it here. Further,

looking ahead, note that the first assertion says that xJn is the w of (5) for xln and

sufficiently large n.

(2) For x G Ti (i G S =► f(x) < Xi) A (t £ S => f(x) = x).
(3) x < y => f(x) ^ f(y) (we say / is 1-1 on chains).

(4) (i<j Aye T,) =► card({/(x) : x < y} n T¿) < A.
(5) (t < j A y € Ti) => (3w G T3)y <wA {f(z) :ze(y, w]«} n A» = 0.
We shall also build a function h, defined on pairs of the form (x,j) where j £ S,

j is a positive limit ordinal, and x G T¿ with i G C'y  When this occurs, we will
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WEAKLY COMPACT CARDINALS AND   NONSPECIAL ARONSZAJN TREES        889

have h(x,j) G Tj and x < h(x,j). The following properties of h will be additional

induction hypotheses. The crucial (7) is similar to (5), but in the more general

setting of (5), coherence as in (6) is not required (though it could be) so we do not

single out the witness.

(6) (ii < Í2, both in Cj with j' $ S A x G T¿J => h(x,j) = h(h(x,i2),j).

(7) (ieC'jAJiSAxe Ti) =» {/(*) :ze(x, h(x,j)U} n At = 0.

(8) (t G C'jAj <£S)^> h(xi,j) = x{ for all n < u.

To = A. If a > 0, having constructed T|a with (l)-(8), we take Ta = [Xa,

X(a + 1)) and we assign an a-branch of predecessors through T\a to each member

of Ta. Actually, as usual, what we do is to choose A a-branches through T|a to

which we give tops; these are then identified with [Aa, A(a +1)). If a is a successor

ordinal, instead of branches we consider elements of Ta_i; each of these gets A

immediate successors, making sure that the point chosen to be x£ is among the

successors of z"-1. Note that (4) and (5) are preserved; the preservation of (5)

uses (5) for a — 1. This completes the successor case, so suppose a is a positive

limit ordinal. Here we really do choose branches, putting one top on each chosen

branch.

We consider three cases.

Case 1. a ^ S, C'a is not cofinal in a.

Case 2. a ^ S, C'a is cofinal in a.

Case 3. a G S (so cf a = uj).

In Cases 1 and 2, we will, of course, set f(x) = x for x G Ta. In Case 1, cf a = uj.

In this case, if C'a — 0, set an. = 0; otherwise, set an = maxC'a. Then choose

(an: 0 < n < uj) strictly increasing and cofinal in a with an < a%. For each n < uj,

let p(n, n +1) < w be such that if p(n, n+1) < m then x£," < Xm"+1 and {f(z) : z G

(im",á"+1MnAa„ = 0. Let q(0) = 0, q(n + 1) = max{9(n) + l,p(n,n + 1)}.

Thus, (q(n) < m, I < n) => x% < x^f. We first choose u branches, whose tops will

be the x^,. We guarantee that, given m, letting n be such that q(n) < m < q(n + l),

the rath branch contains all the x£,' for / < n. Above level an, the rath branch

is generated by using (5) successively to obtain successors yt+i on level &n+k for

k < u)\ conventionally, we set j/o = ^m"- Then, yk+i will be the w guaranteed by

(5) for i = |î/fc|, j - Ctn+k+l, y - Vk-

Now, for each n, and each x G Tan, we choose (yk: n < k < ui) = (yf : n < k <

uj), strictly <-increasing, with yn = x, yk on level afc. Again this uses (5), taking

î/fc+i to be w, where i = a*;, j — ctk+i, y = yk- If C'a = 0, there are no h(x,a)

to define. Otherwise we define h(x,a) for x on level an; the other h(x, a) will be

defined in terms of these and the h(x, ao) to guarantee commutativity, property (6).

We simply take h(x,a) to be the top of the branch generated by the (yk'- k < uj)

for x on level ao, x £ {x^° : ra < u>}. We set h(x%°, a) = the top of the rath special

branch (= x^J. Then, properties (6)-(8) are clear by construction.

Property (2) is preserved, vacuously, since a ^ S. Property (3) is preserved,

since if y G Ta, then, since a ^ S, f(y) = y. Property (4) is clear, since every

branch extended at level a was generated using (5) and, therefore we have

(Vi < a)(V» G Ta)(3z<y){f(x):z<j}nT, = {f(x):x<z}nTi.

Applying the induction hypothesis (4) to such a z, the conclusion is clear. Property

(5) is clear when i — an, j — a, simply taking w — the top of the branch (yk : n <

k < uj); if i < an, using (5) when j = an (which is an induction hypothesis) and the
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890 SAHARON SHELAH AND LEE STANLEY

preceding case, the conclusion is clear. Finally, (1) is clear by construction when

i = an, j = a. For i < an, we use (1) as an induction hypothesis with j = an and

the preceding case, as with (5).

In Case 2, we have the natural branches bx = the branch generated by {x} U

{h(x,7): |x| < 7 G C'a}, for |x| G C'a. This is, in fact, a branch by the coherence

property of the D-sequence and the coherence property (6), of the /i(x,7)'s. Of

course, h(x, a) = the top of this branch. These are the only branches which receive

tops. Note that, by the induction hypothesis (8), for ß G C'a, n < uj, x = X&, bx —

the branch generated by {x} U {x2^ : ß < 7 G C'a}, so we take x% = the top of this

bx (the choice of ß being immaterial). All properties except (4) are now clear by

construction ((1) and (5) require arguments as in Case 1, when i' £ C'a). For (4), we

use the induction hypothesis (7), the construction of the bxs and the fact that these

are the only branches given tops. As in Case 1, this guarantees that if i < ß G C'a,

y G Ta, {/(x) : x < y} n 7¿ = {/(x) : x < y and |x| < ß} n T< = {/(x) : x < y'} n Tj,
where y' is the predecessor of y on level ß, and we apply the induction hypothesis

(4) with y = y',j = ß.

In Case 3, cf a = uj and our method of constructing branches to extend to level a

parallels that of Case 1, even though we may have C'a cofinal in a. Note that, here,

we are not required to define the h(x,a) nor to preserve (6)-(8). Here, however,

we must make / press down and preserve (3)-(5). So, we set ao = 0, and proceed

essentially as in Case 1, with some refinements designed to handle (5). First, we

choose branches to be topped by the x^, as in Case 1, also guaranteeing that if

q(n) < m then Aan < f(x^n).

The remaining branches which are extended will each arise from uj applications

of (5), as in Case 1. Now, each such branch starts from a pair (i,y) where i < a

and y G T¿. The set of all such pairs gives the set of instances of (5) which must

be handled. We enumerate all such pairs in order type A and use that at any stage

in the construction of the branches, fewer than A points have been used. We then

proceed by choosing y', an immediate successor of y which does not occur in any

of the previously chosen branches, and repeatedly applying (5) to the an which lie

above \y'\, starting from y', as in Case 1. Note that f(y') = y, by (2), and that

distinct pairs (i, y) give rise to distinct y' and therefore to distinct branches. Then,

if w has been chosen as the top of the (i, y) branch, we let f(w) be any member of

T\y\, distinct from y and all the f(w'), where w' is the top of a previously chosen

branch. Now (3) and (5) are clear by construction, and (4) is not problematical,

arguing as in Case 1. This completes the construction. Of course, since T is

(A+-5-st-special), it is a A+-A-tree.

2. Lemma 2. Throughout this section we assume that cf A = w and that

(Cs: 0 < 6 = [J6 < A+) is a DA-sequence, S Ç {S < A+: cf<5 = Ni}, S is
stationary but for all 6, C'g n S = 0.

Again, we construct T|a, /, (xl : £ < wi), essentially as in §1, with the same

induction hypotheses, but, of course, with wi replacing uj as the width of the ascent

paths. The division into cases is also the same, as is the construction in Case 2 of

§1. The construction in Case 1 of §1 is, if anything, simpler, since we can let Ço be

such that whenever / < n and £0 < £, x"' < x?n. Then, for £0 < £> we let the £th

branch be the branch generated by {x|n : n < u>}. For £ < £0, we choose the £th

branch to avoid all the x?n for n < uj.
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There remains Case 3 of §1. Here, cf a = wi, so C'a is cofinal in a. As in Case 2,

if i G C'a and x G T¿, then {h(x,k): k G C'a\(i + 1)} generates a branch bx. Some

of these branches will be extended.

First choose the branches to be topped with the xf as in Case 2. Since cf a = uji ,

we define the /(x?) so that

(VÏ < a)(3£o < wi)(Vf G (£o,Wi))A¿ < /(xf ).

This guarantees (1). Then, as before, list all pairs (i,y) with i < a and y G T¿ in

type A and handle each pair in turn by choosing y' an immediate successor of y not

appearing in any branch chosen so far and choose k G C'a\(i + 2) and a successor

of y' on Tfc with {/(«): z G (jr',i]<,} n A(* + 1) = 0, by (5). Then, top bx with a

point w at level a and require that Xi < f(w). For each of the remaining induction

hypotheses, the verification that it is preserved is either clear from the construction

or totally analogous to the verification in §1.

3. Lemma 3 and Theorem 4. We first note that Theorem 4 is an immediate

Corollary of Lemmas 1-3, taking k, in Lemma 3, to be No or Nx according to

whether cf A > No or cf A = N0-

So, suppose that T, ç(a) (a < X+), and (x": i < k) are as in the statement

of Lemma 3 and suppose, towards a contradiction, that /: T —► A is one-to-one

on chains. For ß < A+, y G Tp, and j < ß, let pr^(y) = the predecessor of

y on Tj. Let 6 < X and let S$ = {6 < A+: dS > k,0}, so Se is stationary.

Let 6 G Sß. Note that for each i < k, {a < 6: /(pra(x*)) < 0} has power at

most cardö, and therefore is bounded in 6, say with sup = hi(6). Since cf 6 > k,

h(S) =<jef sup{/i¿(<5) +1 : i < k} < 6. Now, h is constant on a stationary subset Sg*

of Se, say with value a». Suppose, now, that cte < ß < A+. Let S G Sg\(e(ß) + 1).

Then, for some i < k, i < j => Xj < xy We let i(ß,6) = the least such t. Thus,

for i(ß,6) < j < k, x? = prf(;3)(x*), and therefore, since hj(6) < ae < ß < $(ß),

9 < f(Xj)- Summing up, we have shown

(*e) ae < ß < A+ =>• 6 < f(x})     for large enough j < k.

Let a* = sup{a0: 0 < A}, so a* < A+. But now we get a contradiction, as

follows. First, choose ß G (a*,A+); then for all 6 < A, 6 < f(x.) for sufficiently

large j. Let i(9) be least so that for i < j, 9 < f(x.). Clearly i is a nondecreasing

function of 0 and since range / Ç A, t : A —► « is cofinal, contradicting A / k = cf k.

REMARKS. In early versions of this paper, in place of Lemma 3, we had (incor-

rectly stated) hypotheses on cardinal exponentiation which (had they been correctly

stated) permitted an easier but far less informative proof that the trees constructed

in §§1 and 2 are special. Later, Shelah came up with the proof of Lemma 3 in the

special case cf A > k, which he showed to S. Ben David and S. Todorcevic. Todor-

cevic suggested a simplification, whereupon Shelah proved the theorem in general.

4. Theorem 5. We assume, without loss of generality, that A is regular, since

if not, then either DA holds, in which case there is a nonspecial A+-vl-tree, or the
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Covering Lemma (for K, but even the Covering Lemma for L is sufficient for our

purposes) fails and so, clearly, k is (weakly compact) L. We will use the following

lemma to complete the proof of Theorem 5.

LEMMA 6. If X is regular and uncountable and A+ is not (weakly compact)L,

then either DA or there is a nonspecial A+-A-tree.

REMARKS. The form in which we have stated Lemma 6 may seem rather bizarre,

since, in view of Theorem 4, there is no need for the dichotomy, but we have stated

it in this form in order to make clearer several historical points. First, we should

note that in our early work on this problem, we had proved a somewhat weaker

form of this lemma with the same dichotomy but with a nonspecial A+ wide tree in

place of a nonspecial A+-^l-tree. Todorcevic then pointed out that his techniques,

from [11], yielded the stronger conclusion, but also that, while Lemma 6 is not

explicitly stated in [11], most of the ingredients for proving it do appear there.

Further historical remarks will appear at various places in the proof of Lemma 6,

but before turning to the proof, let us just note that by Theorem 4 and the above

reduction to regular A, Theorem 5 is immediate from Lemma 6.

PROOF OF LEMMA 6. We first give an outline of how the proof will proceed.

We let k = A+. We follow Todorcevic by calling a sequence (Ca : a a limit ordinal

< fj,) of clubs of a, with the coherence property of a D-sequence and which is not

trivialized by a club of ¡j. (i.e. there is no club C Ç ¿t such that for all a G C,

Ca = C H a), a D(¿í)-sequence. Note that we have not required the order types of

the Ca's to be bounded: this would essentially give D (really, if, as below, pt = k

and the bound is A). Below, we shall connect this with the question of whether a

certain tree is special.

The first step in the proof of Lemma 6 is to prove Proposition 6.1 below; a

slightly stronger statement is widely attributed (e.g. in [11, 12]) to Jensen, un-

published. In view of the fact that the proof of Theorem 6.1 of [3] contains all

but one of the important ingredients of a proof of Proposition 6.1, this attribution

is no doubt justified. We shall give a "gloss" of Jensen's proof and provide the

missing ingredient, a well-known well-foundedness of direct limit argument. The

"proof" (of the stronger statement) given in [12] is incorrect, probably as a result

of oversimplification. Arguments and constructions similar to those of the proof of

Proposition 6.1 appear in [5]; our approach can be used to give an alternate proof

of a stronger form of Magidor's theorem, there, that if a regular /i is not (weakly

compact)L, then there are stationary subsets Si, S2 of fx such that for no a < p do

we have both Si n a and S2 n a stationary in a. Our strengthening gets such Si,

S2 to both be constructible; see the closing remarks below.

PROPOSITION 6.1. If ¡j. > uii is a cardinal which is (regular)L but not (weakly

compact)L and cf yu > ui, then there is a constructible sequence (Ca: a a limit

ordinal < /i) which is a D(/z)-sequence (in V).

Before proving the proposition, we indicate how we will finish the proof of Lemma

6. Let k — A+ = (j,, and let C — (Ca : a a limit ordinal < k) be as guaranteed

by the proposition. The natural tree based on C has the limit ordinals < /c as

node set and has a precede ß if a < ß and a G C-. Note that the fact that C

is not trivialized by a club of k is equivalent to the nonexistence of /«-branches
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in the natural tree. We shall then show that either the natural tree based on C

is nonspecial (unfortunately, it may be wide; this was as far as we had gotten in

our original proof, mentioned above after the statement of Lemma 6) or else real

GA, in which case we invoke Lemma 1 (here is the connection with the notion of

specialness mentioned above; note that if C is a DA-sequence, the natural tree is

clearly special; what we will prove right after the proof of Proposition 6.1, below, is

not an exact converse, but almost). Finally, in the first case Todorcevic suggested

embedding the natural tree based on C into the po-tree, where pr¡ is based on C (see

[11] for this terminology and other material concerning po and related notions). We

shall then invoke arguments from [11] which show that, in our context, the po-tree

is not wide and we conclude by the easy observation that it is not special, lest the

natural tree based on C be special.

PROOF OF PROPOSITION 6.1. First note that since p is an uncountable

cardinal which is not (weakly compact)L, 0* does not exist, so the Covering Lemma

for L holds, so, since p is a cardinal which is (regular)1, in fact p is regular. Now

the setting of Theorem 6.1 of [3] is as follows: k is a cardinal which is > (uji)l

and which, in L, is regular, but not weakly compact. The theorem asserts the

existence of a constructible, constructibly stationary, E Ç k which is avoided by

all members of a sequence C — (C\ : A limit, A < k), with C\ club in A. This, of

course, guarantees that E is nonreflecting, which is a strong form of evidence that

the sequence of clubs is a D(«;)-sequence, at least in L. In fact, we will show that

this sequence is a D(/«)-sequence in V, but the nature of the evidence for this will

not be as strong as the existence of a nonreflecting stationary set (E, of course,

will continue to have its initial segments nonstationary; unfortunately, we do not

see how to prove that E itself remains stationary in V).

To harmonize with the notation of Proposition 6.1, in the preceding paragraph,

everywhere replace /cby/j and A by a. Also assume that in V, cf p > uj. Further,

while the next manuever is not really necessary, it is built into Jensen's construction

and will somewhat facilitate matters: we assume that p is (inaccessible)L. We argue

that this assumption is benign, for our purposes, since if p is not (inaccessible)L,

then it is a successor, in L, say of pq. But then DMo holds in L and we claim that a

constructible D^0-sequence is a D(//)-sequence in V. This is clear, since p is regular

in V and since the order types of the Ca in the DMo-sequence are bounded by pr¡.

The impact of our assumption that p is (inaccessible)L is that A = {n < p:
del

(r) is a limit cardinal)^} is club in p. Since p is not (weakly compact)L, we fix a

constructible counterexample to nj-indescribability, i.e. aß£ 3°(p) C\L such that

for some first order 0 in G and two additional unary predicate symbols, 6 holds in

(Jti,G,B,D) for all De&>(p)C\L, but for all a < p there is some De^(a)n¿

such that 0 fails in (Ja, G, BC\a,D).

Now let a < p be a limit ordinal. The first division into cases is whether or not

a G A. If not, then certainly A is bounded in a, so let ao = max((A U {0}) (~l a),

and let Ca = a\a0. Note that

(1) Clearly there can be no stationary S ç p\A such that for a < ß, both in S,

a G C-, since A is club in p.

Jensen next defines two sets Q Ç Q' C A. We discuss below the definition of

Ca for a G Q. Q will contain all the (inaccessible cardinals)1, below p. There are

four cases for a G A\<3-  Since these a are (singular)L, the global D-sequence of
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Theorem 5.1 of [3] already assigns to a a club Ca. Let Ca be A D C'a, i.e. the set

of (limit cardinals)L below a which are limit points of Ca. For a G A\Q, Case 1 of

the definition of Ca is: Ca is bounded in a. Then, cf a = w, and Ca is taken to

be any constructible, cofinal subset of a of order type uj. It is clear that

(2) There is no stationary S Ç p of these "Case 1" ordinals such that for a < ß,

both in S, ae C'0.

In dealing with Cases 2-4 of the definition of Ca, for a G A\Q, Ca is defined as

a subset of Ca, which, in turn, is a subset of Ca, which will have order type < a;

we shall explain why momentarily, by appealing to the construction of CQ. This

also has four cases, and we shall first present these and give the correspondence

between the cases of the definition of Ca, a e A\Q, and those of the definition of

Ca.

The first two cases in the definition of Ca involve ordinals not in A, so they do

not arise in discussion of the four cases of the definition of Ca for a G A\Q. For

a G A, Case 3 in the definition of Ca is subsumed by Case 1, above, of the definition

of Ca for a G A\Q. It is worth noting that the ordinals in Jensen's E as well as

those in Q'\Q all fall under this case.

Cases 2-4 of the definition of Ca, for a G A\<9, fall under Case 4 of the definition

of Ca- As we have already noted above, in Cases 2-4, Ca is defined as a subset

of Ca, which, in turn is a subset of Ca. According to the construction of Ca in

Case 4, Ca has order type < a: the relevant facts are that the functions k, I, ra of

Theorem 5.1 of [3] are defined on a limit ordinal 0 < 7 < a (p. 276 of [3], following

the proof of Lemma 5.4) and that Ca is l"t"0, where t : 0 —► 0 is normal so that

9 < 0 [3, p. 279]. We now argue that

(3) There is no stationary subset S of "cases 2-4" limit ordinals from A\Q such

that for all a < r¡, a, r¡ G S, a G C'v.

Suppose, towards a contradiction there were such an S. By Fodor's lemma (recall

that p is regular, in V) there is stationary S' Ç S on which o.t. Ca is constant.

This contradicts the assumed property of S.

Finally, we deal with the set Q. Jensen defined

(*) a e Q' iff there is a ß > a such that a is (regular) J<3+1, B(~\a G Jp and there

is a D e ¿?(a) n Jp such that 0 fails in ( Ja, e,BC\a, D).

If a e Q' and ß is the least witness, then a G Q iff whenever p e Jp, there is

an elementary substructure A of Jp, containing p, whose intersection with a is an

ordinal < a. To define Ca for a G Q, let ß be the least witness to a G Q'. We form

the usual tower of elementary substructures of Jp, containing a and BC\a and with

transitive intersections with a (note that if d(a) is the <jg -least d Ç a such that

0 fails in (Jp, e,Bila, d), then d(a) is in any such substructure, by elementarity).

Then, Ca is the set of intersections with a of all such substructures. Jensen goes

on to show [3, Lemma 6.4, p. 289] that if a' G C'a, then a' G Q and Ca> — Ca C\a'.

He does so by showing that if /3' is the ordinal of the transitivization of the

elementary substructure whose intersection with a is a', then ß' is the least witness

to the fact that a' G Q'. In other notation, if, for a G Q, we let /3(a) be the least

witness to the fact that a G Q' and we let srf(a) = (Jp(a),e,B C\ a,a), we have

that if a' eC'a, then there is 7ra/Q, an elementary embedding of s/(a') into srf (a)
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which is the identity on a', maps a' to a, and B n a' to B n a. Further, we clearly

have itaia(d(a')) — d(a). Finally, if a G C'n, then 7rQ'^ = na„ o iraia.

Now, if there were a cofinal X Ç pC\Q such that for a' < a, both in X, a' eC'a,

we could take the direct limit of the commutative system ((*s/(a),7ra<a : a' < a,

both in X). This would clearly be well-founded, extensional, rudimentarily closed

and a model of the n2 sentence "I am a Jp", so we could take its underlying set

to be Jp*, for some ß. Calling the direct limit ((srf, ira') '■ ce' G X), it is easy to see

that 7ra'(a') = p (so ß > p), 7rai(B D a') = B, and that, letting D be the common

value of the irai(d(a')), we must have 0 fails in (J,¿,e,B,D), which is impossible.

Thus,

(4) There is no such X.

But then (Ca : a is a limit ordinal < p) is a D(u)-sequence in V by (l)-(4). This

completes the proof of Proposition 6.1.

We take up the thread of the proof of Lemma 6, so /c = A+ (= the p of Proposition

6.1), and A is regular. Assume that (T, <) is the natural tree based on C and that

/ : T —► A is a specializing function. For limit 6 < k, we define strictly increasing

continuous (7¿: i < i(6)) — (7*: i < i(6)) from C0, cofinal in 6, where i(6) < X

and we set Cg = {7^: i < i(6)}. If C's is not cofinal in 6, let (7,: i < uj) be any

increasing w-sequence cofinal in 6, so suppose C's is cofinal in 6. Conventionally,

set 7_i =0; thus the definition of 70 fails under the successor case. If —1 < i

and 7¿ has been defined, since / is one-to-one on C'6, let 7¿+i be the unique 7 G

C¿\(7i + 1) such that /(7) = inf f"(C\(li + 1)). For limit », 7* = sup^ : j < »'}.
Let i(6) be such that 7¿(¿) = 6. By the definition of 7i+i, if i + 1 < j, then

/(7¿+i) < /(7j), i.e. f("ii+i : i < i(S)) is a strictly increasing sequence from A.

Thus i(6) < A. We set C$ = {7^: i < i(S)}. The coherence property is easy to

check. This completes the construction: (C|: 6 < k,6 limit) is a DA-sequence.

We now assume that the natural tree based on C is not special. We first provide

the relevant information from [11] about the function pc¡ based on C (we take C to

be defined on successor ordinals by setting Ca — {a}). Following [11], we let QK

be the finite sequences from k, linearly ordered by the /«-analogue of the Brouwer-

Kleene ordering. ctQ* is the tree of well-ordered chains of QK, ordered by initial

segment.

(1) po is a function from the graph of < on k to QK.

(2) p0(a,a) = 0; p0(a,ß) = (o.t.(G> na))Ap0(a,min(G>\a)).

(3) For all a, po(í,ct) is strictly increasing as a function of £; therefore, setting

T(po) = {Po(-,ß)\a- ce < ß < k}, T(po) is a subtree of <tQk.

(4) card(T(/?o)a) < card{C0 n a: a < ß < k}) + N0.

(5) Since C is not trivialized by a club of k, there is no /c-branch through T(po).

(3) is clear from the definition (2). (4) is Lemma 1.2 on p. 4 of [11]; further, by

the coherence property of C, the RHS of the inequality of (4) is < card a. To see

this, let a < ß < k. Let 7 be the largest limit point of Cp D a, if this last is infinite,

or 7 = 0 if not. In either case, there are only card a possibilities for 7 and only

card a possibilities for Cp fl [7,0), since this last is always finite. Finally, either

7 = 0 or Cp n a = C1 U (Cp n [7, ce)).

(5) is Lemma 1.6 of [11], together with the remark (ii) in §1 of [11], since C has

the coherence property (property (i) in §1 of [11]). But (5), and the immediately

preceding strengthening of (4) together yield that T(p0) is /c-Aronszajn.
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It remains to embed the natural tree based on C into T(po) and to observe

that this embedding preserves nonspecialness. The embedding is quite simple:

7t(/3) = Po(-,ß)\ it is immediate from the definition of po and the coherence prop-

erty of C that if a G (Cp)', a < ß, then for all 7 < a, po(l, ce) = po(^,ß).

Now if /: T(po) —► A is one-to-one on chains of T(pçf), define g: (Limfl/c) —► A

by 9(ß) — fi^iß))- Clearly g is also one-to-one on chains, since if a G (Cp)'

and g(a) — g(ß), then, as we have remarked, 7r(a) Ç ir(ß) and by definition of g,

f(Tt(a)) — g(a) = g(ß) = /(7r(/3)), contradicting that / is one-to-one on chains of

T(7To). This completes the proof of Lemma 5 and Theorem 6.

REMARKS. We provide the above-promised strengthening of Magidor's result

from [5]. Let C be as in Proposition 6.1. Let A1} = {a: £ ^ Ca} and Aç = {a: f G

C'a}, so both are constructible. Clearly there is no £, ß such that both of the Al D/3

are stationary in /3, so it will suffice to show that

(*) for some £, both A\ are stationary.

If not, for £ < /c, we can define e(t¡) G 2 by e(£) is that e G 2 such that A^

includes a club; also, let D(£) be such a club. Let C be the diagonal intersection

of the £>(£)• Now, if a < ß, both in C, then for £ < a, a,/3 G D(Ç) Ç A\{i), so

Ç e Ca iff a G A\ iff e(£) = 1 iff ß G A\ iff Ç G Cp, i.e. C trivializes C, which is
impossible.

ADDED IN PROOF. 1. It has been brought to our attention that during the

mid 1970's Laver observed that an N2-A-tree with an ascent path is not special,

and that, somewhat later, Baumgartner was able to construct such trees from a

D^j-sequence (see K. J. Devlin, Reduced powers of a2-trees, Fund. Math. 118

(1983), 129-134) for a presentation of Baumgartner's methods).

2. Concerning Proposition 6.1, Todorevic has recently communicated to us a

revision of [11], where, in (1.10), he gives a proof, similar to ours, but considerably

terser (he does not go into as much detail about Jensen's construction), that the

sequence constructed by Jensen in the proof of Theorem 6.1 of [3], is not trivialized

in V', assuming that k is not (weakly compact)L.
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