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A SACKS REAL OUT OF NOWHERE 

JAKOB KELLNER+ AND SAHARON SHELAH* 

Abstract. There is a proper countable support iteration of length co adding no new reals at finite stages 
and adding a Sacks real in the limit. 

§1. Introduction. Preservation theorems are a central tool in forcing theory: 
Let (Pa, Qa)a<e be a forcing iteration. Assume that Qa is (forced to be) 
nice for all a < e. Then Pe is nice.1 

A niceness (or preservation) property usually implies that the forcing does not 
change the universe too much. Among the most important preservation theorems 
are: 

The finite support iteration of ccc forcings is ccc. [8] 

and 

The countable support iteration of proper forcings is proper. [6] 

In this paper we investigate proper countable support iterations, so the limits are 
always proper. Many additional preservation properties are preserved as well, for 
example ©'"-bounding (i.e., not adding an unbounded real). This is a special 
instance of a general preservation theorem by the second author ("Case A" of 
[7, XVIII §3]) which is also known as "first preservation theorem" [1, Section 6.1 .B] 
or "tools-preservation" [4, Section 5], see also [5, Theorem 2.4]. Many additional 
preservation theorems for proper countable support iterations can be found in [7], 
or, from the point of view of large cardinals, in [9]. 

We investigate iterations where all iterands are NNR, which means that they 
do not add new reals. So the iterands (and therefore the limit as well) satisfy all 
instances of tools-preservation. However, it turns out that the limit can add a new 
real r. The first example was given by Jensen [3], and the phenomenon was further 
investigated in [7, V]. So what do we know about the real r? We know that it has 
to be bounded by an old real (i.e., a real in the ground model), corresponding to 
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52 JAKOB KELLNER AND SAHARON SHELAH 

the iterable preservation property "a*00-bounding", r will even satisfy the stronger 
Sacks property. In particular r cannot be, e.g., a Cohen, random, Laver or Mathias 
real. In the previously known examples, the proof that a new real r is added is rather 
indirect and does not give much "positive" information about r. So it is natural to 
ask which kind of reals can appear in proper NNR limits. Todd Eisworth asked this 
question for the simplest and best understood real that satisfies the Sacks property, 
the Sacks real. In this paper, we show that Sacks reals indeed can appear in this 
way: 

THEOREM 1. There is an iteration (P„, Qn)n<w such that each Qn is forced to be 
proper and NNR and such that the countable support limit Pm adds a Sacks real. 
Moreover, Pm is equivalent to S * P', where S is Sacks forcing and P' is NNR.2 

The Theorem can be interpreted in two ways: 
On the one hand, it indicates limitations of possible preservation theorems: "Not 

adding a Sacks real" is obviously not iterable (even with rather strong additional 
assumptions). 

On the other hand, it shows that Sacks forcing is exceptionally "harmless": It 
satisfies every usual iterable preservation property.3 So the Sacks model (the model 
constructed by starting with CH and iterating u>2 Sacks forcings in a countable 
support iteration) has all the corresponding properties as well.4 

In a continuation of this work we will say more about the kind of reals that can 
be added in limits of NNR iterations (e.g., generics for other finite splitting lim sup 
tree forcings). It turns out that many of these reals can appear at limit stages, but 
some of them not at stage w, but only at later stages, e.g., of1. 

We thank a referee for suggesting several improvements in the presentation. 

§2. Sacks conditions as squares of terms. In this section, we introduce the forcing 
notion g*, which is forcing equivalent to Sacks forcing. We will later work with Q* 
in the proof of Theorem 1. 

A Sacks condition (or Sacks tree) is a perfect tree T C 2<co. Given T, we call a 
node t a splitting node if t has two immediate successors in T. 

Let F„ be the set of the n-th splitting nodes, cf. Figure 1. So t e F„ means that t 
is a splitting node and that there are n splitting nodes below t. Since T is perfect, F„ 
is a front, which means that every branch through T meets F„ exactly once. Being 
a front is stronger than just being a maximal antichain, and due to Konig's Lemma 
every front is finite. 

A branch b through T is an element of 2W and therefore a sequence (bo,bi,...) 
for some bn e {0,1}. Intuitively speaking, we can describe "the arbitrary branch" 
b of T by interpreting each b„ to be a term t„(xo,...,x„), where the value of t„ 
(0 or 1) depends on */ for / < n, and xi is a variable with values in {0,1} that tells 
us whether we choose the left (0) or right (1) path at the front F/. 

2 We do not claim that P' is proper. 
3 More exactly: Sacks forcing satisfies every property X such that: Every proper NNR forcing satisfies 

X, X is preserved under proper countable support iterations, and if P does not satisfy X, then P * Q 
does not satisfy X either for any NNR Q. 

4Of course this is already known for many of the popular properties, cf. [2] or [9], which shows that 
in some respect Sacks forcing is the "most tame" forcing possible. This corresponds to the fact that all 
of the usual cardinal characteristics (apart from the continuum) are Hj in the Sacks model. 

Sh:905



A SACKS REAL OUT OF NOWHERE 53 

T \ i / 

F\~ \ / 

FIGURE 1. F„ is the front of n-th splitting nodes. 

A more formal description of terms can be found in Definition 2.4, but a simple 
example is much more instructive: In the tree T of Figure 1, the sequence of terms 
begins as follows: 

X2 if xo = 0 and x\ = 0, 
< 1 if xo — 0 and x\ = 1, 

x\ otherwise. 

Given a Sacks tree T, the sequence t of terms denned as above is ,- -,. 
called the canonical term sequence for T. 

Let a be an assignment, that is a map that assigns each variable a value in {0,1}. 
Then a can be extended to evaluate terms ttotoa G {0,l},sowe can evaluate the 
term sequence t = (to, 11,...) to 

t o a := (to o a, t\ o a,...) G 2m. 

If t is the canonical term sequence for T and a an assignment, then t o a is a branch 
through 7\ Moreover, every branch can be obtained this way: 

T = {t o a \ n: n £ co, a an assignment}. (2.2) 

The following property is trivial, but important: Fix n. Then there is a finite set 
/ such that we can determine the value that is assigned to xn by an assignment a 
provided we know the values (r, o a)iej. We denote this by the following: For a 
canonical term sequence t, 

each x„ is determined by finitely many f,. (2.3) 

(Proof: Let / be the maximum of the heights of the nodes in Fn. Set / = {0,..., /}.) 
In the example above, xo is determined by to, and x\ by (to, t\,ti), but not by 

(k,h). 
Let T' C T be a perfect subtree, and call the canonical term sequence (t'0,t[,...), 

written as terms in the variables x'0, x[, In the example of Figure 1, we get: 

'o = 1> h — 1 ' H — x<s-
The fronts F'n "refine" F„: Ift G F'n, then t > s for a unique s € Fn. So the variables 
(XQ, ..., x'j) give at least as much information (about the branch) as (xo x/). In 
other words, we can calculate the value of x„ given the values (x'Q,..., x'n), and we 
write this dependence as a term ^>„(x'0, ...,x'n). This defines a function (or: term 
sequence) 4> that assigns to each variable x„ a term <f>„(x0',...,x'„). We will call <j> a 
substitution. So for every assignment a of the variables x', we get the same result 

J x\ if xo = 0, 
to = xo, h = < , _, . h 

1 otherwise, 

We will use the following notation: 

Sh:905



54 JAKOB KELLNER AND SAHARON SHELAH 

X2 

1 
X\ 

if xo = 0 andxi = 0, 
if xo = 0 and x\ = 1, 
otherwise. 

h ° <t> = 
r 02 if 1 = 0 and xo = 0 
i 1 if 1 = 0 and x'0 = 1 
[ XQ otherwise 

when we apply a to the term sequence F' as we get when we apply <j> o a to F. In 
other notation, t' = t o<f>. 

In the example, the substitution (f> has the following values: 

*o = fa(x'o) = 1, *i = fa(x'0,x[) = x'0, ... 

It is easy to check that, e.g., t'2(x'0, x[, x'2) = x'0 is indeed the same as h(xo, x\, xi) 
after applying the substitution fa, i.e., t2 = t2 o fa. 

h= < 

Also, each xj is determined by finitely many fa. This means: For each j there is 
a finite set / such that the following holds: If a, b are assignments of {XQ, x[ , . . . } 
that map xj to different values, then (fa o a)iei ^ (fa o ft),e/. (Proof: Pick / e co 
such that each node in Fi is longer than every node in Fj+l, and set / = {0,..., /}.) 

So far, we used different variable symbols (x, and xr') for variables used in t and F' 
(in the hope to make the concept of substitution a bit clearer). Of course this is not 
necessary, and we will only use x,- in the following. We will see that the following 
partial order S* is equivalent to Sacks forcing: S* consists of sequences of terms 
(̂ )ieco using the variables xj (j € co) such that 

(i) ti depends only on Xj with j < i, and ,- ., 
(ii) each Xj is determined by finitely many ti. 

The order is defined as follows: t' is stronger than F, if there is a substitution <j> such 
that T = t o(j> and 

(i) fa only depends on Xj with _/<*', and ,,.,,. 
(ii) each x,- is determined by finitely many fa. 

It is easy to check that < is reflexive and transitive; and that o is associative: 
The identity substitution witnesses t < t; and if V = t o fa and t" = t'ofa then 
i" = (tofa)ofa = to((j)ofa). 

We could omit (2.5)(ii): If 0 is any substitution, and if F and F o <p both are in S*, 
then <f) satisfies (ii) anyway. 

Substitutions (as defined in (2.5)) are obviously exactly the same as conditions 
in S* (as defines in (2.4)). This fact is not deep or of any real importance, but it 
will simplify our notation. So let us describe this effect once more: 

Assume that 5 and F both are conditions in S*. We can interpret F as a substitution 
<j> such that fa = t„. (I.e., tn(x'0,...,x'n) calculates the value of x„.) Then sot 
is again element of S* (and stronger than s). On the other hand, if V is stronger 
than 5, then this is witnessed by a substitution fa, which we can in turn interpret as 
element of S*. 

We can interpret a F e S* as continuous function from 2m to 2m, and map F to its 
image, or to the associated tree: 

LEMMA 2.1. Let T map t e S* to {(F o a) \ n: n e co,a an assignment}. Then *P 
is a surjective complete embedding (in particular order preserving) from S* into Sacks 
forcing. 
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6 
3 0 
1 4 8 
0 2 5 
0 1 2 

9 
3 1 

FIGURE 2. We use a canonical ordering of co x co. The node (1,2) 
corresponds to 7. The nodes (n, m) smaller than (1,2) all satisfy 
n + m < 1 + 2 < 4, as in (2.8). 

PROOF. *F(F) is a perfect tree: Pick any s = (J o a) \ n G ^(F). Note that 
to,...,t„-i use a finite set A of variables. Pick xj £ A. Then x ; is determined by 
to,..., tj-i for some/. Pick assignments b, c extending a \ A such that Xjob ^ xjoc. 
Then (Job) \ I j^ (Joe) \ I (otherwise they would determine the same value for Xj), 
so we get two incomparable nodes in *F(F) both extending s. 

We see from (2.2) that *P is surjective. It is clear that *F preserves <. 
*F preserves J_: Assume that *F(F) and *¥(s) both contain the perfect tree T. By 

thinning out T, we can assume the following: If / is the length of a node in F„, 
then t\ (x),... ,ti(x) determine x„, and the same holds for s. Let r(x') e S* be the 
canonical sequence of T. So x'0... x ^ determine a node in F„, and therefore suf­
ficiently many t\,...,ti-\ to determine x„. This defines a substitution c6 witnessing 
that r is stronger than F. The same applies to s. H 

Of course *P is not injective. For example, if we simply interchange XQ and xi in 
a suitable sequence F, then we can still get a valid term sequence (different from the 
original one), but the image under *F will be the same. In S*, the index set of the 
term sequence is co. We will later need co x co-sequences; so we will just identify co 
with co x co, using a canonical order. See Figure 2. 

T: co x co —> co is denned by x(n,m) = n + -(n + m)(n +m + \). (2.6) 

The bijection x defines a linear order of co x co of order type co: 

(i,j) < (n,m) iffz(i,j) < x(n,m). (2.7) 

We will later use the following trivial fact: 

If i + j < n and (/', / ) < (i, j) then i' + f < n. (2.8) 

We now rewrite S* in the form of co x co-sequences: 

DEFINITION 2.2. g» consists of squares of terms (t„,m)„,mew using the variables 
xtj (i, j G co) such that 

(i) t„,m depends only on xtj with (i,j)<(n,m), and 
(ii) each Xjj is determined by finitely many tnM. 

The order is denned as follows: F is stronger than s, if there is a condition <f> e g* 
such that J = s o<j). 

Since Q„ is isomorphic to S*, Lemma 2.1 gives us: 

COROLLARY 2.3. 2* is forcing equivalent to Sacks forcing. 
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We now add the a formal definition of term, assignment and substitution: 

DEFINITION 2.4. • Let X be a set. We will call an element v e X a. variable (or: 
variable symbol). We will interpret v as a "binary variable", i.e., the value of v 
is 0 or 1. In this paper, we will use X = {x,: i e co} and X = {XJJ : i, j e co}. 

• An X-term t consists of5 a sequence (vo,..., v/_i) for some 0 < / < co and 
vt e X, together with a function / : 2l —> 2. (So for / = 0, the sequence 
of variables is empty and the term is a constant.) We usually write terms as 
t(vo,...,vi-i). Abusing notation, we identify the variable v with the "identity 
term" corresponding to (v), Id. 

• An assignment a is a function X —• 2. Assignments extend to all X-terms in 
the natural way. In other words, given an assignment a, we can apply a to a 
term t to get an element of 2. We denote the result of applying a to a term (or 
variable) t by t o a e 2. 

• Similarly, a substitution <j> maps X to A'-terms. Equivalently, a substitution 
is a sequence {<t>v)vex of A'-terms indexed by X. Again, we can extend a 
substitution to act on all X-terms, and we write t o <j> for the result. We can 
also apply substitutions to sequences F = (tv)vex of terms (indexed by X), 
the result F o <f> is another sequences of terms indexed by X. The application 
of substitutions is associative: For term sequences f, s and F, all indexed by 
X, we get r o (5 o F) = (p o 5) o F. 

• The variable (or term) s "is determined by the terms to,... ,t„" means that 

(to o a,..., t„ o a) = {to o b,..., tn o b) implies s o a = s ob 

for all assignments a and b. In other words, if we know the value of to, ...,t„, 
we can infer the value of s. 

• According to our formal definition, two terms that depend on different vari­
ables are distinct (even if these variables are not relevant). However, we will 
only be interested in terms "as functions", i.e., modulo the following equiv­
alence relation: t =* s means that t o a = s o a for all assignments a. In 
particular, the last = sign in Definition 2.2 really means =* etc. 

§3. A simple case. In the rest of the paper, S always denotes a countable limit 
ordinal. 

In this section, we construct a proper, NNR countable support iteration and 
argue that the limit adds a real that it is similar to a Sacks real (i.e., it adds a generic 
object for a forcing that looks in some way similar to the Q* defined in the previous 
section). In the rest of the paper, we deal with an analog (but notationally more 
complicated) construction that actually adds a Sacks real. 

So the purpose of this section is to give some idea of the constructions we use to 
prove Theorem 1, using a somewhat simplified notation. The reader who does not 
feel the need of such an introduction can safely continue with the next section. 

We do not give any proofs in this section, but refer to the proofs of the more 
general statements. Caution: We use the same symbols for the simpler objects in 
this section and for the analog constructions in the rest of the paper. 

5Formally we could let t be a triple (X, (VQ, • • •,«/_ i), / ) , to guarantee that X is disjoint to the terms 
built from it. 
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FIGURE 3. (a) q coheres with n„-\{8+m). The gray area indicates 
vs.n-\.m- (b) An element of R: pnj&+m = x„,m. The term pn<a only 
depends on xtj with i < n. (c) Filling in the term X42 at at various 
positions: In the bottom row, Zj^ contains 6 and 8; the 1 x co-
blocks where the terms ^4,2 are added (indicated by the gray area) 
propagates up-left. 

The forcing iteration will start with a preparatory forcing P, followed by go, 

Q\, P*P» stands for P * go * • • • * Q„~ 1. We will also use the countable support 

limit of P * Pn. Since all forcings are proper, this countable support limit is the 
same as P * Pm, where Pm is the P-name for the countable support limit of the P„. 

The preparatory forcing adds cofinal subsets v^„,m C S of of order type co for 
every limit ordinal 8 < <x>\ and n, m e co. In more detail: 

DEFINITION 3.1. A condition p in P consists of a limit ordinal ht(j?) e co\ and a 
sequence (v5,„,m)0<^<ht(p),n,me<u' s u c n t n a t vs,n.m QS is cofinal and has order type co, 
and v^„mi and v<5„jm2 are disjoint for mi ^ m2. P is ordered by extension. 

So P is c-closed. 

DEFINITION 3.2. go is (the P-name) for 2<mi, ordered by extension. 

So go is <T-closed as well, and adds the generic sequence rjo G 2m'. 
Given P * P„ = P * go * • • • * g n - i such that g„- i adds the generic sequence 

i\n-\ € 2°", we define the P * P„-name g„ (see also Figure 3(a)): 

DEFINITION 3.3. Let q be a partial function from a»i to 2, c5 C dom(#). q and 
?/„_i cohere aid + m, tfrj„-\(S + m) = q(a) for all but finitely many a e v^„_i>m. 
Abusing notation, we just say q coheres with rj„-i(8 + m). 

We set q e Q„, if q G 2<<Ul and q coheres with ^„_i(<5 + m) for all <5 < dom(g), 
m £ co. 

LEMMA 3.4. The following is forced by Pn: 

(i) Ifq G g „ , ^ ' G 2iom^q\ and q1 (a) = q(a) for allbut finitely many a G dom(#), 
then q' G Q„. 
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(ii) Q„ is separative,6 and adds a generic sequence rj„ € 2"" defined by \JqeGi„) q. 
(iii) Ifn > 0, then Q„ is not a-closed. 
(iv) Qn is proper andNNR, i.e., Q„ adds no new real. 

For a proof, see Lemmas 4.7, 4.9 and 4.11. Note that (i)-(iii) are very easy, and 
(iv) is straightforward (but a bit cumbersome). 

LEMMA 3.5. P*Pm adds a new real. In particular, the P-generic element v together 
with (n„{m))ntmew determines the generic filter. 

PROOF. If we know vm,„_i,m and n„{l) for all / e co, then we can determine 
n„-\{co + m). So if we know all vs,n,m and all n„{m) for<5 < co\,n,m e ro , thenwe 
can by induction on a < co\ calculate all rj„(a) for n e co. H 

We now define a dense subforcing R of P * Pm. See Figure 3(b). We use the 
notion of variable, term, assignment and substitution, as in Definition 2.4, for the 
set of variables X = {JC,J: i,j e co}. 

DEFINITION 3.6. R = U<5«« Rs+m- A condition p in Rs+a> consists of p and p 
such that 

• p e P, ht(p) =3 + co. 
• P = \Pn,a)n£co,a£d+w 

• p„,s+m isthetermx„,m. 
• For a < 3, p„,a is a term using only variables Xjj with i < n. 
• For a < 3 limit and n,m e co, p„,a+m = pn+\.c for all but finitely many 

We identify two conditions p and q if p = q and pn,a =* q„,a for all n e co, 
a < 3. 

We can interpret p e R as a condition (p,p(0),p(l),...) in P * Pm: After 
forcing with P * P„,we have the generic sequences (?/,),<„. This defines a canonical 
assignment of xtj for / < n, namely xij := ni(3 + j). This assignment evaluates 
(Pn,a)a<s to a condition in 2„ (assuming that p is element of the .P-generic filter), 
and we define p(n) to be that condition. Using this identification, we get: 

LEMMA 3.7. R is a dense subset ofP*Pm. 

For a proof, see Lemma 5.8. The proof is again a bit cumbersome, and uses similar 
arguments (chains of countable elementary submodels) as the proof of 3.4(iv). 

Note the following simple properties for p e Rs+co '• 
• If 3 = co, we get (V«, m)(3cok)pn+hk = x„,m. 
• If 3 = co + co, we get (V«, m)(3°°k)pn+2ik = Xn.m-
• If 3 = co • co, then we get (V/i, m)(3ocn')(3°°m')pn>:m> = xn<m. 

Actually, the last item holds for all <S > co • co, which can easily be seen by induction; 
and we get some kind of converse as well: 

LEMMA 3.8. Assume that (rjj)jjem is a matrix of terms such that 

(i) r,j depends only on x„m with n < i, 
(ii) (Vn,m)(300«')(300m'jv,m, = xHjn 

(iii) (Vn)(3°°k)rn,k = 0. 
Then there is a p £ Rm.ai+co such that rtj = ptj for all i, j e co. 

6That is, for every p 6 Q there are q\,qi < p such that q\ _L 92• 
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PROOF (SKETCH). We have to define a suitable p (i.e., the sequence 
(va,n,m)a<w,n,m&w) as well as pt,a for / G co and co < a < co • co. 

We deal with one variable after the other, see Figure 3(c). Assume we are dealing 
with x„,m. Set 

In,m = {«' > n + 2 : (3°°/:)r„,,fc = x„,m}. 

According to (ii), 7„,m is infinite. We define \m.a,n,m C [co, co • co[ such that 

V(o-(B,n,m 0 [l -CO, (l + 1) -C0[ 

contains a single element (not used so far) if i+m +1 G 7„>m and is empty otherwise. 
We set r„+i,a = x„,OT for all a € v<B.ra>„,m; and propagate the x„,m diagonally down. 

We repeat the same construction for all the other x„,m, and then set all the 
remaining terms r„ia — 0. To get coherence for these points as well, we just define 
the remaining v's in a way so that they only point to r's that are 0. At height co, we 
use (iii) to do this, at other heights we just have to make sure to leave enough space 
when choosing the elements of vgt„im. H 

We now describe how to "stack" a condition on top of another one to get a 
stronger condition. See Figure 5(b) for a graphical illustration. 

• If we "cut away the bottom part" of a condition q G Rs+5'+a> a t height 8, then 
we get a condition q' G Rgi+a,- Formally we can define q' as follows: 

- P G q'a,n,m iff ^ + /? G qS+a,n.m-

~~ Qn,a = qn,d+a-

We denote this q' by q \ [S,S + 5' + co]. 
• We can stack any condition q' e Rs'+w o n top of some condition p e Rg + co, 

resulting in some q € Rs+g>+0} such that q \ [S,S +8' + co] = q'. Formally, q 
is denned as follows: 

- q \S = p. 
- For a < 3', we set 3 + ft e qs+a,n,m iff P G q'a,n,m-
- For a < 8', we set q„,s+a = q'na. 
- We define the substitution </> by 0„,m = q'nm, and set q„ta = pna o <fi for 

all a < 5. 
We denote this q by p *l #'. 

It is clear that p *\ q' < p (interpreted as element of P * P^). The converse is true 
as well: 

If q < p, then either q = p or q=p*lq', , . 1 -. 

where?' = q \ [ht(p),ht(q)]. [ j 

The proof of (3.1) uses the following simple fact: For every p G R, 

every partial assignment of every finite A C {x;j-: i,j £ co} , . 
is compatible with /?. 

In other words, if / : co x et> —> 2 is a finite partial function, then it is compatible 
with p (interpreted as element of P * Pm) that t]„(d + m) = f(n, m) for all («, w) G 
dom(/ ) . 

Given a ^ E Jij (we assume 8 > co • co), we can map /? to the square of terms 
a(p) = (Pn,m)n,mea>- Then cr maps R to Q** in an order preserving way, where g** 
is defined as follows: 
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DEFINITION 3.9. 2** is t n e set of all sequences t = (? ( J ) ! j e ( 0 of terms such that 

(i) tnm depends only on xtj with i < n, 
(ii) (Vn,w)(300n')(3O0w')f«'.«' = xn,m, 

1 <s, if there is a substitution <j> such that: 
(iii) ttj = Stj o (f> for all i, j G co. 
(iv) 4>n,m only depends on x,-j with i <n. 

LEMMA 3.10. R (or equivalently: P * Pm) adds a generic filter for Q**. 

Note that g,* looks somewhat similar to the Q* defined in the previous section. 
For <2* instead of g**> the Theorem is the main part of Theorem 1. In the rest 
of the paper, we will modify the constructions so that we actually end up with Q* 
instead of g**. 

PROOF (SKETCH). We already mentioned that a: R —> Q*» preserves <. Assume 
that G is /{-generic over V, and define 

G„* = {F G 0**: Op € G)a{p) < ?}. 

It is enough to show the following: 

For p G R there is a 5 ^ g , , cr(/?) such that for all F < 5 then there / , ... 
is an ̂ r <JJ p such that er(#) < F. 

Then the Lemma follows: First note that G„* does not contain incompatible el­
ements, since a is order preserving. Now assume that D c g»» is dense, and 
(towards a contradiction) that /? forces that (?** does not meet D. Then pick some 
F < s in Z) and some q as above, contradiction. 

To show (3.3), we define s G (2*» via the substitution <j> witnessing s < a(p), 
defined as follows: For each n, let (</>n,m)meco enumerate (with infinite repetitions) 
the constant term 0 and all variables xtj with i <n. So 4> maps xnm to the term 4>n,m • 

Now pick any F that is stronger than s, witnessed by some substitution y/. Note 
that (j> o y/ satisfies the requirements of Lemma 3.8. So there is a q' G R such that 
ff(q') = cf> o y/. Then p 1 q' is as required. H 

In the rest of the paper, we will modify the constructions of this section in such a 
way that we end up with g» instead of 2**- It turns out that this does not require 
any new concepts, just a more awkward notation. 

§4. The NNR iteration. In the rest of the paper, 6 always denotes a countable 
limit ordinal. 

First we define a a -closed preparatory forcing P, which gives us for every limit 
a G oi\ a subset of a of order type co and some simple coding sequences. 

DEFINITION 4.1. p G P if for some ht(/>) <a>\, p consists of sequences 

and fs,„,m,k for S < ht(p), m,n,k G co, 

such that 

• each v^„ m is a cofinal, unbounded subset of 8 of order type co. 
• m\ 7̂  m2 implies that vs,„,mi and vs,n,m2

 a r e disjoint. 
• js,n,m is an increasing function from co to co. 
• fs,n,m,k is a surjective function from 2^Snm^-Jii"m^k+^~^ to 2. 

P is ordered by extension. 
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S + m 

d+w w d+w-2 

6+co 

no 
(c) 

FIGURE 4. (a) rjn coheres with r\n-\(8 + m) above ko = 2. vs,„-i,m 

is indicated by the gray area, js,n-i,m corresponds to the partition 
of this area, fs,n-i,m,k calculates gs,n-i,m,k- (t>) There are condi­
tions which determine the gray values, but these conditions are 
not dense, (c) No condition can determine all gray values, (d) A 
typical condition in P * Py. The gray area indicates the domain, 
all the values are "constants". 

LEMMA 4.2. P is a-closed, and forces that 2N° = Ni. 
PROOF. In the .P-extension V define As by / G As iff 8+21 G vs+lo,o,o- By a simple 

density argument, {As: 8 < co\} contains all old reals and therefore all reals. H 
Fix 8,n,m,k. Given vs,n-\,m, js,n-i,m and fs,n-i,m,k, w e define the function 

gs,n-i,m,k: 2̂  —> {0,1} the following way, cf. Figure 4(a): 
Fix rj„ G 2s. For i G co, let & be the *'-th element of vS,n-l,m-

Set bt = n„(h). 
Sob = (bi)ie<0 € 2m. Look at b \ [js,„-\,m{k),js,n-\,m{k + 1) - !]• This is a 
0-1-sequence of appropriate length, so we can apply fs,n-\,m,k- We call the result 
gs.n-i.m.kiln)- To summarize: Let £• be the i-th element ofvs,„-i,m. Then we define 

gS,n — l,m,k fa) = fs ,n — \,m,k 

We will be interested in sequences {rjn)ne<o that cohere with respect to gs,n,m,k- We 
again refer to Figure 4(a): 

DEFINITION 4.3. Let r\n-\ and rj„ be partial functions from co\ to 2, S + m e 
dom(>/„_i), 8 C domfaj, k0 G co. We say that //„_i and n„ cohere at<5 + m above 
ko,\irjn-\{8 + m) - gs,„-i,mjc(ti„) forallfc >k0. We say that^„_i and rj„ cohere at 
8 + m, if they cohere above some ko. Abusing notation, we also say that fjn coheres 
with//„_i(<5 + m). 

Let G be ̂ -generic over V, and define in V[G] the forcing notion QQ: 

DEFINITION 4.4. p e g0 iff/? G 2ht(/,) for some ht(/?) < coi. go is ordered by 
extension. 

So go is CT-closed and adds the generic rj0 G 2mi. Assume that n > 1, P * P„ = 
P *Qo*-*Qn-u and Q„_i adds the generic sequence r\n-\ G 2mi. Let G * G„ be 
P * iVgeneric over V. In F[G * G„], we define g„ the following way: 
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DEFINITION 4.5. p e Q„ iff/? e 2ht(/ , ) for some limit ordinal ht(p) < a>\ and nn-\ 
and p cohere everywhere, i.e., at all<5 + m < hi(p) + co. Q„ is ordered by extension. 

NOTATION 4.6. We denote the P-generic filter by G, we set P * P„ = P * go *•• • * 
Qn-i, with generic filter G * Gn. Since P is proper, the countable support limit of 
P * Pn is the same as P * Pm, where Pro is the P-name for the countable support 
limit of the P„. The generic filter of P * Pm is denoted by G * Gm; and G(«) is the 
2„-generic filter (a P * P„+i-name, or equivalently a P * P„-name for a g„-name). 

LEMMA 4.7. The following is forced by P * P„: 

(i) Conditions can be finitely modified: If q G Qn, q' e 2d o m^ ' and q'{a) = q(a) 
for all but finitely many a e dom(g), then q' € Q„. 

(ii) If p € Qn andp > ht(/?) is a limit ordinal, then there is aq < p with ht(#) = yS. 
In particular, Q„ adds the generic object rj„ — \jG(n) G 2mi (which in turn 
determines the generic filter G{n)). 

(iii) Qn is separative (and in particular nontrivial), and not a-closedfor n > 1. 

PROOF, (i) is trivial. 
(ii) Let (Si,mj)iem enumerate all pairs (S,m) such that ht(/>) < 5 < ft and 

m e co. Define an increasing sequence pt of partial functions from /? to {0,1}: 
Set /?o = P- For i > 0, assume that dom(/?,-_i) = ht(/>) U |J;<,- vsh„-i,mj. Then 

vs^n-hm, H dom(/?,-_i) is finite: 

• If y < i and 5j — Si, then m7- ^ w, and v^,„_im, and v^,„_i>m/ are disjoint. 
• If j < i and<5, ^ 8t, then vAi„_i>m; n v^,„_i,m; are finite (since v^,„_i,w is a 

cofinal subset of 3 of order type co). 
• For the same reason, v .̂,,n-i,m, n ht(/>) is finite. 

Therefore we can extend /?,_] to some pt by adding values at v̂ .>n,m,. \ dom(/?,) that 
cohere with n„-\(Si +»!,•). (Recall that fsl,n-\,mi.k is onto.) Set p^ = {jpn, and fill 
in arbitrary values (e.g., 0) at /? \ dom(pm). This gives aq < p with ht(#) = /?. 

(iii) follows from (i) and (ii). H 

Remark 4.8. For this proof, as well as for most of the following, the preparatory 
forcing P is not necessary: The definition of Q„ works for any reasonably defined 
sequences v, j , f. Only in Section 6 we need that these sequences are generic. 
(Guessing with, e.g., a <C>-sequence is not enough, as discussed in Section 7.) 

LEMMA 4.9. (n„)nem is determined by G and (n„(m))„rmew. In particular, P * Pm 

adds a new real. 

Of course, we do not use any particular property of the countable support limit 
here. More generally, we get: 

Assume V is an extension of V that contains some G and a sequence (G(n))„em 

such that G is P-generic over V and G(n) is g„-generic over V[G *G„], Fix 8 < co\, 
no £ co and f:co^(o and set 

X = (nn{c*))n>n0,S+f(n)<a<S+co-

Then (G„)n&m is in V[G, x]. 
See Figure 4(c). 
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PROOF. By induction on 1 < h < no, each nn{a) is determined for n > «o — h, 
3 + co-h <a<3 + co-(h + l). By induction on limit ordinals 3 + co • «o <S' <co\, 
each n„(a) is determined for S + co • no < a < S'. H 

Remark 4.10. For all no e co and f:co—>co, there are conditions in P * Pm that 
determine all n„(m) for n < no or m < / ( « ) , cf. Figure 4(b). (The reason is that 
P * P„0 does not add new reals, as we will see in the next lemma, and that each 
Qn-condition can be modified at finitely many places.) However, these conditions 
are not dense. (For exactly the same reason: There is a condition po stating that 
(>7n(0))n€co codes (n„ \ co)n€(0, via a simple injection from co x co to co. Then 
according to the last Lemma, no p' < po can determine all «„(0).) 

LEMMA 4.11. P * P„ forces that Qn is proper and does not add a new co-sequence 
of ordinals. 

PROOF. Work in V = V[G * G„] and fix some large regular cardinal /*. 
Let N* ~< Hv (x*) be a countable elementary submodel containing G, nn-\ and 

Po G Qn. Set 3* = N* n co\. Let (D,-),eco list all dense subsets of Qn that are in N*, 
and assume Do = Qn- It is enough to show the following: 

There is a q < po with h.i{q) =3* such that q is stronger than some /. 1 -. 
Pi e A n N* for every i eco. 

Then q is in particular 7V*-generic, which shows that Q„ is proper. And if/ € N* is 
a name for a function from co to the ordinals, then the value of / ( « ) is determined 
in the dense set £>,(„) for some i (n) e co an therefore by q. This shows that no new / 
is added by Q„. 

So let us prove 4.1. Pick (in V) a sequence {Ni)iem and a large, regular x G -W* 
such that: 

• #/ e W*. 
• Nj ~< H(x) is countable. 
• JVb contains «„_i and />o, iV,-+i contains iV,- and D,+i. 

Set A = M- n (oi. So sup,eco(A) = «J*. 
Fix (in V) any w* 6 Qn of heights*. In particular n* coheres with nn-\ {S* + m) 

for all m. Set 

Ui = {a e v^.,n_i,m: w < i',yff, < a < pi+\}. 

Each M, is finite. We will construct q such that q D w* |" «,- for all / > 1. This 
guarantees that q coheres with nn-\ {S* + m) for all m & co. 

Assume that pt £ Nt n Z),- is already defined. We extend it to pi+\ e Ni+\ n Z)!+i: 
The finite sequence w* \ m+\ is in iV,-+i, so we can7 (in Ni+\) extend />,• first to some 
p' D n* \ ui+\ in Qn. Then extend p' to ^,+i e A+i n iV,-+i. 

Set r̂ = Uigco/7'- Then ^ is in Q„: We already know that q coheres with 
nn-\(S* 4- m). For a < 3*, let i be such that a < fit. Then q extends pt+\ which 
coheres with n„ _ i (a + m). H 

As an immediate consequence we get the following fact, illustrated in Figure 4(d): 

by using 4.7(i,ii). 

Sh:905



64 JAKOB KELLNER AND SAHARON SHELAH 

COROLLARY 4.12. The conditions {p,po, • • • ,pn-\) of the following form are dense 
inP*P„: ht(p) = 8+co-(n—l)forsome8,andin Vthere is a sequence (p'0,..., p'n_\) 
such that p'j G 2{5+cu''"_1~'' and pi is the standard name8 for p\. 

§5. A dense subset. We will now use the notions of variable, term and substitution 
as defined in Definition 2.4. The set of variables we use is {x„,m: n,m G co}. 

Assume that p is a sequence of terms (pn,a)neio,a<s- lnV[G], p can be interpreted 
as a promise that the generic sequence (n„)»ea is compatible with p, i.e., that there 
is an assignment a such that pna o a — n„(a) for all n G co, a < 8. Of course such 
a promise can be inconsistent, for example if 8 = co and each pnm is (the constant 
term) 0. 

DEFINITION 5.1. R = \Js<m Rg+a- A condition p in Rs+U) consists of p and p 
such that: 

• p G P, ht(p) = 8 + 1 (or equivalently 8 + co). 
• P = \Pn,a)nE(o,a<d+CD' 

• Pn,d+m isthetermx„,m. 
• If a < 8, then p„t0l is a term that only depends on x^k with I < n. 
• For every m,n G co and a < 8 limit there is a ko < co such that for all 

assignments a, we get that (pn+i,c ° a)c<a coheres with pn,a+m ° a above &o-

We interpret terms are functions, not syntactical objects, so we identify two 
elements p, q of Rg+Cl} if they satisfy p = q and p„,a =* qn.a for all n,a; see 
Definition 2.4. 

Elements of R can be interpreted as statements about the generic sequence: 

DEFINITION 5.2. The canonical assignment a | assigns the value n„ (8 + m) to the 
variable xn>m. (So ac

g is a P * Pro-name.) We also use ac
5 as a P * i\,-name for the 

partial assignment that maps n;(8 + m) to the variable x/m for all / < n. 

DEFINITION 5.3. Let i: R^> P *Pat map p G Rg+m to (p, q{0), q{l),...) defined 
as follows: For each n, q(n) is the P * P„-name for the sequence {pn,a ° ac

s)a<s-

LEMMA 5.4. (i) i(p) actually is a condition in P * Pm. 
(ii) i(p) is the truth value {in ro(P * Pa,) of the following statement: p G G, and p 

is compatible with the generic sequence fj. 
(iii) In particular, this truth value is positive. Moreover, the truth value remains 

positive if we additionally assign specific values for finitely many of the variables 

Here, "p is compatible with the generic sequence fj" means: There is some 
assignment a such that pna oa = n„(a) for all a < 8 + co. Since pn,s+m = Xn.m, the 
only assignment that can ever witness compatibility is the canonical assignment ac

s. 
More formally, and slightly stronger, we can formulate the last item as: Given 

/ : co —> co and (^n,;)«eco,/</(«) w i* n °n,i e {0,1}, the truth value of the following 
statement is non-zero: 

8 With "standard name for x" (x in the ground model) we mean the (canonical) name x that evaluates 
to x for all generic filters. 
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• peG, 
• Pn.a ° &l = n„(a) for all a < S + co, 
• and additionally tj„(S + i) (or equivalently x„,• o a | ) is b„, for all n e co and 

i < / ( « ) . 
PROOF, (i) it follows from the definition of R that each q{n) is a valid condition 

in g„. (ii) The canonical assignment is the only assignment that can possibly 
witness compatibility, (iii) Given / and b„j as above, we can just extend q(n) to 
be the name of some condition q' in Q„ of height S + co (instead of just 8) such that 
q'{S + i) = bnii for all i < / ( « ) . For this we need, as usual, just Lemma 4.7(i,ii). H 

Remark 5.5. • It is easy to see (similarly to 4.7) that Rs+m is nonempty 
for all 8. We will only prove this (implicitly) for "stationary many" 8, in 
Lemma 5.8: a"R is dense in P * Pa,-

• In view of this Lemma, the proof of (iii) can be compared to Remark 4.10: 
While we cannot densely determine the gray area of Figure 4(b), we can densely 
determine such an area shifted up to some 8. 

If a < S, then pna can be calculated from finitely many pij+m with I < n (since 
pn,a is a term using variables x/m, I < m, and pis+m = */,«)• We can also calculate 
values in the other direction: 

LEMMA 5.6. (i) pna is determined by finitely many x^ with I <n. 
(ii) x„,m can be determined by finitely many p\k with I > n, k G co. 

More generally, we get (cf. Figure 5(a)): If p e Rs+m and ft < 3 (not necessary a 
limit), then every pna with fi + co < a <S + co can be determined by finitely many 
PH with / > n,p < £ < P + co. More precisely: There is a k G co and a sequence 
ih, Ci )i<k such that /,- > n, p < Ci < P + co and for all assignments a, b the following 
holds: If pn,a o a / pn<a o b, then (pihCi o a)i<k ^ {pUi o b)i<k. 

PROOF. By induction on a: Assume a = P + co + m. Then (pn+i,c)c<p+a> coheres 
with p„t0l above some ko, so we can use fp+co,n,m to get pna. Now assume that the 
statement is true for all a < v, v limit. If a = v+m, then /?„„ again is determined by 
the values of certain p^ with I > n,p < C < v, each of which in turn is determined 
(by induction) by finitely many pi>^> with p < £' < P + co. -\ 

We can identify R with a subset of P * Pm: 

LEMMA 5.7. i: R —> P * Pm is injective. 

PROOF. Fix p e Rd+co,q € Rd>+m, P ¥" Q- If P ¥" tf> then i{q) ^ i(p). So assume 
that p = q (in particular S' = S). Since p / q, there is an (n,a) and a (finite, 
partial) assignment a such that #„,<, o a ^ /7„>0 o a. According to 5.4(iii), z'(#) is 
compatible with a. Let r < i(q) force that the generic sequences are compatible 
with a. Then r forces that i(p) is not in the generic filter, since it determines a 
different value for //„(«) than i(q). H 

So we can interpret R as a subset of P*Pm; and we usually do so, that is, we will 
may just write p instead of i(p) and R instead of i"R, as in the following: 

LEMMA 5.8. R C P * Pm is dense. 

The proof is a bit cumbersome, but really just a modification of the proof of 
Lemma 4.11. 
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d'+co 

5' 

S+S'+S 

d+S' 

= / » V 

-Id 
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• 

S+co 

6 

• 
(b) 

FIGURE 5. Elements of R. (a) Dependence in both directions, 
according to Lemma 5.6. (b) Conditions can be stacked to get 
stronger conditions. If on the other hand q is stronger than p, 
then it can be split accordingly. 

PROOF. Fix (p, p(0),p(l),...) e P * Pm, and a countable N* -< H(/*) contain­
ing (p,p(0),p(l),...). SetS* = N* Dcoi. It is enough to show: 

There is a q e Rs*+co such that i(q) < (p,p(0),p(l),...). (5.1) 

The P * P„ -condition (p,p(0),...,p(n)) will be denoted by p \ n. For q € R and 
n e co, we set 

q{n) = {qn,a)a«f+<o and q \ n := (q,q(0),q(l),... ,q{n - 1)). 

Just as q can be interpreted as a condition mP *Pm'xm. canonical way (cf. 5.4), we 
can interpret q \ n as a condition in P * P„. In particular, "q \ n forces y>" means 
the following: 

If G * G„ is P * P„-generic over V, if G contains q and if t]o,.. •, rjn-i are 
compatible with (qi,a)i<n,a<s*+(o, then ip holds in F[G * G„]. 

Let us call an antichain E in P * Pn nice, if every condition e in E has the form 
of Corollary 4.12. These conditions are dense, so we get: 

For all n e co, X e F and all j such that P * P„ forces that t e l 
there is a nice maximal antichain 5 deciding j . I.e., for each b £ B (5.2) 
there is an xb e X such that b forces T = x*. 

The induction hypothesis. We will construct q in g of height S* + co and, by 
induction on n > 0, the condition #(«)—i.e., the terms (qn,a)a<S' depending on 
variables Xij with i < n—such that the following holds: 

(i) q \ (n + 1) satisfies the conditions on elements of Rg*+m-
(ii) q I" (« + 1) is P * Pn+\ -generic over JV*. 
(iii) q \ (n + 1) is stronger than (j?, ̂ ( 0 ) , . . . , p{n)). 
(iv) # [" (n + 1) decides every nice maximal antichain E of P * P„+i in TV* by finite 

case distinction. 

Sh:905



A SACKS REAL OUT OF NOWHERE 67 

More formally: Item (i) means 
(i)' for all m £ co and a <8* limit there is a ko < co such that for all assignments 

a, we have that {q„£ o a)(<a coheres with q„-i,a+m ° a above ko. 
And item (iv) means: For every nice maximal antichain E of P * P„+\ in N* there 
is an lE e co, a sequence (eE,..., e/JLi) of elements of E n A7'* and a sequence 
(fjf,..., tfE_x) of terms using only variables xtj with i < n + 1 such that # \ (n + l) 
forces the following: 
(iv)' There is exactly one k <lE such that tE o ac

6, = 1 (cf. 5.2), and eE e G * Gn 

for this /c. 
This implies the following (where we apply Lemma 5.4(iii)): 

(v) For all partial assignments b of the (finitely many) variables used in any of the 
tE there is exactly one k <lE such that tE o b = 1. 

Note that (iii) (for all n) implies (5.1). 
Step 1: Finding q. First extend p to J5' such that ht(j3') = 8* and such that for 

every dense subset D of P in N* there is an d e D f~) N* weaker that p' (this is 
possible since P is CT-closed). In particular, p' is P-generic over N*, and if E C P 
is a maximal antichain in N*, then p' decides the e € E that will be in the generic 
filter (and e e N*).9 

We further extend p' to q by adding some arbitrary value at 3*. So ht(^) = 8* +1 
(or equivalently 8* + co). 

Step 2: Finding q(0). This case, n = 1, is simple since go is <J-closed. 
We have to define the (constant) terms (#o,<*)a«5*- Let (D/),6co enumerate all 

P-names in N* for open dense subsets of go. such that Do = go 
We now define r„ and sn for n € co such that: 

(a) rn is a P-name in Af*, forced by p to be a go condition and element of Dn. 
(b) s„ is a 0-1-sequence in N*, forced by q to be r„. 
(c) rB+i is forced to extend sn. 

Set ro = p(0). This satisfies (a). Given an rn satisfying (a), note that P does 
not add new countable sequences of ordinals. So every condition in fif I*', in 
particular rn, already exists in the ground model N*. So r„ is decided by a maximal 
antichain, and therefore by q, to be some sequence s„ € N*; satisfying (b). Also, 
since s„ e 2<COt (~) N*, we can find in Â * a P-name rn+\ for an element of Dn+\ 
extending s„. 

Fix a < 8*, and set qo,a to be the term with constant value s„(a) (for sufficiently 
large n). This defines #(0). So q forces that that #(0) is go-generic over N*[G], i.e., 
(q, q{0)) is P * Pi-generic over Â * and forces that (p, p{0)) e G * Gi. So (i)-(iii) 
are satisfied. Now fix some nice, maximal antichain E a P *P\ such that E e N*. 
Every e € E is of the form (e, e(0)) for a 0-1-sequence e(0) in F. If e e A7'*, then e 
ande(0) have height less than8*. In particular, every e e E C\N* is either extended 

9So p' decides "everything" about N * [G]. Of course, N * [G] is not an element of V (since it contains, 
e.g., G). But every formula about N*[G] (with parameters in N*) is already decided in V "modulo/*"', 
since every such formula is decided by an antichain. We can find such a strong p' since P is a -complete, 
and we can do the same for P * P\. However, for n > \,Qn is not a -complete, and we will not be able 
to decide everything with the generic condition q(n)\ but we will still be able to decide "modulo finite 
case distinction". 
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by (q,q(0)) or is incompatible with it. Since E € N* is a maximal antichain, and 
since {q, q(0)) is P * Pi-generic over iV*, we know that there has to be exactly one 
e* G E compatible with (q,q(0)), and e* G N*. In other words, (q, q(0)) decides 
the element e* G E n N* that is going to be in G * G\. So to satisfy (iv)', we can set 
lE = l,tg = l,eg = e*. 

Step 3: The successor step. Now things get a bit more complicated, since Qn is 
not a -closed any more. We assume that the induction hypothesis (i)-(iv) holds for 
n — 1. So we already have q \ n want to find qn,a for 0 < a < 8*. As previously, we 
let {Di)i€m enumerate all P * P„-names in N* for open dense subsets of Q„ (and we 
setDo = &,). 

First we fix (in V) a term-sequence (f*)a6ym Vl, n_lm such that: 
• If a G Vd*,n-\,m> then t* only depends on x„_i,m. 
• For all m e co, the sequence t* coheres with qn-\fr+m (which is just x„-i,m) 

above some ko-
• For every fi < 8*, the partial sequence t* f /? uses only finitely many variables. 

We can find such a sequence since the ff,n~i,mjc defined by q are surjective and the 
vg',n-i,m are disjoint (for different m) cofinal subsets of 8* of order type co. 

We will construct in V by induction on / G co 
• a finite set vt of variables xij with I < n, 
• for every (partial) assignment a of v, a P * P„-name rf in iV*, 
• a finite set wt of variables xij with I < n, 
• for every assignment b of Wj a 0-1-sequence sf in iV*, 
• an ordinal/?, <8*, 

such that the following holds: 
(a) vi+i DWJ Dvt. 
(b) If a is an assignment of vt, then rf is a name (in N*) for an element of D\. 
(c) If b is an assignment of wt and a its restriction to «,-, then (9 f n)&b forces10 

?* = ra 

Set wo = 0. So there is only one assignment, the empty one, of WQ. We set 
ro — P(n)-U Assume that for some 1 > Owe already have wt, and rf for all 
assignments a of to,. Fix a. Note that P * P„ does not add any new countable 
sequences of ordinals, so according to (5.2) rf is decided by a nice maximal antichain 
E of P * P„ in N*. Using item (iv) of the induction hypothesis, we choose the 
sequences (e£,... ,efE) of and {t§, ...,tfE). Let v' be the (finite) set of variables 
used in any of the tf. Set vf = «;,• U «'. Let b be an assignment of vf extending a. 
According to (v), there is a unique k <lE such that t% o fc = 1. We call this element 
k(b). The element e^(i) determines rf to be a specific 0-1-sequence of V, and we 

10Forx e P*Pn, x&b is the truth value (in ro(P*jPB)) of the following statement: x e G*G„, and 
6 is compatible with T/0 »/„ _ 1, i.e., for every x^ 6 if;, we have t\i f+k = x« ° * • For this notation 
we can use x = p \ n, and also x = q \ n, since we can canonically interpret q \ n as element of P * P„. 

1' More formally, we should set 

r0 = f/>(») if/>M e e«. 
0 10 otherwise, 

since p{n) is forced to be in Q„ by p \ n, not by the empty condition. 
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call this sequence sf. Note that s* e N*. We can do this for all assignments a 
of wt, and set vt — \Jvf. 

We still have to construct /?,•, ti/,+i and rf+1. We pick m N* a. P * P„-name N 
for a countable elementary submodel of HV\.G*G«\(^) containing Di+\ and all the 
(finitely many) sf. Since N D coi is an P * P„-name for an ordinal, there are only 
finitely many possibilities modulo q \ n, and we can choose /?; e N* Dcoi larger 
than every possibility for N D a>i. 

The terms ?* for a < (5,- use only a finite set it/ of variables (of the form x„-i,m). 
Set Wj+\ — Vi U w'. Fix an assignment a of u>,-+i and let 6 be the restriction to t>,-. 
Fix the index set 

/ = {<*<#: (3j < i)a € vs-.n-ij}-

The finite set I is in TV*. Set 

x = (?* o b) \ I. 

This is a finite partial function in N* from 7 to {0,1}. We define the P * P„-name 
rf+i in N* by the following construction in N*[& * G„\. (Let d be some fixed 
element of A+i ) 

• Assume that /?' = JV n a>i < # . (Otherwise set rf+1 = d.) 
• Assume that sf is a Q„-condition. (Otherwise set rf+l = d.) 
• InN, extendi* to some Q„-conditioncontainingx \ (/?'\ht(.sf)). (Asusual, 

use 4.7 inside N.) 
• Again in JV, pick some condition rf+1 in A+i extending ^'. In particular, r,-+i 

has height less than yS,-. 
This ends the construction. We can summarize all the possibilities of if (a) into 

the term q„ta (depending on the variables in vi). This defines q{n). 
It remains to be shown that q \ n + 1 satisfies the induction hypothesis. 
For (i)', first assume a < S*. Let D, be the set of conditions of length > a. Let 

<}n-i,a+m be determined by the finite set v of variables, and set v' = v U v,. Fix 
an assignment b of v'. In particular b determines <jr„_i,Q+m as well as q(n) \ a, 
since q(n) "extends" sf € Z), (where b' is the restriction of b to Vj). Since q \ n 
is compatible with the finite assignment b, we know that q{n) o b \ a coheres with 
<ln-i,a+m ° b above some k^. So we can set ko to be the maximum of all the k$ for 
all assignments b oft;'. 

Now assume a = 8* and m e co. Pick y e vs*,n-\,m \ fim- Look at the term qn<y. 
According to the construction, 

qn,yob = sf'(y)ob = t*ob 

for all assignments b, and therefore q{n) coheres with x„_i,m. 
Let us now show (iv). Let E e N* be a nice, maximal antichain of P * Pn+i. Let 

D be the P * Pn-naxas for the following open dense subset of Qn 

D = {q< e(n): e &E,e f n€G* G„}. 

We know that D appears as some !>,• in the list of dense sets in N*. Fixing an 
assignment a oft;,, we get sf in N* such that sf € Dt[G * G„]. We set 

A" = {e \n:e€E,e{n)Cs?}. 

Sh:905



70 JAKOB KELLNER AND SAHARON SHELAH 

This is a nice P * iVantichain and maximal under (q \ n)&a. We can extend it to 
a nice maximal antichain B". By induction hypothesis, we can determine modulo 
q \ n the element b of Ba chosen by G * Gn filter by finite case distinction. Then 
b^sf is the element of E chosen by G * Gn+\. Combining the finite case distinction 
for the sf with the finite case distinctions for the according B" gives the desired 
result. H 

Since R is a subset of P * Pm, it is also a partial order (and since it is dense, it is 
forcing equivalent to P * Pm). We now show that we can interpret the order on R 
in a different way, using substitutions of terms: 

DEFINITION 5.9. Let p G Rs+a, and q e Rs'+a- We call q term-stronger than 
p, if either p = q or if the following holds: q < p (in particular 3' > 3), and 
Pn.a °<f> =* qn,a for all a < 3 and for the substitution <p defined by 0„m = qn,s+m-

(Again, recall that we interpret terms as functions, so we use =* as defined in 2.4.) 

LEMMA 5.10. The condition q e Ris term-stronger than p€Riffi(q)<i(p). 

PROOF. Assume that q is not term-stronger than p. If ^ is not stronger than p 
in P, then i(q) cannot be stronger than i(p). So assume q < p. According to the 
definition of term-stronger, qia =* pia o <j> fails for some /, a. These terms depend 
on finitely many variables x„<m, and there is a partial assignment a of these variables 
such that qia o a ^ pia o <j> o a. According to Lemma 5.4(hi), we can force the 
generic sequence to be compatible with q and a. Then i(q) is in the generic filter, 
but i(p) is not, contradicting i{q) < i(q). H 

If q' is a condition, then (q'njn)n,m€a> can be interpreted as substitution: For 
p e Rs+a, and q' e Rs'+m, we can stack q' on top of p—overlapping at [3,3 + co[— 
to get a condition q e Rs+s'+m stronger than p,cf. Figure 5(b). We writer = p*)q'. 

More precisely: 

DEFINITION 5.11. For p e Rs+m and q' € Rs>+m, we define the condition q = p *} 
q' in Rs+s>+a) as follows 

• q\(S + l)=p. 
• q(a) for a > 3 + co is defined the following way: 

vj+a,„,m = {<* + /?:/* 6 v*:„,m}, 
iq - iq' 
ft _ fl' 

• Qn/d+a = Qn,a-

• If a. <3, then 
Qn,a — Pn,a ° 4* for ̂ he substitution <j> defined by (/>nm — q'nm. 

Fact 5.12. (i) If p G Rs+m and q' G Rs'+w> then p*\q' is stronger than p. 
(ii) If q G Rs+s'+a, is stronger than p G Rs+m, then we can "split" q into p G R$+a> 

and q' e Rs'+m such that q = p^q'. 

Remarks 5.13. • Of course we generally cannot split a condition at every level: 
If q G Rs'i+oj and 3' < 3", then we generally do not get q = p 1 q' for some 
p G Rs>+W. 

• The Fact shows that for all q G R there are only finitely many p > q, see 
Figure 6(a). 
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FIGURE 6. (a) \fq is stronger than p\ aadp2, then ̂ 2,™ is constant 
for all m. (The gray area indicates constant terms; the P parts are 
not displayed.) (b) If p\,pi are compatible (i.e., weaker than 
some q), they do not have to be comparable. 

• Note that two compatible conditions generally are not comparable, see Fig­
ure 6(b). (Otherwise, according to the previous item, R would be isomorphic 
to a tree of height co and therefore collapse the continuum.) 

• The situation is similar to g* defined in Section 2: The conditions that are 
stronger than some p € R are exactly those with another condition q' G R 
stacked on top. 

§6. Sacks reals as squares of terms again. We will now investigate the relation of 
R and g». Given a p G R, we can restrict p to an co x co-matrix of terms: 

DEFINITION 6.1. For p e R, set o(p) — (pn,m)n,meco-

Note that 

a(p^q,) = a(p)oa(q'). (6.1) 

So stacking q' on top of p translates to applying c{q') (as substitution) to a{p). 
Generally a(p) will not be element of g», and for a t G g* there generally is 

no p e R such that a(p) = t. The reason is that some obvious conditions on the 
term-matrix are incomparable: In Q*, we require 

ttj only depends on x„,m such that [n,m) <(i,j), 
whereas every a{p) obviously satisfies 

Pij only depends on x„,m such that n < i. 
We will now define a dense subset R' C R such that a"R' C Q*, and such that 

R' adds a g*-generic object. This proves the first part of Theorem 1, since g» is 
forcing equivalent to Sacks forcing and R' is (as a dense subset) equivalent to R, 
which in turn is dense in P * Pm. So P * Pa adds a Sacks real. 

LEMMA 6.2. (i) There isanv (zRw-w+w 
such thatcr(rA) e g* ando(p 1 rA) G g* 

for all p G R. 
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(ii) There is an rm ' £ Ra.^+a, such that for all <j> G Q* there is an r € R^.a+a, with 
a{rmvit)o<j> = a{r). 

We postpone the proof to the end of the section. We set 

R' = {p*\rA:peR}. 

This is a dense subset of R, since p 1 rA < p for all p. As a consequence of the 
previous Lemma, we get: 

COROLLARY 6.3. (a) If I e R' andp <R I, thena{p 1 rA) <Q, a (I). 
(b) If p € R! then there is ans< a{p) such that for allt <s then there isanq < p 

in R' such that a (q) < t. 
(c) The forcing notion R' adds a generic for Q*. So P * Pm adds a Sacks real. 

PROOF OF THE COROLLARY, (a) Assume that p = I *) q'. Then a{p *\ rA) — 
a {I) o a{q' *1 rA); and a(q' 1 rA) is an element of g» and therefore witnesses that 
a{p *1 rA) is stronger than a {I). 

(b) Set 5 = a(p 1 rmult 1 rA), and let <j> witnesses t < s, i.e., <f> € g» and 

i = So(j) = a{p) o <r(rmult) o CT(rA) o <f>. 

a{rA) o (j> £ g*, so by Lemma 6.2(H), there is an r e R such that 

a(r)=a(rmult)oa(rA)oci>, so 

<r(p 1 r) = <T(/?) oo-(r) =so(f) = t. 

Set ^ = /? 1 A- 1 rA. Then q e R' and q < p. Furthermore, 

(7(g) = CT(p 1 r) o a{rA) = t o <r(rA) < F. 

(c) Let G' be 7?'-generic over V. We show that the following set is <2*-generic filter 
over V: 

G*={r£Q*:(3qeG')o-(q)<r} (6.2) 

First note that G* does not contain incompatible elements: Assume that r\ and ?i 
are in G*. Then there are l\,h e G' such that er(/,) < r,-. Since G' is a filter, there 
is some p < l\, h in G'. The set 

{p'*lrA: p' <p} 

is dense below p, so there is some q = p' 1 rA in G'. According to (a), the # satisfies 
ff(?)<ff(/i),ff(/2). 

Now assume that Z) C g , is dense, and (towards a contradiction) that p forces 
that G* does not meet D. Then pick s as in (b), pick t < s in D and pick # again as 
in (b). So q forces that a(p) < t is in G», a contradiction. So we know that (6.2) is 
generic. H 

It remains to prove Lemma 6.2. All these facts are easy to see, but a bit 
cumbersome to write down formally. So the reader might be better off draw­
ing a picture than reading the proof. Fix an injective function from co<m to co, 
(fli,... ,ai) H-> r a i , . . . ,ap, with coinfinite range. 
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The construction of rA. All we need is a rA e Rm-m+w satisfying the following: 

rA
m only depends on variables xij such that i + j < n. (6.3) 

Then, if we stack rA on top of any p e Rs+C0, the resulting q = p 1 rA will 
satisfy (6.3) as well. Also, every element q of R satisfies that each x, j depends on 
finitely many qn,m for n, m e co, according to Lemma 5.6(h). Therefore a{p *l rA) 
will satisfy all requirements for an element of Q*, which proves Lemma 6.2(i). 

We now construct rA. 

• When defining rA, only the v part is nontrivial; we set each j a ^ m : co —• co and 
fa,n,m,k: 2 —• 2 to be the identity function for all a, n, m, k.u 

• We deal with one variable at a time. Assume that we deal with x„0,mo. 
• Set vQ).<B-,„0,Wo = {co-k + r « 0 , wo"1: fc > m0}. 

For a e Vco-co^mo, we set r A
+ l a = x„0,mo. 

• If « = no + / for some / > 1, if m = rao>«i>- • • -«/n with a0 = "o>«i = ^o> 
andiffc > mo-I, then set va-{k+\),n,m = {w -^ + rao, • • • ,<*i,p: j € co}, and 
for a G vco.(fc+1)j„im> we set r A

+ l a = x„0,mo. 
• We repeat this for all Xij. (Note that the va„,m defined for different m will be 

disjoint). 
• So far, whenever we have defined some v#„,m to contain a, we also guaranteed 

that rA
+1 Q and rA^+BI are the same variable. 

• We now set all rA
a that are undefined so far to be the constant term 0, and 

define every v^„,m that is undefined so far in a way such that every member 
a of vp,n,m satisfies rA

+x a = 0. (Here, we use that the coding function has 
coinfinite range.) 

It is easy to see that the object rA defines this way is element of R. Each rA
a is either 

an x„omo or 0. If rA
m = x„0>mo, then n > mo + «o- Given n, rA

m = 0 for infinitely 
many m. 

The construction of rmult. We will first show the following: 

LEMMA 6.4. If {pnm)nmeo} satisfies 

1. pnm is a term depending only on x, _,- with i <n, 
2. (Vn)(3°°m)p„,m = 0, 
3. (Vi',-/)(3

00n)(VM)(3wo.../Mfc > M)x{j is determined by pnmo,..., pnmk, 

then there is aq £ Ra-m+m such that a(q) = p. 

PROOF. The proof is very similar to the preceding construction. The reader might 
just consult Figure 3(c). 

Assume we have such a sequence p. We have to define q e Rm.m+0). We already 
know that qn<m = p„,m for n,m G co. 

We more or less repeat the construction above, to get all qna and all VyjMm, but 
only for /? > co + co, and we deal with vm,n,m later. Assume we are dealing with 

/»o.mo - W > n0 + 2: (VM) (3m0 ...m'k>M) 

x„0tmo is determined by pn,^,..., p„',m>k}. 

12This corresponds to the simpler version of P in Section 3. 
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According to assumption (3), 7„0>mo is infinite. 
For all a > co limit and all n, m, k we will set ja,n,m and fa,n,m,k to be the identity 

functions. 
We set 

ycO'0),no,mo {i -co + rn0, mo'1: / + m0 + 1 e I„0,mo}-

(So Vm-m^w n [/' • » , (i + 1) • co[ contains a singleton if / + wo + 1 G 7«0,mo, and is 
empty otherwise.) We set q„a+\,a = x„0,mo for all a € vffl.„,„„„,„; and "propagate the 
x„0imo diagonally down": If n = w0 + / for some/ > 1, if / > Oandz+m + / € /«0,mo, 
and if m = rao, a\,..., a/n such that ao = «o, «i = ^o, then set 

V(i+\)-w,n,m = 0' •co + rao,...,a,,p: j ecu}. 

We iterate this for all x„0 ;mo, and set all q„,a that have not been defined in this 
process to be the constant term 0. Also we set the v#„>m for /? > co that have not 
been defined yet to contain only a > co such that qn+\,a = 0. (Remember that the 
coding had coinfinite range.) 

So we have all q»,a and all v^n>m, 7>,„,m and //»,„,„,* for yff > co. 
We still have to define vm,n,m, jm,n<m and fco,n,m,k- For this, we use a simple 

book-keeping: At stage i, there are only finitely many pairs («, m) for which any 
of these objects are already partially defined. For all of these (n, m), we also have: 
Vm,n,m is defined up to height Mn<m, jm,n,m is defined up to some hnm such that 
ja>,n,m(h„,m - 1) = Af„,w - 1 fa>,n,m,k is defined for exactly the k < /z„,m. Let M be 
the maximum of all Mn>m for a given stage. 

The book-keeping gives us an (no, mo) and an (n, m) such that#„M+m = x„0>mo. By 
our construction, we know that x„0,mo can be determined by finitely many and arbi­
trary large qn+\,m>. Fix m'0,..., m\_x bigger than M such that qn+\,m'0, ••-, qn+i,m',_l 

determines x„0,„,„. Extend v„>m/ t o contain exactly {WQ, . . . , m^}, continue j m , n , m ' 
by setting jm,„,m> (h„,m) = Mn,m + / - 1 and define fm,n,m>,h„,„ so that it calculates 

Xno.mo-

At the end, again set the vro,„ m that have not been defined in this process to 
contain only m' such that qn+i,m' = 0. To be able to do this, we use at height co 
assumption (2). H 

We can now define rmult: We can take any condition in R satisfying 

• r^x only depends on xtj with i + j <n. 
• Every x,j with i + j < n, as well as the constant 0 term, occurs infinitely often 

in {r™$u.meco}. 

If we set p = rmult o cj> for some <$> e Q*, we get: 

• pn,m only depends on x;j- with i + j < n. (Due to (2.8).) So we satisfy (1). 
• For all n, infinitely many pnm are 0. So we satisfy (2). 
• xij is determined by (<t>i,,k,)iei- Fix anY n bigger than max(/,- + kj: i e / ) . 

Then x ; j is determined by finitely many pn<m (where we can pick the m's 
arbitrarily large). So we satisfy (3). 

So rmult o <j> satisfies all assumptions of the previous Lemma, and we get a q as 
desired. 
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§7. The quotient forcing. It might look tempting to assume O to construct the 
coding sequences v, j , f instead of using the preparatory forcing. (We just have 
to "guess" correctly sufficiently often for the proofs to work.) However, this is 
not possible: Otherwise, Sacks forcing would be equivalent to Pm (since Pw adds 
a Sacks real 5 which in turn determines the Pm -generic filter Gm). But Sacks reals 
are minimal, and the Qo generic rjo e 2roi is not in the ground model V. Therefore 
y\s\ = V[t]o], a contradiction to the fact that V[rjo\ does not add new reals. 

In particular, if we look at Pm in V[G], then PM does not add a Sacks real (over 
F[G]), just a Sacks real over V. 

So P * Pm adds a Sacks real J but is not equivalent to Sacks forcing, and s does 
not determine the P-generic object G. However, every new ©-sequence is already 
added by s: 

LEMMA 7.1. If G * (?<» is P * Pa-generic over V, and if r e V[G * Gm] is an 
co-sequence of ordinals, then r e V[s]. Here we set s = {f}n(m))n,meco, the Sacks real 
over V. 

PROOF. If q e G has height 5, then s together with q determines G„ up to height 
S for all n (just as in Lemma 4.9). So if N -< H(%) and q G G has height N n co\, 
then s together with q determines whether r e G * G<a for any r e R n N. 

Assume towards a contradiction that p € R forces that / is an co-sequence 
of ordinals not added by s. Choose an JV ^ H(x) containing p,f, and an N-
generic q < p. Each f{n) is decided by some maximal antichain A e N. But for 
each a e A n N, s together with q determines whether a is in G. In particular, 
f[G] e V[s]. H 

This proves the second part of Theorem 1: Since R forces that there is some Sacks 
real over V and since Sacks forcing is homogeneous, R can be factored as Sacks 
composed with some P'. Since the Sacks real already adds all new ©-sequences, P' 
isNNR. 
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