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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 1. March 2000 

TWO CONSISTENCY RESULTS ON SET MAPPINGS 

PETER KOMJATH AND SAHARON SHELAH 

Abstract. It is consistent that there is a set mapping from the four-tuples of co,, into the finite subsets 

with no free subsets of size t,, for some natural number t,,. For any n < co it is consistent that there is a set 

mapping from the pairs of wo.l into the finite subsets with no infinite free sets. For any n < wo it is consistent 

that there is a set mapping from the pairs of con into wo), with no uncountable free sets. 

In this paper we consider some problems on set mappings, that is, for our current 
purposes, functions of the type f: [K]k - [sj]<" for some natural number k and 
cardinals e, ,u, which satisfy f (x) n x = 0 for x C [sjk. A subset H of em is called 
free if f (x) n H = 0 holds for every x C [H]k . The most central question of 
this area of combinatorial set theory is that given k, A, and ,u how large free sets 
can be guaranteed. The investigation of the case k = 1 was started in the thirties 
by Paul Turan, who asked if there exists an infinite free set if ,u = O and em is the 
continuum. After G. Griinwald's affirmative answer ([4]) S. Ruziewicz found the 
right conjecture ([10]); if em > ,u then there is a free set of cardinal em (remember, 
k = 1 is assumed). Several cases were soon proved, for example S. Piccard solved 
the case when em is regular ([9]), but only in 1950 was the full conjecture established 
by Paul Erdos ([1]) with the assumption of GCH, and ten years later without this 
assumption, by A. Hajnal ([5]). In the fifties Erdos and Hajnal started the research 
on the case k > 1 following the observation of Kuratowski and Sierpin'ski (see [4]) 
that for set mappings on [K]k there always exists a free set of cardinal k + 1 if and 
only if i, > +ku 

In ZFC alone, Hajnal and Malte extended the Kuratowski-Sierpin'ski results by 
showing ([6]) that if k = 2 and < > /1+2 then there are arbitrarily large finite free 
sets, and Hajnal proved (see [3]) that a similar result holds for k = 3, fs > u+3. One 
of the problems emphasized in [3] is if the result can be extended to k = 4, s > j>U4. 

In Theorem 1 we show that it is not the case; for every natural number n there exists 
a natural number t,, such that for any given regular pu it is consistent that there is a 
set mapping f [:+1+2]4 + [i+nf]</ with no free sets of size tn. (We assume GCH in 
the ground model.) 

As for the existence of infinite free sets, a special case of a theorem of Erdos and 
Hajnal states that under CH if f [o02]2 _+ [c02]<w is a set mapping then there is an 
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334 PETER KOMJATH AND SAHARON SHELAH 

uncountable free set for f ([2]). Answering a question of [6] the first author proved 
that without CH even the existence of an infinite free set cannot be guaranteed [7]. 
Here we extend that result to arbitrary on,. Using this result, we answer another 
question of Hajnal and Maite, by showing that it is consistent that there exists a set 
mapping from the pairs of Co)2 into [On]1 with no uncountable free sets. 

Theorem 1 was proved by S. Shelah: Theorem 2 and Corollary 3 were subsequently 
proved by P. Komjaith. 

Notation and Definitions. We use the standard axiomatic set theory notation. 
Cardinals are identified with initial ordinals. If S is a set and em a cardinal, then 
[S] {X C S: KXI = ,<}, [Si]< = {X C S: KXI < ,<}, [S]<= {X C S 

KXI < <}. For a, b, c and r natural numbers, the Ramsey symbol, a > (b, c)' 
means that the following statement is true. Whenever the r-element subsets of an 
a-element set are colored with two colors, say 0 and 1, then either there exists a 
b-element subset with all its r-tuples colored 0 or there exists a c-element subset 
with all its r-tuples colored 1. The existence of an appropriate a for any given b, c, 
r is guaranteed by Ramsey's theorem [3]. 

Acknowledgment. The authors are grateful to the referee for several useful re- 
marks which improved the exposition considerably. 

To formulate the next result, set to = 5, t1 7, in general, t,+q is the least number 
such that t,2,1- (tn, 7)5. 

THEOREM 1 (GCH). Assume that n < co, M - o+ for some regular cardinal -C. 
Then it is consistent that GCH holds below tc, 2T = K: if n > 0, and there is a set 
mapping f: [sj4] > [sj]<T with no free subset of cardinal t,. 

PROOF. By induction on n. Our set mapping will satisfy the additional condition 
that f ({xo, X1, X2, X3}) C (XI, X2) (the ordinal interval) for all xo < x1 < x2 < X3. 

The case n = 0 is obvious, since we can take f ({xo, xI, X2, X3}) = (X1, X2). 

Assume that V is a model of set theory satisfying the Theorem for n, and for -+ 
in place of -c. That is, for ,u < a, 2 = ju+ holds, and there is a set mapping 
F [sf]4 [K]<T satisfying F({xo,xl,x2,x3}) C (XI,X2) with no free subset of 
cardinality tn. We are going to force with a notion of forcing (P, <) in which the 
conditions will be some pairs of the form (s, g) with s C [si]<T, g: [S]4 [S]<, 

satisfying g(u) C F(u) for u C [S]4. Not all pairs as above will be in P but if (s, g), 
(s', g') are in P then (s', g') will extend (s, g) (in notation (s',g') < (sg)) if and 
only if s' D s and g = g'I [S]4. 

To describe the condition for (s, g) C P we introduce two more definitions. If U 
is a subset of EM then we call U F-closed, if x2 C F(xo, xI, X3, X4) holds whenever 
XO < X1 < X2 < X3 < X4 are in U. If U is a subset of s then we call U g-free, if 
X2 V g({xO, x1, X3, X4}) holds for all xo < x1 < X2 < X3 < X4 in U. Now put (s, g) 
into P just in case there is no 7-element subset of s which is F-closed and g-free. 

Having defined the notion of forcing (P, <), we are going to show some properties 
of it. 

CLAIM 1. (P, <) is < c-closed. 

PROOF OF CLAIM. Immediate from the finite character of the definition. - 

CLAIM 2. (P, <) is -c + -c. c. 
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PROOF OF CLAIM. Assume that po - (se, gJ C P for 4 < -c+. Using the A-system 
lemma we can assume that s!: = a U be for some disjoint sets {a} U {b: < tc+ 
For {xo, xI, x2, x3} C [a]4, gt({Xo,xl,x2,X3}) is a subset of F({xo, 1 X2, X3}) of 

cardinal < -c. As F({xo, X1, X2, X3})I < , and IaI < , we can assume, by CA< = a 

that gs [a]4 is the same for 4 < c. We show that any two p,: p,; are compatible. 
Setq (a Ub, Ub~;, g) whereg D gig, g~, and if 

{X0, X1, X2, X3} C [a U by U b - [a U b]4 - [a U b, ]4 

then set 
g({xo, X1, X2, X3}) = (a U bc U bb) n F({xox, x2, x3}). 

We have to show that q C P, that is, there is no 7-element F-closed, g-free subset 
of s. Assume that B is such a set. As pe, pa, are conditions, B (Z a Ub,, B (Z a Ub b . 
There are, therefore, 10 C B n b,-, '/ C B n be,. 

An easy calculation shows that no matter what position Co, 1I occupy in B, there 
is a five-tuple yo < y'1 < Y2 < y3 < y4 in B such that Co, 11 C {Yo, Y1, Y3, Y4} 
(This is the point where the choice of 7 plays role.) We get, therefore, that 
g({yo,Yl,y3,y4}) = F({yo,Y1Y3,y4}) n s 3 y? so B cannot be F-closed and 
g-free. 

Let G C P be a generic subset of P. Set S = U{s: (s, g) C G} and f = U g 
(s, g) e G }. Clearly, f is a set mapping of the required type on the set S. 

CLAIM 3. There is a p c P forcing that IS I K. 

PROOF OF CLAIM. Otherwise, 1 forces that S is bounded in EM, and as (P, <) is 
< fs-c.c., it forces a bound, say 4 < e<. But as ({4},0) F 4 C S, we get a 
contradiction. - 

CLAIM 4. In V[G], f has no free subset of cardinality t,,+l. 

PROOF OF CLAIM. Assume that A C S is a free subset of cardinality t,,+,. Color 
the five-tuples of A as follows. If {x0, X1, X2, X3, X4} C [A]5, x0 < XI < X2 < X3 < X4 

and x2 c F({f xo, xX3, X4}) then color {xo, xl, x2, x3, X4} by 1, otherwise by 0. As 
tn+1 -(tn 7)5 either there is a homogeneous subset in color 1 of cardinal 7 or there 
is a homogeneous subset of color 0 of size t,. This latter possibility is excluded by 
the hypothesis on F so we have the former. But that gives a 7-element subset which 
is F-closed and f-free and this is obviously excluded by the forcing. - 

Now Theorem 1 follows from the claims above by induction on n. - 

THEOREM 2 (GCH). If -c is a regular cardinal, s, < -c+', then it is consistent that 
there is a set mapping f [s]2 -+ [s]<T with no infinitefree sets. 

PROOF. For K, < -? we can simply take f ({x, y}) = x. 
We are going to show, by induction on positive n < co that it is consistent that 

there exists for em = i - a set mapping f on [s]2 as required. It will also satisfy 
f({x y}) Cx forx <y <K . 

The case n = 1 can also be proved in ZFC. If x < em = -c, enumerate x as 
x = {,(i): i < -c}. If x < y then let i(xy) be that index i for which x = y,(i) 
holds. Now set f ({xy}) ={y(i): i < i(xy)}. If x0 < xl < are the 
elements of an infinite free set then i (xo, xl ) > i (x1, x2) > ... which is impossible. 
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Assume now that - < e, GCH holds up to and including - and there is a set 
mapping F [ --2 [r,]?T with no infinite free sets and with F ({x, y}) C x for 
x < y < K. We are going to define a < -c-closed partial ordering (P, <) which adds 
a set mapping f: [S]2 -+ [S]<T for some S C [sj]` and with no infinite free sets. It 
will also satisfy f ({x, y}) C F({x, y}) for all {x, y} C S. 

An element of P will be a triplet of the form p = (s, g, r) where s c [r,]<T, 

g: [S]2 -+ [s]<T is a set mapping with g C F. If U is a subset of s then we call U 
F-closed, if x c F(y, z) holds if x < y < z are in U. If U is a subset of s then 
we call U g-free, if x V g({y, z}) holds for x < y < z in U. We require that there 
be no infinite g-free, F-closed subsets of s and r will be a rank function witnessing 
this. For this, we call a finite subset u c [s]<"' secured if u I > 3, u is g-free and 
F-closed. What we assume on r is that it is a function from the secured subsets to C 
with r(u) > r(v) if v properly end-extends u. p' = (s', g', r') extends p = (s, g, r) 
if s' C s, g' C g, r' C r. 

It is obvious that (P, <) is transitive and < -c-closed. 

CLAIM 1. (P, <) is C+-C.C. 

PROOF OF CLAIM. Assume, for a contradiction, that we are given -C+ conditions, 
p; = (se, g;, r,) c P for 4 < -c+. By the A-system lemma we can assume that there 
are disjoint sets {a} U {bc , < }c+1 such that s, = a U b~. As for x, y C a, since 
g ({x, y}) c [F({x, y})]<T, by removing at most members from the family we can 
assume that F ({x, y }) n b- 0 holds for x, y c a. Then, gc ({x,y}) C a, and 
with one more shrinking, we can assume that g- ({x, y}) is independent of 4. We 
can also assume that the functions r, are identical on the secured subsets of a. 

Assume now that 4 < 4' < <+, we want to find a common extension of p, and 
p&. Set q = (a U b- U bu ,, g, r) where g D g, U g~, is the maximal extension, that 
is, g({x,y}) = (a UbC UbX,) nF({xy}) if {xy} Ibnb - 0 and {xy}O bc; 0. 

We now consider if we can define r. As q is the union of two conditions both 
omitting infinite g-free, F-closed sets, q won't have such sets, either. So some rank 
function r can be defined; the question is, if one extending r,,, r, can be given. To 
show this, it suffices to prove, that if u is a g-free, F-closed set, which is new, that 
is, has points in b,, as well as in b-,, then it cannot end extend an "old" secured 
set (one in pc or in pc'). Assume that xO < x < x < .. are the elements of u. 
If xi c b, x cbO, and i, j #0, then xO F({xx}), so XO C g({xi, xj}) by 
the definition of g and so our set is not g-free. We get, therefore, that xO is the only 
element of u n bt (say). The possibility that both xI and x2 are in a is ruled out by 
our above condition that b, n F ({xI, X2}) 0. This means that {xO, xI, x2} is a 
"new" set, so u is indeed not an end extension of an old secured set as we assumed 
that secured sets have at least three elements. - 

If G C P is a generic subset, then define S U U{s: (s, g, r) c G}, f = U{gg 
(s, g, r) C G}, R = U{r (s, g, r) C G 

CLAIM 2. S1 = r,. 

PROOF OF CLAIM. As in the corresponding proof in Theorem 1. - 

CLAIM 3. F has no infinite free set in V[G]. 
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PROOF OF CLAIM. This is a well-known fact. It follows from the rank characteri- 
zation of the nonexistence of free sets. 

CLAIM 4. f has no infinite free set. 

PROOF OF CLAIM. Assume that xO < xl < ... form an infinite f-free set. By 
Ramsey's theorem we can assume that either for every triplet i < j < k < co, 
xi c F(xj, Xk) holds or for every triplet i < j < k < co, xi V F(xi, Xk) holds. The 
latter is impossible by Claim 3. Therefore {xo, x1, ... } is f-free, F-closed, but then 
R ({xo, xl,x2}) > R({xo,xl, x2, x3 }) > , which is impossible. A 

An easy application of Theorem 2 solves another problem of [6]. 
COROLLARY 3. For every n < co it is consistent that there exists a set mapping 

f: [0c]2 -+ [cOn 1 with no uncountable free set. 

PROOF. Applying Theorem 2 assume that F: [cn]2 _+ [6on] is a set mapping 
with no infinite free sets so that F({x,y}) C x for all x < y < cOn. Define the 
notion of forcing as follows, (s,g) C P if and only if s C [oW,]<W, g: [S]2 -+ [S]1, 

and g(u) C F(u) for all u C [s]2. Set (s', g') < (s, g) if and only if s' D s, g' D g. 

CLAIM 1. If a <,co,, then the set D, {(s,g) :a C s} is dense in (P, <). 

PROOF OF CLAIM. Straightforward. - 

CLAIM 2. (P, <)is c.c.c. 

PROOF OF CLAIM. Assume that p; C P for 4 < co,. By the usual thinning out 
procedure we can assume that pi = (s U s;, ga) where s; n F (x, y) = 0 holds for x, 
y C s, and the functions ga I 

[S]2 are identical. Now any two pt -s are compatible. -1 

If G C Pisagenericset,putf U{:g (s,g) c G}. 

CLAIM 3. f has no uncountable free set. 

PROOF OF CLAIM. Assume that p HF X is an uncountable free set. There are, for 
< co,, conditions p, < p and ordinals ar with p< IF oa c X. Again, we can 

assume, that p, = (s U s~, g,), a, ? s,, and the functions g, n [S]2 are identical. 
As F has no infinite free sets ("no uncountable" suffices) there are ordinals 40, 
41, 42 < wi such that co c E F (a,, a2). We can now extend p to a condition 
p' = (s', g') where 

S/ S U SXO U S~l U sea1 

g' extends g<0, g9l, gg2 and g' ({c, a ag2 }) = a-* 

Now Corollary 3 follows from the claims above. A 
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