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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 11 1, Number 4, April 1991 

A REGULAR TOPOLOGICAL SPACE 
HAVING NO CLOSED SUBSETS OF CARDINALITY t2 

MARTIN GOLDSTERN, HAIM I. JUDAH, AND SAHARON SHELAH 

(Communicated by Andreas R. Blass) 

ABSTRACT. Using OA+ we construct a regular topological space in which all 

closed sets are of cardinality either < A or > 2 . In particular (answering a 
question of Juhasz) there is always a regular space in which no closed set has 
cardinality t2. 

1. INTRODUCTION 

A topological space X is said to omit a cardinal K, if IXj > K but no closed 
subset of X has cardinality K . 

For example, the space flo- (the Stone-Cech compactification of the count- 

able discrete set X ) omits all cardinals K with t0 < K < 22 . (This is in some 
sense "best possible," since for no K can there be a Hausdorff space omitting 

2K all cardinals in [K, 2 ].) 
[Hu] showed that there is always a Hausdorff space omitting t2* [J, ?6] 

uses [HJ] to show that if 2K = K+, then there is a zerodimensional (hence 
regular) Hausdorff space omitting K, and he asks whether one could prove the 
existence of a regular space omitting t 2 in ZFC alone, i.e. without assumptions 
on cardinal arithmetic. (See [J] for related results and references.) 

We will show that 

ZFC + K,(A+) F- "there is a regular space omitting all K e [i, 2' ) " 

and derive as a corollary 

ZFC H- "there is a regular space omitting t2 9" 

Here is a sketch of the construction: Our space X will be (essentially) the 
set A+ . For every subset of X of size A we will mark 2 many points as 
limit points of this set. We then construct a sequence of A+ many sets that will 
serve as a subbasis for a topology. Using O we can "guess" subsets of size A 
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1152 MARTIN GOLDSTERN, HAIM I. JUDAH, AND SAHARON SHELAH 

and make sure that no such set will be separated from its predetermined limit 
points. 

The proof is due to the third author. 

2. THE MAIN THEOREM AND ITS COROLLARIES 

Theorem (Shelah). Assume Ks(A+), where S is stationary in A+. Then there 

is a regular topological space X of size 2+ in which every set of cardinality less 
than A is closed, but Icl(A) =2 , for all A of size A . (cl(A) = the closure of 
the set A.) 

Corollary. The following is true in ZFC: 
There exists a regular space of power > 2 I in which there are no closed sets 

ofpower t 1 or t2 

Proof of the corollary. If 220 > N2 then /Jw) will work, since all infinite closed 

sets have size 220. Otherwise we have 2? = 
I, 2 = I SO by [G], Os 

holds with S = {OS < t2: cf (8) = tI}, so we can apply the theorem for A = 1 . 

Second corollary. If cf(K) = t0o K a strong limit > NO, then there is a regular 
space of size > K+ with no closed subsets of size K+. 

Proof of the second corollary. If 2K = K+, then by [S] OS(K+) holds for S 
{3 < K+: cf(3) = I}, so we can apply the theorem with i = K to get a space 

where all closed sets are of size < K or > 2C 
+ 

> K+. 
If 2K > K+, then it is well known that there is a compact space omitting all 

cardinals in [K, 2K): The space AK - K is a compact F-space (of size 22 ), SO 

every closed subspace Y is also a compact F-space and hence satisfies I Yi < K 
or jYj = IYIj? > KO = 2K (see [vD, ?6-7]). (Alternatively, we can consider 
X = OK, the product of countably many discrete spaces of size K, and prove 
directly that it has no closed sets of size K+.) 

Proof of the theorem. Let T = the set of increasing a-sequences in A+. Our 
space X will be T,+. 

Notation. For v e T6, a < 8 , let v [a E Ta be the restriction of v to a. 

Idea of the proof. A subbase of the topology will be given by a sequence 

{gl:iE S}U { 2 flES} 

where = X - 7, and both and A have the form U[qi] where 

77s E Ta I a1 <,A+, and [C] = {f e T+: f D C}. The construction will be 

done in stages, where at each stage 3 we "promise" [q] C 1 or [q] C C for 

certain q 's and /B 's. Formally, this promise is represented by the sets p and 

2p . We must be careful not to make contradictory promises. 
At each stage we take care of some approximations {f [: i < A} to sets 

{fi: i < A} of size A and make sure that in the end their limit points include 
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REGULAR TOPOLOGICAL SPACE, NO CLOSED SUBSETS OF CARDINALITY N2 1153 

a certain predetermined set of size 2 . Every initial segment g [3 of such a 
limit point can be computed from (fi [3 : i < A). Hence, using 0>, we can 
ensure that all sets of size A have been considered. We also take care of certain 
approximations to sets of size < A, and make sure that they will turn out to be 
closed. Again, by O we ensure that all possible sets have been considered. 

3. CONSTRUCTION OF A SUBBASIS FOR X 

We will construct a sequence ( 7(', E ,B e S) such that the following will 
hold: 

(A) 9?/f u = X. 
(B) 9n 0. 
(C) For every set {f i: i < y } (y < A) of different functions (fi e TA+) 

there is a ,B such that {ff: i < y} and fy are separated by (, ). 
Clearly, (A)-(C) imply that T+, with the topology generated by the subbase 

{f, ': ,B e S} is regular: By (A) and (B) the subbasis sets and hence the 
basis sets are clopen. By (C), small sets are closed. In particular, X is a T 
space with a clopen base, so it is (completely) regular. We will also ensure: 

(D) If JAI =A, then [cl(A)J > 2A . 

Definition. For ,B < A+, A+'T, is the set of all sequences 

where each qi is in Tfl. 

Definition. Let c: A+ -* be a function such that for all' e A+1T the 

set c7 1 (i) is unbounded in A+. Elements of c- 1 (i) are called "codes" of . 

It is possible to find such functions, since OS(A+) implies 2 =A+. 

We will assume V6 e S: > A . 

Definition. Let (by Os ) (X : :3 e S) be a sequence such that V3 e S X C 3, 
and for every X C A+ the set 

{d e S: X3 = X n } 

is stationary. 

Claim. There is a sequence 

(s 3 E S), S =(Si :i < ), Si e T6 * or < A 

such that for all y < A, for all f = (fi : i < Y) e + 

{3 e S: (fi [ : i < y)= s} is stationary. 

Proof of the claim. Every such sequence f can be "coded" by a set Af C A x 
e.g. by 

A=U {i} Ix range(J) 
i<y 

This content downloaded from 128.235.251.160 on Tue, 6 Jan 2015 23:15:31 PM
All use subject to JSTOR Terms and Conditions

Sh:369

http://www.jstor.org/page/info/about/policies/terms.jsp


1154 MARTIN GOLDSTERN, HAIM I. JUDAH, AND SAHARON SHELAH 

(Note that y and f can be computed from Af.) 

Let F : + A x A+ be a bijection. Then the set 

C1 = {J: F [3 is a bijection between 3 and A x J} 

is closed unbounded. 
For 3 E S let 

s= (I i y) 

if 
3 E C1 and F(X,) = x range(i1i) 

i<y 

for some sequence (7q i < Y) E '+1Tj, y < A. If F(X,) cannot be written as 

above, let s3 = any sequence in 1T 

To show that this sequence is as required, consider any sequence f = 

(f: i< y) EY+'T,+, forany y <A. Let X=A1. Theset 

C2 = n f{ < i : range(fi [3) = range(fti) n } 
i<y 

is closed unbounded. Hence it is enough to check that if 3 E S n C1 n C2 and 
X= X n 3, then s3 = (fi [3: i < y) . But this follows easily from 

F(X6) = F(X n 3) = F(X) n (2 x 3) 

= U{i} x (range(fi) n 3) = U{i} x range(fi [3). 
i?y i<y 

Definition. For 3 e S, let (M., E) < (H(K), E) (where K = (2 )+ ), iMi = 

, + I C M, X3 EM3, (c :f<A+) E)M , S EM. 

Fact. 
ViV E T~+ { : v [3 E M.} is stationary. 

Proof. Let X = range(v). C = {3 : range(v [3) = range(v) n 3} is closed 
unbounded. If X = X n 3 and 3 E C, then range(v [3) e M. and hence v [3 
(= the increasing enumeration of its range) is in M,. 

Definition. Let G: '+ > be an increasing function such that /B < 3 
G(J) 0 Mf. 

Definition. f = (ft: i < A), (fi E T+ ), is called a "candidate for convergence" 
iff 

(i) All fi are distinct, for i < ). 
(ii) fA (O) = G(yo), where yo is such that all fi [yo are distinct. 

(iii) VO :/A3 <i ftA(fi) codes fr[/3, i.e. c f(f2(/3)) = f[[/, where 
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REGULAR TOPOLOGICAL SPACE, NO CLOSED SUBSETS OF CARDINALITY 2 1155 

We will satisfy (D) by demanding 

(D'): If f is a candidate for convergence, then 

fA E CI(ffi: i < A}). 

Fact. For any (f : i < A) there are 2A many possibilities to choose fJ such 
that (f1: i < A) becomes a candidate for convergence. (Hence (D') guarantees 
(D).) 
Proof. For every ,B < A, ,B 0 0, we have A+ possible choices for fA(fl), since 
the only requirements are fA(fl) E c#'(f[l,/) and fA(fl) > fA(y) for all y </, 
and fA(fl) > fi(fl) for all i < A. 

Definition. For ? E S, E +1 T. is called " d-candidate for convergence," if 

(1) All ti are distinct, for i < A. 
(2) iA(0) =G(yo)), where yo is such that all tibyo are distinct. 
(3) VO # ,B < A+, { , (f) codes ?7,[fli.e. cf(i(fl)) = r[f, where 

(4) 1,# < A+ Vi < A r(l)< /() 
(5) E E M3d, or equivalently, i. E M,. 

Fact. 'q E T. is a d-candidate for convergence, iff E M. and for some 
convergence candidate f E A+ T f =f 

Proof. " -" is clear. To prove the other direction, note that O(0) = G(Yo) e 

M. implies YO < , so all (fi [3) 's are distinct.) 

Remark. Conversely, f is a candidate for convergence, iff for all 3 such that 

fA tJ e M. we have that f T3 is a 6-candidate for convergence. (Note that by 
construction of the M. 's, {3: fA [3 e M,} is stationary.) 

Hence if 7 is a 6-candidate for convergence, then for all a e S such that 

iA [a e Ma, r 'Ta is an a-candidate for convergence (because then f - ft3 
for some convergence candidate f, and [a = f a). 

For any v e T. there is at most one 3-candidate for convergence (call it 
such that , = v, since all the qi 's can be computed from v . 

Whenever V is defined, let 

B= {(a, ,) e S x S: v[a e M < a < }. 

Eventually, the sets and A ( C T+ ) will be defined by 

f Eg f [6 EJ: 
-6 

f ?- ( ,H f]3 ry7f 
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1156 MARTIN GOLDSTERN, HAIM I. JUDAH, AND SAHARON SHELAH 

where the sets and <( ,B 6 E S, B C ) will be constructed by induction 
on 3 satisfying the following conditions (for all 3, a, E S): 

(a) T, n Ma= u 7 , for r <. 
(b) If q E T6, > > ,then: 

E~~ 

~~~ 4 
In particular, n 7 fl = 0. 

6 66 (c) 'K6 separates s from {s:i < a6}. 
(d) If Q is a 3-candidate for convergence, v = ,, then for all finite F C 

B vaA 

(i2 A (viceE ip }= 
(a, f)EF 

Fact. (a) -* (A), (b) -* (B), (c) -- (C), and (d) (D'). 

Proof. "(b) -* (B)" is clear. 
To show "(a) --+ (A)," consider any f E T+ . By construction of the M, 's 

there is a 3 such that v = f [3 e M,. Hence V e or v e , so f e 

or f e 7 
A similar argument proves "(c) (C)." 
To prove "(d) (D')," assume that fA ? cl({fi: i< . }) for some candidate 

for convergence f = (fi: i <A. Then we can find finitely many subbasis sets 
91 91 * A X/Bsuch that 

Vi < A 3i < n E >,,ts?SA 

Find a, C e S, a < 35 such that fj [a e M, and v = fj ?6 e M., and 
< a. Note that also fi pa e Ma for all i <XA and that for all /3< a 

E x E 91Je . Let F C B, be defined by 

F = {a} X{1, - 1 nl3} 

For this F the set considered in (d) is empty, a contradiction. 

4. INDUCTIVE CONSTRUCTION OF THE SEQUENCE (v, ) 

Assume that we have already constructed 9', %E for all /3 < a, a < 3. 

Now we have, for each ?< 3 and each v e M. n T., to decide whether V e 
or v E <. We will first deal with the cases /3 < 3. 

Let < be the transitive closure of the following relation -<s: q -o V iff 
for some 3-candidate for convergence j and for some i < i we have q = 

and M = ,. The relation -< is well founded (by (4)). By -<-induction on 
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REGULAR TOPOLOGICAL SPACE, NO CLOSED SUBSETS OF CARDINALITY N2 1157 

{v: v e T3fl M3} we will decide whether v E ~for M s a ill be IV: V ET 
I 

or~~~~~/ (so (a) will be 
satisfied): 

Case 1. There is a (-candidate for convergence if = e EMa such that M = v. 
Note that we already know (for all i < A, all ,B< ( ), whether 51 E or 

E 2 . Consider the filter base 

{AF: F C Bv, finite }, 
where 

AF= L<2 A (v [aE-9 i [aEa)} 
(a, f/)EF 

(Notice that AFf n AFD AF UF *) It generates a uniform filter (by induction 
hypothesis (d)), so it can be extended to a uniform ultrafilter i. Now let, for 
each ,B < (, 

v E *- {i < A: 1i E E Ss 

VX- E_ 
fA i < A:. VE fl } E E 

(Note that Vi: l E WC + ? fl 
Case 2. Not case 1, i.e. there is no such v. For each /3 < (, there are two 
possibilities: 

Case 2.1. For some a, (a, /3) E B,, i.e. a > 3, [a E a . In this case, we 

already know whether v [a E e or v h E e is true, so decide v E or 

v E accordingly. Note that if there are a, a' < /3 such that v [a E Ma 

v[ a' E Ma,, then and "agree." 

Case 2.2. Otherwise (i.e. the previous promises do not impose any restrictions), 
let v E 

Remark. The "not Case 1 " is not really necessary in Case 2.1: Assume v = 

i a (-candidate for convergence, v ra E Ma, /3 < a < (5. W.l.o.g. v [a E 

& . Then Case 2 would decide "v E&?/ ". But #ca is an a-candidate for 
convergence. Since 

= {i < A: V [a E n )L, a e } 

also Case 1 decides " i E . 
The construction in Case 1 ensures that (d) is satisfied even for F C Bv U 

({5} x (dnS)): Let F'= FnBv, and Fn({(J}x((nS)) = {a}x {/31 X*A 

To see that IAFI = Ai, note that 

AF = AFt n nf{i < A: M E i Ea 
j?n 

is in Sr. 
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1158 MARTIN GOLDSTERN, HAIM I. JUDAH, AND SAHARON SHELAH 

The construction in Case 2 (together with the remark about Case 2. 1) ensures 
that (b) is satisfied, and Case 2.2 handles (a). 

Finally, we have to decide what and and % will be. We have to satisfy 
the following conditions: For each 6-candidate for convergence 4 E Ma, if 
v =,then for each finite set F C Bv U ({1} x (a n S)) 

{(i<S.: /A (vr aE ( vi E)VE 

(at, fl)EF 

This will imply that (d) is still true for 3', the successor of 3 in S. 
Also, for each v E T n Ma, we have to ensure 

Enumerate these conditions as (Ci : i < A), such that each C(F, 4) occurs 
A many times, but only after C(q) . 

We will construct the sets / = ' and % = Y in A stages, such that in 
each stage i we have committed less than A many elements of TI n Ma,. These 
commitments will be given by sets {(i), "(i), for i < A. Let 

g()= {Sa}, ' F(O) = {si : i < 
'a5}. 

Abbreviate Uj<k 1(j) to ?(<k), and similarly for Y . 
Given the sets ?/(j), Y(j)), for j < k, consider the condition Ck: 
Case 1: Ck = C(v). If v E /(<k) u %(<k), then let W(k) = (<k), 

Y(k) = Y(<k). Otherwise, let /(k) = W(<k) u {v}, %(k) = Y(<k). 
Case 2: Ck = C(F, 4), Let v = q . C(v) is already satisfied, w.l.o.g. 

v E W(<k). (The case v E ?(<k) is handled similarly.) Find an i < A such 
that 

(*1) W(<k) U Y(<k) 

and 

(*2) A (ri E " ?7, r a EA ) 
(a, fl)EF 

and let W(k) = W(<k) U {t i}, %(k) = (<k). 
Since the sets %(k) and 7(<k) differ by at most one element for k > 0, 

we get by induction I%Y (<k)I < IkI+IcaI <2A. Similarly, I '(<k)I < IkI <iA. So 
(* 1) and (*2) can always be satisfied by some i, since the set of i 's satisfying 
(*2) has cardinality A. 

Clearly, all C(v)'s and C(4, F)'s will be satisfied after A many steps. 
This completes the construction of </, 6 <, ,B E S, 3 E S), and 

hence of the subbasis of X. 
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