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A TWO-CARDINAL THEOREM

SAHARON SHELAHl

ABSTRACT.  We prove the following theorem and deal with some re-

lated questions: If for all  n<a>,T has a model M  such that n" < \Q    \n

< \PM\ < XQ  then for all  A , ¡x such that   \T\ < p, < A<Ded* (p.) (e.g.

ft = K0, X = 2   0), T  has a model of type  (X, p.), i.e.   \QM\ = ft, \PM\ = X .

1. Introduction.  We shall deal with first order theories  T; for sim-

plicity we let  T be countable, except in §3.  It is well known that if T has

a model of type  (3    ,  X .) (i.e. a model  M of power   a     with   \Q   \ = X_),

then for every  X > X. T has a model of type  (X, X  ).  This is designated

by (3^, S0)—»(À,  Xq). One may ask the question: For what À does (X^,, XQ) —»

(À, S  )?  In particular does (X   ,  X.)—>(2   °,  X.)?   It is of course impossible

to ask for more since there is a sentence having a model of type  (A, p) iff

N0 - P- - À - 2A¿ ̂or iff   8o - ^ - A < DedV)-

We give a combinatorial lemma which implies (X   ,  X  )—>(2   0,  X  )

and seems to be equivalent to it assuming MA + 2   ° > X    .  This Lemma

still remains an open problem.  We finally prove a related two-cardinal

theorem (Theorem 1), of interest in its own right, which was stated in the

abstract.

2. Notation.

Definition 1.  A tree is a partially ordered set (X, <)  such that for each

node  x £ X the set of predecessors of x  is well ordered by  <.  A branch

is a maximal chain.  The height of a branch is its order type (always an

ordinal).

Definition 2. Let ¡x be a cardinal. Ded (a) is the first power X such

that there is no tree with < p: nodes and > X branches of the same height.

(In this definition we may assume that all trees are subtrees of ( ^ 2, <),

the tree of all 0-1 sequences   of length  < ^+, ordered by continuation.)
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For example, Ded*(XQ) = (2 K° )+ and, in general, Ded*(/i) < (2A¿)+.  See

Baumgartner [l] for results about Ded     and  Ded (which we shall not even

define here); in particular, it is consistent that Ded  ( X ) < (2    !)  .

Let  Q  and  P  be two unary predicates and  Q   , P     their interpreta-

tions in the model  M.   We vary from standard notation by letting  (A, //)-model

mean a model M with  \PM\ = A, \QM\ = p.

Our main theorem is thus denoted by  {(m., ».): i < A, —'(A, p) for   Xn <

p<X< Ded*(/z), XQ > 222. > n\ > i\

r], v will denote sequences of zeroes and ones;  a2 the set of all 0-1

sequences of length   a; lirf) the length of  77; rf"v the concatenation of 77

and v', and  r?|/3 the initial subsequence of  77 of length  ß.  Let     2 =

3.  A two-cardinal theorem.  The standard way of proving two-cardinal

theorems (A., pA)—>(A., p.) is to find a set of sentences  Y  such that

(i)   if   T has a model of type  (A., ¡i ) then  TuT is consistent;

(ii) if  T u T is consistent then  T has a model of type  (A., p.).

Assume w.l.o.g.  that  T is a theory in a language  L, and has Skolem

functions.  We use this method to prove

Theorem 1.  If for all n < <y  every finite subset of T has a model M

such that nn < |Q^|" < \PM\ < XQ, then for all X, p such that   \T\ < p. < X <

Ded ípi), T has a model of type (A, p).

Notice that for p = X    the conclusion is that  T has a model of type

(2   °,  X ) (when  T  is countable).

Definition 3.  Let t){, v{ £<a2 for  2' = 1, • • • , n.   ( r¡1, ' • • , f]n ) and

( V,,' • • , v    ) are similar over ß ii tot all  2 = 1,..-, n, ¡ir)^, /(i^) > ß,

77,1/3 = vJ/3, and for all  i, j,  1 .<».</.< n, 77.I/3 7^ 77.|/3 (and thus  jy.|/3 7^ v-|/3).

Definition 4.  Let D  be a set of 0 - 1   sequences.  Define

YLÍD) = {Píyv): 77 e D} U iy^ 4 yv: r) 4 v £ D\

U \z   = TÍy - , • • • , y    ) A z2 = r(yv , • • • , yv ) A QUj)
1 n 1 ?2

—> z, = z  ■ r is a term in  L, n., v. £ D  and
12 'v    1

(77., • • • , 77  )  and  (v., • • • , v  )  aie similar over some  ß\.

Now, by way of fulfilling part (ii) above it is easy to see

Lemma 1.  If T \j YLi2w) is consistent and \T\ < p < A < Ded ip), then
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A TWO-CARDINAL THEOREM 209

T has a model of type  (A, p.), for some  p.. < p..   In particular,  if TuY, Í2CÚ)

is consistent and M  is the Skolem closure of {y   : 77 e 2a'\, then M  is of type
X ^

(2No, X0).

Let us turn now to part (i).  We shall list some conditions which are

sufficient for proving the consistency of Tu Y, Í2Ü>).

By the compactness theorem, it is enough to show the consistency of

T' u r,("2) (where the prime on T,(D)  indicates that in the definition of

T, (D) r ranges over a finite set of terms of L, say  {rn, • • • , r     \, each hav-
. . "0
ing < n    variables, and T    isa finite subset of T).  This holds because we

can replace  T  by  T . = T U {Qic ■): i < p] U {c ■ 4 c .: i < j < p\, the c .-new

individual constants.  T.   satisfies the hypothesis of Theorem 1, and in

every model M   of it   \Q    \ > p.  So by the lemma this is sufficient.  This must

be shown for all n, n    < a>.

Definition 5.   Let M  be a model, A   a subset of M, b, c   £ M.   Define

b ^ c~ (mod A) if for all  2 ,< n     and for any presentation of t-, r.(x, y~) (i.e.,

ordering and identification of the variables of t.), we have for all â~ £ A

T.ic, a) £ QM  V T.ib, a) £ <2'M =, Ac, a) = T.(b, a).

If b   is a single-element sequence we simply write  b.

So clearly if the number of such presentations is  n    (so n.   depends on

72    only), then this equivalence relation has < i\QM\ + 1)    equivalence clas-

ses, where  k = |A|     n .

Claim 1. Let D  be a set of 0 — 1 sequences of length n  and 72 - 1 such

that no two sequences are comparable (i.e. no one is an initial segment of the other).

Assume that the assignment iv   —> a   : 77 £ D\ satisfies Y^iD). Let v £ D be of

length 72-1 and let d £ PM -{a   :r) £ D\ be such that d ~ av (mod j a  : r\4v,T] £

D\). Let av~(0) = ay, a^(l) = d, and D' = ÍD - {v\)uv~(0 ), i^"(l)i. Then the

assignment {y   —,av'- rj £ D \ satisfies YAD ).

Proof.   Let   (u   ,---,u   ),   (!/„•..,«    ) be similar over some ß (< 72),

22., v. £ D .   We must show
;      2

zAT{au> •'■' au } A z2 = rK,' "•'%) A QizA-+zx = z2,
I 22 1 72

i.e., (au   ,..., au    ) ^ (a-    ,... , &y    )(mod0).
1 n 1 n

If ß = 72, we have  u. = v.  and the result is trivial.  If ß < n - 1, then by

the definition of similarity, at most one of the v ,'s   can be v" (O ) or 2/   \1);

likewise for the  Z2 ,'s.  If 72022e of the 22 ,'s or v ,'s are v~ (0) or i/"(l), then1 11 x    ' \    1 '

the result holds by our hypothesis.  Thus without loss of generality we may
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assume v j  £ {v "(0 ) , v "(1) i.  Clearly for i 4 I, u., v . 4{v~ {O), v~ (l)\.

Now 22      'v a     (mod [a    : 77 4 v, 77 e Di), since either a      = a     or a      = d.
1 V     ' ' v. v v.

Thus   <«    . a     ,...,a      ) -  <av. a       . . . , a       ) (mod0).
1 2 72 2 ,!

Case I. u   £ {v~{0) ,v~ {I )\. Then   (a        a     ,---,a       )~

(aV au   >■■■' au    ) (mod0).  Clearly  ( v, «2,-• • , «n )  and ( j/%2 ,. . . , ^ )

are similar over the above ß.  And so by the assumption on   Y'L(D),

(av> au   ''">au    ) ~ iav> av   '"•• ' av    ) (mod0).  Thus we have
2 22 2 72

Case 2. Hj ¿fiv~(0 ), iv~(l )}. Then  ( v, v2, •••,»„),< Vj, ••• ,v   ),

(",,••-, «fl )  are all similar over /3, so it follows that

(V'""'  *«■   ̂    <*"' V'  '"**v   >^  K'  av   '••■> av   )   (™°d0)-

Q.E.D.

Claim 2.  In order to show the consistency of T  u Y,("2) for all n < a>

it is sufficient to prove:

For all m < cu there is a model M  of T'  and a sequence of sets X. C

X, O • • C X    C PM   such that for all  i = 1, • • -, 272 - 1  and all distinct a ,,
2 272 ' 1

•. •, a  , a    .. ex., there is a' ,, e X., ,, a'      é {a ,,•••, a    .A, such
'772 772+1 l' 772+1 2 + 1        772 + 1    T 1 772 + 1'

that a   ., ^ a    ,,   (mod i.a ,,•••, a   \).722+1 772 +1     v 1 ' '      772    y

Proof.  This is a corollary of the previous claim by repeated use of it.

Claim 3-  Theorem 1 follows from the following combinatorial assertion:

(*)   For all m, k < a>  there is  / = l(k, m) < oj  such that for all r < oj:

ii F  is an 222-place function on a set A   of power  |A| = r    whose range is

subsets of A   of power < r, then there is B C A,  \B\ = r   , such that for all

distinct a .,-••, a    .. £ B, a    ,,  4 F(a ,,•••, a   ).1  ' '       772 + 1 772+1 v     1 ' '       772 '

Proof.   We will show that the condition of Claim 2 follows from  (*)  and

the hypothesis of Theorem 1.  Let  l(k, m) be as in (*).  Define  /., for i =

1, • • ■ , 772 — 1, as follows: /   = 1, /.      = /(t72, /.). Choose a model M  of T

suchthat   |QM|>2, |QM|>/m. rJ|eM|"2<X0, where 722 = 21»"°^  and

m     1 _»   v r>M     c-_u       n ™       1    „,,= „,;11 Ar,C,„a   V
k

PM\>rm. Let X    = PM.   For k = 0, • • • , 227 - 1   we will define X       ,   sat-
1   — in , '

isfying the hypothesis of Claim 2 and such that   |X   _^| > r m~   ~   . Sup-

pose X      ,     satisfying the hypothesis of induction has been found.  Let

F be the 722-place function from  X       ,     into subsets of X       ,     with less

than r elements obtained by letting  F(a   ,. • • , a   ) be a complete set of

representatives of the equivalence relation  ~ mod {a., • • • , a   \. (This
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A TWO-CARDINAL THEOREM 211

equivalence    classes.) Now by  (*)  there is a

with at least  r m      0        elements such that if a.,.

relation has at most   \Q

set B = X      .
772— k

a   j.1  £ X      .       ,   are distinct, then a      ,  l F (a ,,•••, a   ), so a choice of
772+1 772— k    —I 722+1    r        v     I' '       772 "

a   , ,   to satisfy the hypothesis of Claim 2 can be made from  F(a ,,•••, a   ).
772+ 1 J J r \    i> ,      m'

Now to prove Theorem 1 we need only show

Claim 4.  (*) holds.

Remark.  Maybe this claim has already appeared in Erdös and Hajnal

[3].

Proof.   Let {y .,■■■, y ,\ be random variables on A.   What is the prob-

ability that B = {y.,- • • , y A  will 720£ fulfill the demands of (*)?   It is <

1 722+1

distinct

<r~ L

the probability that y<y{.        ) £ FiyŒ(i  y ■ ■ Mi   )

for some permutation o of  i., • • • , i
772 +   1

l<2y/<r~ U

the probability that

y i = y i

(   rk    \(772+l)!r|   (A 1  <r*"+*+1/U,

\272+l/        rl        f\2/rZ" rl

k)

where /(t22, k) is some function of 272  and k.   So we certainly can choose

/ = /(?72, k)  such that the whole expression is < 1  for all r > 1.   This means

that it is possible to find a suitable set  {y. ,• ■ ■ , y A.  Q.E.D.

This completes the proof of Theorem 1.

4. Remarks and generalizations. We now turn to the original problem of

the consequences of T having a model of type (X , X.). Consider the fol-

lowing combinatorial assertion.

(**) For all k, 772 < oj there is I < co such that for any 272-place function F from

X; to the countable subsets of  X,, there   is  A C X,, \A\ = X, , such that for all

distinct a,,..., a   , a    ,,  £ A,   a    ,,  4 F (a ,,•■■, a   ).1' '       772 772+1 722+1 v     1' '      772'

This is the problem mentioned in the introduction; the combinatorial

lemma (**)  is known to be true for 772 = 1, but for 722 > 1  and even  k = 0  it

is still an open question.  See Hajnal [41.

Theorem 2.  // (**) holds and T has a model of type  (x   , Xn) then for

all X, p such that  \T\ < 21 < A < Ded ip), T has a model of type (A,/t).
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Proof.   As in the proof of Theorem 1 it suffices to show that for all n

Y', ("2) is consistent.   To see this let / = /(/é, 772) be as in (**).

For all  2= 1, ■ • • , 222 - 1   define  /.  as follows: /, = 1, /. , , = IU -, m).
2 1        '1 + 1*1'

Now let M  be a model of T  of type (X   ,  X .).   For  2 = 1, • • • , 222  we define

A. C P     by retrograde induction, such that   |A ,| = X, : Choose A      to be

any subset of P      of power   X,    . Now assume that A , + .   is defined and for

all a ,,-•-, a     £ A ...   let  F(a ,,•••, a   ) be a set of representatives in1'        '772 z + 1 v   1 ' '772' r

A ...   of each equivalence class of <%. (mod {a ,,•••, a    j).  It is not hard to2 + 1 ^ v l      1' '      772 "

see that there are < X     such classes; so   |F(a   ,.-.,a   )| < X   , and by  (**)

there is A . C A . , ,, \A .1 = X, , such that for all distinct a ,,■•■, a   , a    ,,   £
2   —        2 +1 '    I       2 1 I ¿' 1 ' '772772+1

A -, a    . ,  I F(a ,,-■■, a   ).  The sequence A ,, • • • , A      satisfies the re-2 772 +1   ^        v     1' ,       m' n 1' '        772

quirements of the X. in Claim 2, and so T U Y', (n2) is consistent.   Q.E.D.

We may be interested in other theorems of the form:  {(m ., ?2.): i <A—►

(A, p).   Vaught's and Chang's two-cardinal theorems (see e.g. [2]) can easily

be generalized to this case, but give less than our result (only when X < p  ,

p = SK< \PK).   Vaught's two cardinal theorem for cardinals far apart gener-

alizes easily to finite hypothesis (using Ramsey's theorem instead of the

Erdös-Rado partition theorem) and it cannot be improved.  The following re-

mains open (there are, of course, many others):

Question 1.   Is our result best possible?   That is, does there exist a

sentence for which every  22  has a model M,   XQ > \PM\ > \QM\", \QM\ > «,

but does not have a (2^, /x)-model for some p., and even: has a  (A,/¿)-model

iff p < X < Ded ip)  (assuming for some p., Ded ip) < 2^).

Conjecture 2.  Km ., n ., k.): i < A—'(A, p, k)   when  m . >n\, n. > k1., k .

> i,  k< p<X< Ded**.

Conjecture 3.  1(2  ', n.): 1 < ûjS— (2m, p) [n. > i\

The following remarks on the properties of Y. ÍD) may be useful:

If in Definition 4, we demand only that  k. . = toin{l: 77.(/)! 4 r]il)\ =

mini/: v.il) 4 v-í¡)\, and r]lík¿ ■) = v)íki .), rfik^ .) = vkki ■), we get that the consis-

tency of T uY.A2) implies  T  has a (2\ A)-model  for every  A.

It can be shown that the existence of a model of T of type (A, X ),

where A is real-valued measurable, implies the consistency of Y, ( 2),

even for sentences of L

Papageorgiou shows that our method gives a positive answer to Conjec-

ture 2 if we strengthen the assumption to: k. > i, n> ik.)1, m. > (t2.)'"!' ;

and that this generalizes to any finite number instead of three.

It is trivial that if T  has a model M,  \PM\ > X    > \QM |, then for every
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A TWO-CARDINAL THEOREM 213

A > \T\, T has a model of type (A, \Q   |). Also if for every 72, T has a

model A4, \PM\ > X0 > \QM\ > 72, then for every A > p > \T\, T has a model

of type  (A, p). Hence in Theorem 1 we ignore those cases.

On 72-cardinal theorems see Chang and Keisler [2].  Our result was

announced in [5], and  [6, §0, (6) p. 251].  In [6, §0] there is a discussion

on 72-cardinal problems.

Added in proof.  The main conjecture has been proved and submitted to

the Proceedings of the American Mathematical Society.
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