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FULL REFLECTION OF STATIONARY SETS AT REGULAR CARDINALS 

By THOMAS JECH1 and SAHARON SHELAH2 

Introduction. A stationary subset S of a regular uncountable cardinal K 

reflects fully at regular cardinals if for every stationary set T C n of higher 
order consisting of regular cardinals there exists an a E T such that S n a is 
a stationary subset of ca. We prove that the Axiom of Full Reflection which 
states that every stationary set reflects fully at regular cardinals, together with 
the existence of n-Mahlo cardinals is equiconsistent with the existence of Hl- 
indescribable cardinals. We also state the appropriate generalization for greatly 
Mahlo cardinals. 

1. Results. It has been proved [7], [3] that reflection of stationary sets is 
a large cardinal property. We address the question of what is the largest possible 
amount of reflection. Due to complications that arise at singular ordinals, we deal 
in this paper exclusively with reflection at regular cardinals. (And so we deal with 
stationary subsets of cardinals that are at least Mahlo cardinals. If K >- 3 then 
there exist stationary sets S C {c < s : cf Ol = 1o} and T C {3 < i : cf 3 =1 
such that S does not reflect at any ,B E T.) 

If S is a stationary subset of a regular uncountable cardinal t., then the trace 
of S is the set 

Tr(S) = {a < i: S n Ol is stationary in al 

(and we say that S reflects at oa). If S and T are both stationary, we define 

S < T if for almost all o E T, a E Tr(S) 

and say that S reflects fully in T. (Throughout the paper, "for almost all" means 
"except for a nonstationary set of points"). As proved in [4], < is a well founded 
relation; the order o(S) of a stationary set is the rank of S in this relation. 
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436 THOMAS JECH AND SAHARON SHELAH 

If the trace of S is stationary, then clearly o(S) < o(Tr(S)). We say that 
S reflects fully at regular cardinals if its trace meets every stationary set T of 
regular cardinals such that o(S) < o(T). In other words, if for all stationary sets 
T of regular cardinals, 

o(S) < o(T) implies S < T. 

AXIOM OF FULL REFLECTION FOR N.. Every stationary subset of K reflects fully at 
regular cardinals. 

In this paper we investigate full reflection together with the existence of 
cardinals in the Mahlo hierarchy. Let Reg be the set of all regular limit cardinals 
ae < i, and for each 7 < K' let 

E77 = Trn(Reg) - Trn1+(Reg) 

(cf. [2]), and call , rq-Mahlo where 71 < ?+ is the least 71 such that E. is nonsta- 
tionary. In particular, 

Eo = inaccessible non-Mahlo cardinals 

E1 = I-Mahlo cardinals, etc. 

We also denote 

E-1 = Sing = the set of all singular ordinals Ol < N. 

It is well known [4] that each E., the qth canonical stationary set is equal (up to 
the equivalence almost everywhere) to the set 

{Ol < ,: Ol isfn(oa)-Mahlo} 

where f7 is the canonical r1th function. A K'-Mahlo cardinal I is called greatly 
Mahlo [2]. 

If i is less than greatly Mahlo (or if it is greatly Mahlo and the canonical 
stationary sets form a maximal antichain) then Full Reflection for i is equivalent 
to the statement 

For every q > -1, every stationary S C E. reflects almost everywhere 
in every E,, v > q. 

The simplest case of full reflection is when i is 1-Mahlo; then full reflection 
states that every stationary S C Sing reflects at almost every aC E Fo. We will 
show that this is equiconsistent with the existence of a weakly compact cardinal. 

This content downloaded from 192.231.202.205 on Tue, 16 Dec 2014 23:53:52 PM
All use subject to JSTOR Terms and Conditions

Sh:383

http://www.jstor.org/page/info/about/policies/terms.jsp


FULL REFLECTION OF STATIONARY SETS 437 

More generally, we shall prove that full reflection together with the existence 
of n-Mahlo cardinals is equiconsistent with the existence of H)l-indescribable 
cardinals. 

To state the general theorem for cardinals higher up in the Mahlo hierarchy, 
we first give some definitions. We assume that the reader is familiar with Hl- 
indescribability. A "formula" means a formula of second order logic for (V,t, E). 

Definition. (a) A formula is H1-1 if it is of the form VX-i where p is a H1 77+1 77 
formula. 

(b) If 7 < s+ is a limit ordinal, a formula is H1- if it is of the form ]v < 

71 W(v,.) where o(v, ) is a H1 formula. 

For ae < K and 7 < K+ we define the satisfaction relation (V., C) = p for 
rl formulas in the obvious way, the only difficulty arising for limit 71, which is 
handled as follows: 

(Va, E) = ]v < 7 O(v,.) if 3v < f,7(a)(V,V, ) (v, 

where f,7 is the qth canonical function. 

Definition. i is ll -indescribable (rq < i'+) if for every rl formula o and 
every Y C V,t, if (V,t,) l o(Y) then there exists some Ol < K such that 
(Va, E) l= o(pY n v.). 

, is Hl+-indescribable if it is Hl -indescribable for all 7 < K+. 

THEOREM A. Assuming the Axiom of Full Reflection for i, we have for every 
71 < (K+)L: Every r-Mahlo cardinal is Hl -indescribable in L. 

THEOREM B. Assume that the ground model satisfies V = L. There is a generic 
extension V[G] that preserves cardinals and cofinalities (and satisfies GCH) such 
that for every cardinal K in V and every 7 < K+: 

(a) If , is H1 -indescribable in V then , is r-Mahlo- in V[G]. 

(b) V[G] satisfies the Axiom of Full Reflection. 

2. Proof of Theorem A. Throughout this section we assume full reflection. 
The theorem is proved by induction on K. We shall give the proof for the finite 
case of the Mahlo hierarchy; the general case requires only minor modifications. 

Let Fo denote the club filter on K in L, and for n > 0, let Fn denote the ll 
filter on K in L, i.e. the filter on P(w) nL generated by the sets {oa < K: Lo I 
where p is a H1 formula true in L,<. If K is 11-indescribable then Fn is a proper 
filter. The H1 ideal on n is the dual of Fn. 
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438 THOMAS JECH AND SAHARON SHELAH 

By induction on n we prove the following lemma which implies the theorem. 

LEMMA 2.1. Let A E L be a subset of K, that is in the r7I ideal. Then A nEn 1 
is nonstationary. 

To see that the Lemma implies Theorem A, let n > 1, and letting A = ,, we 
have the implication 

, is in the H1 ideal in L =* En-1 is nonstationary, 

and so 

, is not uk-indescribable in L =* , is not n-Mahlo. 

Proof. The case n = 0 is trivial (if A is nonstationary in L then A n Sing is 
nonstationary). Thus assume that the statement is true for n, for all A < i, and 
let us prove it for n + 1 for K. Let A be a subset of K, A E L, and let p be a 
H1 formula such that for all Ol E A there is some Xc, E L, X, C ae, such that 
Lo, F p(Xc,). Assuming that A n En is stationary, we shall find an X E L, X C K, 
such that L,< F yo(X). Let B D A be the set 

B={aa < K : 3XXELLc, #o(X)}, 

and for each ae E B let Xc, be the least such X (in L). For each oa E B, X, E Lo 
where 1 < a', and so let 1 be the least such 3. Let Zc, E {o, 1 }n rL be such that 
Zc, codes (LO, E, Xc,) (we include in Zc, the elementary diagram of the structure 

(LO, E,Xa)). 
For every A E En n B, let 

BA = {o < A: at E B and Z, = ZA I al. 

We have 

BA D { < A: ZA I ae codes (LQ, E,X) where 3 is the least 3 and 

X is the least X such that Lo, F ((X) and X = XA na 

= {a < A: L, l (ZA I a,XAnoa)} 

where b is a Il A En statement, and hence BA belongs to the filter FnA. By the 
induction hypothesis there is a club CA C A such that B n En- D BA n En- D 
CA mEn1. 

LEMMA 2.2. There is a club C C CK such that B n E n- D C Bn En- 
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FULL REFLECTION OF STATIONARY SETS 439 

Proof. If not then E_1 -B is stationary. This set reflects at almost all A E En, 
and since B n En is stationary, there is A E B n En such that (E-l - B) n A is 
stationary in A. But B n E,- D CAn E,-j a contradiction. a 

Definition 2.3. For each t E L n {O, 1}'8, let 

St = { E En-1 t C Za}. 

Since BnEn-1 is almost all of En_, there is for each y < n some t E {O, 1} 
such that St is stationary. 

LEMMA 2.4. If t, u E {O, 1}<<' are such that both St and Su are stationary then 
t C u or u C t. 

Proof. Let A E B n En be such that both St n A and Su n A are stationary in 
A. Let oa, E CA be such that a E St and 3 E Su. Since we have t C Z x C ZA 
anduCZO CZA, itfollowsthattC uoru C t. a 

COROLLARY 2.5. For each y < K there is t- E {O, 1 }? such that St? is almost 
all of En 1. 

COROLLARY 2.6. There is a club D C K such that for all a E D, if ae E En-1 
then a E B and to C ZO. 

Proof. Let D be the intersection of C with the diagonal intersection of the 
witnesses for the St,. 

Definition. Z = U{t7 y < I}. 

LEMMA 2.7. For almost all oa E En-1, Z na = Z,. 

Proof. By Corollary 2.6, if oa E D n E- 1 then Z.G = t, E 

Now we can finish the proof of Lemma 2.1: The set Z codes a set X C i 

and witnesses that X E L. We claim that L,, I (p(X). If not, then the set {oa < 
L I=(x n a)} is in the filter F' (because -f is En). By the induction 

hypothesis, L, I -yp(X n a) for almost all oa E En_1 On the other hand, for 
almost all oa E En-1 we have Lo I yo(XO) and by Lemma 2.7, for almost all 
aE Enl,xna = X; a contradiction. a 

3. Proof of Theorem B: Cases 0 and 1. The model is constructed by iter- 
ated forcing. (We refer to [5] for unexplained notation and terminology). Iterating 
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440 THOMAS JECH AND SAHARON SHELAH 

with Easton support, we do a nontrivial construction only at stage i' where i' is 
a Mahlo cardinal. 

Assume that we have constructed the forcing below i, and denote it Q, 
and denote the model V(Q); if A < i then Q I A is the forcing below A and 
QA E V(Q I A) is the forcing at A. The rest of the proof will be to describe Q,. 
The forcing below i has size i and satisfies the i-chain condition; the forcing at 
i will be essentially < i-closed (for every A < i has a A-closed dense set) and 

will satisfy the K'-chain condition. Thus cardinals and cofinalities are preserved, 
and stationary subsets of i can only be made nonstationary by forcing at i, not 
below i and not after stage i; after stage i no subsets of i are added. 

By induction, we assume that Full Reflection holds in V(Q) for subsets of all 
A < K. We also assume this for every A < i: 

(a) If A is inaccessible but not weakly compact in V then A is non Mahlo 
in V[Q]. 

(b) If A is H1-indescribable but not H1-indescribable in V, then A is 1- 
Mahlo in V[Q]. 

(c) And so on accordingly. 

Let Eo, El, E2, etc. denote the subsets of K consisting of all inaccessible non 
Mahlo, I-Mahlo, 2-Mahlo etc. cardinals in V[Q]. 

The forcing Q,, will guarantee Full Reflection for subsets of K and make K 
into a cardinal of the appropriate Mahlo class, depending on its indescribability 
in V. (For instance, if K is 11-indescribable but not 11-indescribable, it will be 
2-Mahlo in V(Q * Q,.) 

The forcing Q,, is an iteration of length K' with < K-support of forcing 
notions that shoot a club through a given set. We recall ([1], [7], [6]) how one 
shoots a club through a single set, and how such forcing iterates: Given a set 
B C K, the conditions for shooting a club through B are closed bounded sets p of 
ordinals such that p C B, ordered by end-extension. In our iteration, the B will 
always include the set Sing of all singular ordinals below K, which guarantees that 
the forcing is essentially < K-closed. One consequence of this is that at stage Ol of 
the iteration, when shooting a club through (a name for) a set B E V(Q * Q, I a), 
the conditions can be taken to be sets in V(Q) rather than (names for) sets in 
V(Q*Q, I a). 

We use the standard device of iterated forcing: as Q,, satisfies the K'-chain 
condition, it is possible to enumerate all names for subsets of K such that the 13th 
name belongs to V(Q * Q, I ,3), and such that each name appears cofinally often 
in the enumeration. We call this a canonical enumeration. 

We use the following two facts about the forcing: 

LEMMA 3.1. If we shoot a club through B, then every stationary subset of B 
remains stationary. 
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]FULL REFLECTION OF STATIONARY SETS 441 

Proof. See [5], Lemma 7.38. a 

LEMMA 3.2. If B contains a club, then shooting a club through B has a dense 
set that is a < i-closed forcing (and so preserves all stationary sets). 

Proof. Let C C B be a club, and let D = {p: max(p) E C}. 

Remark. There is a unique forcing of size n that is < ;-closed (and nontrivial), 
namely the one adding a Cohen subset of i. We shall henceforth call every forcing 
that has such forcing as a dense subset the Cohen forcing for K. 

We shall describe the construction of Q,, for the cases when n is respectively 
inaccessible, weakly compact and Hf-indescribable, and then outline the general 
case. Some details in the three low cases have to be handled separately from the 
general case. 

Case 0. Qy for y which is Mahlo but not weakly compact. 

We assume that we have constructed Q 1 y, and construct Qy in V(Q 1 y). To 
construct Qy, we first shoot a club through the set Sing and then do an iteration 
of length 7y (with < y-support), where at the stage ae we shoot a club through 
B, where {Bc,: a < -y+} is a canonical enumeration of all potential subsets of 
y such that Bo D Sing. As Sing contains a club, y is in V(Q * P) non-Mahlo. As 
Qy is essentially < i-closed, n remains inaccessible. 

In this case, Full Reflection for subsets of y is (vacuously) true. 
This completes the proof of Case 0. We shall now introduce some machinery 

that (as well as its generalization) we need later. 

Definition 3.3. Let y be an inaccessible cardinal. An iteration of order 0 (for 
y) is an iteration of length < 7y such that at each stage ae we shoot a club through 
some Bo with the property that Bo D Sing. 

LEMMA 3.4. 

(a) If P and R are iterations, and P is of order 0 then P I H (R is of order 
0) if and only of R is of order 0. 

(b) If R is a P-name then P * R is an iteration of order 0 if and only if P 
is an iteration of order 0 and P I- (R is an iteration of order 0). 

(c) If A C Sing is stationary and P is an iteration of order 0 then P IH A 
is stationary. 

Proof. (a) and (b) are obvious, and (c) is proved as follows: Consider the 
forcing R that shoots a club through Sing. R is an iteration (of length 1) of order 
0, and R * P I F1 A is stationary, because R preserves A by Lemma 3.1, and forces 
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442 THOMAS JECH AND SAHARON SHELAH 

that P is the iterated Cohen forcing (by Lemma 3.2). Since R commutes with P, 
we note that A is stationary in some extension of the forcing extension by P, and 
so P IH A is stationary. m 

We stated Lemma 3.4 in order to prepare ground for the (less trivial) gener- 
alization. We remark that "P is an iteration of order 0" is a first order property 
over Vy (using a subset of Vy to code the length of the iteration). The following 
lemma, that does not have an analog at higher cases, simplifies somewhat the 
handling of Case 1. 

LEMMA 3.5. If y has a Hl property (p and P is a < y-closed forcing, then 
P I- (y). 

Proof. Let p(y) = VXa(X), where a is a 1st order property. Toward a con- 
tradiction, let po E P and X be such that po U- -1c(X). Construct a descending 
y-sequence of conditions po > P1 > ... > pa > ... and a continuous sequence 

Yo < 1 <... < 7y < ... such that for each oa, p, iF -'a(X n y.), and that p,g 
decides X n y,; say p, iF- X cn 7 = X. Let X = Ua<yX,. There is a club C 
such that for all ae E C, a(X n ). This is a contradiction since for some ae E C, 
7Ya = oa. a 

Case 1. A is HlI-indescribable but not FIW-indescribable. 

We assume that Q I A has been defined, and we shall define an iteration QA 
of length A'. The idea is to shoot clubs through the sets Sing U (Tr(S) n Eo), for 
all stationary sets S C Sing (including those that appear at some stage of the 
iteration). Even though this approach would work in this case, we need to do 
more in order to assure th ththe construction will work at higher cases. For that 
reason we use a different approach. 

At each stage of the iteration, we define a filter F1 on Fo, such that the filters 
all extend the HI filter on A in V, that the filters get bigger as the iteration pro- 
gresses, and that sets that are positive modulo F1 remain positive (and therefore 
stationary) at all later stages. The iteration consists of shooting clubs through sets 
B such that B D Sing and B n Th E F1, so that eventually every such B is taken 
care of. The crucial property of F1 is that whenever S is a stationary subset of 
Sing, then Tr(S) Eo E F1. Thus at the end of the iteration, every stationary subset 
of Sing reflects fully. Of course, we have to show that the filter F1 is nontrivial, 
that is that in V(Q r A) the set F0 is positive mod F1. 

We now give the definition of the filter F1 on F0. The definition is nonab- 
solute enough so that F1 will be different in each model V(Q i A * QA i oi) for 
different a's. 

Definition 3.6. Let CA denote the forcing that shoots a club through Sing. 
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FULL REFLECTION OF STATIONARY SETS 443 

If p is a FI1 formula and X C A, let 

B(p,X)= { 7CEo: p(y,X ny)} 

The filter F1 is generated by the sets B(p,X) for those o and X such that CA 1- 
p(A,X). A set A C Eo is positive (or 1-positive), if for every fIl formula o and 
every X C A, if CA I- (p(A,X) then there exists a y E A such that p(y,X n -y). 

Remarks. 

(1) The filter F1 extends the club filter (which is generated by the sets 
B(p,X) where W is first-order). Hence every positive set is stationary. 

(2) The property "A is 1-positive" is W2J. 

LEMMA 3.7. In V(Q I A), Eo is positive. 

Proof. We recall that in V, A is Il1-indescribable, and Eo is the set of inacces- 
sible, non-weakly-compact cardinals. Let Q = Q I A. So let p be a il formula, 
let X be a Q - name for a subset of A, and assume that V(Q * CA) W (A,X). 
The statement that Q * CA I- ,o(A,X) is a 1711 statement (about Q, C and X). By 
Jll-indescribability, this reflects to some Ey E Eo (as Eo is positive in the Ill 
filter). Since Q n vy = Q | y and since Q I y satisfies the -y-chain condition, the 
name k reflects to the Q I y-name for X7 na. Also CA n vy = Cy. Hence 

Q I ly*C,IF i(-y,Xlny). 

What we want to show is that V(Q) = o(-y,X n y). Since forcing above y does 
not add subsets of -y it is enough to show that V(Q | y * Q) p . However, Cy 
was the first stage of Qy (see Case 0), and the rest of Qy is the iterated Cohen 
forcing for 'y. By Lemma 3.5, if W is true in V(Q I y * C), then it is true in 
V(Q I 'y * Q). 

LEMMA 3.8. If S C Sing is stationary, then the set {y E Eo: S n a is 
stationary} is in F1. 

Proof. The property p(A,S) which states that S is stationary is lIl. If we 
show that CA I- p(A, S), then {y E Eo: (y,S n y)} is in Fl. But forcing with 
CA preserves stationarity of S, by Lemma 3.1. a 

Definition 3.9. An iteration of order 1 (for A) is an iteration of length < A' 
such that at each stage a we shoot a club through some Ba such that Ba D Sing 
and Bc nE0 EF1. 
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444 THOMAS JECH AND SAHARON SHELAH 

Remark. If we include the witnesses for B, nE o E F1 as parameters in the 
definition, i.e. fp, X, such that CA 1H fo(A,X,) and B, nE o D { Ey C o 
wo(7,x, n a)}, then the property "P is an iteration of order 1" is ij. 

We shall now give the definition of QA: 

Definition 3.10. QA is (in V(Q(A)) an iteration of length A', such that for 
each ae < A', QA I ae is an iteration of order 1, and such that each potential B is 
used as Bo at cofinally many stages 3. 

We will now show that both "B E F1'" and "A is positive" are preserved 
under iterations of order 1: 

LEMMA 3.11. If B E F1 and P is an iteration of order 1 then P H B E F1. 
Moreover, if (Qp, X) is a witness for B E F1, then it remains a witness after forcing 
with P. 

Proof. Let B D B(p,X) where p is FI1 and CA 1 p(A,X), and let P be an 
iteration of order 1. As P does not add bounded subsets, B(p,X) remains the 
same, and so we have to verify that P IF- (CA IF p). However, CA commutes with 
P, and moreover, CA forces that P is the Cohen forcing (because after CA, P 
shoots clubs through sets that contain a club, see Lemma 3.2). By Lemma 3.5, 
CA 1H p implies that CA 1H (P 1 0). O 

LEMMA 3.12. If A C Eo is positive and P is an iteration of order I then P H A 
is positive. 

We postpone the proof of this crucial lemma for a while. We remark that the 
assumption under which Lemma 3.12 will be proved is that the model in which 
we are working contains V(Q I A); this assumption will be satisfied in the future 
when the Lemma is applied. 

LEMMA 3.13. 

(a) If P and R are iterations, and P is of order 1 then P I- (R is of order 1) 
if and only if R is of order 1. 

(b) If R is a P-name then P * R is an iteration of order 1 if and only if P 
is an iteration of order 1 and P I H (R is an iteration of order 1). 

(c) Every iteration of order 1 is an iteration of order 0. 

Proof. Both (a) and (b) are consequences of Lemma 3.12. The decision 
whether a particular stage of the iteration R satisfies the definition of being of 
order 1 depends only on whether B, E F1, which does not depend on P. 

(c) is trivial. o 
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FULL REFLECTION OF STATIONARY SETS 445 

COROLLARY 3.14. In V(Q I A * QA), E0 is stationary (so A is 1-Mahlo), and 
every stationary S C Sing reflects fully in E0. 

Proof. Suppose that E0 is not stationary. Then it is disjoint from some club C, 
which appears at some stage ae < A' of the iteration QA. So E0 is nonstationary 
in V(Q I A * QA I (a + 1)). This is a contradiction, since E0 is positive in that 
model, by Lemmas 3.7 and 3.12. 

If S is a stationary subset of Sing, then S E V(Q I A * QA I a) for some ae and 
so by Lemma 3.8, B = Tr(S) n Eo E F1 (in that model). Hence B remains in F1 
at all later stages, and eventually, B = B, is used at stage al, that is we produce 
a club C so that B D C n E0. Since QA adds no bounded subsets of A, the trace 
of S remains the same, and so S reflects fully in V(Q I A * QA). a 

Proof of Lemma 3.12. Let o be a Hl property, and let X* be a P-name for a 
subset of A. Let p E P be a condition that forces that CA I- p(A,X). We are going 
to find a stronger q E P and a y E A such that q forces (y,X n a). 

P is an iteration of order 1, of length al. At stage / of the iteration, we have 
P I /-names bo, (po and X*, for a set D Sing, a Hl formula, and a subset of A such 
that P I 3 forces that CA 1U ,oO(A,Xo) and that Bo D {y E nE o: (y,X, n) 
and we shoot a club through B,. 

Let b be the following statement (about VA and a relation on VA that codes a 
model of size A including the relevant parameters and satisfying enough axioms 
of ZFC; the relation will also insure that the model M below has the properties 
that we list): 

P is an iteration of length a, at each stage shooting a club through 
b1 D Sing, and p IF ,o(A,X) and for every 3 < a, P I 3 1 - (po(A,X,3). 

First we note that b is a Ij property. Secondly, we claim that CA 1- 4: In 
the forcing extension by CA, P is still an iteration etc., and p I- (o and P I / 1- p 
because in the ground model, p 1F (CA 1- ,o) and P I / 1- (CA 1H p,3), and CA 
commutes with P. 

Thus, since A is positive in the ground model, there exists some y E A such 
that 0(y, parameters n Vy). This gives us a model M of size y, and its transitive 
collapse N = 7r(M), with the following properties: 

(a) MnA = a, 

(b) P, p,X E M and M F P is an iteration given by {Bo : / < a}, 

(c) p 1F p(-y,i7r(X)) (the forcing IF- is in 7r(P)), 

(d) V/ < oa, if / E M, then 7r(P I 0) 1- (o0(y,7r(X/)). 

It follows that 7r(P) is an iteration on y (or order 0), of length 7r(ac), that at stage 
7r(0) shoots a club through r(BD). Also, p IFI r(X) = X T V (forcing in P). 
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446 THOMAS JECH AND SAHARON SHELAH 

SUBLEMMA 3.12.1. There exists an N-generic filter G - p on 7r(P) such that 
if X C y denotes the G-interpretation 7r(X)/G of 7r(X), andfor each / E M,X0 = 

7r(X()/G, then op(y,X) and (po(y,Xo) hold. 

Proof. We assume that V(Q I A) is a part of our universe, and that no subsets 
of y have been added after Qy. So it suffices to find G in V(Q 1 y * Qy). Note 
also that Eo n a is nonstationary (as y was made non Mahlo by Qy). Since 7r(P) 
is an iteration of order 0, since Sing contains a club, and because 7r(P) has size 
y, it is the Cohen forcing for y, and therefore isomorphic to the forcing at each 
stage of the iteration Qy except the first one (which is C). 

There is 7 < 7y such that V(Q Q ry * Qa I 7) contains 7r(P), 7r(X), all members 
of N, and all 7r(Xl), / E M. Also, the statements p I- o(y, 7r(X)) and 7r(P I 0) 1- 

po(y, 7r(X)), being JI- and true, are true in V(Q Q y I * Qa I r). As 7r(P) (below 
p) as well as the 7r(P I ) are isomorphic to the rth stage Qy(q) of Qy, and we 
do have a generic filter for Qy(rq) over V(Q 1 ry * Qy I r), we have a G that is 
N-generic for 7r(P) and 7r(P I 0). If we let X = 7r(X)/G and Xo = 7r(X)/G, then 
in V(Q 1 ry * Q7 I (71 + 1)) we have (-y,X) and pQ(y,Xo). Since the rest of the 
iteration Q7 is the iterated Cohen forcing, we use Lemma 3.5 again to conclude 
that o(y,X) and poo(y,Xo) are true in V(Q 1 y * Q7), hence are true. M 

Now let H = 7r-l(G) and for every / E M let Bo = 7r(Bo)/G. By induction 
on : E M, we construct a condition q < p (with support C M) as follows: For 
each ( E M, let q(,) = He U {A}. This is a closed set of ordinals. At stage /, 
q I / a condition by the induction hypothesis, and q I / D H 1 3 (consequently, 
q I / forces Xc n a = Xp and bo na = Ba). Ho is a closed set of ordinals, 
cofinal in y, and H8 C B8. We let q(/3) = Ho U {y}. In order that q I (/3 + 1) 
is a condition it is necessary that q I /3 1 y E Bo. But by Sublemma 3.12.1 we 
have po(, X), so this is forced by P (which does not add subsets of y), and 
since q I / iF Xo = kp n a, we have q I /3 iF (7,jco n a). But this implies that 
q I 3 1H a E B8. Hence q I (3 + 1) is a condition, which extends H I (/ + 1). 

Therefore q is a condition, and since q D H, we have q H- Xc n a = X. But 
p(y,X) holds by Sublemma 3.12.1., so it is forced by q, and so q I- p(7,X n a), 
as required. a 

4. Case 2 and up. Let n be Jl!-indescribable but not Jjl-indescribable. 
Below i, we have four different types of limit cardinals in V: 

Sing = the singular cardinals 

Eo = inaccessible not weakly compact 

E1 = 171- but not JTI-indescribable 

the rest = F22-indescribable 
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FULL REFLECTION OF STATIONARY SETS 447 

We shall prove a sequence of lemmas (and give a sequence of definitions), analo- 
gous to 3.6-3.14. Whenever possible, we use the same argument; however, there 
are some changes and additional complications. 

Definition 4.1. A Hl formula p is absolute for A E E1 if for every Ol < A' 
and everyX E V(Q A A *Q a), 

(1) V(Q I A * QA I al) l (for every iteration R of order 1, o(A,X) iff 
R IF (A,X)), 

(2) V(Q I A * QA I al) = o(A,X) implies V(Q I A * QA) = o(A,X), and 

(3) V(Q I A * QA I al) - -(A,X) implies V(Q I A * QA) -1 -(A,X). 

We say that o is absolute if it is absolute for all A E E1, A < s 

Definition 4.2. If o is a rl formula and X C i,, let 

B(p,X) = {A E E1 : o(,X n A)}. 

The filter F2 is generated by the sets B(p, X) where p is an absolute J7I1 formula 
and X is such that R I- ~o(',X), for all iterations R of order 1. 

A set A C E1 is positive (2-positive) if for any absolute Hl formula (0 and 
every X C i, if every iteration R of order 1 forces ,o(i, X), then there exists a 
A EA such that p(A,XnA). 

Remark. The property "A is 2-positive" is fi. 

LEMMA 4.3. In V(Q | i), E1 is positive. 

Proof. Let Q = Q I ,. Let o be an absolute JIV formula, and let i be a 
Q-name for a subset of s, and assume that in V(Q), R IF ,o(p(,X) for all order-I 
iterations R. In particular, (taking R the empty iteration), V(Q) = ,o(K,,X). 

Using the 11-indescribability of i in V, there exists a A c E1 such that 
V(Q I A) = ,o(A,X n A). In order to prove that V(Q) = ,o(A,X n A), it is enough 
to show that V(Q I A * QA) l ,o(A,X n A). This however is true because p is 
absolute for A. a 

LEMMA 4.4. The property "S is 1-positive" of a set S C Eo is an absolute J'2 
property, and is preserved under forcing with iterations of order 1. 

Proof. The preservation of " 1-positive" under iterations of order 1 was proved 
in Lemma 3.12. To show that the property is absolute for all A E E1, first assume 
that S E V(Q I A * QA I oa) is 1-positive. Since all longer initial segments of the 
iteration QA are iterations of order 1, hence order 1 iterations over QA I a (by 
Lemma 3.13), S is 1-positive in each V(Q I A * QA I ), 3 > oa. However, the 
property "S is 1-positive" is FI9 and so it also holds in V(Q I A * QA), because 
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448 THOMAS JECH AND SAHARON SHELAH 

every subset of A in that model appears at some stage ,B. (We remark that this 
argument, using J7I, does not work in higher cases). 

Conversely, assume that S is not 1-positive in V(Q I A * QA I al). There exists 
a ij formula p and some X C A such that ,o(-y,X n y) fails for all y E S, while 
CA I- y9(A,X). The rest of the argument is the same as the one in Lemma 3.11: Let 
P = QA/(QA I o); CA commutes with P and forces that P is the iterated Cohen 
forcing. Hence by Lemma 3.5, P 1- (CA 1F (p), i.e. V(Q I A * QA) l (CA 1- (p). 
Therefore S is not 1-positive in V(Q I A * QA). (Again, this argument does not 
work in higher cases.). a 

LEMMA 4.5. The property "R is an iteration of order 1" is an absolute nF 

property, and is preserved under forcing with iterations of order 1. Moreover, in 
V(Q I A * QA), if R is an iteration of order 1, then R is the Cohen forcing. 

Proof. The preservation of the property under iterations of order 1 was proved 
in Lemma 3.13. If R is an iteration of order 1 in V(Q I A * QA I o), shooting 
clubs through Ao,Al ,A2, etc., then R embeds in QA above ae as a subiteration, i.e. 
there are 13o, 01, etc. such that Ao = Boo,,Al = Bo1, etc. Moreover, there is some 
-y > oa such that the Ao,A 1,A2, etc. all contain a club. Hence R is the Cohen 
forcing in V(Q I A * QA I -y). Therefore R is the Cohen forcing in V(Q A A * QA), 
and consequently an iteration of order 1. As for the absoluteness downward, we 
give the proof for iterations of length 2. Let Moo = V(Q I A * QAx), let R = (Ro, R1) 
be an iteration given by Ao and A1 E Moo(Ro), such that in Moo, Ao E F1 and 
Ro 1H A1 E F1. Let R E M, = V(Q I A * QA I ar). We will show that in M^, R is 
an iteration of order 1, and that in Moo, R is the Cohen forcing. 

First, since Ao E F1 is absolute, there is a d > a such that MO l Ao contains 
a club and such that Ao = Bo (Bo is the set used at stage / of the iteration QA). 
Since MO l (Ro is Cohen), we have Moo F Ro is Cohen. 

Now, in Moo we have Ro 1F A1 E F1. We claim that in MO, Ro 1H A1 E F1. 
Then it follows that R is an iteration of order 1 in Mo. 

It remains to prove the claim. Let X denote A1, let ~o(X) denote the absolute 
Ill property A1 E F1 and let C denote the Cohen forcing. We recall that M0+1 = 

M(C). 

SUBLEMMA 4.5.1. Let X be a C-name in Mo, and assume that M,+1 = Mo (C). 
If C IF p(X) in Moo, then C HI p(X) in M,3. 

Proof. Let P be the forcing such that Moo = M, +l(P), and assume, toward a 
contradiction, that C 1H p(X) in Moo but C 1H (X) in Mo. Let Gc x Gp x H be 
a generic on C * P * C, and let X = X/H. Let C = C1 x C2 where both C1 and C2 
are Cohen, and consider the generic H x Gc x Gp on C1 x C2 x P = C x P (it is 
a generic because since H is generic over Gc x Gp, Gc x Gp is generic over H). 
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FULL REFLECTION OF STATIONARY SETS 449 

In MO, C1 forces (o false, hence (p(X) is false in MO [H]. Since -_p is preserved 
by Cohen forcing (in fact by all order-i iterations), so (p(X) is false in MO [H x Gc]. 
Now (o is absolute (between MO,+1 and Moo) and so (p(X) is false in MOi[H x Gc x 
Gp]. On the other hand, since C 1- (p(X) in M, we have Mg[Gc x Gp x H] F 

wo(YIH), so (o is true in MOi[Gc x Gp x H], a contradiction. z 

LEMMA 4.6. If S C Eo is 1-positive, then the set 

{A eE1 :S nA is l-positive} 

is in F2. Therefore Tr(S) n E1 E F2. 

Proof. The first sentence follows from the definition of F2 because "S is 
1-positive" is absolute FI1 and if S is positive then it is positive after every 
order 1 iteration. The second sentence follows, since 1-positive subsets of A are 
stationary. C1 

Definition 4.7. An iteration of order 2 (for i) is an iteration of length < 
K+ that at each stage ae shoots a club through some B, such that B, D Sing, 

B. nE0 E F1, and B, nmE E F2. 

Remarks. 

(1) An iteration of order 2 is an iteration of order 1. 

(2) If we include the witnesses for B, to be in the filters, then the property 
"P is an iteration of order 2" is il. 

Definition 4.8. Q,, is (in V(Q I )) an iteration of length n+, such that for 
each ae < n+, Q,, I a is an iteration of order 2, and such that each potential B is 
used as Bo at cofinally many stages 3. 

LEMMA 4.9. If B E F2 and P is an iteration of order 2 then P I- B E F2 (and 
a witness ((p,X) remains a witness). 

Proof. Let B D B(p,X) where (o is an absolute FI-, and every iteration of 
order 1 forces p; let P be an iteration of order 2. Since P does not add subset of 
t, B(np,X) remains the same and p remains absolute. Thus it suffices to verify 
that for each P-name R for an order 1 iteration, P I- (R I- p). However, P is an 
iteration of order 1, so by Lemma 3.13, P * R is an iteration of order 1, and by 
the assumption on p, P * RH I . p 

LEMMA 4.10. If A C E1 is 2-positive and P is an iteration of order 2 then 
P H- A is 2-positive. 
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450 THOMAS JECH AND SAHARON SHELAH 

Proof. Let (o be an absolute FI2 property, let X be a P-name for a subset of 
s and let p E P force that for all order-1-iterations R, R I- y(p(,X). We want a 
q < p and a A E A such that q II (p(A,Xm nA). 

P is an iteration of order 2 that at each stage 13 (less than the length of P) 
shoots a club through a set Bi, such that P I ,B forces that 

(1) B 2D Sing, 

(2) bp nEo D {y E Eo: :> X: y)}, and 

(3) B: n El i {A E El : 02(A,Ygf n l)}, 

where X: and Y,B are names for subsets of X, the Wo are n1 formulas (with some 
extra property that make P an order-1 interation) and the , are absolute (in 
V(Q I t)) 11! properties, and P I forces that VR (if R is an iteration of order 1 
then R I- 92'i, Yb)). 

We shall reflect, to some A E E1, the Hll statement b that states (in addition 
to a first order statement in some parameter that produces the model M below): 

(a) P is an iteration of order 1 using the ,B pY , Yg2 , 

(b) p (,X), 

(c) for every : < length(P), P 1 /H p(, Yr). 

First we note that b is a Hll property. Secondly, we claim that +b is absolute 
for every A E El. Being an iteration of order 1 is absolute by Lemma 4.5. That 
(b) and (c) are absolute will follow once we show that if fo is an absolute nl2 
property and R an iteration of order 1, then "R I- p" is absolute: 

SUBLEMMA 4.10.1. Let (p be absolute for A, let a < A', X,R E V(Q I A * QA I 
a) be a subset of A and an iteration of order 1. Then the property R H- p(A,X) 
is absolute between Ma = V(Q I A * QA I a) and Mo<) = V(Q I A * QA). 

Proof. Let Ma F (R I- p(A,X)). Then Ma I p(A,X) and by absoluteness, 
Moo l (p(A,X). If in Moo, R H-- i -(A,X), then because R is in Mx the Cohen forc- 
ing, there is (by Sublemma 4.5. 1) some /3> oa such that R is the Cohen forcing 
in M,, and MO l (R H- -'). By absoluteness again, M:l F , a contradiction. a 

Thus L is an absolute LI! property. Next we show that if R is an iteration of 
order 1 then R forces 4Q, parameters): 

(a) R H- (P is an iteration of order 1), by Lemma 3.13. 

(b) R commutes with P, and by the assumption of the proof, p lH (R H- 
pQ(,X)). Hence R IF (p H- (,X)). 

(c) For every /3, R commutes with P 1 3, and by the assumption on :2 

P I: /3H- (R H- (p8, )). Hence R IF (P 0 (/3 IF 
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FULL REFLECTION OF STATIONARY SETS 451 

Now since A is 2-positive in the ground model, there exists a A E A such 
that b(A, parameters n VA). This gives us a model M of size A, and its transitive 
collapse N = ir(M), with the following properties: 

(a) Mn K=A, 

(b) P,p,X EM, 

(c) -r(P) is an iteration of order 1 for A, 

(d) p IF p(A, lr(X)), 
(e) V: E M r(P I 0 I (p2(A,r(Y)). 

The rest of the proof is analogous to the proof of Lemma 3.12, as long as we 
prove the analog of Sublemma 3.12.1: after that, the proof is Case 1 generalizes 
with the obvious changes. 

SUBLEMMA 4.10.2. There exists an N-generic filter G E3 p on -r(P) such that 
if X = -r(X)/G and Ygi = ir(Ykj)/G for each : E M, then (p(A,X) and p03(A, Yp) 
hold. 

Proof. We find G in V(Q I A * QA). Since -r(P) is an iteration of order 1 and 
(o is absolute, there is an ae < A' such that V(Q IA * QA I a) contains ir(X), lr(Y13) 
(/ E M) and the dense sets in N, thinks that -r(P) is the Cohen forcing, such 
that the forcing QA(o) at stage ae is the Cohen forcing, and (by absoluteness and 
by Sublemma 4.10.1) QA(oa) (or -r(P)) forces (p(A, -r(X)) and (p2(A, ir(Yg)). The 
generic filter on QA(o) yields a generic G such that V(Q I A * QA (I( + 1)) = 
(p(A,X) and (p2(A, Y,j) where X = -r(X)/G, Ygi = ir(Ygi)/G. By absoluteness again, 
(p(A,X) and (p2(A, Y,j) hold in V(Q I A * QA), and hence they hold. z 

LEMMA 4.11. 

(a) If P and R are iterations, and P is of order 2, then P I- (R is of order 2) 
if and only if R is order 2. 

(b) If R is a P-name then P * R is an iteration of order 2 if and only if P 
is an iteration of order 2 and P I- (R is an iteration of order 2). 

Proof. By Lemma 4.10 (Just as Lemma 3.13 follows form Lemma 3.12). - 

COROLLARY 4.12. In V(Q I K * Q,), El is stationary, every stationary S C Eo 
reflects fully, and every stationary T C E1 reflects fully. 

Proof. The first part follows from Lemma 4.3 and 4.10. The second part is 
a consequence of Lemmas 3.8 and 4.6 and the construction that destroys non-l- 
positive as well as all non-2-positive sets. 1 

This concludes Case 2. We can now go on to Case 3 (and in an analogous way, 
to higher cases), with only one difficulty remaining. In analogy with definition 4.2 
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we can define a filter F3 and the associated with it 3-positive sets. All the proofs of 
Chapter 4 will generalize from Case 2 to Case 3, with the exception of Lemma 4.4 
which proved that "l-positive" is an absolute Jll property. The proof does not 
generalize, as it uses, in an essential way, the fact that the property is Fll, while 
"2-positive" is a Fll property. 

However, we can replace the property "A C E1 n K is 2-positive" by another 
7l property that is absolute for i, and that is equivalent to the definition 4.2 at 
all stages of the iteration Q,, except possibly at the end of the iteration. The new 
property is as follows: 

(4.13) Either Full Reflection fails for some S C Sing n K 
and A is 2-positive, or Full Reflection holds for all subsets of 
Sing and A is stationary. 

"Full Reflection" for S C Sing means that Eo - Tr(S) is nonstationary. It is 
a S1 property of S, and so (4.13) is H3. We claim that Full Reflection fails at 
every intermediate stage of Q,. Hence (4.13) is equivalent to "2-positive" at the 
intermediate stages. At the end of Q,s, every 2-positive set becomes stationary, 
and every non-2-positive set becomes nonstationary. Hence (4.13) is absolute. 

Since for every oa < <, the size of Q I , * Q, I oa is t, the following lemma 
verifies our claim: 

LEMMA 4.14. Let K be a Mahlo cardinal, and assume V = L[X] where X C K. 
Then there exists a stationary set S C Sing n K such that for every -y E Eo, S n a 

is nonstationary. 

Proof. We define S C Sing by induction on oa < i. Let oa E Sing and assume 
s na has been defined. Let r7(oa) be the least r7 < a' such that L. [X n a] is a 
model of ZFC- and L,[X n a] I= a is not Mahlo. Let 

a E S iff L(,)[X n a] I s na is nonstationary. 

First we show that S is stationary. 
Assume that S is nonstationary. Let v < + be such that S E LAX] and 

Lv[X] F S is nonstationary. Also, since , is Mahlo, we have Lv[X] I K is Mahlo. 
Using a continuous elementary chain of submodels of Lv[X], we find a club 
C C , and a function v(() on C such that for every ( E C, 

Lv(S)[X n (] I is Mahlo and S n 4 is not stationary. 

If oa E Sing n c, then because oa is Mahlo in Lv()[X n n] but non Mahlo in 

L,(,) [X n a], we have v(oa) < r7(oa). Since S n a is nonstationary in Lv()[X n n], 
it is nonstationary in L,(,)[X n o]. Therefore oa e S, and so S D Sing n c contrary 
to the assumption that S is nonstationary. 
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FULL REFLECTION OF STATIONARY SETS 453 

Now let -y E Eo be arbitrary and let us show that S n ay is nonstationary. 
Assume that S n ay is stationary. Let 6 < -y' be such that S n ay L6[X n ay], that 
L[X n ay] F s n ay is stationary and that L6[X n ay] F ay is not Mahlo. There is a 
club C C -y and a function 8(() on C such that for every ( E C, 

Lb(() [X n 4] F is not Mahlo and S n 6 is stationary. 

Since S n ay is stationary, there is an oe S n C. Because r(oa) is the least 
r7 such that oa is not Mahlo in L.(,))[X n a], we have r(oa) < 6(oa). But S n a is 
nonstationary in L,7(,)[X n a] and stationary in Lb(,)[X n n], a contradiction. O 

Now with the modification given by (4.13), the proofs of Chapter 4 go through 
in the higher cases, and the proof of Theorem B is complete. 
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