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Introduction 

We introduce in this paper the notion of tree system. Under suitable conditions 

tree systems can be used to construct structures of the power of the continuum 

which are cow-equivalent to a prescribed countable structure. In particular tree 

systems allow a uniform approach to certain problems concerning existentially 

closed groups and skew fields, and universal locally finite groups. By means of 

tree system constructions we prove the following theorems: 

Theorem A. For every uncountable existentially closed group or skew field 92 there 
is a structure % with the following properties: 

(1) ZJl =,!JI (so especially % is an existentially closed group or skew field) and 
the cardinal@ of 8 is 2’0. 

(2) Every uncountable set of elements of % contains an uncountable subset of 
pairwise noncommuting elements (in particular no uncountable substructure of % is 
commutarive). 

Theorem B. (1) There is a universal locally finite group % of power 2”~) such that 
every uncountable set of elements of YI contains an uncountable subset of pairwise 
noncommuting elements. 

(2) There is a family (8.). I ,<2”i, of universal locally finite groups each of cardinality 
2”o such that no uncountable group is embeddable in %$ and ‘Si whenever i <j < 
2K,. 

*Work done during the Logic Year 1980-81 at the Institute of Advanced Studies, The Hebrew 
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124 D. Giorgetta, S. Shelah 

Theorem C. There is a universal locally finite group % of cardinal@ 2”o such that 

no uncountable subgroup of % belongs to any proper variety of groups. 

All statements in these theorems remain true when the cardinality of % and of 
the g2, is taken to be K (X0< K Szxo) instead of 2”o. 

The first section of the paper contains the definition of tree systems. A tree 
system consists of a collection of ‘bottom’ directed systems and a ‘top’ directed 
system whose structures are the direct limits of the bottom systems and whose 
morphisms are the inclusion mappings. We shall be interested in the direct limit of 
the top system which we call limit structure. By the special choice of the top 
system, the bottom systems are subjected to strong compatibility conditions. This 
makes it easier to get the limit structure to be mu-equivalent to a prescribed 
structure (whose finitely generated substructures are used to build up the bottom 
systems). On the other hand these conditions, being amalgamation properties, 
make it difficult to construct large limit structures. In Section 2 we prove some 
technical results which shall ensure the existence of tree systems with large limit 
structures under certain algebraic conditions. These results are used in Section 3 
to construct tree systems whose limit structures satisfy the conditions on % in 
Theorem A(1) and the corresponding part of B(1). In Section 4 the construction 
of Section 3 is refined in order to get limit structures satisfying the remaining 
conditions of the Theorems A and B. Section 5 is dedicated to the proof of 
Theorem C. 

The first uniform treatment of uncountable existentially closed groups, skew 
fields and locally finite groups (note that universal locally finite groups are just the 
existentially closed structures in the class of locally finite groups) is due to 
Macintyre [6]. Macintyre proves Theorem A and B(1) assuming V = L. His results 
were considerably strengthened by Hickin [3] in the case of locally finite groups 
and by Shelah-Ziegler [S] in the case of groups. Hickin proves in ZFC the 
existence of a family (Y&)i<2~1 of universal locally finite groups of cardinality K, 
with the property of Theorem B(2) and constructs a universal locally finite group 
which, among other properties, satisfies Theorem C for K, instead of 2”o. Shelah- 
Ziegler proves Theorem A(1) for arbitrary uncountable cardinals instead of 2’0, 
and shows for instance that in every uncountable cardinal there is an existentially 
closed group 8 which is mu-equivalent to a prescribed countable existentially 
closed group and enjoys the property that every uncountable subgroup of ‘% 
contains an uncountable free group. (If 5X has at most 2K~ elements this could also 
be obtained using tree systems together with a result from [9] which allows to pull 
down certain infinite sets of formulas from groups to existentially closed sub- 
groups .> 

An earlier version of the present paper was written by the second author and 
circulated as a preprint since 1977. This preprint already contained proofs for the 
Theorems A and B. The present exposition is due to the first author. Although it 
describes a different approach, most of the essential ideas of the first four sections 
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are explicit or implicit in Shelah’s preprint. The central notion of tree system can 
be traced back to [7]. Section 5 is due to the first author. 

We shall use the following notation: Structures are denoted by german capitals, 
and their universes by the corresponding latin capitals. If n is a structure and A a 
subset of M we let (Ah stand for the substructure of %J? generated by A. 

1. Tree systems 

We fix a tree T with the following properties: 
(Tl) T is a subtree of (“52, c-), the tree consisting of all O-l sequences of 

length at most o. 
(T2) Every branch of T has length o + 1. 
(T3) For every integer n the following hold: If 8 E T,, (the nth level of T) then 

00~ T,+i. There is exactly one node n E T, such that n 1 E T,+l. This node is 
called the critical node of Tn. 

(T4) For every 0 E T\ T, there is a critical node n E T with 6 <q. 
By condition (Tl) for each pair of distinct elements p, CT of T, there is an 

integer n such that p 1 n # CT p n. 

It follows from (Tl) and (T4) that T has continuum many branches, and so by 
(T2) we get IT, I= 2”o. 

Notation. For /~<cx<o and UCT, the set (0 1 p) OEU} is denoted by urp. 
The expression u S” T, stands for u E T, and 0 < 1 UI <K,. 

Now we extend the tree T to a partial ordering (I, s) as follows: 
(11) ~={u/~cYG.w(uG*T,)}. 
(12) For u,v~I let UGV iff ]u]=l~l and there are a<@~o such that VZT, 

and u=vra. 
T is embedded into (1, G) by the mapping 6~{6}. The minimal elements of I 

are To ={@} and those subsets of finite levels which contain both immediate 
successors of a critical node. 

Let (1, s) be the partial ordering satisfying (11) and (12). A pair Y = (&),,,, 

(fUU)“<lJGJ is called a tree system if Y satisfies the following conditions: 
(TSl) For each u <v E 1, !X2, is an L-structure for a fixed language L, and f,,V is 

an embedding of ?l&, into !G2,. 

(TS2) ((RJ,<,> cf,,),~,,,) is a directed system for every r E* T,. 

(TS3) If UG*VE*T, and n<o, then ?XU~%,. 
(TS4) If n < w, s c* T, and 
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(TSS) g2, = -%(!J$,>,,,, and ((‘%,),,,, cf,,),GVs,) is a directed system for each 
s c_” T,. 

Remarks. (1) Call two sequences t, t’ E o (U ,,<_ NT,, equivalent if t and t’ disagree 
for finitely many arguments only. Denote the equivalence class of t by [t]. Let a 
be an element of N, for s G* ‘I,, and choose an integer m and an index u E” T, 
such that a = fma’ for some a’ EN,. Then clearly a can be identified with the 
equivalence class [(fU,Sbna’)mm__ 1. Using this convention, the following properties 
of Y are easily deduced from (TSl)-(TSS): 

(TS4’) For every s E I: If 

t-G”S 

v/ v/ 

uc*v 

(TS3’) If u c” v E I, then !J&, c!&,. 
(2) Define for every r c” T, a directed set (.I,, <) as follows: J, = 

{VEI]3u<r(vcU)}, and u < v iff there are a! <p =ZW such that v E Ta and 
UGVr(Y. 

For u E v let fU, be the inclusion mapping from ‘$Z2, into ‘%,,. Using remark (1) 
one sees that Y is a tree system iff Y satisfies (TSl) and the following conditions: 

(TS6) For every r c” T, the pair Yr = ((%J,,,, (fuu)u+EJ) is a directed system. 

(TSS) g2, = Lim Ys for every s E* T,. 

Notation and terminology. For q, 8 E T we write ftle instead of f+,Xel. If n is the 

critical node of T,, the structure %zT,,l,,l is denoted by ‘$Fm. 

If X is a nonempty subset of T, then by (TS3’) the pair ((%,),,eX, (L&,~*~~*~), 

where bs is the inclusion mapping from %, to ‘& is a directed system with direct 

limit U {5R2, 1 r c” x). We denote this limit by s2, and refer to g2, as to the limit 

structure of the tree system Y. Note that the structures St, for P, # XG T, are 

uniquely determined by the !l&, and f,, for subsets u, v of finite levels of T. For 

a,bEU{N,\uEI}andn <a SW we say that b is an (n, a)-successor of a (and a 

an (n, cy)-predecessor of b) if there exist u s* T, and v G” T, such that u sv and 
b = fUUa (so especially a E N, and b E N,). 

For (Y =Z w and A c U {N, ) u E I} we let S,(A) stand for the set of all elements 

of lJ {N, 1 u E I} which have an (n, a)-predecessor in A for some n ~:a. Clearly 

S,(A) is finite if (Y and A are finite. 

2. A framework for tbe basic construction 

By condition (TS4’) we have in every tree system a certain amount of amalga- 

mation. If we want to produce large limit structures we have to control this 
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amalgamation in order to ensure that not too many elements are identified. In this 

section we develop the technical machinery for this purpose. 

From now on, we denote by L a language, and by X a class of L-structures 

which is supposed to be closed under taking isomorphic images. 

2.1. Definition. The class X is said to have free amalgamation if for all %, Yl’, 

93 E X with ‘21 r-l’%’ = B there is a structure 9 E X such that 8 G Pi’, a’ E 9 and 

whenever f : 8-E and f’ :‘?l’+‘%’ are embeddings which agree on B, there is an 

embedding h : CP-+!?P extending both f and f’. 

2.2. Remarks. (1) Let X-with embeddings as morphisms -be closed under 

taking free products with amalgamated submodels. It follows from the universal 

property of such products that X has free amalgamation, the free product of 3 

and 3’ with % amalgamated being a minimal choice for 9’ in Definition 2.1. 

Examples for such classes X are the class of groups and the class of free ideal 

rings (fir). For firs see [2]. 

(2) Let X be the class of skew fields. Since every skew field is a fir, in the 

situation of Definition 2.1 we can form the free product 8’ of ‘?l and 8’ with B 

amalgamated. 8’ being a fir has a field of fractions 9 which is universal w.r.t. 

specialisations [2, Theorem 4.C], and every embedding of 9’ into 9” extends to 

an embedding of 9 into 9 [2, Theorem 4.3.31. As a universal field of fractions, 9 

is determined by 9’ up to isomorphism. 9 is called the field product of %?l and 8’ 

with 58 amalgamated. Notation: 9 = %?I *BW. 

(3) Although there is in general no canonical choice for 9 in Definition 2.1, we 

shall write 9 *@%?l’ for 9’. This notation is justified by remarks (1) and (2), as we 

are mainly interested in groups and skew fields. 

(4) In the class of groups the free product with amalgamation enjoys the so 

called subamalgam property: If, in the situation of Definition 2.1, we have % G 8, 

%” G %‘, and % fl‘8 = %’ n 8, then the subgroup of ‘8 *e%’ generated by C U C’ is 

% * un93 %?. 

2.3. Definition. Assume %!l E X. A triple (a, &,, B) is called a separation in ??I if 

a E A, $?l,~‘?l; B GX is a collection of substructures of ‘8, and if there is an 
embedding h : ‘iB+‘i?l such that ha # a, h r A, = id and h maps B into ‘8 for every 

B EI’& We say that h is a separating isomorphism for (a, SO, B) in ‘11. 

In the class of groups the subamalgam property leads to the following pleasant 
situation: If f is an isomorphism with dam(f) = ‘8 and !&, is a subgroup of ‘%?l such 

that f r B. = id and ‘8 n f% = Bo, then for every subgroup ‘21, c% and every 
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aeA\A,,: 

(*) a & (AC, U fA,)a%J~ and fa 6 (A0 U fAO>a*,pa. 

In Section 3 we shall define the morphisms f,, of the tree system by piecewise 

composition from such isomorphisms f, and property (*) would ensure that not 

too many elements are identified by amalgamation. Unfortunately (*) is not true 

in all classes with free amalgamation. Now if (a, AO, B) is a separation, then 
clearly a E A \A,, and the next proposition tells us that free amalgamation 
implies (*) at least when (a, A,,B) is a separation for some B containing B,,. 

2.4. Proposition. Let ‘21, !I$-, E X, ?I& s 2l, and assume that X has free amalgama- 
tion. Then 

(i) If f is an isomorphism defined on ‘8 such that %?I f~ f % = ‘&, and f 1 B. = id, and 
if (a, 2X0, B) is a separation in $?I with !&,EB, then (a, (AoU fA&, lb@) and 
(fa, (A0 U fAJp, Lb) are separations in 9 = ‘8 *DO f‘2l, where 

~==uul~~E}U{(BUfB)~)~3E}U((2I,f~,8}. 

Moreover there is a common separating isomotphism for both separations in 9. 
(ii) If ‘&,=5!3,, in (i), then also (a, ffl, G) and (fu, ‘$?I, E) are separations in 8. 

proof. (i) Let h be a separating isomorphism for (a, ‘&,, B) in 3. Then fife’ is an 
embedding of f(lr into f2l. Since BO E B the mappings h and fhf-’ agree on 8,. 
Since X has free amalgamation, h and fhf-’ have a common extension to an 
embedding 6 of 9 into 9. One checks that 6a # a, 6fu # fa, h’ r (A0 U fA,), = id, 
and 6’8~93 for every BEI@. 

(ii) Define hO:9+8 and h,:9-,9 by h,rA=h, h,rfA=id, hlrA=id, 
h1 1 fA =fhf-‘. It is easily seen that h, resp. h, is a separating isomorphism for 
(a, f&S> resp. (fa, %,ll%) in 9. Cl 

In Section 3 we want to construct tree systems using structures from sk(ZR) (the 
class of all finitely generated structures embeddable in 9X) for ZC existentially 
closed in 9%. In order to control amalgamation we would like to apply Proposition 
2.4 but we cannot expect the class Sk(n) to be closed under free products with 
amalgamated substructures, even if X contains all structures from sk(Y.R) (for 
instance being closed under taking substructures) and has free amalgamation. So 
we want to transfer the statements of Proposition 2.4 from X to Sk(m). Since m is 
existentially closed this would be possible without loss if the validity of Proposi- 
tion 2.4 were equivalent to the holding in an extension of m of a finite set r of 
existential sentences with parameters from Y% To get such a set r at all we must 
ensure that the isomorphisms occurring in Proposition 2.4 are in suitable way 
definable in the language of % with parameters from 9X. So we will limit ourselves 
to classes X which satisfy a HNN-type theorem. To keep r finite, we have to 
weaken Proposition 2.4 to a ‘local’ version. 
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2.5. Definition. Let t(x, y) be a term in L. We call t(x, y) an automorphic term if 
for every structure YJ E X and every n-tuple a of elements of Cu the term t(a, y) of 
L(a) is interpreted in (%?X, a) as an automorphism. 

We say that X has HNN-extensions if there is an automorphic term t(x, y) with 
the property that for every ‘%EX and every partial isomorphism f from ‘8 to % 
there exists ‘3’ E X and a E A’” such that ‘% E ‘%’ and the equation @a, a] = fa holds 
true in ‘21’ for every a E dom cf). 

Example. If X is the class of groups or skew fields, then xyx-l is an automorphic 
term. The classical Higman-Neumann-Neumann theorem states that the class of 
groups has HNN-extensions. The class of skew-fields has HNN-extensions, too 
(for a proof, see Theorem 5.5.1 in [2]). 

Before proving a modified version of Proposition 2.4 we state an auxiliary 
result: 

2.6. Lemma. Assume that X has free amalgamation and HNN-extensions. Let 
2X E X be existentially closed in 54’. Then there is an automorphic term t(x, y) such 
that for every finitely generated substructure ‘3 E 2JI which is in X, for every finite 

generating subset {a,, . . . , CL,,} of A and for every a E M the following holds: 

aEA iff ~~Vx(t[x,al]=al/\...At[x,~]=~)~(r[x,a]=a)). 

Proof. (Following [S]). Take t(x, y) as in the definition of HNN-extension in 2.5. 
The ‘only’ direction is clear since t(x, y) is an automorphic term. For the ‘if’ 
direction assume a q! A. Take an isomorphism f with dam(f) = M, f r A = id, and 
M nfM= A. Since X has free amalgamation we get 9 = %? *,flDz E X, and f is a 
partial isomorphism from 9 to 9. Since 96 has HNN-extensions there is 9’ E CX 
with 9 c 9’ and cl, . . . , cm E 9’ such that t[q, . . . , c,,,, a] = fa holds in 9’. So by 
the choice of f we get 

S’k3x(t[x, a,] = a, A. ..At[x,~]=a,r\t[x,a]#a). 

In this statement, 9’ can be replaced by ?I%! since ZX is existentially closed and 
%!919’. q 

Now we are ready for the crucial proposition. 

2.7. Proposition. Let St be closed under taking substructures and unions of chains. 
Assume that % has free amalgamation and HiVN-extensions. Let 92 be existentially 
closed in X. Let 2&93,, be finitely generated substructures of 2JZ with ‘93,,r2I and D 
an arbitrary finite subset of A \ B,. Let 2 be a finite collection of separations in I?I 
such that for every (c, %, B) E .Z the structure c& is finitely generated and B is a finite 
collection of finitely generated substructures of ‘3 with !& EE. Put 25 = 

I(%, % I%) I s E a. 
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Then there is an embedding g :‘QI -t%JJ and a finitely generated substructure 
%‘sZR satisfying for every S E 2 the following conditions: 

(0) %Ugl?I21:W. 
(1) grB,=id, andDngA=AngD=P). 
(2) The triples (cs, (As U gA&,, 6,) and (gcs,(As U gA,&,, 8,) are separations 

in ‘W, where l& denotes the collection 

(3) If I!& = ‘93,,, then the triples 

(cs, gA, I&) and (gc,, A, tips> with 6, as in (2) are separations in ‘?I’. 
(4) If cp(x, y) is a quantifier-free formula in I_., and if (8 *% a’!= lg[a, a’] for all 

products @ *% @’ E X and all a E G \ H and a’ E G’ \ H, then g and 3’ can be taken 
to satisfy the additional condition 

‘%‘!= 1 cp[d, gd] for all d ED. 

Proof. We carry out the proof in four steps. First we show that the proposition 
holds when we replace ?lR in the conclusion by a suitable superstructure 9 of 9X. 
Second we find an existentially closed superstructure n* of 9 such that the 
validity of the proposition for 9 is equivalent to the fact that a certain set r of 
formulas with parameters from 92 can be realized in 9X*. Third we prove that r is 
already realized in YX, and fourth we deduce from this that Proposition 2.7 is true. 

First step. Take an isomorphism f defined on % as in Proposition 2.4(i) and 
assume that f % n rxrZ = &. If we replace a’ by S = ‘9 *B3, f% and g by f the 
statements (0), (1) and (4) of Proposition 2.7 obviously hold while (2) and (3) are 
true by Proposition 2.4. 

Second step. Choose for every SEC a separating isomorphism hs for 
(Q, (As U fAs)*, &) and (fcs, (As U fAs)*, I&> in 8. If (cs, BO, IEI,) is a separation 
take also isomorphisms hg resp. hk separating for (cs, f%, 8,) resp. (fcs, 9X, 8,). 
Consider the model %R’ = %! * mnn9 9. Then ?E s ZR’ and 9 s. ‘9X. As the mappings 
f, h,, hz and hk are partial isomorphisms in ranl, we find a model ZR* 2 YX’, an 
automorphic term t(x, y) and finite sequences q, us, ai, ai of elements of n* 
such that for all a E A the following equations hold in mZ*: 

fa = &, al, &a = &, al, hga = t[& a], hla = t[a& a]. 

% is closed under taking unions of chains, so we can assume w.1.o.g. that ?lR* is 
existentially closed. Thus Lemma 2.6 can be applied, and we get for every finitely 
generated substructure 58 of 1111” a quantifier-free formula cp&, y) with parame- 
ters from 93, such that for every b EM” we have 

DJ*kV~cp~[x, b] iff b EB. 
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Now consider the following statements: 
(Sl) f 1 BO = id. 
(S2) AnfD=@ 
(S3) fA nD = 8. 
(S4), hs is a separating isomorphism for (cs, (A, UfA,), l&>. 
(S5), hs is a separating isomorphism for (fcs, (A, UfA,), l&). 
(S6), hz is a separating isomorphism for (cs, f?I, l&>. 
(S7), hi is a separating isomorphism for cfcs, 8, !&). 
In the subsequent formulas r&, different strings of variables are supposed to be 

disjoint and for a finitely generated structure B we denote by B’ an arbitrary 
finite generating set. It is easily seen that (Sk) holds iff it is possible to satisfy & in 
rXn* after having assigned af, as, a:, ai to +, xs, xz, xi. 

Here cp+&z, d, xf) is obtained from cp&z, d) by substituting t(~f, a) for every 
parameter fu (a E A) occurring in p&z, d). 

In the next formula the following notation is used: For BeEIs and b E B the 
elements h,b and f-‘h&b are denoted by b’ and b” respectively. 

A nr\ hb (t(xs, b) = b’r\ t(g, t(q, b)) = t(q, b”)). 
‘B&s btB’ 

(&(+, %)) is obtained from $&, xs) by replacing the subformula t(xs, cs> # cs by 

t(xs, t(+, c,)) # t(+, cs). 
Similarly we get quantifier-free formulas &,(xf, xg) and &.(+, xi) corresponding 

to (S6), and (S7),. 
Third step. Since all statements (Sk) (1 G k G 3) and (S& (4sj =G 7, S E S) hold, 

the formula 

is satisfied in ZlR’. Now (L is quantifier-free, and Z!R is an existentially closed 
substructure of 9X*. So II, is already satisfied in 93. 

Fourth step. 4 can be satisfied in fl after having assigned certain sequences 
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br, bs, bg, bi of elements of !I%! to +, xs, x0,, xi. Define g:A*M by gx = t(b,, x). g 
is an isomorphism since t(y, x) is an automorphic term. Define &, @, kk : M--, M 

by &E,X = t(bs, x), 6:x = t(@, x) and &ix = t(bi, x). Put 

%!l’=(AUgAUb,Ub;Ub&. 

The sentence +!~~(b,)r\3y+~(4, y)~Glzq!~,(b~, z) is true in YR. Using Lemma 2.6 we 
conclude that claim (1) of Proposition 2.7 holds. Considering I,$~ and +!J~ one sees 
that the restriction of & to VI’ is a separating isomorphism as needed for claim (2). 
In the same fashion one proves (3), and (0) holds trivially. 

In order to prove (4) for a fixed formula cp(x, y), add to (Sl)-(S7) the statement 

and to ($l)-($7) the corresponding formula 

Then (4) is proven by substituting q!~ by $ A $8 in the third and fourth step of the 
above proof. 

2.8. CoroIIary. The conclusions of Proposition 2.7 hold for W an existentially 
closed group or skew field. 

Proof. We have to show that the conditions of Proposition 2.7 are satisfied if X is 
taken to be the class of all groups or the class of all skew fields of given 
characteristic. Now either class is closed under taking unions of chains. By an 
appropriate choice of the language L we can ensure that both classes are also 
closed under taking substructures. It was already mentioned in 2.2(l), 2.2(2) and 
in the example following 2.5 that both classes have free amalgamation and 
HNN-extensions. q 

Proposition 2.7 cannot be applied to the case of a universal locally finite group 
??X, since the class of locally finite groups does not have free amalgamation. 

But in this case we do not need separations since a result by Baumslag [l] 
enables us to transfer the subamalgam property from the class of all groups to the 
class of finite subgroups of %R. Baumslag’s result says that a free product 9 of 
groups with amalgamated subgroups is residually finite whenever the factors are 
finite. By definition, 9 is residually finite if for an arbitrary finite subset E s P 
there is a homomorphism h from 9 onto a finite group such that h r E is injective. 

The following proposition is intended to replace Proposition 2.7 in the case of 
locally finite groups. The additional condition 2.9(4) has no analogue in the 
situation of Proposition 2.7 and will play an important role in generating 
nonisomorphic models. 
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2.9. Proposition. Let 2JI be a universal locally finite group, and let ‘3 and BO be 
finite subgroups of % such that !&, ~5%. Then there is an embedding g :%-+%I with 
the following properties : 

(1) AngA=B,, and gr&,=id. 
(2) For every a E A and every subgroup %,G%: a E (A,U gA,& ifi a E A0 iff 

ga E (A0 U gA&m. 
(3) If cp(x, y) is a quantifier-free formula of L, and if 9 *,Wk lcp[a, b] for all 

products of groups 9 * %9’ and all a E F\ H, b E F’\ H, then g can be taken to 
satisfy the additional condition: 

(AUgA)m!=lcp[a, gb] for all a, bEA\&,. 

(4) There is a quantijier-free formula 4(x, y) such that (A U gA)rmb$[a, b] if 
{a,b}cAor{a,b}sgA,and (AUgA)~~~~[a,b]ifaaA\BOandb~gA\B, 
or bEA\& and aEgA\B,. 

Proof. (1) Let f be an isomorphism defined on ??I such that A fl fA = BO and 
frB,,=id. Put s=a*yj,f%. D e fi ne a finite subset E of P as follows: 

E = {~[a] ) a a sequence of elements of A U fA, 

w(x) a word of length ~1). 

By a word we mean a term in the language whose nonlogical constants are . and 
-l, and the integer 1 will be fixed later, but in any case 12 1 (and so A U fA E E). 
According to Baumslag’s result we can choose a homomorphism h defined on P 
with finite range such that h 1 E is injective. Since every finite group can be 
embedded in % we can assume that h8 E%T, and by the o-homogeneity of ?.R we 
can take h such that h !A = id. So, putting h9 = (3’ and hf = g’, we have 
65’ = (A U g’A)Sn, and g’ satisfies (1) as a A U fA G E. Now let @5 stand for the 
direct product 65’ x W, and let g, : ‘i?l+& and g, : g%-+& be embeddings defined 
by go : a+(a, a) and g, : g’a-+(a, g’a). Using again the fact that 5&? contains 
isomorphic copies of all finite groups and is w-homogeneous we find an embed- 
ding k :G+‘ZR such that kg,, is the identity on ‘21. Put g = kg,g’. Then g satisfies 

(1). 
(2) Assume that a E(U n (A,, U gA&. We have to show that a E AO. We can 

write a as a product algb, . * * a,,gb, for appropriate a,, bI, . . . , a,,, b,, EAT. 
Applying k-l we get 

(a, a) = (aI, a,)(& g’b,) . - * (4, d@,,, g’b,,), 

and so a = aIb, * . . a,,b, E Ao. If a E A and ga = a,gb, - . * a,,gb,, the same argu- 
ment yields g’a = alg’bl . . . a,,g’b, and therefore fa = alfal . . . a,,fa,,, and we 
deduce a E A0 from the subamalgam property of ‘11 *mO fa. 

(3) Take cp(x, y) as in (3). Let cp’(x, y) be a formula in disjunctive normal form 
such that (p’(x, y) is equivalent to lq(x, y), and every atomic component of 
cp’(x, y) is of the form w(x, y) = 1. Let 1, be the maximal length of a word 
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occurring in cp’(x, y). Choose 12 1,. Due to the special form of (p’(x, y) the claim of 
(3) follows immediately once we have shown that (A U gA)mkx[a, gb] if 9 b 
~[a, j%] for formulas x(x, y) of the form w(x, y) = 1 or w(x, y) # 1. 

If 9k ~[a, fb] # 1, then @‘i= ~[a, g’b]# 1 by the choice of 1. Clearly al= 
~[(a, a), (b, g’b)]# 1 iff GY!=w[a, b] # 1 or a’!= ~[a, g’b] # 1. So we get @k 
~[(a, a), (b, g’b)] # 1, and applying k we conclude that (A U gA)srrl= w[a, gb] # 1. 
If 9 l= ~[a, fb] = 1, then @ ‘I= w[a, g’b J = 1 since h is a homomorphism. Anticipating 
Lemma 5.2 we get 9b ~[a, fb] = ~[a, b], and therefore G!= ~[a, g’b] = ~[a, b] = 
1. As above we conclude that (A U gA)m!= w[a, gb] = 1. 

(4) Take for 4(x, y) the formula (xy)” = 1 with n = ]A(. Choose la 2n. Obvi- 
ously (A U gA)arrk(ab)” = 1 if {a, b} E A or {a, b}~ gA. In the other case we can 
assume a E A, b = ga’ for some a’ E A \I&,. Then fa’ E fA \B,, and aafa’ has 
infinite order in 9. So by the choice of 1 we have @‘l= (a. g’a)” # 1, and as in the 
proof of (3) we conclude that (A U gAIED7!= (a.ga’)” # 1. Cl 

Remark. In the proof of Theorem B(1) we shall apply Lemma 2.9(3) for xy = yx 
at the place of cp(x, y). 

So (p’(x, y) is of the form xyx-‘y-l # 1, and in this case we do not need Lemma 
5.2 to get 2.9(3). 

3. The basic construction 

In this section L is a language and YC a class of L-structures. X is assumed 
either to have free amalgamation and HNN-extensions and to be closed under 
taking substructures and unions of chains, or to be the class of locally finite 
groups. We consider a countable existentially closed structure mu X (so in the 
case of locally finite groups %! is universal locally finite). 

We are going to add some conditions to the axioms (TSl)-(TSS) for tree 
systems. This conditions describe a sequence f,, of embeddings of %r, into YX. 
Every morphism f,, of the tree system will be composed from restrictions of the fn 
and from identities. The main result of the section says that the embeddings fn 
and the structures %r” can be chosen to produce a limit structure %r_ =_ !?X with 
\Nr,( = 2”~). First we add two conditions which are sufficient to get ]NT,] = 2Ho. 

mw 
(9 &o, = Go is a finitely generated substructure of n containing a finitely 

generated substructure @. f0 is an embedding of %rO into m such that f0 r B = id. 
(ii) Let 0 < n <co. Then f,, is an embedding of %r_ into %k? such that f,, 1 N:n = id. 
For n 2 0, !I&.+, is a finitely generated substructure of fl containing N, U f,&,. 
(iii)ForOsn<w, w~*T,+~, w’ = w r n and n E T,, critical the following holds: 

(a) R2,= g2, and f,+,*, = id if ql&w, 

(b) a,= f,,%,,,, and fwP,= f,, r A$ if q0 $ w, 

Sh:83



Closed smcctures in the power of the continuum 135 

64 El = (Nw,r,Ir u Nvwdm 
= u% u fJL~>%T? if (q0, q 1) E w. 

(TS7) There is an element c E N,, such that for all n < w, all u G” T,, and all 0 E T,, 
we have foec E N, iff 8 E u. 

3.1. Proposition. For every existentially closed structure ZREX there is a tree 

system ((W,,,, (f uu ,G,,J > satisfying (TS6) and (TS7). In this system, for every 

n <w and every finitely generated Y? c 9X, Y12,_, can be chosen to contain YL 

Proof. First we consider the case when X satisfies the conditions of Proposition 
2.7. We are going to define a tree system ((%&,, (f,,)U+,,l) satisfying (TS6), a 
nonempty subset C, of Y& = ?X2, and a finitely generated substructure 8 of Z2, 
such that 

(1) (c, !8, (93)) is a separation in Y&” for every c E C,. 
(2)Foreveryn<o,uc*T,and8ET,wehavef~,cEN,iff8EuforallcECg. 

We use induction on the level n of T. For n = 0 choose a finitely generated 
8 c%R containing a finitely generated proper substructure B. Apply Proposition 
2.7(l) for a0 = 8 and 2 = 0 to get an embedding g :%-tm such that % n g$?l = ‘8 
and g r B = id. Since 9J? is existentially closed in X and X has HNN-extensions 
there is a finitely generated substructure 8’ of YX containing A U gA such that g 
extends to an automorphism g of %‘. Put 8’ = !J&,], and take for C, any nonempty 
finite subset of A \ B. Then clearly (1) is satisfied with g as separating isomorph- 
ism, and (2) holds trivially for n = 0. 

Now assume that the tree system has been constructed up to the level n. We use 
Proposition 2.7 as follows: 

For n =0 put %=Y?,, %$,=58 and 

For n > 0 put % = Y12,, !I$, = %$n and 

.Z = {(c, ‘%,, {%2, 1 v G* T,)) I c E C,, u c” T,, 

(c, Y12,, {Yin, 1 v E* TJ is a separation in ‘Rr}. 

Now set f,, = g and Cn+l = C, U f,C,,. For a given finitely generated substructure 
% G .!?R we choose !&.+, to be a finitely generated substructure of ZJ? containing 
N, U f,,N, U N. Then it follows from Proposition 2.7(l) that (TS6) (i) and (ii) are 
satisfied. By (TS6) (ii) the conditions (a) and (b) of (TS6) (iii) are compatible and 
so for every w c*T,,~ we can define %, and f,,,,, according to (TS6) (iii). A 
routine checking shows that the system defined by this induction has a unique 
extension to a tree system satisfying (TS6) and condition (1) stated at the 
beginning of this proof. In order to fulfill condition (2) we have to make the 
choice of 5Rz,+, more precise to ensure the existence of sufficiently many separa- 
tions. 
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Put !l&=%.J and B, ={5JJn, ( v G T,}. Define 

2’0 = {(c, % &I) I c E Co} 

and 

We want to choose the structures !J&+, so that all triples from &+I are 
separations in !l&+,. Assume that this has been done for all k c n. If in _&,+i we 

replace KS1 by R,+l\{NT,+,), we get a set X,+i which by Proposition 2.7(2) and 
2.7(3) is a set of separations in a finitely generated substructure ‘%’ of %R with 
N, Uf,,N, c N’. Choose for every S E XL+, a separating isomorphism hS. Since 
%R is existentially closed in X and X has HNN-extensions there is a finitely 
generated substructure %! of %R containing ‘%’ and a prescribed finitely generated 
% E ZlR such that every hs extends to an automorphism of %. Put 9 = Y&+,. Then 
every triple from &+i is a separation in %r”+,. 

Now in order to establish Proposition 3.1 it is sufficient to show that the tree 
system defined above satisfies condition (2). In view of (TS3) it is sufficient to 
prove 0& u $fgec$ N,, for 0 E T,,, u c” T, and c E C,, and, again by (TS3), this is 
equivalent to fflOc # Nr,,(e1 for every c E Cc, and 8 E T,. So it suffices to show that 
(faec, Y&,(e), {YJn, ( v E* T,}) is a separation in Y&“. For n = 0 this is trivially true by 
the choice of C, and the convention ‘8 = &. Now pick c E C,, and put fQec = c, for 
8~T.Let I~ET,+~, q critical in T,, and denote the immediate predecessor of 8 by 
8’. 

Case 1: e’p q. Then fgec = fe+,,=ce, by (TS6) (iii a). Since (~0, ql}c 
T,+l\{O} we get by (TS6) (iiic): 

% T,+~\I~)=(NT,wY) uf~~x-n\redm~ 

By our choice of %2,+, we conclude that the triple Cfaec, % T,+,\{~}Y (82, 1 V s* Tn+& 

is a separation in %72,+,, using the induction assumption for ~1. 
Case 2: 8 = V-J 1. Then c, = f,,c,,, and ‘%T,+,,te) = St, by (TS6) (iii). By induction 

assumption the triple (c,,, a$“, {g2, ( v c_* T,}) is a separation in %,. Due to the 
special choice of 82,+, we conclude that (fqcV, %2,, {fn, ) v E* &) is a separation, 
and this triple is equal to (c,, lTtT,+ll{el, {%,, \ v E* T,,,}). 

Case 3: 8 = q0. This is handled in the same way as the second case. This 
completes the proof of Proposition 3.1 for X as in Proposition 2.7. 

If X is the class of locally finite groups, then let %2, be a nontrivial finite 
subgroup of m, and ‘8 a proper subgroup of 32,. Put B = %g and assume that fk 

and gTktl are defined for k <n. Apply Proposition 2.9 to 8 = %n, and 8, = ‘%%n. 
Let f,, be a mapping with the properties of g in Proposition 2.9. Let 5R2,+, be a 
finite subgroup of ZJ2 containing N, U f,,NT- and a prescribed finite subgroup % of 
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YR So we get sequences (f,,),,, and (%rJ,,, which determine a tree system 
satisfying (TS6). 

For the proof that (TS7) holds in this system it is sufficient to show that 
8$u+fflec$!Nu for all n<o, UG*T,, OGT, and ceN,,\B. 

For n = 0 this is trivial, so assume n a 1. Let 8’ be the immediate predecessor of 
8, and put u’ = u r n. Denote the element fGec by c,. 

Case 1: 8 = q0. Then c, = fn,qocV = 4. If nl$u, then N,,,=N,, and ngu’. So 
by assumption c, $ N,, or equivalently ce$ N,. If n 1 E u, then N,, = f,,Nu,. By 
assumption C~ $ Ngn, so by Proposition 2.9(l) we get c, = c, +! N,. 

Case 2 : 8 = q 1. Then c, = f,,a,. Since r) 1 $ u we have N,, = N,,, and Proposition 
2.9( 1) yields c, ti N,. 

Case 3: 0’ # q. Then we have c,, E N$_, and c, = c,.. The subcase {no, n 1) g u is 

trivial. If {no, n 1)~ u, then Y$, = (N,, U f,,NU,)m. By Proposition 2.9(2) we get 
ce EN, iff c, EN,,. But O’$ u’ follows from 0+! u and 8’ # n. So c, = c,. $ N,, by 
assumption, and we conclude that c,+! N,. 0 

In order to exclude tree systems whose limit structures are not ati-equivalent 
to m we add the following condition. 

W33) GLL<, is an ascending chain of finite subsets of M such that 

U {A, I n < WI= M and A0 c NT, . (D,,),,, is an ascending chain of finite subsets 
of M with the following properties: 

(a) D, E Nr”. 
(b) Do = AO, and Dn+l = Ak,, where k, is the first integer k such that 

(i) AntI U S,(D,) Uf,,S,(DJ E Ak. 
(ii) Every partial isomorphism whose field is contained in A,+r US,(D,,) U 

f&(D,,) extends to a partial isomorphism whose domain is A,+1 US,(D,,) U 
f&(D,,) and whose range is contained in Ak. 

3.2. Proposition. For every countable existentially closed structure lxrt E % there is a 

tree system satisfying (T6)-(TS). 

Proof. If 3Z is the class of locally finite groups m is the countable universal locally 
finite group and therefore o-homogeneous. If 5Y satisfies the conditions of 
Proposition 2.7, then X has HNN-extensions, and so W is w-homogeneous, too. 
Thus condition (b)(ii) of (TS8) can be satisfied, and the claim follows by induction 
from Proposition 3.1 with % = (On+& in the induction step. Cl 

3.3. Definition. A nonempty subset X of T, is full if for all r E* X and all u < r 
there is s c*X such that r c s and T,, <s, where T, is the level of T contain- 
ing u. 

3.4. Proposition. For every tree system satisfying (TS6)-(TS8) the following hold: 
(a) If Xc T, is full, then YIx =_ 2R. Especially %T,=_ I#!. 

Sh:83



138 D. Giorgetta, S. Shetah 

(b) Let X0 be the set {p~T,I3m<oVn<o(n>m~p(n)=O)). Then 
‘%x =_, !lJ? whenever X0 E X z T,. 

Proof. (b) Assume u E*X, v E* T,, and v < u. If v = T,, then T, has a successor 
which contains u and is a subset of X, namely u itself. If v # T,, take w c_ X0 such 
that T,,\v < w. Then T,, < u U w and u U w c X since X,, G X. So X is full and the 
claim follows from (a). 

(a) We show that the set II of all finite partial isomorphisms from m into %x 
has the extension property. So let g be an element of 17 with domain A and range 
B. We must find for every a E M and b E Nx mappings g,, g, E II such that g c G, 
g Z gb, dom(g,) = A U(a) and rg(gb) = I3 U(b). There exist r G*X, j Co, B’ EN, 

and b’ E N, such that Ti < r, B = f=,,,B’ and b = fT,,b’ (Here an inessential use is 
made of the fullness of X.) Choose n 2 j such that A U B’ U {a, b’} 5 Q,, and put 
u = I 1 n, w = r r n + 1. The set fT,,,(B’ U{b’}) is contained in !$,(I&). Since either 
fu,,, = id or fuw = f,,, the set f,,,_(B’ U {b’}) is contained in S,,(D,,)U f,,S,(D,,). We 
also have A U {a} 5 S,, (II,,) since 0, G S,, (0,). So g induces via f;,!, and fTi., a 
partial isomorphism h in S,,(D,) U f,,S,(DJ with dam(h) = A and rg(h) = fTj.,B’. 

By (TM) the mapping h-’ extends to a partial isomorphism h;’ in %T,+l with 
dom( h;‘) = B’ U {b’}. Since X is full, the diagram 

q.Gw<r 

nl 

T n+l 

can be completed to a diagram 

TiGw<r 

r-l nl 

T n+l(s 

Now put gbc =f~,+,,s b h c for all c E rg(h;‘). Using (TS4’) one sees that gb is as 
required. In the same way, extend h to h, with dom(h,) = A U(a), and put 
g,c = fTm+,,shac for all c E A U(a). 0 

3.5. Remark. For p E T, let p[n] stand for p(k), where k is the level of the nth 
critical node contained in the branch of p. Put 

X,={a~T,\3m<oVn<w(m<n~a[n]=p[n])}. 

Clearly Proposition 3.4(b) is also true for X, instead of X0, and all X0 are 
countable. 

3.6. Theorem. Let 3’l be either the class of locally finite groups or any class of 

L-structures which is closed under taking substructures and unions of chains and 

has free amalgamation and HNN-extensions. 
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Then for every existentially closed countable structure 11)2~ 5Y there exists 8. E % 

such that %=_ n and INI = 2*0. 

Proof. For ZR countable existentially closed in x take a tree system satisfying 
(TS6)-(TSS). Then &=_m by Proposition 3.4. Take c ENS,, satisfying (TS7), 
and assume P# (T E T,. Then p 1 n # u 1 n for some n -=c CO, and so f0,,r,,c# f @,,,l,,c 
by (TS7). Put u ={p r n,ar n} and v ={p, a}. Then u<v, and f& = 

flllJf0,aln c# fUSfO,pr,,c = f0,c. Thus IN,\ = )X) for every infinite Xs T,; especially 
I&“1 = 2K,. 0 

Since the class of groups and the class of skew fields satisfy the conditions of 
Proposition 2.7 we get Theorem A(1) and the corresponding part of B(1) from 
Theorem 3.6. 

4. Refinements of tbe basic construction 

We go on extending the axiom system (TSl)-(TSS) to produce limit structures 
with particular properties. % and fl are as in the preceding section. 

(TS9) 
(i) NT,nf,(D,\N%J=(D,\N$“)nf,N,=8. 

(ii) tit (A,<, be a fixed sequence of quantifier free formulas cp(x, y) with the 
property that (55 xx @’ I= 1 q[a, a’] for all products @ *x @’ E YL and all a E G \ I-I, 
U’E G’\H. Put $,, = W,+,, (Pi. 

Then %“+, k 1 &Cd, f,d’] for all d, d’ E D,, \ Ng” and all n <CO. 

4.1. Proposition. For every countable existentially closed ZRE x there is a tree 

system satisfying (TS6)-(TS9). 

Proof. By the proofs of 3.1 and 3.2 one gets tree systems satisfying (TS6)-(TS8) 
for every sequence cf,),<, chosen according to Proposition 2.7 resp. 2.9. So we 
can take f,, with D = D,, \ N*T, in 2.7 and cp(x, y) = I,!I,, in 2.7(4) resp. 2.9(3). Then 
(TS9) is satisfied, too. Cl 

4.2. Lemma. In a tree system satisfying (TS6)-(TS9) the following statements 

hold : 
(a) If n s m <w and a E D,,, then all (n, m)-successors of a are elements of 0,. 
(b) For every element a EN, there exists n <w such that a has an (n, CO)- 

predecessor in 0,. 

(c) If a EN=_ and a has an (n, o)-predecessor in D,,, then for all m 3 n the 
structure g2, contains exactly one (m, w)-predecessor a’ of a, and a’ is an element 

of D,. 
(d) Let a, b be elements of N, having (n, o)-predecessors in 0,. Let cp(x, y) be 
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among the first n members of the enumeration in (TS9) (ii), and assume that 
%ZT_P~[u, b]. Then !RT_i=(p[a’, b’] for all m Z= n and (m, o)-predecessors a’, b’ of 

a, b. 

Notation. For a and m as in (c) the unique (m, w)-predecessor of a is denoted by 

a(,). 

Proof. (a) By induction on m. If c is an (n, m + l&successor of a, then by (TS2) 
and (TS6) (iii) either c = b or c = f,,,b for some (n, m)-successor b of a. By 
induction assumption b E D,,,, so c E D,,, U f,,,D,,,, and (TS8) (b)(i) yields c E Dm+l. 

(b) For some j < w the element a has a (j, o)-predecessor, say b. This follows 
from (TS2) and (TS5). As b E M= IJ (0, ( n <w}, we have b E D,_l for some 
n > j. Every (j, n)-successor of b is in D,,, being an element of S,_l(D,_l)U 
f,_lS,_,(D,_,). But among the (j, n)-successors of b there is an (n, o)- 
predecessor of a. 

(c) Assume for contradiction that m L n, and that a has distinct (m, w)- 
predecessors b, c given by a = fT,,,b = fT_,,c. For j 2 m put bi = fT,,, ,,b, and Cj = 

fL,x,, c. By statement (a) of this lemma we can assume bi E Di for all j 2 m. For 
sufficiently large integers j we get r r j Us r j < r U s, and so bi = Cj. Thus there is a 
maximal integer k 2 m with bk # ck_ Using (TS7) (iii) and the maximality of k we 
conclude that bk, ck E NTk\ NTkT,, especially bk E Dk \ Ngk, and that either bk+l = bk 
and ck+l= f&k, or bktl= fkck and Ck+l=ck. In both cases (TS9) (i) yields 

b,+, # ck+l, a contradiction. 
(d) Using the fact that q((x, y) is quantifier free we can apply the same argument 

as in (c). The final contradiction arises from (TS9) (ii). q 

4.3. Proposition. For all tree systems satisfying (TS6)-(TS9) the following holds: 
For every uncountable subset A of N, and every n <o there is an uncountable 
subset B c A such that gTWl- l(~,,[a, b] for all distinct a, b E B. 

Proof. Let A E NT- be uncountable. Applying part (b) of Lemma 4.2 we get an 
uncountable subset B of A, an integer n and an element a of D, such that every 
b E B is an (n, o)-successor of a. By Lemma 4.2(a) we can assume n > k for a 
given integer k. Assume for contradiction the existence of b # b’ E B with Y&-b 
qk[b, b’]. Since b (“I = bin, = a, and b,, # b&, for all sufficiently large j, there is a 
minimal m > n such that b,,, # b{,,,,. Like in the proof of Lemma 4.2(c) we 
conclude that bC,_l, = b[,_l) E D,-1\ N$__,, and so by (TS9) we get %2,!= 
1 &,_JbC,,,), b&,,,]. As we have chosen k <n s m - 1 the formula I&-~ has the 
form (Pk v +!I. It fOkwS that %TMb 1 pk[bCm), b&J contradicting Lemma 4.2(d). Cl 

Now we add a last condition which will be used in connection with locally finite 
groups. 
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(TSlO) For every n <w there is a quantifier free formula $(x, y) such that 

%“+1 i= @[a, bl if {a, b) E 0, or {a, b) E fnDn 

%Tn+,~i+i[4fnbl if {a,bIsR\Gm. 

4.4. Proposition. For the countable universal locally finite group m there is a tree 

system satisfying (TS6HTSlO). 

Proof. Since the embeddings f,, have been chosen according to Proposition 2.9 
this follows from Proposition 4.1 and 2.9(4). 0 

4.5. Proposition. For every tree system satisfying (TS6)-(TSlO) the limit structure 

8, contains continuum many substructures, each of cardinality 2’0 and each 

coo-equivalent to %J& such that no uncountable structure is embeddable in two of 

them. 

Proof. We call n <o a splitting level for Xc T, if there are p, (+ E X such that 
p 1 n = (T r n and p 1 n + 1 # u r n + 1. Denote by Sp(X) the set of all splitting levels 
for X. 

Claim. There is a family (Yi)i<2x 0 of subsets of T,, each of cardinality 2’0, such 
that Sp(Y,) II Sp(Yj) is finite for if j. 

Proof of the claim. Consider the subtree T’ of T consisting of all critical nodes 
of T. Let y be a function which assigns to each integer n the level of the critical 
node of T, in T’. y cannot be constant on an infinite set. Thus Sp(X) fl Sp(Y) is 
finite if y Sp(X) fl y Sp( y) is finite. 

Since T’ is a full binary tree we find for every infinite subset S E w a subset 
X E T, such that 1X1= 2Kn and y Sp(X) = S. So we get the desired family starting 
from’ an almost disjoint family of continuum many infinite subsets of o. 

NOW take a family (Yi)i<2Hg as described in the claim, and let X0 be as in 
Proposition 3.4(b). Put & = XoU Yio By Proposition 3.4 we know that sz=,m 
for all i ~2~0, and as a consequence of (TS7) the structures %, have power 2’0. 
Assume for contradiction that Z = Zi # Zi = Z’, and that there is an isomorphism f 

from an uncountable substructure % G !Rt, into g2,,. 
Since Sp(Z\ X0) fl Sp(Z’ \X,> is finite we can fix n big enough to ensure that 

SP(Z\ X0> n Sp(Z’\ X0> G n. According to Lemma 4.2(a) and (b) we choose k a n 

and a’ E Dk such that the set A’ of (k, o)-successors of a’ in A is uncountable. In 
the same way we find m > k, b* E 0, and an uncountable subset B of A’ such 
that all elements of fB are (m, o)-successors of b”. By Lemma 4.2(c) all 
(m, w)-predecessors of elements of B are contained in the finite set D,, and so 
there is an uncountable subset CC B and an element a* ED, such that all 
elements of C are (m, w)-successors of a*. Clearly all elements of fC are 

(m, o)-successors of b”. Fix for every a E C subsets u, G* T, and v, G* T, such 
that a = fT_,,-a* and fa = fT,,,, b”. Since X0 is countable we find an uncountable 
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subset C’sC such that ~,nx,=u,nx, and u,nX,=v,nX,for all u,b~C’. 
Choose a# U’E C’. Let uj, bj stand for fT,,,a,,u*, fT,,,,,,u*, and similarly for ai, b;. 

Let ~(a, a’) resp. j.~(&z, fu’) be the first integer j such that there is w G* T, with 

a = fT,+,.,aj+l and a’ = fTi+,,_u:+, rev. fu = fT,,,.,bj+l and fu’ = fT,,,.,b;+l- 
We can assume j.~(fu, fu’) < ~(a, a’). (Otherwise replace f by f-’ in the whole 

argument.) Put ~.(a, a’) = p. Assuming up+1 = a, and a;,, = UC, or q,, = f,a, and 

a;+1 = f&, we get a contradiction with the minimality of p. So we can suppose by 
symmetry that a, = %+r # f,q,, and a;,, = f& # a;. So {s, u;}tl N*T, = (a, and by 
Lemma 4.2 we have {s, a;}~ DP. We also conclude that fu,Ip,u,Ip+l #f,, and 

fu,hu,~rP+l # id; thus by (TS6) (iii) we know that q 1 E u,, r p + 1 and ~0 E u, 1 
p + 1. Consequently p E Sp(Z). Since 1.4, n X0 = u,, (7X,, and uatp < u,, ua,tp < u,., 
no branch through q has the maximal element in X0, and therefore p E Sp(Z \X,). 

As SP(Z \ X,) 0 Sp(Z’ \ Xc,> - = n s p it follows that p$ Sp(Z’ \X,). Since U, n X0 = 
v,, n X0 we have either bp+l = bP and bb,, = bb or b,,, = fpbp and bb,, = fpbb. 

So by Lemma 4.2 either {bptl, bb+I}c Dp or {bptl, b;+,}g fpDp. Let 4(x, y) be 
a formula as in (TSlO). Then !JIT,+,!=$[bptl, bb+J and ‘9&k ~I~I[s+~, a;,,]. 

Because of ~(a, a’) = p, the pair ($+r, a;,,) is sent to (a, a’) by an embedding, 
and the same holds for the pairs (b,,,, b;,,) and (fu, fu’) since p&z, fu’) < ~((a, a’) 
by assumption. As 1~, is quantifier-free we get ‘8 k 1 $[a, a’], and f’$I I= 4&z, fu’], 
contradicting the assumption that f is an isomorphism. 0 

Proof of the theorems A and B. Theorem A(1) and a part of B(1) were proven in 
Section 3. A(2) and the remaining part of B(1) follow from Propositions 4.1 and 
4.3, where (P,,(x, y) is taken to be the formula xy = yx for all n <o. Theorem B(2) 
is immediate from Proposition 4.4 and Proposition 4.5. q 

4.6. Remarks. (1) If we take for (P,,(x, y) the formula (xy)” # 1, then we get by 
Proposition 4.3 existentially closed groups and universal locally finite groups of 
power 2’0 without uncountable subgroups of finite exponent. The Q,,(x, y) can also 
be chosen to yield e.g. existentially closed groups and skew fields and universal 
locally finite groups of power 2” 0 without uncountable nilpotent substructures. 

(2) Lemma 4.2 can be used to prove the following theorem: Let m be a 
countable existentially closed group or skew field, or the countuble universal locally 
finite group. Let ‘3 c%Jl be a maximal commutative submodel. Then there is 
% =_ %Jl such that IN\ = 2’0 and %?I is a maximal commutative submodel of %. 

Clearly this remains true when 2”o is replaced by K (H, < K G 2’~~). Boffa [lo] 
proved the special case K =X1 for skew fields. 

For a proof of this result assume that !I3 cm is not contained in any finitely 
generated substructure of n. We are going to prove that there is ‘%=,n of 
power 2xo such that C&93) = C&?3), where Crm(5!3) = {a EM 1 [a, b] = 1 for all 
b E B}. Our result follows immediately, since ?I being maximal commutative 
cannot be contained in a finitely generated substructure of %Q, and ?I satisfies the 
equation C,(‘%) =?I. By the assumption on !8 we can choose the sets Dntl in 
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(TS8) such that there is b,,+i EB with b,+i E D,+i\(NT,Uf,,NT,)~. Let the for- 

mula xy = yx be the first member of the enumeration of (TS9). For 0 s n s m <w 

denote by fnm the inclusion of %r, in Z2,. 

By renaming ST,,, we can assume that %(fn,%T,)m<w = $Y?r”, and that the 

corresponding embedding fim is the inclusion of g2, in &. By this renaming we 

obtain a structure %=_m of power 2 ‘11 with %J?. = U {!J&” 1 n <a} c 8. We want 

to show that % satisfies the claim. Let c E C, (B). It is sufficient to prove c EM. 

By Lemma 4.2(b) we can pick n <o such that c has an (n, o)-predecessor in 

0,. So by Lemma 4.2(c) the elements c(k) exist for n Sk SW. 

Moreover each b,,, is a (k, o)-predecessor of itself and an element of Dk for all 

k 2 m, and the condition c E C,(D) implies %k [c, b,,,] = 1 for all m < o. So we can 

apply Lemma 4.2(d) and conclude ?E2, k [qkJ, b,,,] = 1 whenever n <m < k < w. 
Assume for contradiction that c(k) # c(k+i) for some k 3 n. Then cckj E Dk \ N$,, 

and c&+1) = f&&j. SillCe bk E Dk \ N;, by definition, condition (TS9) yields sz,+,k 

[c(k+i), bk] # 1, contradicting the conclusion from Lemma 4.2(d). This completes 

the proof of the theorem. 

The theorem remains true if ?I is replaced by a countable collection {%?I, 1 n < 

01. 

5. The proof of Theorem C 

For an arbitrary integer 1 we can add to Proposition 2.9 the following condition: 

ml If Wbl, . . ., x,) is a word of length at most 1, then 
(A U gA)m I= w[al, . . . , a,,] # 1 whenever a,, . . . , a,, E A U gA and 

‘21*B,,g%l=w[al,. . . , %I# 1. 

Proof. We use the notation of the proof of Proposition 2.9. By the universal 

property of free products with amalgamated substructures the mapping TV : A U 

gA +P defined by ka = a and pga = fa for all a E A extends to an isomorphism 

between % *Bc, g!?I and 9. 

So in (5), we can replace ‘u *e,,g!?Ib w[al, . . . , a,,]# 1 by 8k 

w[pa,, . . _ , Fa,] # 1. The proof of this modified statement is essentially contained 

in the proof of 2.9(3). 0 

We are going to show that every tree system which satisfies the conditions 

(TS6)-(TSlO) and a new condition (TSl 1) has a limit structure for which Theorem 

C holds. So in fact we prove a stronger statement, namely that every structure ?Ri 

in Theorem B(2) can be chosen to satisfy the conclusion of Theorem C. For the 

statement of (TSll) we fix a function h E -6.r. 

Sh:83



144 D. Giorgetta, S. Shelah 

(TSll) For every n <o the following hold: 

(i) (C U ~,C>Z,“+, n ‘%,, = g and (C U f,C),,~+, n f”‘&, = f,,% for every subgroup 
% E %2,. 

(ii) %z,+li= ~[a, b] # 1 whenever a, b E NTnUf,,NTn, and w(x, y) is a word of 
length at most A(n) such that 

!JJ T, *%;,fn~Tnk da, bl # 1. 

5.1. Proposition. For the countable universal locally finite group 113E there is a tree 

system satisfying (TS6)-(TSll). 

Proof. For every n <w choose f,, according to Proposition 2.9 with the additional 
condition (5),(,,, and take D and cp(x, y) as in the proof of Proposition 4.1. Cl 

Now it is sufficient to prove for every limit structure % of a tree system 
satisfying (TS6)-(TSll) that no uncountable subgroup of ?% is contained in a 
proper variety. So we have to find for every uncountable group fl c_ % and every 
nontrivial word w(xl, . . . , x,,) (w(x) is called nontrivial if Vx (w(x) = 1) is not a 
theorem of group theory) elements a,, . . . , a,, E A such that %!I I= w[al, . . . , a,,] # 1. 
Using the fact that outside of any proper variety there is a finite group, and that 
every finite group is embeddable in a two generator group it is easily seen that it 
suffices to consider words w(x, y) in two variables. 

For the proof of Theorem C we need a couple of technical lemmas. 

5.2. Lemma. Let ‘zc be a finite group, f an isomorphism defined on ‘?I such that 

‘%nf% =% and f r I3 =id. Consider 3, f’8 and ‘8 as subgroups of I?X *@f’?l. If 

al, ai,. . . , a,,, a; are elements of A, and the product b = aI(fa;) * . * q,(fu~) is an 

element of B, then b = f(a,al, * * . a,,ag = axa; * * * u.,,a;. 

Proof. The last equality is clear since b E B. The claim b = f(a,ai . * * a,,ag is 

proved by induction on n. 
For n = 1 we have b = alfal,, and the claim follows from Schreier’s normal form 

theorem for free products with amalgamated subgroups (see [4]). Now assume 
n > 1. It follows from b E B by Schreier’s theorem that there is m s n such that 
a,,,cB or &EB. 

Case 1: a.,,, E B and m 31. Then (fa~_Ja,,,(fa&,,) = f(a;_lu,,,aL). Put 6,_1 = 
a&-Ia,,,a&. Since 6,_1 E A we can apply the induction assumption to 

b = al@;). . * am-lC_f~m-l)~m+lC_fG+l) . * * 4.K. 

Case 2: al, E B and m < n. This is proved by the same argument. 
Case 3: a, E B. Then Cfai)az(fa$) * * - a,,cfa;)~ B, and so there exists 

k(l<k<n) such that U~EB or j(l<jSn) such that a:EB. If akEB we are 
back in the first case. If a:~ B and j<n we are in the second case. If finally 
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C&E B, then (fa;)az. - * (fa’,_&,, E B, and thus a;‘(fa;?i). . * a;‘(fa;-‘) E B, and 
we can apply the induction assumption. The fourth case, namely a; E B, is handled 
similarly. Cl 

5.3. Lemma. In every tree system satisfying (TS6)-(TSll) the following holds: Let 

nScx<o, a, bENT,, a’, b’EY&,. Assume that a’ resp. b’ is an (n, w)-predecessor 
of a resp. b. If w(x, y) is a word of length at most A(n) and Y&l= w[a, b] = 1, then 

Y12,L w[a’, b’]= 1. 

Proof. By (TS5) the number Q! can be supposed to be finite. So the claim easily 
reduces to the case (Y = n + 1. In this case either a = a’ or a = f,,a’, and similarly 
for b. If a = a’ and b = b’ or if a = f,,a’ and b = f,,b’, then the claim is obviously 
true. So we can assume by symmetry that a = a’ and b = f,b’. 

If %+I k w[a, b] = 1, then %rMil kw[a’, f,,b’]= 1. Thus by (TSll) we get 
!J&, *%k f,,Y&_k w[a’, fnb’] = 1. Now apply Lemma 5.2 for b = 1 and conclude that 

%Tm *%Gn f,!J12,k w[a’, f,b’] = w[a’, b’]. 

Therefore g2,k w[a’, b’] = 1. •i 

From now on we fix n Co, a* EN,, and a set A E N, of (n, w)-successors of 
a*. By Ai (n S j s w) we denote the set of those (n, j)-successors of a* which have 
(j, o)-successors in A. 

5.4. Definition. Let n 6 j<o. A node n E T is called (a*, A)-critical if q is 
critical and there are elements a, b E Aj \ N%i such that {a, $b}s Aj+l. 

5.5. Lemma. There is a subtree T* of T with the following properties: 

(i) For every a E A there is u c” Te with a EN,. 
(ii) Whenever j 2 n, 8 E T* n Ti, and no E -successor of 8 is (a*, A)-critical, then 

T* contains just one branch through 8. 

Proof. Let ‘%J be the set of all branches t of T satisfying one of the subsequent 
conditions: 

(a) Every node of t \ T, has an (a*, A)-critical successor in T. 

(P) If n =% j and n is a critical node in t n Ti which has no (a*, A)-critical 
E -successor in T, then nl E t iff there exists a E& \Ng, such that &a EA~+~. 

Put T* = lJ B. The tree T* clearly satisfies condition (ii) of the lemma. Take 
u G* T, and a E A such that a = fT,.ua *. Denote by T” the subtree of T having 
the nodes of u as endpoints, say T” = U {to,. . . , tk--l, t;, . . . , t;} with 

to, . . .) t&1EB, t; )...) tLqA‘i-3. Let k =Z i up. The branch tf contains a minimal 
critical node 8 on a level above n - 1 such that 8 has no (a*, A)-critical 
c -successor in T. Let ti be the unique branch in !ZJ such that 19 E 4. Put 
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In order to complete the proof of the lemma it is sufficient to show fT,,Ua* = 

f T,,oa*. If this equation were false there would be a minimal integer r 2 n such 

that fT,,up,+la* # fT,,upr+la*. Then 

f T,,+a* =fT,,,+a” := b, and furr,ulr+lbffulr,vlr+lb. 

So b E NT,\Ng,. We can assume that fulr,ulr+l=id, and fupr,ulr+l = f, (else 

fur,,urr+l = fi and fvlr,ulr+l = id and the argument is essentially the same). Then for 
some i 2 k we get q0 E t!, 9 1 E ti, where rl denotes the critical node of T,. It 
follows from the definition of ti that no successor of 7) is (a”, A)-critical. So by (8) 
there is a E NT,\ N?, with f,a E ArtI. Since q is not (a*, A)-critical we conclude 

that bffA,+,. So fT,,ur,+,a * has no (r + 1, w)-successor in A ; in particular 

f Tn,uu* yi A, a contradiction. 0 

5.6. Lemma. Suppose m 2 n; 8 E 7” ; a, b E A,,, ; c = ~‘[a, b] E NT,\ NT,,(el. Let 

u 5” T, be such that a, b EN,, and let u <u c T, such that Cfuva, f,,b} c A. Put 
Cj = fu,orjC for j 2 m. Ler q 2 8 be an (a*, A)-critical node such that for all 8 s u < 7 

the node CT is not (a*, A)-critical. 

Proof. The proof uses induction on j 3 m. For j = m there is nothing to show. 
Assume 8 <p < q, p E Tj, q E Tl and cj$ NT,,{,,,. 

Case 1 : p is not critical. Then p0 s q, and we must show that cj+l$ NT,+,,(pO). 
This follows from (TSll) (i) since 

N T,+~\{~oI=(NT,\~~}U~;.NT,\{~,))~~,+,) and Cj+l E{Cjy f&I* 

Case 2: p is critical. We suppose p0 =S q. The subcase pl s 77 is parallel. 
Assume for contradiction that Cj+l E N~i+,,~po). We have NT,+l\lpO) = fiNTi. AS 

cj g N~~i\{p} = NT, * it follows that cj+l =&j# Cj. Put q = f,,,ljU and bj = f,,,rjb. Then 

cj = w’[q, b,], and so either fiq # aj or fibj # bj. Since moreover a,., bj E ~j, and p is 
not (a”, A)-critical, it follows that Ajtl c N~i+l,~pol. Consequently A1 E NT,,(,,l, 
contradicting the assumption that q is (a*, A)-critical. Cl 

Now we are ready to prove Theorem C. Let ST_ be the limit structure of a tree 
system satisfying (TS6)-(TSlO), and (TSll) for suitable X. Let % be an uncount- 
able subgroup of ?X2,, and assume for contradiction that % !=Vx Vy (w(x, y) = 1) 
for some nontrivial word w(x, y). 

Let k be the length of w(x, y). Since % is uncountable we can choose an integer 
n and an element a* of N, such that the set A of (n, w)-successors of a* in A is 
uncountable. Take T* with the properties of Lemma 5.5. Let B3, be the set of 
branches t of T* such that every node of t\T, has an (a*, A)-critical successor in 
T (and thus in T*), and Bz the set of the remaining branches of T*. It follows 
easily from property (ii) of Lemma 5.5 that B3, is countable. Choose for each 
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a E A a subset u, c* Tt such that T, < u, (this is possible since we can assume 
that & U& = 23 as in the proof of Lemma 5.5) and a = fTn,u,a*. Let ‘%Ja be the set 
of branches of TA with endpoints in u,. Since ‘& has only countably many finite 

subsets there is an uncountable subset I3 E A and a finite subset &, E ‘2& such that 
%J, n !& = 2J0 for all a E B. There is an integer m > k such that all (a”, A)-critical 
nodes of U %JO are contained in U {Ti ( i -=c m - 1). Moreover we can assume that m 
is, for some d # by B, the minimal integer such that there exists u c u, U u,- and 
a, bc&,, with a= fub,,,_a. and b=f,,,,,, b. (Here we use that B is uncountable.) 
Because of the minimality of m we find a’, b’EA,_, with a = a’#f,,~,a’ and 
b =f,-lb’ # b’ or conversely. So the critical node v E T,,_, is (a”, A)-critical. 
Consequently 77 cannot be contained in a branch from !& by the choice of m. So q 

has an (a”, A)-critical successor $ # q in T*, and we may assume that p is not 
(a*, A)-critical for 7 <p < i. Denote by c the product a . b in !R2,. Let the 
function A in (TSll) be defined by h(i)=6jNT,I. In %nT,,~l *~~,~,fm_-l%~,_, the 
product a . b has infinite order, and the length of (x . ~)““Tw~ is 4 IN,-,\ and thus 
inferior to h(m-1). Hence we conclude using (TSll) (ii) that ZJ27,~k~2’N~+1’# 1 
and so c2$NT,._, and c’$ f,,,NT,_,. Otherwise stated c2$NT,,{,,“) and 
c* g NTm,{- 11. Now +j is a successor of q0 or of q 1. Lemma 5.6 with ~‘[a, b] = 

a.b, 8=qOresp. O=rllandp=q=qyields fulm,ulrc2ENT,\N$,,whereristhe 
level of ;i. Put f upm,,pr~ = E, and assume fvlm,vlr+l~ = E. (The other case, namely , 

f vbmurr+l~ = f& is handled similarly.) Since ;i is (a”, A)-critical there exists 
d E A, \N$, such that frd has a (r + 1, w)-successor in ‘72, say a. The element Z has 
a (r + 1, w)-successor in %, too, namely E = fvlm,uc_ Put v(x, y) = w((xyx)“, (xy)‘). 
By assumption % k v[Z, d] = 1. The length of v(x, y) is at most 6k, and k <rn < r < 

lN,I. Hence the length of u(x, y) is bounded by h(r), and by Lemma 5.3 we get 
gz,*, ku[E, f,d] = 1. On the other hand E E N,\Ng,, and f,d E f,N,\N%,. 
Moreover E2 E NT,\N$,. It is not hard to see that under these conditions (Ecf,d)Z)2 
and (Efrd)2 freely generate a free subgroup of 9 = !J&., *~;,,f,Y&,. Since w(x, y) is a 
nontrivial word we have therefore 

9 k w[(E(frd)Z)‘, (Zfrd)2] = v[C, f,d] # 1. 

Applying (TSll) (ii) we conclude that gT,+,ku[E, f,d] # 1, a contradiction. 0 
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