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Introduction

We introduce in this paper the notion of tree system. Under suitable conditions
tree systems can be used to construct structures of the power of the continuum
which are cow-equivalent to a prescribed countable structure. In particular tree
systems allow a uniform approach to certain problems concerning existentially
closed groups and skew fields, and universal locally finite groups. By means of
tree system constructions we prove the following theorems:

Theorem A. For every uncountable existentially closed group or skew field I there
is a structure N with the following properties:

1) M=_,N (so especially N is an existentially closed group or skew field) and
the cardinality of R is 2%.

(2) Every uncountable set of elements of N contains an uncountable subset of
pairwise noncommuting elements (in particular no uncountable substructure of N is
commutative).

Theorem B. (1) There is a universal locally finite group N of power 2% such that
every uncountable set of elements of N contains an uncountable subset of pairwise
noncommuting elements.

(2) There is a family (R,); . of universal locally finite groups each of cardinality
2% such that no uncountable group is embeddable in N; and N, whenever i <j<
2%,
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Theorem C. There is a universal locally finite group ¢ of cardinality 2% such that
no uncountable subgroup of N belongs to any proper variety of groups.

All statements in these theorems remain true when the cardinality of i and of
the ¢, is taken to be « (R, < k <2™) instead of 2.

The first section of the paper contains the definition of tree systems. A tree

svstem consists of a collection of ‘bottom’ directed systems and a ‘ton’ directed
systeém Cconsists oI a colieclion Of dottom’ airected systems ang a 'top’ airected

system whose structures are the direct limits of the bottom systems and whose
morphisms are the inclusion mappings. We shall be interested in the direct limit of
the top system which we call limit structure. By the special choice of the top
system, the bottom systems are subjected to strong compatibility conditions. This
makes it easier to get the limit structure to be cw-equivalent to a prescribed
structure (whose finitely generated substructures are used to build up the bottom
systems). On the other hand these conditions, being amalgamation properties,
make it difficult to construct large limit structures. In Section 2 we prove some
technical results which shall ensure the existence of tree systems with large limit
structures under certain algebraic conditions. These results are used in Section 3
to construct tree systems whose limit structures satisfy the conditions on 3 in
Theorem A(1) and the corresponding part of B(1). In Section 4 the construction
of Section 3 is refined in order to get limit structures satisfying the remaining
conditions of the Theorems A and B. Section 5 is dedicated to the proof of
Theorem C.

The first uniform treatment of uncountable existentially closed groups, skew
fields and locally finite groups (note that universal locally finite groups are just the

avictantially olacad gtructnrae in tha olace af lacally finite oraounc) ic due ta
CXiSiChidany CiOSCa SUTUClures i iane Ciass O1 10Cauy Nnne groups, is Gue WO

Macintyre [6]. Macintyre proves Theorem A and B(1) assuming V = L. His results
were considerably strengthened by Hickin [3] in the case of locally finite groups
and by Shelah-Ziegler [8] in the case of groups. Hickin proves in ZFC the
existence of a family (:;); <, of universal locally finite groups of cardinality R,
with the property of Theorem B(2) and constructs a universal locally finite group
which, among other properties, satisfies Theorem C for X, instead of 2%, Shelah—
Ziegler proves Theorem A(1) for arbitrary uncountable cardinals instead of 2%,
and shows for instance that in every uncountable cardinal there is an existentially
closed group N which is xw-equivalent to a prescribed countable existentially
closed group and enjoys the property that every uncountable subgroup of N
contains an uncountable free group. (If ! has at most 2% elements this could also
be obtamed usmg tree systems together with a result from [9] Wthh allows to pull

groups.)

An earlier version of the present paper was written by the second author and
circulated as a preprint since 1977. This preprint already contained proofs for the
Theorems A and B. The present exposition is due to the first author. Although it
describes a different approach, most of the essential ideas of the first four sections
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are explicit or implicit in Shelah’s preprint. The central notion of tree system can
be traced back to [7]. Section 5 is due to the first author.

We chall use the followine notation: Structures are denoted hy oerman canitalg
we shail use tne rolowing notatnon: Structures are denoted by german captals,
a

and their universes by the corresponding latin capitals. If I is a structure and A
subset of M we let {A)q stand for the substructure of IR generated by A.

1. Tree systems

We fix a tree T with the following properties:

(T1) T is a subtree of (¢X*2, <), the tree consisting of ali 0—1 sequences of
length at most w.

(T2) Every branch of T has length w+1.

(T3) For every integer n the following hold: If 8 € T,, (the nth level of T) then
00 T,.,. There is exactly one node me T, such that n1e€T,,,. This node is
called the critical node of T,.

(T4) For every 8 T\ T, there is a critical node n e T with 9 <nx.

By condition (T1) for each pair of distinct elements p, o of T, there is an
integer n such that pln#oln.

It follows from (T1) and (T4) that T has continuum many branches, and so by
(T2) we get | T, |=2%,

Notation. For B<a<w and ucT, the set {6 | B|0cu} is denoted by ul B.
The expression u <* T, stands for u= T, and 0<|u|<R,.

nd th 1 ollows:

) I={u|3a<sw (uc*T,)}.

(I2) For u,vel let u=<v iff lu|=|v| and there are a <B <o such that v T,
and u=va.

T is embedded into (I, <) by the mapping 6+~>{6}. The minimal elements of I
are T,={@} and those subsets of finite levels which contain both immediate
successors of a critical node.

Let (I, =) be the partial ordering satisfying (I1) and (I2). A pair 7 = (R )uer,
(fuoJu=vep is called a tree system if J satisfies the following conditions:

(TS1) For each u<vel, R, is an L-structure for a fixed language L, and f,, is
an embedding of N, into N,.

(TS2) (Nuer (Fav)u=v<r) is a directed system for every re*T,,.

(TS3) If uc*v<*T, and n<w, then N, =N,.

(TS4) If n<w, sc*T, and

Now we extend the tree T to a partial ordering (I, <) as

rcts
w

uc*v

then .fur :fvs r Nu-
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(TS5) R, = 5 Ruce and (R uze (Fuodumoss) is a directed system for each
sS*T,.

Remarks. (1) Call two sequences t, ' € “(|J, <., N1.) equivalent if ¢ and ¢’ disagree
for finitely many arguments only. Denote the equivalence class of t by [t]. Let a
be an element of N, for s =* T, and choose an integer m and an index uc*T,,
such that a =f,a’' for some a’eN,. Then clearly a can be identified with the
equivalence class [(fy, ¢jn@ )m=<n<o ) Using this convention, the following properties
of I are easily deduced from (TS1)—(TS5):

(TS4') For every sel: If

rc*s
v v

uc*v

then f,, =f, ! N..

(TS3) If uc*vel then R, =N,.

(2) Define for every r<*T, a directed set (J,,<) as follows: J, =
{fvellAu<r(wcu)}, and u<v iff there are a <B<w such that v= T, and
ucvla.

For ucv let f,, be the inclusion mapping from %, into N,. Using remark (1)
one sees that J is a tree system iff I satisfies (TS1) and the following conditions:

(TS6) For every r<* T, the pair 7, = (R,)ucr> Fuo)uxves) is a directed system.

(TS5) N, =25 T, for every sc* T,.

Notation and terminology. For n, 8 € T we write f,, instead of fi,,e;- If 1 is the
critical node of T,, the structure Ny \¢,, is denoted by N7

If X is a nonempty subset of T, then by (TS3") the pair (N,),crx;, (4s)ycrsc*x)>
where i, is the inclusion mapping from M, to N, is a directed system with direct
limit |J{R, | r =* X}. We denote this limit by Ny and refer to Ny as to the limit
structure of the tree system J. Note that the structures Ry for O+ X =T, are
uniquely determined by the 3, and f,, for subsets u, v of finite levels of T. For
a,bec\J{N,|uel} and n=a=<w we say that b is an (n, a)-successor of a (and a
an (n, a)-predecessor of b) if there exist u <* T, and v =* T, such that u <v and
b =f,..,a (so especially ae N, and be N,).

For a<sw and A = |J{N, |uel} we let S,(A) stand for the set of all elements
of U{N, | uel} which have an (n, a)-predecessor in A for some n <a. Clearly
S.(A) is finite if @ and A are finite.

2. A framework for the basic construction

By condition (TS4') we have in every tree system a certain amount of amalga-
mation. If we want to produce large limit structures we have to control this
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amalgamation in order to ensure that not too many elements are identified. In this
section we develop the technical machinery for this purpose.

From now on, we denote by L a language, and by X a class of L-structures
which is supposed to be closed under taking isomorphic images.

2.1. Definition. The class ¥ is said to have free amalgamation if for all A, A,
BeH with ANA' =B there is a structure P e X such that A< P, A' <P and
whenever f:A—¥ and [ ;A —A' are embeddings which agree on B, there is an
embedding h: P —P extending both f and f'.

2.2. Remarks. (1) Let ¥ —with embeddings as morphisms — be closed under
taking free products with amalgamated submodels. It follows from the universal
property of such products that & has free amalgamation, the free product of %
and ¥ with B amalgamated being a minimal choice for ? in Definition 2.1.
Examples for such classes X are the class of groups and the class of free ideal
rings (fir). For firs see [2].

(2) Let X be the class of skew fields. Since every skew field is a fir, in the
situation of Definition 2.1 we can form the free product ?’' of A and W' with B
amalgamated. %' being a fir has a field of fractions ? which is universal w.r.t.
specialisations [2, Theorem 4.C], and every embedding of ' into @' extends to
an embedding of 2 into P [2, Theorem 4.3.3]. As a universal field of fractions, %
is determined by &’ up to isomorphism. & is called the field product of % and &’
with 8 amalgamated. Notation: P = =5’

(3) Although there is in general no canonical choice for ? in Definition 2.1, we
shall write A *x A" for %. This notation is justified by remarks (1) and (2), as we
are mainly interested in groups and skew fields.

(4) In the class of groups the free product with amalgamation enjoys the so
called subamalgam property: If, in the situation of Definition 2.1, we have € < ¥,
@' =W, and € NB=%'NDB, then the subgroup of A *x Y’ generated by CUC' is
€ *enms €.

2.3. Definition. Assume W e ¥H. A triple (a, %y, B) is called a separation in U if
acA, U,cU; BeK is a collection of substructures of U, and if there is an
embedding h:Y—% such that ha#a, h{ Ay=id and h maps B into B for every
BeB. We say that h is a separating isomorphism for (a,%,,B) in .

In the class of groups the subamalgam property leads to the following pleasant
situation: If f is an isomorphism with dom(f) =% and B, is a subgroup of U such
that fl Bo=id and ANfA =B,, then for every subgroup A,<A and every
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ac A\ A,
(*)  ag(AgUfAohgsu and  fa¢(AoUfAour, s

In Section 3 we shall define the morphisms f,,, of the tree system by piecewise
composition from such isomorphisms f, and property (*) would ensure that not
too many elements are identified by amalgamation. Unfortunately (*) is not true
in all classes with free amalgamation. Now if (a, Ay,B) is a separation, then
clearly ae A\ A, and the next proposition tells us that free amalgamation
implies (*) at least when (a, A,,B) is a separation for some B containing B,.

2.4. Proposition. Lei U, Boe H, BN, and assume thai K h
tion. Then

(i) If f is an isomorphism defined on U such that AN fA =B, and f| B, =1id, and
if (a,%o,B) is a separation in A with ByeB, then (a,{A,UfAs B) and
(fa, (Ao U fAo)e, B) are separations in P =9 #g fU, where

B=BU{fB|BecBU{(BUfB): | BeBIU, fA, P}.

Moreover there is a common separating isomorphism for both separations in P.
(i) If Yo =By, in (i), then also (a, fUA,B) and (fa,A,B) are separations in P.

as free amalgama-

Dol (NT at h lha Neatino 1 morp l-\-n n for

Qo et ar
L AIUULe \1) LU T oC a OCP 1alllly ULV,

prisim (u, AU, lm} in ¥. Then f# ]u] -1 is an
embedding of f into fU. Since Bye B the mappmgs h and fhf ' agree on %B,.
Since ¥ has free amalgamation, h and fhf ' have a common extension to an
embedding h of ? into P. One checks that ha# a, hfa# fa, h | (A, UfAy)e =id,
and hB B for every BeB

(i) Define h PP and h,:P—-P by h

i1y AL 143

h.- ' A=id
> fYly 4R ot

hil fA =fhf L It is easily seen that h, resp. h, is a separating isomorphism for
(a, fA,B) resp. (fa, A,B) in ?. O

In Section 3 we want to construct tree systems using structures from sk(I) (the
class of all finitely generated structures embeddable in IN) for M existentially
closed in K. In order to control amalgamation we would like to apply Proposition
2.4 but we cannot expect the class sk(fM) to be closed under free products with
amaigamated substructures, even if % contains all structures from sk{(#) (for
instance being closed under taking substructures) and has free amalgamation. So
we want to transfer the statements of Proposition 2.4 from ¥ to sk(IR). Since I is
existentially closed this would be possible without loss if the validity of Proposi-
tion 2.4 were equivalent to the holding in an extension of IR of a finite set I' of

existential sentences with narameters from . To oet such a set I' at all we must

CAISIUNNGL SUHICIHLOS Wilidd pParailivivi s 1V wv. H-L Sulial a WO RIRast

ensure that the isomorphisms occurring in Proposition 2.4 are in suitable way
definable in the language of ¥ with parameters from 8. So we will limit ourselves
to classes X which satisfty a HNN-type theorem. To keep I’ finite, we have to
weaken Proposition 2.4 to a ‘local’ version.
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2.5. Definition. Let 1(x, y) be a term in L. We call t(x, y) an automorphic term if
for every structure ¥ € ¥ and every n-tuple a of elements of U the term t(a, y) of
L{(a) is interpreted in (YU, @) as an automorphism.

We say that # has HNN-extensions if there is an automorphic term t(x, y) with
the property that for every A€ X and every partial isomorphism f from % to U
there exists A'€ ¥ and a € A’ such that A <A’ and the equation t[a, a]= fa holds
true in ¥’ for every a € dom (f).

Example. If % is the class of groups or skew fields, then xyx ' is an automorphic
term. The classical Higman—Neumann—Neumann theorem states that the class of
groups has HNN-extensions. The class of skew-fields has HNN-extensions, too
(for a proof, see Theorem 5.5.1 in [2]).

Before proving a modified version of Proposition 2.4 we state an auxiliary
result:

2.6. Lemma. Assume that X has free amalgamation and HNN-extensions. Let
M e H be existentially closed in H. Then there is an automorphic term t(x, y) such
that for every finitely generated substructure A =M which is in H, for every finite
generating subset {a,, ..., a,} of A and for every a € M the following holds:

acA iff MEVx([x, al=a,A"-Atx a,]=a,)—>(][x, a]=a)).

Proof. (Following [5]). Take t(x, y) as in the definition of HNN-extension in 2.5.
The ‘only’ direction is clear since t(x,y) is an automorphic term. For the ‘if’
direction assume a¢ A. Take an isomorphism f with dom(f)=M, f} A =id, and
MNfM=A. Since ¥ has free amalgamation we get P =M+ fR e H, and fis a
partial isomorphism from ? to %. Since ¥ has HNN-extensions there is #' ¢ X
with < ® and ¢4, ..., ¢, € P such that t[cq, ..., c,, a]=fa holds in ?'. So by
the choice of f we get

PEIAx(t[x, a;l=a; A+ - Atlx, a,]=a, At[x, al # a).

In this statement, ' can be replaced by IR since M is existentially closed and
Mep'. O

Now we are ready for the crucial proposition.

2.7. Propesition. Let 3 be closed under taking substructures and unions of chains.
Assume that ¥ has free amalgamation and HNN-extensions. Let I be existentially
closed in ¥. Let U, B, be finitely generated substructures of I with B,<=N and D
an arbitrary finite subset of A\ B,. Let 3 be a finite collection of separations in A
such that for every (c, 6, B) € 3 the structure € is finitely generated and B is a finite
collection of finitely generated substructures of U with B,eB. Put 3=
{(cs, Us,Bs) | S 3}
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Then there is an embedding g:A—>IM and a finitely generated substructure
W' <IN satisfying for every S €3 the following conditions:

Y 11 SO —Ors
W) augasau.

(1) gl By=id, and DNgA =A NgD=4.
(2) The triples (cs, (As U gAg), Bs) and (ges{As U gAg)yw, Bs) are separations
in A', where B denotes the collection

Bs U{gB|BeBs}ULBUgB)y | BeBstU{As, gUs, AL
(3) If U =B, then the triples

(cs, gA, Bg) and (gcs, A, Bs) with Bs as in (2) are separations in A'.
(4) If o(x, y) is a quantifier-free formula in L, and if & * 4 &'k ¢[a, a'] for all

products & * 4, & € X and ail ac G\ H and a’' € G'\ H, then g and ¥’ can be taken
to satisfy the additional condition

A'F—old, gd] for all deD.

Proof. We carry out the proof in four steps. First we show that the proposition
holds when we replace I in the conclusion by a suitable superstructure ? of M.
Second we find an existentially closed superstructure IR* of P such that the
validity of the proposition for & is equivalent to the fact that a certain set I" of
formulas with parameters from % can be realized in I*. Third we prove that I' is
aiready realized in ¢, and fourth we deduce from this that Proposition 2.7 is true.

First step. Take an isomorphism f defined on ¥ as in Proposition 2.4(i) and
assume that fANIM=B,. If we replace A’ by P =W =y fA and g by f the
statements (0), (1) and (4) of Proposition 2.7 obviously hold while (2) and (3) are
true by Proposition 2.4.

ctoTs oo Fa Avrmeecy s £oon

Second Siép. Choose for ever y SeX a acp"i‘atﬂ‘g isomorphiSm hs 107
(cs, {As UfAg)a, Bs) and (fcs, (As U fAg)s, Bs) in P. If (cs, Bo, Bs) is a separation
take also isomorphisms h2 resp. hi separating for (cs, f, Bs) resp. (fcs, U, Bs).
Consider the model ' =M * 4~ P. Then MM’ and P =M. As the mappings
f, hs, h% and hg are partial isomorphisms in N, we find a model EIR*QEIR’, an

automorphic term #(x, \y\ and finite sequences a. a.. al al of ele nts of IN*

LOINOIPRC I QAR AT SOHBEERLS B S8y sy s YR AT

such that for all a e A the following equations hold in J*:
fa=tla,al, hsa=tlas al, sa=t[as, al, sa=tlas, al.

H is closed under taking unions of chains, so we can assume w.l.o.g. that IR* is
existentially closed. Thus Lemma 2.6 can be applied, and we get for every finitely
generated substructure B of M* a quantifier-free formula ¢gl(x, y) with parame-
ters from B, such that for every b e M* we have

IM*EVx op[x, b] iff beB.
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Now consider the following statements:

(S1) flBy=id.

(S2) ANfD=4.

(S3) fAND=0.

(S4)s hg is a separating isomorphism for (cs, {Ag U fAg), By).

(S5)s hg is a separating isomorphism for (fcs, (As UfAs), Bs).

(S6)s hQ is a separating isomorphism for (cs, f, Bs).

(S7)s hl is a separating isomorphism for (fcs, U, Bs).

In the subsequent formulas s, different strings of variables are supposed to be
disjoint and for a finitely generated structure B we denote by B’ an arbitrary
finite generating set. It is easily seen that (Sk) holds iff it is possible to satisfy 4 in
IN* after having assigned a;, as, a2, a$ to x;, xs, X2, X&.

((x) M t(x, b)=b.

teB(

(a2, ¥)) fq) —ouly, t(x, d)).
(P3(xp, 2)) d/X}) —1¢}ulz, d, X;).

Here (2, d, x;) is obtained from ¢gy(z, d) by substituting t(x, a) for every
parameter fa (a € A) occurring in (2, d).

In the next formula the following notation is used: For BeBg and be B the
elements heb and f 'hefb are denoted by b’ and b” respectively.

(a(xs, X5)) t(xs, cs) #Fcs A M (t(xs, @) = a At(xs, t(x;, a)) = t(x;, a))

acAg

AR M (t(xs, b) = b At(xs, txg, b)) = t(x,, b")).
BeRg beB’

(¥s(x; x5)) is obtained from y,(x;, xs) by replacing the subformula t(xs, ¢s) # cs by
t(xs, t(x;, ¢,)) # t(x, Cs).

Similarly we get quantifier-free formulas y(x;, x2) and 5, (x;, x3) corresponding
to (S6)s and (87)s.

Third step. Since all statements (Sk) (1=<k=<3) and (Sj)s (4=<j=<7,Se3) hold,
the formula

U n(x) A, ¥) A (X, Z) A S/)(\2 (Wa(xp, X5) A s (X, X6) A 6 (X5, X A (x5, X5))

is satisfied in IN*. Now ¢ is quantifier-free, and IR is an existentially closed
substructure of IM*. So ¢ is already satisfied in M.
Fourth step. ¢ can be satisfied in I after having assigned certain sequences
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by, bs, bg, b of elements of M to x;, xs, x, x§. Define g: A—M by gx =t(b, x). g
is an isomorphism since t(y, x) is an automorphic term. Define kg, hQ, hi: M—M
by hsx = t(bs, x), h2x = t(b2, x) and hlx = t(bl, x). Put

A 1ad YARSs vy TS FA¥S, Grils ¥ TS,
=(AUgA UbsUbZUbY)y,.
The sentence (b)) AIyys,(by, y) A3zs5(by, 2) is true in IX. Using Lemma 2.6 we
conclude that claim (1) of Proposition 2.7 holds. Considering 5 and i, one sees
that the restriction of hgs to ¥’ is a separating isomorphism as needed for claim (2).

In the same fashion one proves (3), and (0) holds trivially.
In order to prove (4) for a fixed formula ¢(x, y), add to (S1)-(S7) the statement

(S8) PEM —old, fd],
deD

and to (¢1)—~(7) the corresponding formula

Then (4) is proven by substituting s by ¥ A8 in the third and fourth step of the
above proof.

Proof. We have to show that the conditions of Proposition 2.7 are satisfied if & is
taken to be the class of all groups or the class of all skew fields of given
characteristic. Now either class is closed under taking unions of chains. By an
appropriate choice of the language L we can ensure that both classes are also
closed under taking substructures. It was already mentioned in 2.2(1), 2.2(2) and
in the example following 2.5 that both classes have free amalgamation and
HNN-extensions. []

Proposition 2.7 cannot be applied to the case of a universal locally finite group
I, since the class of locally finite groups does not have free amalgamation.

But in this case we do not need separauons since a result Uy‘ Daumslag [1 _|
enables us to transfer the subamalgam property from the class of all groups to the
class of finite subgroups of . Baumslag’s result says that a free product # of
groups with amalgamated subgroups is residually finite whenever the factors are
finite. By definition, ? is residually finite if for an arbitrary finite subset Ec P
there is a homomorphism h from ® onto a finite group such that h | E is injective.

The following proposition is intended to replace Proposition 2.7 in the case of
locally finite groups. The additional condition 2.9(4) has no analogue in the
situation of Proposition 2.7 and will play an important role in generating
nonisomorphic models.
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2.9. Propesition. Let IR be a universal locally finite group, and let A and B, be
finite subgroups of M such that B, =A. Then there is an embedding g :N—IM with
the following properties: -

(1) ANgA=B,, and g! B,=id.

(2) For every ac A and every subgroup N, W: ac{AUgApy iff ac Aq iff
ga €{AoUgAo)m.

(3) If ¢(x, v) is a quantifier-free formula of L, and if F 5 F'E 1¢(a, b] for all
products of groups F x5 F and all ac F\H, be F'\H, then g can be taken to
satisfy the additional condition:

(A UgA)pE1¢la, gb] for all a,be A\B,.

(4) There is a quantifier-free formula ¢(x, y) such that (AU gA)gFy[a, b] if
{a,b}< A or {a, bl = gA, and (A U gA)ykFy{a, b] if ac A\ B, and be gA\B,
or be A\ B, and a € gA\ B,.

Proof. (1) Let f be an isomorphism defined on ¥ such that ANfA =B, and
fl By=id. Put P =U #y fI. Define a finite subset E of P as follows:

E ={w[a]| a a sequence of elements of AUfA,

w(x) a word of length <l}.

By a word we mean a term in the language whose nonlogical constants are - and
~1, and the integer ! will be fixed later, but in any case [=1 (and so AUfA ¢ E).
According to Baumslag’s result we can choose a homomorphism h defined on P
with finite range such that h| E is injective. Since every finite group can be
embedded in N we can assume that h® =M, and by the w-homogeneity of M we
can take h such that h| A =id. So, putting h? =@ and hf=g', we have
&' =(AUg Ady, and g’ satisfies (1) as a A UfA c E. Now let & stand for the
direct product &' x &', and let g,: A —G and g,: g'A—>& be embeddings defined
by go:a—(a,a) and g,:g'a—(a, g’a). Using again the fact that I contains
isomorphic copies of all finite groups and is w-homogeneous we find an embed-
ding k :&—IM such that kg, is the identity on UA. Put g = kg,g’. Then g satisfies
(1).

(2) Assume that a e A N{A,UgAy)y. We have to show that ae A,. We can
write a as a product a,gh,--- a,.gh, for appropriate a,, by,..., a,, b, €A,.
Applying k™' we get

(a, a)=(a,, a,)(b,, g'by) - - - (a,, a,)(b,, g'b,),

and so a=a;b;---a,b, €Ay If ac A and ga=a,gh, - - - a,gb, the same argu-
ment yields g'a=a,g'b, - - - a,g’b, and therefore fa=a,fa, - a.fa, and we
deduce a € A, from the subamalgam property of U *g_ f.

(3) Take ¢(x, ) as in (3). Let ¢'(x, y) be a formula in disjunctive normal form
such that ¢'(x, y) is equivalent to —¢(x,y), and every atomic component of
¢'(x,y) is of the form w(x,y)=1. Let l, be the maximal length of a word
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occurring in ¢'(x, y). Choose | =[,. Due to the special form of ¢’(x, y) the claim of
(3) follows immediately once we have shown that (A UgA)gFx[a, gh] if Pk
xla, fb] for formulas x(x, y) of the form w(x, y)=1 or w(x, y)# 1.

If PEwla, fb]#1, then &' Fwla, g'bl#1 by the choice of I. Clearly ®&F
wl(a, a), (b, g'b)]#1 iff &' Fwla,b]#1 or & Ewla, g'bl#1. So we get GF
wl(a, a), (b, g'b}]# 1, and applying k we conclude that (A U gA)pFwla, gb]# 1.
If PEwl[a, fb]=1, then ®Ew[a, g’b]=1 since h is a homomorphism. Anticipating
Lemma 5.2 we get PEw([a, fb]=w[a, b], and therefore &Ewla, g'b]=w[a, b]=
1. As above we conclude that (A UgA)pEwl[a, gh]=1.

(4) Take for Y(x, y) the formula (xy)" =1 with n =|A|. Choose [=2n. Obvi-
ously (A UgA)pF(ab)" =1 if {a,b}= A or {a, b} < gA. In the other case we can
assume a€A, b=ga' for some a’'€ A\B,. Then fa'efA\B,, and a‘:fa’ has
infinite order in . So by the choice of | we have &'F(a-g’a)"# 1, and as in the
proof of (3) we conclude that {A UgA)pF(a-ga)"#1. O

Remark. In the proof of Theorem B(1) we shall apply Lemma 2.9(3) for xy = yx
at the place of ¢(x, y).

So ¢'(x, y) is of the form xyx 'y ' # 1, and in this case we do not need Lemma
5.2 to get 2.9(3).

3. The basic construction

In this section L is a language and ¥ a class of L-structures. ¥ is assumed
either to have free amalgamation and HNN-extensions and to be closed under
taking substructures and unions of chains, or to be the class of locally finite
groups. We consider a countable existentially closed structure M e K (so in the
case of locally finite groups IR is universal locally finite).

We are going to add some conditions to the axioms (TS1)~(TS5) for tree
systems. This conditions describe a sequence f, of embeddings of M, into M.
Every morphism f,,, of the tree system will be composed from restrictions of the f,
and from identities. The main result of the section says that the embeddings f,
and the structures N1 can be chosen to produce a limit structure Ny =, M with
|Nr|=2%. First we add two conditions which are sufficient to get |Np|=2%.

(TS6)
(D) Ny =Ny, is a finitely generated substructure of I containing a finitely
generated substructure 8. f, is an embedding of N1, into M such that f,| B =id.
(i) Let 0 <n <. Then f, is an embedding of Nr_into M such that f, | NT =id.
For n=0, N, is a finitely generated substructure of I containing Nt Uf, N
(iii) For 0sn<=ow, we*T,.1, w =w | n and n € T, critical the following holds:
(a) N, =N, and f,.=id if nl¢w,

(b) mw:fnmw' and fw'w:fner’ lf 710¢W,
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(©) Ny =(Ny\tny U Nyp\imopme
= <Nw' U anw'>§lR if {110, n 1} < w.

(TS7) There is an element ¢ € N, such that for all n <, all u c*T,andall T,
we have fgoceN, iff Oecu.

3.1. Proposition. For every existentially closed structure IRe H there is a tree
systemt (N )uer Fuolusver) satisfying (TS6) and (TS7). In this system, for every
n<w and every finitely generated N<=IM, Ny, | can be chosen to contain N.

Proof. First we consider the case when X satisfies the conditions of Proposition
2.7. We are going to define a tree system (N, )ucn (fun)u<oer satisfying (TS6), a
nonempty subset C, of N, =N, and a finitely generated substructure B of N,
such that

(1) (¢,B,{B}) is a separation in Ny, for every c € C,.
(2) For every n<aw, uc*T, and 8 € T, we have fyoc € N, iff 8 € u for all c € C,,.

We use induction on the level n of T. For n =0 choose a finitely generated
A <M containing a finitely generated proper substructure B. Apply Proposition
2.7(1) for B, =B and 3 =9 to get an embedding g:A—IM such that AN gA =B
and gl B =id. Since M is existentially closed in # and ¥ has HNN-extensions
there is a finitely generated substructure %’ of I containing A U gA such that g
extends to an automorphism g of A'. Put A’ =N, , and take for C, any nonempty
finite subset of A\ B. Then clearly (1) is satisfied with g as separating isomorph-
ism, and (2) holds trivially for n =0.

Now assume that the tree system has been constructed up to the level n. We use
Proposition 2.7 as follows:

For n=0 put A =Ny, B,=DB and

3 ={(c,B,{8) | ce Cy}.
For n>0 put A =N, B,=N% and

(e, N, (N, | vE™T,}) is a separation in Ny }.

Now set f, =g and C,,,=C, Uf,C,. For a given finitely generated substructure
N<IM we choose N | to be a finitely generated substructure of M containing
N1, Uf,Ny UN. Then it follows from Proposition 2.7(1) that (TS6) (i) and (ii) are
satisfied. By (TS6) (i) the conditions (a) and (b) of (TS6) (iii) are compatible and
so for every we* T, ., we can define N,, and f,,., according to (TS6) (iii). A
routine checking shows that the system defined by this induction has a unique
extension to a tree system satisfying (TS6) and condition (1) stated at the
beginning of this proof. In order to fulfill condition (2) we have to make the
choice of N, more precise to ensure the existence of sufficiently many separa-
tions.
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Put N3=B and B, ={N, | v = T,.}. Define
20 = {(C, %, BO) l ce CO}
and

Ay N m 3\
“n+1 = WG, Yy, p 1),

{J u
(C, urmB )ez U{(C fn Bn+1)y
3.0

N g
Unc, A"T 5ujn+1) 1 \G, JLT 9lmn,)t

We want to choose the structures N so that all triples from 3., are
separations in N . Assume that this has been done for all k<n. If in 3,,,, we
replace B,.; by B,.1 \{Nr_ }, we get a set 3/, which by Proposition 2.7(2) and

2.7(3) is a set of separations in a finitely generated substructure W' of M with

Ny Uf.Ny < N'. Choose for every S eEnH a separating isomorphism hg. Since
IR is existentially closed in ¥ and ¥ has HNN-extensions there is a finitely
generated substructure i of M containing N’ and a prescribed finitely generated
N <=M such that every hg extends to an automorphism of N. Put N =N . Then
every triple from X, ., is a separation in R ..

Now in order to establish Proposition 3.1 it is sufficient to show that the tree
system defined above satisfies condition (2). In view of (TS3) it is sufficient to
prove 6¢ u=>jfgcé N, for 6€T,, uc*T, and c e C,, and, again by (TS3), this is
equivalent to fgec# N i) for every ce C, and 6 € T,,. So it suffices to show that
(FpoC, R \j01, Mo | v <™ T,}) is a separation in Ny . For n =0 this is trivially true by
the choice of C, and the convention B = Ny. Now pick ¢ € C, and put fyec = ¢ for
0eT.let0ecT,, , n critical in T,, and denote the immediate predecessor of 6 by
ar

Case 1: 6 #1m. Then fgC =7FgeCe =Co by (TS6) (iiia). Since {n0,nl}c
T,.1\{0} we get by (TS6) (iiic):

R, .0y = (N1ni01 UFNT om0

By our choice of Ry we conclude that the triple (fgec, Rr oy, Mol S* T 11D
is a separation in N, using the induction assumption for n.

Case 2: 6 =m1. Then ¢, = f.c,, and Ry ey = N1, by (TS6) (iii). By induction
assumption the triple (c,, %%, {9, |vs*T,}) is a separation in . Due to the
special choice of Ny, we conclude that (f,c,, Rr,{N, | v<*r )} is a separation,
and this triple is equal to (co, N1, \jo1> Mo | VE* Trhitd)-

Case 3: 8 =n0. This is handled in the same way as the second case. This
completes the proof of Proposition 3.1 for ¥ as in Proposition 2.7.

AU i 3 1ot P h trivial finita
If ¥ is the class of locally finite groups, then let N1 be a nontrivial finite

subgroup of M, and B a proper subgroup of N . Put B=N, and assume that f;
and RN, are defined for k <n. Apply Proposition 2.9 to A =N, and B, =N%.
Let f, be a mapping with the properties of g in Proposition 2.9. Let R be a
finite subgroup of M containing Ny Uf,Nr._and a prescribed finite subgroup 3 of
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M. So we get sequences (f,)n<. and (Nr),~, which determine a tree system
satisfying (TS6).

For the proof that (
0¢ u=> fyoc¢ N, for all n<ow, uc*T,, 6T, and ce N \B.

For n =0 this is trivial, so assume n =1. Let 6’ be the immediate predecessor of
0, and put u'=ul n. Denote the element fzoc by co.

Case 1: 8 =10. Then ¢ = f, ,0Cy = - If n1¢u, then N, =N,, and n¢ u’. So
by assumntion ¢ ¢ N .. or eauivalently I‘AafN If 111 cu. then N =f N .. RV

Uy QsSullipulli L oy’ CyraivVaICinily L, then JindVu’

AY Py S P thisn cvatana 14 1o quifRpian
J HHOUIUD LT IS JSYOILCLIL It 1D SUllIVIVEL

assumption c, ¢ N% , so by Proposition 2.9(1) we get ¢ =c, & N,..

Case 2: 8§ =n1. Then ¢, = f,a,. Since n1¢ u we have N, = N,, and Proposition
2.9(1) yields coé N,..

Case 3: @' # 7. Then we have ¢y € N¥., and ¢, = ¢, The subcase {n0, n1} £ u is
trivial. If {n0, n1}cu, then N, =(N,, Uf.N.)m. By Proposition 2.9(2) we get
co €N, iff coeN,.. But 8'¢ u’ follows from 8¢ u and 6'# 7. So ¢y =co ¢ N, by
assumption, and we conclude that c,¢ N,. O

In order to exclude tree systems whose limit structures are not w-equivalent
to M we add the following condition.

(TS8) (A,).<, is an ascending chain of finite subsets of M such that
IU{A, | n<w}=M and A, Ny, - (D,),.—, is an ascending chain of finite subsets
of M with the following properties:

(a) D,=Nr..

(o) Dy= Ay, and D, ., = A, , where k, is the first integer k such that

(D) Awi1US(D,)ULS.(D,) s Ay

(ii) Every partial isomorphism whose field is contained in A, ., US,(D,)U
f.S.(D,) extends to a partial isomorphism whose domain is A, US,(D,)U
f.S.(D,) and whose range is contained in A,.

3.2. Proposition. For every countable existentially closed structure I € K there is a
tree system satisfying (T6)~(T8).

Proof. If % is the class of locally finite groups IR is the countable universal locally

Ainit . ..
finite group and therefore w-homogeneous. If # satisfies the conditions of

Proposition 2.7, then ¥ has HNN-extensions, and so It is w-homogeneous, too.
Thus condition (b)(ii) of (TS8) can be satisfied, and the claim follows by induction
from Proposition 3.1 with N =(D,,, q in the induction step. [

3.3. Definition. A nonempty subset X of T, is full if for all r&*X and all u<r
there is s<™* X such that rcs and T, <s, where T, is the level of T contain-
ing u.

3.4. Propesition. For every tree system satisfying (TS6)—(TS8) the following hold:
(a) If X< T, is full, then Ny =., M. Especially Ny =.., M.
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(b) Let X, be the set {peT,|Im<oVn<w(n>m=>p(n)=0)}. Then
Ry =we, M whenever Xo= X< T,,.

Proof. (b) Assume uc*X, v<*T,, and v<u. If v =T,, then T, has a successor
which contains u and is a subset of X, namely u itself. If v# T,,, take w = X, such
that T \v<w. Then T, <uUw and u Uw < X since X,< X. So X is full and the
claim follows from (a).

{a) We show that the set IT of ail finite partial isomorphisms from % into Jix
has the extension property. So let g be an element of IT with domain A and range
B. We must find for every a € M and b € Nx mappings g,, g, € II such that gc g,
g < g, dom(g,) = A U{a} and rg(g,) = B U{b}. There exist r<*X, j<w, B'< Ny,
and b'e Ny, such that T;<r, B={fr B’ and b =fr, b’ (Here an inessential use is

A £ 4l £ N ~f VN MV n o RN RN~
I1dauc U1 l,l < lullllcbb Ul A} k,llUUbC r /_’ bubll lllal, t‘l WD U4, v ];u ’ auu l,lul

u=rtn, w=rln+1. The set fr (B'U{b'}) is contained in S,(D,). Since either
fuw =id or f,, =f,, the set fy (B'U{b'}) is contained in S,(D,)Uf.S,(D,). We
also have A U{a}< S, (D,) since D, <S,(D,). So g induces via f;! and fr, a
partial isomorphism h in S,(D,)Uf,S,(D,) with dom(h)=A and rg(h)=fr, B’

. _1 - . - _1 . -
By (TS8) the mapping h™' extends to a partial isomorphism h;' in RNy with

dom(h,")=B'U{b'}. Since X is full, the diagram

}

=

e al

I;=w<r
N
Tn+1

can be completed to a diagram

T=w<r
neonl
T.".+1<s

Now put g,c =fr.. shpc for all cerg(hy?). Using (TS4') one sees that g, is as
required. In the same way, extend h to h, with dom(h,)= A U{a}, and put
8.6 =fr, ,, shac for all ce AU{a}. O

3.5. Remark. For pE 1,

critical node contained in the branch of p. Put

i

| Im<wV¥n<ew(m<n>Dalnl=pln)}

) L]

Clearly Proposition 3.4(b) is also true for X, instead of X,, and all X, are
countable.

3.6. Theorem. Let % be either the class of locally finite groups or any class of
L-structures which is closed under taking substructures and unions of chains and
has free amalgamation and HNN-extensions.



Sh:83

Closed structures in the power of the continuum 139

Then for every existentially closed countable structure M e K there exists Ne K
such that N=., M and |N|=2".

Proof. For M countable existentially closed in ¥ take a tree system satisfying
(TS6)—(TS8). Then N =.., M by Proposition 3.4. Take c € Ny, satisfying (TS7),
and assume p#oeT,. Then pln#aoln for some n<w, and 0 fg,1nCF [Botn
by (TS7). Put u={plnoln} and v={p,o}. Then u<wv, and fyc=
fuofp.0tnC F fuofs.otnC = faoc. Thus |Nx|=|X]| for every infinite X< T,; especially
N |=2%. O

Since the class of groups and the class of skew fields satisfy the conditions of
Proposition 2.7 we get Theorem A(1) and the corresponding part of B(1) from
Theorem 3.6.

4. Refinements of the basic construction

We go on extending the axiom system (TS1)-(TS5) to produce limit structures
with particular properties. % and 0 are as in the preceding section.

(TS9)

@) Nr,Nf(D,\N%,)=(D,\N%) N f.Nx, =0.

(i) Let (¢,)n <, be a fixed sequence of quantifier free formulas ¢(x, y) with the
property that & =4, &'F —1¢[a, a’] for all products @ =, &' € X and all a ¢ G\ H,
a'ce G'\H. Put ¢, = W< ¢

Then N1 F—,[d, f,d'] for all d,d'e D,\N% and all n<w.

4.1. Proposition. For every countable existentially closed Me K there is a tree
system satisfying (TS6)—(TS9).

Proof. By the proofs of 3.1 and 3.2 one gets tree systems satisfying (TS6)—(TS8)
for every sequence (f,),-., chosen according to Proposition 2.7 resp. 2.9. So we
can take f, with D=D,\N¥. in 2.7 and ¢(x, y) = ¢, in 2.7(4) resp. 2.9(3). Then
(TS9) is satisfied, too. [

4.2. Lemma. In a tree system satisfying (TS6)—(TS9) the following statements
hold:

(a) If n=m <w and a € D,, then all (n, m)-successors of a are elements of D,,..

(b) For every element ac Ny, there exists n<w such that a has an (n, w)-
predecessor in D,,.

() If ae Ny, and a has an (n, w)-predecessor in D, then for all m=n the
structure ;. contains exactly one (m, w)-predecessor a’ of a, and a’ is an element
of D,,.

(d) Let a, b be elements of N1 having (n, w)-predecessors in D,. Let ¢(x,y) be
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among the first n members of the enumeration in (TS9) (ii), and assume that
Ny Fola, bl Then Ny Fela', b'] for all m=n and (m, w)-predecessors a’, b’ of
a, b.

Notation. For a and m as in (¢) the unique (m, w)-predecessor of a is denoted by
A (m)-

Proof. (a) By induction on m. If ¢ is an (n, m + 1)-successor of a, then by (TS2)
and (TS6) (iii) either ¢c=b or c=f,b for some (n, m)-successor b of a. By
induction assumption b € D,,, so ¢ € D, U{,.D,., and (TS8) (b)(i) vields c € D,,, ;.

(b) For some j<w the element a has a (j, )-predecessor, say b. This follows
from (TS2) and (TS5). As be M=J{D, | n<w}, we have beD,_, for some
n>j. Every (j, n)-successor of b is in D,, being an element of S,_(D,_)U
fac1Sn_1(D,_1). But among the (j, n)-successors of b there is an (n, w)-
predecessor of a.

(c) Assume for contradiction that m=n, and that a has distinct (m, w)-
predecessors b,c given by a=f; b=f; c. For j=m put b;=fr b, and ¢ =
fr....c. By statement (a) of this lemma we can assume b; € D; for all j=m. For
sufficiently large integers j we get r}jUs!j<rUs, and so b; = ¢;. Thus there is a
maximal integer k =m with b, # ¢,. Using (TS7) (iii) and the maximality of k we
conclude that by, ¢, € N, \N¥,, especially b, € D, \N%,, and that either b, = b,
and ¢piy = fiCk, OF byi1=fice and ¢, .1 =¢. In both cases (TS9) (i) yields
bi+1 7 Cr+1, @ contradiction.

(d) Using the fact that ¢(x, y) is quantifier free we can apply the same argument
as in (¢). The final contradiction arises from (TS9) (it). O

4.3. Proposition. For all tree systems satisfying (TS6)—~(TS9) the following holds:
For every uncountable subset A of Ny _and every n<<ew there is an uncountable
subset B = A such that R F—¢,[a, b] for all distinct a, be B.

Proof. Let A < N be uncountable. Applying part (b) of Lemma 4.2 we get an
uncountable subset B of A, an integer n and an element a of D, such that every
beB is an (n, w)-successor of a. By Lemma 4.2(a) we can assume n>k for a
given integer k. Assume for contradiction the existence of b# b’ B with R F
oi[b, b']. Since b, = b, = a, and b, # b;, for all sufficiently large j, there is a
minimal m>n such that b, # b{,,,. Like in the proof of Lemma 4.2(c) we
conclude that b, 1y=b}, € D,,_;\NT.__, and so by (TS9) we get R F
VY -1[Dmy, bly). As we have chosen k<n=m—1 the formula ¢, _; has the
form ¢ v . It follows that R F —1¢[b(my, bimy], contradicting Lemma 4.2(d). O

Now we add a last condition which will be used in connection with locally finite
groups.
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(TS10) For every n <w there is a quantifier free formula (x, y) such that
Nr . Fla, b] if {a, b= D, or {a,b}<f.D,
geT"+lt ﬁlb[a, fnb] lf {a) b}gDn\N?Ik',,-

4.4. Proposition. For the countable universal locally finite group IN there is a tree
system satisfying (TS6)—(TS10).

Proof. Since the embeddings f, have been chosen according to Proposition 2.9
this follows from Proposition 4.1 and 2.9(4). O

4.5. Proposition. For every tree system satisfying (TS6)-(TS10) the limit structure
N1 contains continuum many substructures, each of cardinality 2% and each
cow-equivalent to M, such that no uncountable structure is embeddable in two of
them.

Proof. We call n<w a splitting level for X< T, if there are p, o € X such that
pln=clnand pln+1#al n+1. Denote by Sp(X) the set of all splitting levels
for X.

Claim. There is a family (Y;); <% of subsets of T, each of cardinality 2%, such
that Sp(Y;) NSp(Y;) is finite for i#j.

Proof of the claim. Consider the subtree T’ of T consisting of all critical nodes
of T. Let vy be a function which assigns to each integer n the level of the critical
node of T, in T'. y cannot be constant on an infinite set. Thus Sp(X) NSp(Y) is
finite if v Sp(X) Ny Sp(Y) is finite.

Since T’ is a full binary tree we find for every infinite subset S S a subset
X c T, such that | X|=2% and y Sp(X)=S. So we get the desired family starting
from' an almost disjoint family of continuum many infinite subsets of .

Now take a family (Y;);—» as described in the claim, and let X, be as in
Proposition 3.4(b). Put Z, = X, U Y;. By Proposition 3.4 we know that N, =_, M
for all i <2%, and as a consequence of (TS7) the structures i, have power 2™.
Assume for contradiction that Z = Z; # Z; = Z’, and that there is an isomorphism f
from an uncountable substructure A =N, into N..

Since Sp(Z\ Xo)NSp(Z'\ X,) is finite we can fix n big enough to ensure that
SP(Z\ X,) NSp(Z’'\ X,) = n. According to Lemma 4.2(a) and (b) we choose k=n
and a' € D, such that the set A’ of (k, w)-successors of a’ in A is uncountable. In
the same way we find m =k, b*e D,, and an uncountable subset B of A’ such
that all elements of fB are (m,w)-successors of b*. By Lemma 4.2(c) all
{(m, w)-predecessors of elements of B are contained in the finite set D,,, and so
there is an uncountable subset C< B and an element a*e D,, such that all
elements of C are (m, w)-successors of a*. Clearly all elements of fC are
(m, w)-successors of b*. Fix for every a e C subsets u, <* T, and v, <*T, such
that a = fTMna* and fa = fr,  b*. Since X, is countable we find an uncountable
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subset C'< C such that u, N X,=w, N X, and v, ﬂXO v, N X, for all a,beC'.

Choose a# a’€ C'. Let a;, b; stand for f._ - La* s fr, .a*, and similarly for a/, b;.
Let (a,a") resp. u (fn fa') be the first integer j such that there is w c* T, with

WAL £ 4 e ISt SO LA Al ALl

a=fr, 4+ and a ‘fT,.H,w f+1 resp. fa=fr, , b;., and fa' =fr.,.bi+1-

We can assume u(fa, fa)<u(a, a’). (Otherwise replace f by f~! in the whole
argument.) Put w(a, a’) = p. Assuming a,+1=a, and a,.,=a, or a,,, =f,a, and
a1 = f,a, we get a contradiction with the minimality of p. So we can suppose by
symmetry that a, = a,., # f,a,, and a},,, = f,a, # a}. So {a,, a,}\N¥, =@, and by
Lemma 4.2 we have {a,, aj}< Dp. We also conclude that f, 1. 1p+1 7 f,, and
futoutp+1 7 id; thus by (TS6) (iii) we know that nleu, [p+1 and nOecu,t
p+1. Consequently p e Sp(Z). Since u, M X, = u, MX,, and u,p, <y, Ugrp < Ugn
no branch through n has the maximal element in X, and therefore p € Sp(Z\ X,).
As Sp(Z\ X)) NSp(Z'\ X,) = n=p it follows that p¢ Sp(Z'\ X,). Since v, N X, =
v, M X, we have either bp,y =bp and bp, = bp or bp | = fpbp and bp, ;= fpbp.

So by Lemma 4.2 either {bp. 1, bp. 1} S Dp or {bp.1, bp.1} < foDp. Let ¢(x, y) be
a formula as in (TS10). Then Ry, Filb,.o, by 1] and Ry Fdla,., apl-

Because of w(a, a’) = p, the pair (a,.,, a,.,) is sent to (g, a") by an embedding,
and the same holds for the pairs (b, ., b}, ;) and (fa, fa') since u(fa, fa") <p(a, a’)
by assumption. As i is quantifier-free we get AF—1y[a, a’'], and fAEY{fq, fa'l,
contradicting the assumption that f is an isomorphism. [

Proof of the theorems A and B. Theorem A(1) and a part of B(1) were proven in
Section 3. A(2) and the remaining part of B(1) follow from Propositions 4.1 and
4.3, where ¢, (x, y) is taken to be the formula xy = yx for all n <. Theorem B(2)
is immediate from Proposition 4.4 and Proposition 4.5. [

4.6. Remarks. (1) If we take for ¢,(x, y) the formula (xy)"# 1, then we get by
Proposition 4.3 existentially closed groups and universal locally finite groups of
power 2% without uncountable subgroups of finite exponent. The ¢, (x, y) can also
be chosen to yield e.g. existentially closed groups and skew fields and universal
locally finite groups of power 2% without uncountable nilpotent substructures.
(2) Lemma 4.2 can be used to prove the following theorem: Let I be a
countable existentially closed group or skew field, or the countable universal locally

Baritn gentinn T ot WM Lo = saavimaal snmimiiitatise thumnndsl  Thaown thowro
Jurac SIUM.IJ 2l A =M UC U TTIUALITIUL (,U”H”ul.ull.uc \)uU"LUuCL LRCrt unorcoc 'L)

N=... M such that |N|=2% and U is a maximal commutative submodel of N.

Clearly this remains true when 2% is replaced by k (Ry <« =<2%). Boffa [10]
proved the special case k =R, for skew fields.

For a proof of this result assume that B<IN is not contained in any finitely
generated substructure of M. We are going to prove that there is N=._ M of
power 2% such that Cgp(B)= Cyp(®B), where Cp(B)={acM|[a, b]=1 for all
beB}. Our result follows immediately, since % being maximal commutative
cannot be contained in a finitely generated substructure of 3¢, and ¥ satisfies the
equation Cgr()=2A. By the assumption on B we can choose the sets D, ., in
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(TS8) such that there is b, € B with b, €D, \(Nr, Uf,Nr ), Let the for-
mula xy = yx be the first member of the enumeration of (TS9). For 0sns=m <o
denote by f,,. the inclusion of ;. in N, .

By renaming N, we can assume that Lm—>(fnm9?rn)m<w =+, and that the
corresponding embedding f,., is the inclusion of N4 in N+ . By this renaming we
obtain a structure N=.., M of power 2™ with MW= |J {Nr | n <w}<=N. We want
to show that N satisfies the claim. Let ¢ € Cy, (B). It is sufficient to prove ¢ € M.

By Lemma 4.2(b) we can pick n <o such that ¢ has an (n, w)-predecessor in
D,. So by Lemma 4.2(c) the elements ¢, exist for n <k <w.

Moreover each b, is a (k, w)-predecessor of itself and an element of D, for all
k = m, and the condition ¢ € Cu(B) implies NF[c, b, ]=1 for all m <w. So we can
apply Lemma 4.2(d) and conclude R, Fcw), b, ]=1 whenever nsm <k <o.

Assume for contradiction that ¢, # ¢4y, for some k =n. Then ¢y, € D \N7,,
and ¢ 1) = fiCw)- Since b, € D, \ N7¥, by definition, condition (TS9) yields %y, F
[ck+1y Bi]# 1, contradicting the conclusion from Lemma 4.2(d). This completes
the proof of the theorem.

The theorem remains true if % is replaced by a countable collection {¥,, | n <

o}

5. The proof of Theorem C

For an arbitrary integer [ we can add to Proposition 2.9 the following condition:

(5), If w(xq, ..., x,) is a word of length at most |, then
(AUgAYpEW[ay,...,a,]#1 whenever ay,...,a,€ AUgA and
W sp gAEwWlay, ..., a,]# 1.

Proof. We use the notation of the proof of Proposition 2.9. By the universal
property of free products with amalgamated substructures the mapping p:A U
gA — P defined by wa = a and pga = fa for all a € A extends to an isomorphism
between M =4 gU and P.

So in (5, we can vreplace UxggAkwla,,...,a,]#1 by PF
wluay, ..., pa,]# 1. The proof of this modified statement is essentially contained
in the proof of 2.9(3). O

We are going to show that every tree system which satisfies the conditions
(TS6)-(TS10) and a new condition (TS11) has a limit structure for which Theorem
C holds. So in fact we prove a stronger statement, namely that every structure 3,
in Theorem B(2) can be chosen to satisfy the conclusion of Theorem C. For the
statement of (TS11) we fix a function A € “w.
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(TS11) For every n<w the following hold:
(1) (CUL O, NPy, =€ and (CUS,Ch,  Nf. Ny, =f.6 for every subgroup
€<=Ny,.
(i) Nr . Fwla, b]#1 whenever a,be Ny Uf, N, and w(x,y) is a word of
length at most A(n) such that

ERT,. *m;"fnm"r,.t wla, bl#1.

5.1. Propeosition. For the countable universal locally finite group SN there is a tree
system satisfying (TS6)~(TS11).

Proof. For every n <o choose f, according to Proposition 2.9 with the additional
condition (5), ), and take D and ¢(x, y) as in the proof of Proposition 4.1. O

Now it is sufficient to prove for every limit structure i of a tree system
satisfying (TS6)-(TS11) that no uncountable subgroup of R is contained in a
proper variety. So we have to find for every uncountable group A <N and every
nontrivial word w(x,, ..., x,) (w(x) is called nontrivial if Vx (w(x)=1) is not a
theorem of group theory) elements as, ..., a, € A such that Ak wla,,...,a,]# 1.
Using the fact that outside of any proper variety there is a finite group, and that
every finite group is embeddable in a two generator group it is easily seen that it
suffices to consider words w(x, y) in two variables.

For the proof of Theorem C we need a couple of technical lemmas.

5.2. Lemma. Let A be a finite group, f an isomorphism defined on U such that
ANA=B and fl B=id. Consider A, fA and B as subgroups of N *xfN. If
a,,a,...,a, a, are elements of A, and the product b= a,(fa}) - - - a,(fa’) is an
element of B, then b = f(aa} - - - a,al)=a,a} - - a,a,.

Proof. The last equality is clear since beB. The claim b=f(a,a}-- - a,a’) is
proved by induction on n.

For n =1 we have b = a,fa, and the claim follows from Schreier’s normal form
theorem for free products with amalgamated subgroups (see [4]). Now assume
n>1. It follows from b e B by Schreier’s theorem that there is m =<n such that
a,<€B or a',eB.

Case 1: a, B and m=1. Then (fa/,_,)a,.(fa.,) =f(al,_,a,al). Put @, =
al, _1a,al,. Since a,, ;€ A we can apply the induction assumption to

b=a(fay) : * am-1(fAm-1)am1{farn.1) - - - aufa;.

Case 2: al,€ B and m <n. This is proved by the same argument.

Case 3: a;€B. Then (faj)a,(fas)---a,(fa,)eB, and so there exists
k (1<k=n) such that a,€B or j(1=<j=n) such that ajeB. If a, € B we are
back in the first case. If aje B and j<n we are in the second case. If finally
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a,e B, then (fa})a, - - - (fal,_,)a, € B, and thus a,'(fa, %) - - - a;*(fay e B, and
we can apply the induction assumption. The fourth case, namely a/, € B, is handled
similarly. [J

5.3. Lemma. In every tree system satisfying (TS6)—(TS11) the following holds: Let
n<a<w, a,beNg, a', b'eNr. Assume that a’ resp. b’ is an (n, w)-predecessor
of a resp. b. If w(x, y) is a word of length at most A(n) and N Fwla, b]=1, then
Nr Fwla', b']=1.

Proof. By (TS5) the number « can be supposed to be finite. So the claim easily
reduces to the case a = n+1. In this case either a =a’ or a =f,a’, and similarly
for b. If a=a’ and b=0b" or if a=Ff,a’ and b ={,b’, then the claim is obviously
true. So we can assume by symmetry that a=a’ and b=f,b".

If Nr Fwla b]l=1, then N Fwla', f,b]=1. Thus by (TS11) we get
Np +N: f,Rr Fwla', f,b']1=1. Now apply Lemma 5.2 for b = 1 and conclude that

Nr *N: f,Nr Fwla', f,bT=wla', b].
Therefore Ny Fwla’,b']=1. O

From now on we fix n<w, a*e Nr, and a set A<= Ny, of (n, w)-successors of
a*. By A; (n<j<w) we denote the set of those (n, j)-successors of a* which have
(j, w)-successors in A.

5.4. Definition. Let n<j<w. A node neT, is called (a*, A)-critical if n is
critical and there are elements a, be A, \N % such that {a, fb}< A;,,.

5.5. Lemma. There is a subtree T* of T with the following properties:

(i) For every ac A there is u<* T2 with aeN,.

(ily Whenever j=n, 6 T* NT,, and no < -successor of 0 is (a*, A)-critical, then
T* contains just one branch through 0.

Proof, Let B be the set of all branches t of T satisfying one of the subsequent
conditions:

(a) Every node of t\ T, has an (a*, A)-critical successor in T.

(B) If n<j and m is a critical node in tNT, which has no (a*, A)-critical
< -successor in T, then n1 et iff there exists a eA,- \N "T‘ such that fa eA,.H.

Put T* = |J 8. The tree T* clearly satisfies condition (ii) of the lemma. Take
us*T, and a € A such that a =fr_,a*. Denote by T* the subtree of T having
the nodes of u as endpoints, say T"=U{to,..., te1,th, ..., With
to, .- > 4 1€B, th,...,1,&B. Let k<i=<p. The branch t/ contains a minimal
critical node @ on a level above n—1 such that @ has no (a*, A)-critical
& -successor in T. Let t; be the unique branch in B such that 6 . Put

v=(,U " - Ut _;Ul - UL)NTL.
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In order to complete the proof of the lemma it is sufficient to show fr_,a*=
fr.a*. If this equation were false there would be a minimal integer r=n such

that f.. . .a*£f.. . * T
that fy. utrv1@8™ # frorepia™. Then

fT,,,urra* = fT,.,vfra* = b’ and futr,ufr+1b7'é fvfr,ufﬂ»lb-

So beN;\N7%. We can assume that fuy..,1=id, and foyo11=F (else
futrwtes1 =1, and fo;, 01,41 =id and the argument is essentially the same). Then for
some i=k we get n0et!, nlet, where m denotes the critical node of T, It
follows from the definition of ¢; that no successor of 1 is (a*, A)-critical. So by (8)
there is ae Np \N¥ with fac A,,,. Since 7 is not (a*, A)-critical we conclude
that b¢A,.,. SO fr_ur1a® has no (r+1, w)-successor in Aj; in particular
fr..a*¢ A, a contradiction. [

5.6. Lemma. Suppose m=n; 0cT,,; a,bcA,,; c=w]a, ble Ny \Nr ). Let
C*T be such that a,beN,, and let u<vCT such that {f..a, f..b}= A. Put

juv“l, forj=m. Let n=0 be an (a*, A)-critical node such that forall8<o<n
the node o is not (a*, A)-critical.
If 6<p=<mn and pe T, then ¢;¢ N1y,
Proof. The proof uses induction on j=wm. For j=m there is nothing (o show

Assume 0<p<m, peT;, neT, and ¢;¢ N1\,
Case 1: p is not critical. Then pO=<n, and we must show that ¢;.;¢ N1, (o0
This follows from (TS11) (i) since

Nzt 00 = (Ntpnoy UiNT D2, - and i1 €{c;, fig)

Case 2: p is critical. We suppose p0O=m. The subcase pl=mn is parallel.
Assume for contradiction that c¢;.;€ Ny, o0 We have Nt ooy =fiNt. As
¢;# N1,\y = N7, it follows that ¢;,, = fi 7 ¢;. Put a; = f, ,p;a and b; = f,.1;b. Then
¢; = w'[a;, b;], and so either fiq,# g; or f,b # b;. Since moreover a;, b€ A, and p is
not (a*, A)-critical, it follows that A, &€ Ny, - Consequently A,CNT\(,,,,
contradlctmg the assumption that 7 is (a®, A)-critical. O

Now we are ready to prove Theorem C. Let %1 be the limit structure of a tree
system satisfying (TS6)—(TS10), and (TS11) for suitable A. Let € be an uncount-
able subgroup of RNy, and assume for contradiction that €EVx Vy (w(x,y)=1)
for some nontrivial word w(x, y).

Let k be the length of w(x, y). Since € is uncountable we can choose an integer

e alommant 2% £ AJ W a* i
¥ ana an €iement 4 o1 1IN, such that the set A of (’r"i, w) uccessors of a® in A is

uncountable. Take T with the properties of Lemma 5.5. Let 8B, be the set of
branches t of T“ such that every node of t\T,, has an (a*, A)-critical successor in
T (and thus in T#), and B, the set of the remaining branches of T*. It follows
easily from property (ii) of Lemma 5.5 that B, is countable. Choose for each
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ac A asubset u, <* T2 such that T, <u, (this is possible since we can assume
that 8, UB, =B as in the proof of Lemma 5.5) and a = f;_, a*. Let B, be the set
of branches of T* with endpoints in u,. Since B, has only countably many finite
subsets there is an uncountable subset B < A and a finite subset B, =B, such that
B, NB, =B, for all a € B. There is an integer m >k such that all (a*, A)-critical
nodes of |J %8B, are contained in |J{T; | i <m — 1}. Moreover we can assume that m
is, for some a # b € B, the minimal integer such that there exists v < u, Uug and

A th nd h = F h (ara tl« R ic yincnnntahla )

a,be A, with a = foimoa. and b =7, .b. (Here we hat B is uncountable.)
Because of the minimality of m we find a/,b'€ A,,_, with a=a'#f,._,a’ and
b={f,_1b'#b' or conversely. So the critical node neT,,_; is (a*, A)-critical.
Consequently i cannot be contained in a branch from 8B, by the choice of m. So i
has an (a™*, A)-critical successor %1# 7 in T*, and we may assume that p is not
(a*, A)-critical for n<p<7. Denote by ¢ the product a-b in ST?* _ Let the
function A in (TS11) be defined by A(i)=6|Ng|. In Ry, 4 *mmﬂfm_lmmﬂ the
product a - b has infinite order, and the length of (x - y)*™=-.' is 4|N7. | and thus
inferior to A(m —1). Hence we conclude using (TS11) (ii) that R Fc?™r. /41
and so c¢*¢Nr,_, and c’¢f,Np . Otherwise stated c’>¢Nr \moy and
c*# N1 \tn1- Now 74 is a successor of n0 or of n1. Lemma 5.6 with w'[a, b]=
a-b, 6=n0resp. =71 and p =7 =7 yields f,}m,1,c°€ Np. \N%, where r is the
level of 7. Put f,imot¢c =€, and assume f,1,,.01,41€ = € (The other case, namely
fotmotes1€ =f,&, is handled similarly.) Since 7 is (a*, A)-critical there exists
de A \N * such that f,d has a (r+ 1, w)-successor in 6, say d. The element & has
a (r+1, w)-successor in 6, too, namely € = f,..C. Put v(x, y) = w((xyx)?, (xy)?).
By assumption € Fv[¢, d]= 1. The length of v(x, y) is at most 6k, and k<m=<r=<
INr|. Hence the length of v(x, y) is bounded by A(r), and by Lemma 5.3 we get

RNt FolE f,d]= 1. On the other hand ¢eN;\NY, and fdef,N;\N%.

Moreover ¢*e N1\ N%. It is not hard to see that under these conditions (¢(f.d)é)?
and (&f,d)” freely generate a free subgroup of # =N r, #gx f,Nr. Since w(x, y) is a
nontrivial word we have therefore

PEW(E(fd)E), (&f,d)*]1=v[E, f,d]# 1.
Applying (TS11) (ii) we conclude that N Fv[¢, f,d]# 1, a contradiction. [

o 1ige
ude
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