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Abstract. Assuming some large cardinals, a model of ZFC is obtained in which
ℵω+1 carries no Aronszajn trees. It is also shown that ifλ is a singular limit of
strongly compact cardinals, thenλ+ carries no Aronszajn trees.

1 Introduction

The main results of this paper are (1) that the consistency of “ZFC andℵω+1

carries no Aronszajn trees” follows from the consistency of some large cardinals
(roughly a huge cardinal withω supercompact cardinals above it), and (2) that
if a singular cardinalλ is a limit of strongly compact cardinals, then there are
no Aronszajn trees of heightλ+. The proof of (2) is in Sect. 3, and the forcing
constructions which prove (1) are given in Sects. 4, 5, and 6. The generalization
to higher singular cardinals of both (1) and (2) poses no problem.

2 Preliminaries

Recall that a tree is a partial ordering in which the set of predecessors of any
point is well ordered. Usually trees have a single minimal node—the root—and
no two distinct points have the same set of predecessors. Following an established
practice, if (T, <T ) is a tree thenT may denote both the set of points and the
ordering. A pointa ∈ T is of heightα (an ordinal) iffα is the order type of the
set of predecessors ofa in T. The set of all points inT of heightα is denotedTα
and is called theαth level of T. The supremum of the heights of the non-empty
levels ofT is called theheightof T. A branchof T is a downward closed linearly
ordered subset ofT.
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386 M. Magidor, S. Shelah

A κ tree is a tree of heightκ (a cardinal) in which every level has size< κ;
it is an Aronszajn tree iff it has no branch of lengthκ. In this paper we will be
interested in Aronszajn trees of heightλ+ whereλ is a singular cardinal. It is
convenient to assume that the universe of anyλ+ tree is the setλ×λ+; moreover,
we stipulate that theαth level of this tree has the formλ×{α}(except the root).

A tree of heightλ+ and in which every level has cardinality≤ λ (λ any
cardinal) is said to bespecial iff there is a mapσ from T into λ such that
a <T b⇒σ(a) /= σ(b). Any such special tree is clearly an Aronszajn tree, because
σ is one–to–one on any branch. The existence of a special tree of heightλ+ is
known to be equivalent to a weak square property.

We use the convention concerning forcing by whichp < q means thatq is
more informative thanp. A forcing poset here is a separative partial orderP, with
a least informative point (denoted∅P) and with no maximal point. (A poset is
separative if wheneverp 6≤ q then some extension ofq in P is incompatible with
p. There is a canonical way of producing a separative poset from non-separative:
Define an equivalence relationp1 ∼ p2 if “any x is compatible withp1 iff it
is compatible withp2”. Then, on the equivalence classes, define [p1] ≤ [p2] if
everyx compatible withp2 is also compatible withp1.)

V P denotes the class of allP–terms, but when an expression such as “T ∈ V P

is a tree of hightλ+” is used, we mean that∅P forces this statement.
A projectionfrom a posetP into Q is an order preserving mapΠ : P −→ Q

such thatΠ(∅P) = ∅Q, and if Π(p) = q andq′ > q in Q then for somep′ > p,
Π(p′) ≥ q′. (Some authors use a different definition!)

If Π : P −→ Q is a projection andG ⊂ Q is a V –generic filter, thenP/G
is the separative poset defined by takingΠ−1G and turning it into a separative
poset. ThenP is isomorphic to a dense subset of the iterationQ ∗ (P/G): the
isomorphism is the map takingp ∈ P to (Π(p), [p]).

2.1 The preservation theorem

Theorem 2.1. Let λ be a singular cardinal (of cofinalityω, for notational sim-
plicity), and suppose that P and R are two posets such that:

1. ‖P‖ = χ < λ, andT is a λ+-tree in VP. ‖P‖ is the cardinality of P.)
2. R isχ+–closed.

Then anyλ+-branch ofT in V P×R is already in VP.

Proof. The preservation theorem makes sense even whenP is the trivial forcing
consisting of a single point (no forcing). In this caseV P is V and the theorem
then says that:

If λ is a singular cardinal of cofinalityω, T is a λ+ tree, andR is a
countably closed poset, then forcing withR adds no newλ+-branches to
T.
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The tree property at successors of singular cardinals 387

For illustration of an important idea, let’s prove this special case first. We need
the following lemma which will also be used in the full proof.

Lemma 2.2. Let S be any forcing poset. Suppose thatλ andλ+ are a cardinal
and its successor, T is aλ+–tree, andB is a name of aλ+–branch of T in VS.
If B is a new branch (B is not in V ), then for someα there is a set X⊂ Tα of
cardinalityλ, in V , such that every x∈ X is forced by some condition in S to be
in B.

Proof. We will say thats ∈ S is λ–wide atTα if there areλ extensions ofs that
force pairwise distinct values forB∩ Tα. If we start with an arbitrary condition,
our proof will give that everys ∈ S is λ–wide at someTα, α < λ+.

DefineE, in V , to be the set of possible nodes ofB:

E = {a | some condition inS forcesa ∈ B}.
We want someα < λ+ such that|E ∩ Tα| = λ. So assume, on the contrary, that
| E ∩ Tα |< λ for everyα. ThenE ⊆ T satisfies the following properties:

1. Any node inE has extensions inE at arbitrarily higher level.
2. E is downward closed inT.
3. Any node in E has two incomparable extensions inE (for otherwise, a

condition would force thatB is in V ).
4. For everyα < λ+, | E ∩ Tα |< λ.

This is not possible: letU ⊆ λ+ be a closed unbounded set such that ifα ∈ U
then wheneverγ < α, if a ∈ E ∩Tγ , thena has two incomparable extensions of
height< α in E. Then pick anyα ∈ U such thatα∩U has order–type≥ λ and
a pointa a ∈ Tα, and conclude thatE ∩ Tα has sizeλ by splitting the points at
levels inU below a. QED

Now to prove the special case of the theorem, assume that

r  B is a newλ+ branch inT.

We are going to associate with each nodeσ ∈ λ<ω (the tree of finite sequences
from λ) a conditionrσ ∈ R and a pointtσ ∈ T such that:

1. If σ1 ⊂ σ2 in λ<ω, thenrσ1 ≤R rσ2.
2. For anyσ ∈ λ<ω there is some levelασ < λ+ such that the points{tσ′ |

σ′ is an immediate successor ofσ} are distinct points ofTασ .

Using the lemma, the definition ofrσ is done by induction. Letα < λ+ be
the supremum of the level ordinalsασ for σ ∈ λ<ω.

Any branchs ∈ λω defines an increasingω-sequence〈rs�n | n ∈ ω} of
conditions, and hence has a supremum inR, denotedrs.

Now extendrs to force the value ofB ∩ Tα and letbs be that point ofTα.
Then s1 /= s2 =⇒ bs1 6= bs2 becauses1 and s2 split in λ<ω. But as |λω| ≥ λ+,
this shows thatTα has cardinality at leastλ+, which is surely impossible.This
proves the special case, and now we return to the theorem as stated.
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388 M. Magidor, S. Shelah

So P is a poset of cardinalityχ < λ and T is a name forced by every
condition inP to be aλ+ tree.R is aχ+-closed poset. As before,Tα = λ× {α}
is theαth level of T, for α < µ = λ+. Let B ∈ V P×R be a name of a cofinal
branch ofT, supposedly not inV P. We also viewB as a name in (V P)R (that
is, a name inR–forcing, in V P).

Say (in V P) that two conditionsr1, r2 ∈ R force distinct valuesfor B ∩ Tα
iff for some a1 /= a2 in Tα, ri  ai ∈ B, for i = 1, 2. A weaker property, which
even may hold whenr1 or r2 do not determineB∩Tα, is that wheneverr ′1 andr ′2
are extensions ofr1 andr2 that determine the value ofB∩Tα thenr ′1 andr ′2 force
distinct values forB ∩ Tα. In this case we say thatr1 andr2 force contradictory
informationonB∩Tα”. Observe that ifα < β < λ+ andr1, r2 force contradictory
information onB∩Tα, then they force contradictory information onB∩Tβ (the
argument is carried inV P whereT is defined). Observe also that ifr1, r2 force
distinct values forB ∩ Tα then they force contradictory information onB ∩ Tβ
for anyβ ≥ α.

Working in V , our aim is to tag the nodes of the treeλ<ω with conditions in
R and we will denote the tag ofσ ∈ λ<ω with rσ ∈ R. The required properties
of this tagging are the following.

1. If σ1 ⊂ σ2 in λ<ω, thenrσ1 ≤ rσ2 in R.
2. For every nodeσ ∈ λ<ω there is an ordinalα < λ+ such that, for any two

immediate extensionsσ1, σ2 of σ, there is a dense setD ⊆ P, such that for
everyp ∈ D

p P rσ1and rσ2 force contradictory information onB ∩ Tα.

Why this suffices? Because, assuming such a construction, letβ < λ+ be above
all the ordinalsα mentioned in item 2 and look at the set of all full branches
λω. For eachf ∈ λω ∩ V , let rf ∈ R be an upper bound of the conditionsrf �n,
tagged along the branchf . We claim that iff /= g are full branches, then there is
a dense setD ⊆ P such that for everyp ∈ D ,

p P rf and rg force contradictory information onB ∩ Tβ .

Indeed, letσ ⊂ f ∩ g be the splitting node, then item 2 gives the required dense
set. To conclude the proof, we find that, inV P, any two branches ofλω give
distinct values forTβ , and sinceλℵ0 ≥ λ+, this shows thatTβ = λ×{β} contains
λ+ distinct nodes inV P, which is not possible sinceλ+ is not collapsed inV P.
The taggingRσ and the dense sets are defined below.

ConsiderS = P × R; we will say that (p, r ) ∈ P × R is λ–wide at Tα if
there areλ extensions of (p, r ) that force pairwise distinct values forB∩ Tα. (It
is true thatT is not assumed to be inV ; however, its level–sets are, and so this
definition is meaningful.)

Lemma 2.3. 1. Any condition(p, r ) ∈ P × R isλ–wide at some Tα.
2. If (p, r ) is λ-wide at Tα, then it is alsoλ–wide at any higher level Tβ .
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The tree property at successors of singular cardinals 389

Proof. Indeed, given (p, r ) ∈ P×R, let G be aV –generic filter overP containing
p. In V [G], λ andλ+ are not collapsed, and we can use Lemma 2.2 to find some
α < λ+ such that there areλ possible values forB ∩ Tα (forced by some
extensions ofr ). Any such value is also a possible value for some extension of
(p, r ) (in V ), and hence when the set of possible values forB∩ Tα is calculated
in V it must have cardinalityλ as well.

For the second part assume that (p, r ) is λ wide at α. given anyβ > α,
find first (pi , ri ) extending (p, r ), for i < λ, that determine distinct values of
B ∩ Tα and then extend each pair to a condition (p′i , r

′
i ) that determinesB ∩ Tβ .

Even though it may be possible for two such extensions to determine the same
point in Tβ = λ × {β}, it is not possible for‖P‖+ extensions to determine the
same point (because in such a case we would have two extensions with the same
P coordinate, and this is not possible as the treeT is in V P). So that theλ
conditions are partitioned into classes of≤ ‖P‖ members in each class, and thus
there areλ classes, which givesλ possible values forB∩Tβ . Observe, however,
that if (p, r ) is λ–wide atTα, then extensions of (p, r ) need not beλ–wide at
the sameTα, and it may be necessary to go to higher levels.

Lemma 2.4. If {rj | j < λ} ⊆ R, and p0 ∈ P are given, then, for some ordinalα,
there are extensions r′j ≥ rj in R, for every j< λ, such that for every pair i< j
there is p1 ≥ p0 in P such that p1 P r ′i and r′j force distinct values forB∩Tα.

Proof. First, by our last lemma, find for everyi < λ an ordinalαi such that
(p0, ri ) is λ–wide atTαi , and then letα be above all of theseαi ’s. By the second
part of the lemma, each (p0, ri ) is λ–wide atTα. Now, by induction oni < λ, we
will define an extensionr ′i ≥ ri , and two functions,ei andfi , whereei : P → P,
and fi : P → Tα, such that:

1. For everya ∈ P, ei (a) extendsa, and (ei (a), r ′i ) P×R B ∩ Tα = {fi (a)}.
2. If k < i < λ then

fi (p0) 6∈ {fk(a) | a ∈ P}.
That is, the value ofB ∩ Tα that (ei (a), r ′i ) determines is different from all
the values determined by previous conditions.

Suppose that it is the turn ofr ′i , ei , fi to be defined. LetP = {p(ξ) | ξ < χ} be
an enumeration ofP, starting with the given conditionp(0) = p0. By induction
on ξ < χ, we shall define a conditionr ξi ∈ R, and the valuesei (p(ξ)) > p(ξ),
and fi (p(ξ)) ∈ Tα such that:

1. 〈r ξi ∈ R | ξ < χ〉 form an increasing sequence of conditions extendingri

2. (ei (p(ξ)), r ξi )  B ∩ Tα = {fi (p(ξ))}.
3. fi (p(0)) 6∈ {fk(a) | a ∈ P, k < i }.

First, use the fact that (p0, ri ) is λ–wide atTα to find an extension (ei (p0), r 0
i ) ≥

(p0, ri ) that forcesB ∩ Tα = {fi (p0)} for a valuefi (po) that satisfies (3) above.
Then construct the increasing sequencer ξi and the values ofei and fi (using the
χ+ completeness ofR at limit stages), and finally definer ′i to be an upper bound
in R of that sequence.
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Let us check that the requirements of the lemma are satisfied forr ′i . If k < i
is any index, look atp′ = ei (p0), and letp1 = ek(p′). Then p1 is as required,
because the value ofB ∩ Tα determined by (p1, r ′i ) (namely fi (p0)) is distinct
from the one determined by (p1, r ′k) (namelyfk(p′)). This proves the lemma, and
the following completes the proof of the theorem by showing how the tagging
can be done.

Lemma 2.5. If r ∈ R, then there are extensions r′
i ≥ r for i < λ such that, for

someα, if i < j < λ then for some dense set D= Di ,j ⊆ P, for every p∈ D,

p P r ′i and r′j force contradictory information on B∩ Tα.

Proof. EnumerateP = {p(ξ) | ξ < χ}. Essentially, the proof is obtained by
repeatedly applying the previous lemma, varyingp0 so as to get the dense sets.
By induction onξ ≤ χ we define:

1. A sequence of conditions inR, 〈r ξi | i < λ〉.
2. A family Dξ(i , j ) ⊂ P, increasing withξ, for every i < j < λ. Finally, we

will set D(i , j ) = Dχ(i , j ), and to ensure thatD(i , j ) is dense we demand that
p(ξ) has an extension inDξ+1(i , j ).

3. An ordinalα(ξ) < µ.

We require that for eachi , 〈r ξi | ξ < χ〉 forms an increasing sequence, beginning
with r 0

i = r . (Finally, r ′i = r χi will be the required extension.)
At limit stagesδ, r δi is an upper bound inR of the conditionsr ξi , ξ < δ.

Dδ(i , j ) is the union ofDξ(i , j ) for ξ < δ.
At successor stages,ξ + 1, the extensions{r ξ+1

i | i < λ} are defined using
Lemma 2.4 for the collection{r ξi | i < λ} and the conditionp0 = p(ξ). That
lemma gives an ordinalα = α(ξ) and extensionsp1(i , j ) ≥ p(ξ) for every pair
i < j < λ, such that

p1(i , j )  r ξ+1
i and rξ+1

j force distinct values forB ∩ Tα.

Then we defineDξ+1(i , j ) by Dξ+1(i , j ) = Dξ(i , j ) ∪ {p1(i , j )}.
Finally, definer ′i = r χi , α = sup{α(ξ) | ξ < χ}, andDi ,j = Dχ(i , j ). Di ,j is

dense inP, because everyp(ξ) has some extension inDξ+1(i , j ). This ends the
proof of Theorem 2.1.

2.2 On systems

Let K be a forcing poset andT ∈ V K a λ+-tree (λ+ is a cardinal inV and in
V K ). By our convention the underlying universe ofT (namelyλ× λ+) is in V ,
but the ordering<T is in V K of course.

Definition 2.1. Let T be a K -name of aλ+-tree as above, whereλ and λ+ are
cardinals both in V and VK , then thepre-treeof T is the sequence of relations
〈Rp | p ∈ K 〉 defined by
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The tree property at successors of singular cardinals 391

a Rp b iff p K a <T b.

So each Rp is a binary relation on the universe of T , namely onλ× λ+.

It turns out that the consistency proof for “no Aronszajn trees onλ+” relies on
an investigation of such pre-trees for posetsK such that|K | < λ. An abstract
definition which captures the essential properties of these pre-trees but does not
refer to any tree or forcing notion is given next.

Definition 2.2. Systems: Suppose thatλ0 ≤ λ are cardinals, D ⊆ λ+ is un-
bounded, and T= 〈Tα | α ∈ D〉 is a sequence of sets such that Tα ⊆ λ0×{α},
for α ∈ D. Let I be an index set of cardinality≤ λ, and R= {Ri | i ∈ I }
a collection of binary relations such that for every i∈ I Ri ⊆

⋃{Tα × Tβ |
α < β are both in D}. Then the pairS = (T,R) is calleda systemoverλ+

(or a λ+–system) if the following hold:
1. For everyα < β in D, there are a∈ Tα, b ∈ Tβ and i ∈ I such that
〈a, b〉 ∈ Ri .

2. For every i∈ I , and α < β < γ in D, if a ∈ Tα, b ∈ Tβ , c ∈ Tγ are
such that〈a, c〉 ∈ Ri and 〈b, c〉 ∈ Ri , then〈a, b〉 ∈ Ri .

The set D is called the domain of the system and I its index set. The cardinal
λ0 is thewidth, andλ+ the heightof the system.
An example of aλ+–system is anyλ+–tree; in this example R consists of
a single relation–the tree ordering. The pre-tree as defined in 2.1 is more
illustrative; the number of relations is the cardinality of the forcing poset.

Strong systems: If condition (1) above is replaced by: “For everyα < β in D,
for every b∈ Tβ , there are a∈ Tα, and i ∈ I such that〈a, b〉 ∈ Ri ” (but (2)
remains unchanged) then the systemS is calleda strong system.
A pre-tree relative to some forcing poset K is in fact a strong system.

Subsystems: LetS be a system of widthλ0 over λ+ as above. Suppose that
D0 ⊆ D is unbounded inλ+, λ′0 ≤ λ0 is a cardinal, and I0 ⊆ I is any
subset of indices. Then the restriction ofS is obtained by taking the sequence
〈Tα ∩λ′0×{α} | α ∈ D0〉, and taking the restrictions of the relations Ri ’s for
i ∈ I0.
This restriction is not necessarily a system: Though item 2 is inherited auto-
matically, item 1 may not be. A restriction that happens to a system is called
a subsystem. A subsystem of a strong system may no longer be strong.

Narrow systems: A systemS is said to be(ρ, ι)–narrowiff λ0 < ρ, and| I |< ι.
That is, its width is less thanρ and its index set has size< ι. A λ+–system is
said to benarrow iff it is (λ, λ)–narrow.

Branches: A “branch” of the system is a set B such that for some i∈ I for all
a, b ∈ B 〈a, b〉 ∈ Ri (if the level of a is below the level of b).
Thus, returning to a concrete example, a branch of a pre-tree gives a set B
forced by a single condition to be linearly ordered.

Derived-systems Suppose that Q is a forcing poset andS∼ = 〈T,R〉 is in VQ a

system with domainλ+, width λ0 ≤ λ, and index set some cardinalτ . Then
thederived-system, DerivedQ(S∼ ) is defined as the followingλ+-system in V .
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DerivedQ(S∼ ) has as index set the product Q× τ , its width remainsλ0, and
its relations Rq,i are defined for q∈ Q and i ∈ τ by:

〈a, b〉 ∈ Rq,i iff q Q 〈a, b〉 ∈ Ri .

A pre-tree is an example of a derived-system. A derived-system is a system, and
it is strong if the systemS∼ is strong in VQ (that is, forced by every condition to

be strong). If P= Q×K is a product of two forcing posets andS∼ is a P-name

of a system, then DerivedP(S∼ ) ∼ DerivedQ(DerivedK (S∼ )). (Formally, S∼
is not a K -name, so that the reader must interpret it accordingly.)

2.3 On collapsing

For a regular cardinalκ and an ordinalλ > κ, Coll (κ, λ) is the poset that
collapsesλ to κ, using functions from ordinals belowκ and intoλ. The poset
Coll (κ,< λ) is the product with support of cardinality< κ of all collapses of
ordinals betweenκ andλ (this is the “Levy” collapse, see Jech, Sect. 20). So if
q ∈ Coll (κ,< λ) thenq is a function of size< κ defined on ordinalsα ∈ (κ, λ)
such thatq(α) ∈ Coll (κ, α).

Now if L = 〈λi | i < ω〉 is an increasing sequence of cardinals, thenC =
Coll (L) is the full support iteration of the collapsing posetsColl (λi , < λi +1). In
detail, define by induction on 1≤ n < ω posetsPn as follows.P1 = Coll (λ0, <
λ1), and

Pn+1 = Pn ∗ Coll (λn, < λn+1)V Pn
.

ThenColl (L) is the full support limit of the posetsPn.

Lemma 2.6. Suppose that Q is aλ–closed forcing poset (any increasing sequence
of length< λ has aleastupper bound). Letµ be the cardinality of Q. Then there
is a projectionΠ : Coll (λ, µ) −→ Q such that whenever G⊂ Q is V generic,
then the quotient poset Coll(λ, µ)/G is λ–closed. In fact, the projection isλ–
continuous: If f =

⋃
i<λ0

fi is the supremum of an increasing sequence of length
λ0 < λ of conditions in Coll(λ, µ) thenΠ(f ) is the supremum of{Π(fi ) | i < λ0}
in Q.

Proof. Let Q = {qi | i < µ} be an enumeration ofQ. Any condition inColl (λ, µ)
is a functionf : α −→ µ, whereα < λ, and we defineΠ(f ) as follows. Define
by induction aQ-increasing sequence〈a(ξ) | ξ ≤ α〉 by requiring that (1)a(0)
is the minimum ofQ (2) at limit stagesδ ≤ α, a(δ) is the least upper bound
of 〈a(ξ) | ξ < δ〉, and (3) if qf (ξ) extendsa(ξ) in Q, thena(ξ + 1) = qf (ξ), and
otherwisea(ξ + 1) = a(ξ). Finally, Π(f ) = a(α). It is easy to see thatΠ is a
λ-continuous projection.

Remark first that ifG ⊂ Q is V -generic, thenΠ−1G is already separative.
That is, if f , g ∈ Coll (λ, µ) are such thatf 6≤ g andΠ(f ), Π(g) ∈ G, then there
is g′ ∈ Coll (λ, µ) extendingg and incompatible withf such thatΠ(g′) ∈ G.

To prove theλ–closure of the quotient, suppose that
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The tree property at successors of singular cardinals 393

q Q 〈τi | i < λ0 < λ〉 is an increasing sequence inColl (λ, µ)/G = Π−1G.

We will find an extension ofq that forces a least upper bound to this sequence.
Define by induction oni < λ0 a Q-increasing sequence〈qi | i < λ0〉 beginning
with q0 = q, such that for everyi , for somefi ∈ Coll (λ, µ), qi +1 Q τi = fi .
Let q′ be an upper bound inQ to this sequence. Nowfi ⊂ fj for i < j , and
f =

⋃
i<λ0

fi is a condition. SinceQ is separative,Π(fi ) ≤Q qi +1 follows from
the fact thatqi +1  Π(fi ) ∈ G. The continuity ofΠ implies thatΠ(f ) is the
least upper bound of all the conditionsΠ(fi ), and henceΠ(f ) ≤ q′. That isq′

forces thatf is in Coll (λ, µ)/G.
A similar lemma holds forColl (λ,< κ) if Q is λ–closed and with cardinality

less thanκ, but we need to apply such a lemma in a slightly more complex
situation (in Sect. 6). Suppose that:

1. λ < λ1 ≤ µ < κ are regular cardinals.Q = Coll (λ,< λ1), and the projection
Π1 : Coll (λ,< κ) −→ Q is the obvious restriction projection.

2. P = Q ∗ R is a two stage iteration whereR is a name inV Q such thatR
is forced to beλ–closed (by every condition). The projection ofP on Q is
denotedΓ (soΓ (q, τ ) = q).
Suppose that the cardinality ofP is µ.

Lemma 2.7. Under the conditions set above on P, Q, and R, there is a projection
Π : Coll (λ,< κ) −→ P such thatΓ ◦Π = Π1, and such that whenever G⊆ P
is V -generic, then the quotient poset Coll(λ,< κ)/G is λ-closed.

Proof. Set an enumeration{τi | i ∈ µ} of all the terms inV Q that are forced
by every condition to be inR, and where two names are identified if every
condition forces them to be equal. Given any conditionq ∈ Coll (λ,< κ), let
q1 = Π1(q), and f = q � {µ} be the component ofq that collapsesµ. Then
Π(q) = (q1, τ ) ∈ Q ∗R, whereτ is defined by the following procedure. Suppose
that the domain off is α < λ, and define an increasing sequence〈ηi | i ≤ α〉 of
terms, by induction oni as follows:

1. η0 is an assumed empty condition inR (least informative).ηi +1 is τf (i ) if
every condition inQ forces thatτf (i ) extendsηi , andηi +1 = ηi otherwise.

2. If δ ≤ α is a limit ordinal and all the termsηi for i < δ have been defined
such that fori < j < δ, ηi <R ηj is forced by every condition inQ, thenηδ
is defined as (the name of) the least upper bound of this increasing sequence.

Finally, the projection is defined by settingτ = ηα. We leave it to the reader to
verify that Π is indeed a projection as required, and in particular that ifG is
generic overP then the quotientColl (λ,< κ)/G is λ–closed.

2.4 On embeddings and ultrapowers

The dual characterization of supercompact cardinals is probably known to the
reader: Ifµ > κ then κ is µ-supercompact ifκ is the critical point of an el-
ementary embeddingj : V −→ M of the universeV into a transitive inner
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model M such thatµ < j (κ) and M µ ⊂ M (which means that every function
from µ to M is in fact in M ). An equivalent, more tangible, definition is that
Pκ(µ) = {X | X ⊂ µ, |X| < κ} carries a non-principal, fine,κ-complete, normal
ultrafilter (see Jech [2] Chapter 6, or Solovay [7]).

We say thatκ is huge if κ is the critical point of an elementary embedding
j : V −→ M into a transitive substructureM such thatM j (κ) ⊆ M . If the
stronger demand,M j (j (κ)) ⊆ M , holds then we say thatκ is 2-huge. For our
consistency result we need a cardinal that is slightly stronger than huge, but not
quite 2-huge. Its definition is given by the following lemma on the equivalence
between two characterizations, which we quote without proof (the proof is quite
standard; see for example Solovay, Reinhardt, and Kanamori [8]).

If µ > τ are cardinals, definePτ (µ) = {X ⊆ µ | order-type of X isτ}. If
U ⊂ P (Pτ (µ)) is a non-principal ultrafilter, thenU is said to be:

1. κ–completeif the intersection of fewer thanκ sets inU is again inU .
2. normal if any choice functionf is constant on a set inU . (f is a choice

function if f (A) ∈ A for every A ∈ Pτ (µ). f is constant onX ∈ U if for
someγ ∈ µ, f (A) = γ for all A ∈ X.)

3. fine if ∀α < µ {A ∈ Pτ (µ) | α ∈ A} ∈ U .
4. κ–small belowτ if {A ∈ Pτ (µ) | |A∩ τ | < κ} ∈ U .

Lemma 2.8. 1. If j : V −→ M is an elementary embedding into a transitive
structure M , with critical pointκ, andτ is such thatκ < τ < j (κ) < j (τ ) = µ
and Mµ ⊆ M , if U ⊂ P (Pτ (µ)) is defined by

A ∈ U iff (j ′′τ ) ∈ j (A),

thenU is a non-principal,κ–complete, normal, fine, andκ–small belowτ
ultrafilter on Pτ (µ).

2. If, on the other hand,κ < τ < µ and U are such thatU ⊂ P (Pτ (µ))
is an ultrafilter that satisfy the five properties above, and if the ultrapower
V Pτ (µ)/U is computed, then it is well–founded and the resulting elementary
embedding, i: V −→ N , is such thatκ is the critical point of i ,τ < i (κ),
µ = i (τ ) and Ni (τ ) ⊂ N .

Definition 2.3. κ is said to beτ–huge iff either of the conditions 1 and 2 of
Lemma 2.8 hold.

2.5 The exact assumptions

For the consistency proof of “no Aronszajn trees onℵω+1” we need the following:

A cardinalκ and an increasing sequence of cardinalsL = 〈λi | i < ω〉
with λ0 > κ such that:
A1: For λ = sup{λi | i < ω} and µ = λ+, eachλi , for i > 0, is µ-

supercompact.
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A2: If P = Coll (L), then in V1 = V P κ is τ -huge forτ = κ+(ω+1) with
witness an embeddingj : V1 −→ M1 (as in Definition 2.3) such that
j (τ ) = µ.

(The final model, the one with no Aronszajn trees onℵω+1, will be obtained
from a universe that satisfiesA1, A2 by first collapsing withColl (L), and then
using the resulting embeddingj to force with the productColl (κ+(ω+1), < j (κ))×
Coll (ω, κ+ω). We shall return to this, and in detail of course, but the reader may
want to see at this early stage how the final model is obtained.)

This requirement (A1, A2) of a “potentially” huge withω supercompacts
above it, is somewhat technical, but it may be obtained with the following more
familiar assumptions:

A cardinalκ and an increasing sequence〈λi | i < ω〉 such that:
B1: For λ = sup{λi | i < ω} and µ = λ+, eachλi , i > 0, is µ-

supercompact.
B2: κ is the critical point of an embeddingj : V −→ M wherej (κ) = λ0

andM µ ⊆ M .

Our aim in this subsection is to prove that if cardinalsκ and〈λi | i < ω〉 satisfy
B1 and B2, then there is a generic extension in which cardinals that satisfyA1

andA2 can be found.
Let ρ be a cardinal, andL = 〈λi | i < ω〉 with λ0 = ρ be any increasing

sequence of cardinals with limitλ such that, fori > 0, λi is λ+-supercompact.
Than L is called the minimal supercompact sequence aboveρ if λ is the least
cardinal aboveρ such that the interval (ρ, λ) contains anω-sequence ofλ+-
supercompact cardinals withλ0 = ρ and such that eachλi +1 is the first λ+-
supercompact cardinal aboveλi .

Fix a functiong such that, for everyρ, g(ρ) = 〈λi | i < ω〉 is such thatλ0 = ρ
and 〈λi | i < ω〉 is the minimal supercompact sequence aboveλ0 (if it exists,
andg is undefined otherwise).

Supposej : V → M is an elementary embedding with critical pointκ
and such thatM µ ⊂ M where µ ≥ 2j (κ). It is not difficult to see thatκ
is j (κ)-supercompact, not only inV but in M as well (use the combinatorial
characterization of supercompactness, and for anyX ⊆ Pκ(j (κ)) ask whether
j ′′j (κ) ∈ j (X)). Hence, as high as we wish belowκ, there are cardinals that are
κ-supercompact. So, for everyρ < κ, g(ρ) is defined and its supremum is below
κ, and thus, for everyρ < j (κ), sup(g(ρ)) < j (κ) as well.

Let κ, µ, and〈λi | i < ω〉 be as inB1 andB2. Soκ is the critical point of an
embeddingj : V −→ M , whereM µ ⊆ M , and (by taking the minimal sequence
abovej (κ)) we may assume that

g(j (κ)) = 〈λi | i < ω〉 = L.

Thus, if L0 is the minimal supercompact sequence aboveκ, andτ = (sup(L0))+,
then j (L0) = L, and j (τ ) = µ. κ is thusτ -huge.
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For every ordinalα ≤ j (κ) a cardinalρ0(α) and an iterationPα of lengthα
with Easton support, is defined below by induction. Then, we shall definePj (κ)

as the required poset which gives an extension whereκ andL satisfyA1 andA2.

1. P0 is the trivial poset andρ0(0) = ℵ1.
2. For limit α, Pα consists of all partial functionsf defined onα such that

f � γ ∈ Pγ for all γ < α, andf has the Easton support property:dom(f )∩ γ
is bounded belowγ for every inaccessibleγ. The cardinalρ0(α) is the first
inaccessible cardinal above all theρ0(γ)’s, γ < α.

3. If Pα andρ0(α) are defined, thenPα+1 = Pα ∗ Coll (Lα) for Lα = g(ρ0(α)).
The first inaccessible above the cardinals in the sequenceL is ρ0(α + 1).

Standard arguments prove that for Mahloγ’s that are closed under the func-
tion α 7→ sup(g(α)), Pγ satisfies theγ-c.c. Also, for anyα < β, Pβ can be
decomposed asPα ∗R, whereR is defined inV Pα as an Easton support iteration
of collapses determined by the same functiong, but beginning withρ0(α). (Su-
percompact cardinals remain supercompact in any generic extension done via a
poset of smaller size; see Levy and Solovay [6].)

SetP = Pj (κ). We will show inV P thatκ andL = g(j (κ)) satisfy the properties
A1 and A2. Recall thatµ = λ+ whereλ = sup(L). In V , we have an elementary
embeddingj : V −→ M into a transitive inner modelM such thatM µ ⊆ M .
Again, the argument that small forcing will not destroy supercompacness can
show that the sumpercompact cardinals inL remain µ-supercompact inV P;
that is, A1 is easy. We promised to prove that in (V P)Coll (L), κ is τ -huge for
τ = κ+(ω+1), but in fact we will find a condition inP ∗ Coll (L) and show that
extensions through this condition satisfy this requirement. The argument is fairly
standard, but we repeat it for completeness’ sake.

Observe that
j (Pκ+1) = [Pj (κ+1)]

M ,

but the closure ofM underµ sequences implies that interpreting this iteration in
V or in M results in the same posetQ. So

Q = j (Pκ+1) = Pj (κ)+1 = Pj (κ) ∗ Coll (L).

We will find a conditionq ∈ Q that forcesκ to beτ -huge (as in Definition 2.3).
In fact, the following suffices:

Lemma 2.9. There is a condition q∈ Q such that if K is a V -generic filter
over Q containing q, then the collection{j (p) | p ∈ K} has an upper bound in
j (Q)/K .

The meaning and proof of this lemma are clarified by the following: Decompose

Q = Pκ+1 ∗ R (1)

whereR, the remainder, is an Easton support iteration, starting aboveColl (g(κ)),
of collapses guided byg, going up toj (κ) + 1. Now applyj to get
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j (Q) = [Pj (κ)+1 ∗ j (R)]M = [Q ∗ j (R)]M .

SoQ is a factor ofj (Q), andj (Q)/K can be formed inM [K ]. The lemma claims
first that eachj (p), for p ∈ K , is in j (Q)/K , and then that this collection has an
upper bound.

Since 2λ = µ, the cardinality ofQ is µ. It follows that in V [K ] (M [K ])µ ⊆
M [K ]. Certainly, j (Q)/K is µ+-closed inM [K ] (in fact it is τ0-closed, where
τ0 is the first inaccessible inM aboveλ). Hencej (Q)/K is µ+-closed inV [K ].
So, to prove the lemma, we only need to chooseq ∈ Q which forces that

j (p) ∈ j (Q)/K

for p ∈ K .
Analyzing (1), we writep ∈ Q asp = 〈p0, t , r 〉 wherep0 ∈ Pκ, t is a name

forced to be inColl (Lκ), andr is forced to be inR. Then j (p) = 〈p0, j (t), j (r )〉
(becausej (p0) = p0 by the Easton condition). Nowj (p) ∈ j (Q)/K iff the pro-
jection of j (p) on Q, namely〈p0, j (t)〉, is in K .

The definition ofq can now be given, Defineq ∈ Pj (κ)+1 as 〈∅, σ〉, where
σ ∈ V Pj (κ) is forced to be inColl (L). It is easier to describe the interpretation ofσ
in V [H ], whereH ⊂ Pj (κ) is V -generic. Well, look at all conditionsp ∈ Pκ+1∩H
(there are< j (κ) of them); write each suchp as p = 〈p0, t〉; interpret j (t) as a
condition inColl (L), and take the supremum inColl (L) of all of these conditions.
This proves the lemma and we now see how the result follows.

Lemma 2.10. Assuming q is as in Lemma 2.9, qQ κ is τ -huge.

Proof. Let K ⊆ Q be a V -generic filter containingq. Work in V [K ] and let
s0 ∈ j (Q)/K be an upper bound of{j (p) | p ∈ K}. We are going to define in
V [K ] an ultrafilterU over Pτ (µ) that satisfy the properties of Lemma 2.3. For
this, we fix 〈Aξ | ξ ∈ µ+〉, an enumeration of all subsets ofPτ (µ), and plan to
decide inductively whetherAξ ∈ U or not. Construct by induction an increasing
sequence〈sξ | ξ < µ+〉 of conditions inj (Q)/K as follows:

1. At limit stages,δ < µ+, use theµ+-completeness ofj (Q)/K to find an upper
bound to〈sξ | ξ < δ〉.

2. If sξ is defined, pick forAξ a nameaξ such thataξ[K ], the interpretation of
aξ in V [K ], is Aξ. Then j (aξ) ∈ M j (Q), and we find an extensionsξ+1 of sξ
that decides whether (j ′′µ) ∈ j (aξ) or not. If the decision is positive, then put
Aξ ∈ U , and otherwise not. Two comments are in order for this definition
to make sense:
a) First,j (aξ) is not a name inj (Q)/K -forcing, but inj (Q). Yet, fromM [K ]

any generic extension viaj (Q)/K takes us into a universe that is also
a j (Q) generic extension ofM , and it is as such that we ask about the
interpretation ofj (aξ).

b) Apparently, this definition depends on a particular choice of a name for
Aξ, but in fact if a′ξ is another name, then the same answer is obtained.
The point of the argument is that some conditionp in K forcesaξ = a′ξ,
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and hence [j (p) j (Q) j (aξ) = j (a′ξ)]M . But since j (p) ∈ j (Q)/K is
extended bys0, it can be seen that the answer to theξ’s question does
not depend on the particular choice of the name.

We leave it to the reader to prove thatU thus defined satisfies the required
properties of Lemma 2.3. For example, let us prove thatU is κ-small belowτ =
κ+(ω+1) in V [K ]. For someξ ∈ µ+, Aξ = {A ∈ Pτ (µ) | |A∩ τ | < κ}, and a name
aξ for Aξ was chosen and an extensionsξ+1 deciding whetherj ′′µ ∈ j (aξ) was
thought after. But some conditionp ∈ K forcesaξ = {A ∈ Pτ (µ) | |A∩ τ | < κ},
and hencej (p), and decidedlys0, forcesj (aξ) = {A ∈ Pj (τ )

j (µ) | |A∩ j (τ )| < j (κ)}.
Now j ′′µ = A has order-typeµ = j (τ ), and A ∩ j (τ ) = j ′′τ has cardinality
τ < j (κ).

3 There are no Aronszajn trees on successors of singular limits
of compact cardinals

The paper really begins here with the following ZFC theorem.

Theorem 3.1. If λ is singular and a limit of strongly compact cardinals, then
there are noλ+-Aronszajn trees.

Proof. For notational simplicity, assume thatcf (λ) = ω. Let 〈λi | i < ω〉 be an
increasingω-sequence of strongly compact cardinals with limitλ. (Recall that
a cardinalκ is strongly compact if everyκ-complete filter can be extended to
a κ-complete ultrafilter.) LetT be aλ+–tree (i.e., of heightλ+ and levels of
size≤ λ) and we will find aλ+ branch inT. We may assume thatTα, theαth
level of T, is the setλ× {α}. Accordingly, we defineTα,n = λn × {α}, so that
Tα =

⋃
n<ω Tα,n. The proof for the existence of the branch is divided into two

steps:

Step one:We claim that there is an unboundedD ⊆ λ+ and a fixedn ∈ ω such
that wheneverα < β are both inD , then, for somea ∈ Tα,n andb ∈ Tβ,n, a <T

b. We call an unbounded setD and a collection〈Tα,n | α ∈ D〉 as above aspine
of T. Thus the first part of the proof provides a spine for everyλ+ tree.

Indeed, using the fact thatλ0 is strongly compact, extend the filter of co–
bounded subsets ofT (that is, those subsets whose complement has cardinality≤
λ) to a countably complete uniform ultrafilteru overT. Givenα ∈ λ+ (considered
as a level ofT) definenα ∈ ω by the following procedure: For everyx ∈ T of
level > α, let rαx ∈ Tα be such thatrαx <T x, and setn = nx to be the leastn
such thatrαx ∈ Tα,n. Since the setT \ (T � α + 1) is in u, it follows from the
ℵ1–completeness ofu that for somen = nα, {x ∈ T | nx = n} = Xα ∈ u.

Now there is an unboundedD ⊆ λ+ and a fixedn such thatn = nα for
α ∈ D . If we take any two ordinalsα < β in D , then the intersectionXα∩Xβ is
in u, and anyx in this intersection is such thata = rαx andb = r βx are comparable
(being both belowx), and in thenth part, as required.
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Step two:Every spine has a cofinal branch. Suppose thatD andn define a spine
of T as above. That is, assume{Tα,n | α ∈ D}, whereD ⊆ λ+ is unbounded, is
a collection such that for everyα < β in D there area ∈ Tα,n, b ∈ Tβ,n such
that a <T b. Find aλn+1–complete ultrafilter,v, overλ+ containingD and the
co-bounded subsets. Fix anyα ∈ D . For everyβ > α in D find a(β) ∈ Tα,n and
b(β) ∈ Tβ,n such thata(β) <T b(β). Use the completeness ofv, and the fact
that the cardinality of each level of the spine is onlyλn, to find aα ∈ Tα,n and
ξα ∈ λn such that for a set ofβ’s in v, aα = a(β) andb(β) = 〈ξα, β〉 (which is
the ξα–th element ofTβ,n = λn × {β}). For an unboundedD ′ ⊆ D the ordinal
ξα has the fixed valueξ for α ∈ D ′. Now the collection{aα | α ∈ D ′} is a
branch ofT, because ifα1, α2 ∈ D ′ then for someβ (in fact for a set ofβs in
v) both aα1 andaα2 are below theξth point of Tβ,n.

In a very direct way, one can generalize this to find that ifλ is singular and
a limit of strongly compact cardinals as above, then any strong system overλ+

with index-set of size< λ has a branch of sizeλ+.

4 The narrowing property

Definition 4.1. Let µ > χ be two cardinals, whereµ = λ+. A poset Q has the
narrow derived-system property for(µ, χ) if wheneverS is a Q-name of a strong
µ-system, with≤ χ relations, then DerivedQ(S ) has a narrow subsystem.

Theorem 4.1. Suppose thatκ is κ+(ω+1)-huge. That is (see Definition 2.3),κ is
the critical point of an elementary embedding j: V → M , where M is a transitive
class such that Mµ ⊆ M , for µ = λ+ = j (κ)+(ω+1). Let Q = Coll (κ+(ω+1), < j (κ))
(or any otherκ+(ω+1)-closed poset of size< λ). Then Q has the narrow derived-
system property for(µ, κ+ω).

Proof. SupposeS 0 is forced by every condition inQ to be a strong system on
µ, andκ+ω is its index set. LetS 1 = DerivedQ(S 0) be its derived-system; we
must find a narrow subsystem ofS 1 (that is, one of width and index set of size
< λ). Theαth level of S 0 (and ofS 1) is λ× {α}, and we denote it by (S0)α.
The nth part of this level, which has sizej (κ)+n, is denoted (S0)α,n.

Observe thatj (Q) is µ–closed inM since Q is κ+(ω+1)–closed andµ =
j (κ+(ω+1)). In fact, j (Q) is µ–closed inV sinceM is sufficiently closed.

j (S 0) is in V j (Q) a strongj (µ)-system with relations indexed byj (κ+ω) =
j (κ)+ω = λ. The αth level of j (S 0) is j (λ) × {α}. It is more convenient to
denote this level by (jS0)α. Similarly, thenth part of this level is denoted (jS0)α,n
(= j 2(κ)+n × {α}).

It follows from the closure ofM underµ-sequences (and the fact thatµ <
j (µ)) that j ′′µ is a bounded subset ofj (µ) in M , and we letβ∗ < j (µ) be a
bound of j ′′µ. Let b∗ be any fixed ordinal inj (λ) × {β∗} (so b∗ is a node of
level β∗ in j (S 0)).

Inductively, define—inM —a j (Q) increasing sequence of conditions{sα |
α < µ}, starting with any condition, as follows:
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1. At limit stages, theµ-closure ofj (Q) is used to find an upper bound to the
sequence of length< µ so far constructed.

2. If sα is defined, thensα+1 is defined as follows: Sincej (S 0) is forced to
be a strong system, there exista ∈ (jS0)j (α) and ζ < λ such that〈a, b∗〉 is
forced by some extension ofsα to stand in theζth relation ofj (S 0). So we
pick sα+1, extendingsα, aα ∈ (jS0)j (α), andζα such that

sα+1 j (Q) 〈aα, b∗〉 stands in theζαth relation.

Sinceλ < µ there is a fixedζ0 < λ, andn ∈ ω, such that for some unbounded
setD ⊆ µ, ζα = ζ0 andaα ∈ (jS0)α,n for all α ∈ D .

Now the derived-systemS 1 has widthλ and relations indexed byQ×κ+ω.
We claim that the narrow substructure ofS 1 defined by{(S0)α,n | α ∈ D}
is a system, thereby proving the theorem. If this is not the case, then for some
α1 < α2 in D ,

there are noa1 ∈ (S0)α1,n anda2 ∈ (S0)α2,n such that〈a1, a2〉 stands in a
relation ofS 1,

or specifically, “there are noa1 ∈ (S0)α1,n, a2 ∈ (S0)α2,n, q ∈ Q, andζ ∈ κ+ω

such thatq Q 〈a1, a2〉 stand in theζth relation.” But then, applyingj to this
statement we get a contradiction to:

sα2+1  〈aα1, b
∗〉, 〈aα2, b

∗〉 and hence〈aα1, aα1〉 as well stand in the
ζ0th relation.

Corollary 4.2. Let κ be κ+(ω+1)-huge (as in the theorem). Then it is possible to
collapse j(κ)+(ω+1) to beℵω+1 with a forcing poset that has the narrow derived-
system property for(j (κ)+(ω+1), ω). In other words, there is a forcing poset P such
that

1. j (κ)+(ω+1) becomesℵω+1 in V P, and
2. the derived-system DerivedP(S ) of every strong system on j(κ)+(ω+1) with

countably many relations in VP has a narrow subsystem (in V ).

Proof. The desired poset is simply the collapse ofj (κ) to becomeℵ2, but not
in the most direct way. It is rather the product of two collapses that works: the
collapse ofκ+ω to ℵ0, and the one that makesj (κ) the double successor ofκ+ω

(both posets are defined inV ). Let Q = Coll (κ+(ω+1), < j (κ)), K = Coll (ℵ0, κ
+ω),

and thenP = Q × K is the desired collapse. InV P, κ+ω is countable,κ+(ω+1) is
ℵ1, j (κ) is ℵ2, andµ = λ+ = j (κ)+(ω+1) becomesℵ+

ω.
So let S 0 be in V P any strongµ-system with a countable set of relations;

thenDerivedP(S 0) can be obtained in two stages, corresponding to the product
P = Q × K and to the decompositionV P = (V Q)K . First, in V Q, form S 1 =
DerivedK (S 0). ThenS 1 is in V Q a strong system onµ, with |K | × ℵ0 = κ+ω

relations, one relation for each pair formed with a condition inK and a relation
(index) inS 0. Hence, by the theorem,DerivedQ(S 1) ∼ DerivedP(S 0) has (in
V ) a narrow subsystem as required.
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5 The potential branching property
and a model with no Aronszajn trees

Supposeµ = λ+. The potential branching property forµ is the following state-
ment:

If S is a narrow system onµ, then for everyχ < λ there is aχ-complete
forcing poset that introduces an unbounded branch toS .

Recall that a branch of a system is a set of nodes and a relation in the system
which includes every increasing pair from the set. In the following section we
will see how to obtain the potential branching property, but here we use it to
obtain a model with no Aronszajn trees onℵω+1.

Theorem 5.1. Let κ be κ+(ω+1)-huge and suppose that the potential branching
property holds forµ (whereµ = j (κ)+(ω+1)). Then there is a generic extension in
whichµ becomesℵ+

ω and it carries no Aronszajn trees.

Proof.The posetP of Corollary 4.2 works. Recall thatQ = Coll (κ+(ω+1), < j (κ)),
K = Coll (ℵ0, κ

+ω), and thenP = Q × K . The cardinality ofP is χ = j (κ). We
know by Corollary 4.2 thatj (κ)+(ω+1) is ℵω+1 in V P and that the derived-system
(via P) of any strong system overj (κ)+(ω+1) with countably many relations has
a narrow subsystem inV . We will prove that there are noµ–Aronszajn trees in
V P.

Suppose thatT is in V P a name of aµ-tree. We will first show that there
is in V a χ+–complete posetR such that, in (V P)R, T acquires an unbounded
branch. Then the preservation theorem (2.1, applied withλ = j (κ)+ω) shows that
T has a branch already inV P.

To see howR is obtained, apply Corollary 4.2 toT, considered as a single-
relation strong system, and find inV a narrow subsystemS to DerivedP(T). But
then forχ = |P| < λ there is (by the potential branching property) aχ+-complete
forcing posetR that introduces an unbounded branch toS . This can be shown
to give an unbounded branch to the treeT in V P×R. But then the preservation
theorem shows thatT already has a branch inV P.

6 The final model

For the consistency ofno Aronszajn trees onℵω+1 we must show how to obtain
the assumptions of Theorem 5.1, namely how to get a cardinalκ which isκ+(ω+1)-
huge with the potential branching property forj (κ)+(ω+1). The main point is to
prove that whenever anω sequence of supercompact cardinals converging to
λ is collapsed, then the potential branching property forλ+ holds. When this is
combined with assumptionsA1 andA2 described in Sect. 2.5, then the assumptions
for Theorem 5.1 are obtained.

Theorem 6.1. Suppose〈λi | i < ω〉, with λ =
⋃

i<ω λi and µ = λ+, is an
increasingω–sequence ofµ–supercompact cardinals (except forλ0 which is just
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a regular cardinal). Let C= Coll (〈λi | i < ω〉) be the full support iteration that
makesλi to beλ+i

0 . Then, in VC , the potential branching property holds forµ:

If S is a narrow system onµ, then, for every k< ω, there is aλk–
complete forcing that introduces an unbounded branch toS .

Proof. We will actually prove the following combinatorial statement inV C :

For everyn < ω and functionF : [µ]2 → χ, whereχ < λn, there is
a λn–complete forcingC∗ such that in (V C )C∗

the following holds: For
someν ∈ χ there is an unbounded setU ⊆ µ such that for everyα1 < α2

in U there isβ > α2 such that

F (α1, β) = F (α2, β) = ν. (2)

(We call such a setU “a branch” ofF .)
First, we argue that this statement suffices to prove the theorem. LetS =

(T,R) ∈ V C be a narrow system overµ, and letχ < λ be such that the width
of S and the cardinality of its index set are≤ χ. Suppose thatχ < λn and we
will find a λn–complete forcing that introduces an unbounded branch toS . For
this, define inV C a functionF : [µ]2 → χ3 by

F (α1, α2) = (ζ, τ1, τ2) iff the τ1 member ofTα1 and theτ2 member ofTα2

stand in theζ relationRζ .

Then, by the assumed combinatorial principle, there is an unbounded setU ⊆ µ,
and fixed ordinalsν = (ζ, τ1, τ2) as in Eq. (2). This implies that theτ1-th points
of Tα (that is 〈τ1, α〉) for α ∈ U form an Rζ branch ofS (use item2 in the
definition of systems).

We now explain why it suffices to prove the combinatorial principle for
n = 0. GivenF : [µ]2 → χ whereχ < λn in V C (suppose for simplicity that
everycondition in C forces thatF is into χ), decomposeC ' Cn ∗ Cn where
Cn = Coll (〈λi | i ≤ n〉), andCn is the name inV Cn of Coll (〈λi | n ≤ i < ω〉).
In V Cn defineλ′m = λn+m. Then eachλ′m, for m > 0 is µ–supercompact. (Indeed
the embeddingj : V → M with critical pointλk , for k > n, can be extended in
V Cn to an embedding ofV Cn into M Cn , whereM Cn possesses the sameµ–closure
properties.) Thus, if we know casen = 0 of the theorem inV0 = V [Cn], we could
apply it there toCn = Coll (〈λ′i | i < ω〉) and get inV Cn

0 = V C the desiredλ′0–
complete (λn–complete) poset that adds a branch toF . To save ourselves from
too many superscripts, we denoteV Cn by V andM Cn by M and assumen = 0.

So, returning to the theorem, assume thatG is a V -generic filter overC , and
F is in V [G] a function from [µ]2 into χ < λ0. In the following lemma, we
will describe aλ0-complete forcingP in V [G] that introduces aµ-branch toF .
Let j : V → M be an elementary embedding with critical pointλ1, such that
j (λ1) > µ and M is closed inV underµ-sequences. The following lemma will
be proved later on.
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Lemma 6.2. There is in V[G] a λ0-complete poset P such that in V[G]P there
is an extension of the embedding j to an elementary embedding of V[G] into
N = M [j (G)].

Accepting the lemma for a moment,j (F ) ∈ N can be defined; it is a function
on [j (µ)]2 and intoχ < λ0 (j is the identity belowλ1).

Since j (µ) > µ, there is an ordinalβ < j (µ) above all the ordinals inj ′′µ.
Now, for eachα < µ we can find someζ < χ such that

j (F )(j (α), β) = ζ.

Sinceχ < λ0, and asµ is regular inV and no new sequences of length< λ0 are
added toV in V [G]P, we may find a singleζ such that for unboundedly many
α’s the equalityj (F )(j (α), β) = ζ holds. Sincej is elementary, it follows that
for anyα1 < α2 in this unbounded setF (α1, b) = F (α2, b) = ζ holds for some
b > α2, b < µ. Thus an unboundedµ–branch forζ was found inV [G]P, which
is aλ0–closed extension ofV [G].

We turn now to the proof of Lemma 6.2. The collapsing posetC1 = Coll (λ0, <
λ1) is a factor ofC = Coll (〈λi | i < ω〉), and for simplicity of expression, we
identify c ∈ C1 with the condition〈c1 | i < ω〉 ∈ C defined byc0 = c andci = ∅
for i > 0.

Denote eachj (λi ) with λ∗i . Then λ∗0 = λ0, but λ∗1 > µ. In M , j (C) is
[Coll (〈λ∗i | i ∈ ω〉)]M , andC∗

1 = Coll (λ0, < λ∗1) (which is the same—defined in
V or in M ) is a factor ofj (C) = [Coll (〈λ∗i | i < ω〉)]M .

Let G ⊆ C be aV -generic filter overC . Observe that if〈ci | i < ω〉 ∈ G,
then c ∈ G as well. In order to extendj on V [G] and to prove the lemma,
we should find inV [G] a λ0-complete posetP such that inV [G]P there is a
V -generic filterG∗ over j (C) such that

If g ∈ G, then j (g) ∈ G∗.

If we do so, then an embedding ofV [G] into M [G∗] can be defined as follows:
For anyx ∈ V [G], let x be a name ofx in V C . Thenj (x) is a name inM j (C) and
we definej ′(x) to be its interpretation inM [G∗]. We trust the reader to check
that j ′ is a well defined elementary extension ofj .

Instead of writing downP, we will describe it as an iteration of two exten-
sions, each oneλ0-complete.

Since the cardinality ofC is µ, µ < λ∗1 is collapsed toλ0 in V C∗
1 , Lemma

2.7 implies that there is a projection,Π, of C∗
1 onto C , which can be used to

find a generic extension ofV [G] which has the formV [H ] for a V -generic filter
H over C∗

1 such that:

1. The passage fromV [G] to V [H ] is done by forcing with aλ0-closed forcing.
2. For everyc ∈ C1, c ∈ G iff c ∈ H .

Thus, for everyg ∈ G, j (g) ∈ j (C)/H . Indeed, anyg ∈ G has the form
g = 〈c, r 〉 wherec ∈ C1 ∩ G, andr is the remaining part of the sequence. Then
j (g) = 〈c, j (r )〉 wherec ∈ C∗

1 ∩ H , and thusj (g) ∈ j (C)/H .
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It follows that j ′′G (the image ofG under the restriction ofj to C) is in
M [H ] a pairwise compatible collection of conditions inj (C)/H . Sincej (C)/H
is isomorphic toColl (〈λ∗i | i ≥ 1〉) in M [H ], it is λ∗1-complete, and a supremum,
denoteds ∈ j (C)/H can be found forj ′′G. This is our “master condition”: If
G∗ is anyV [H ]-generic filter overj (C)/H , containings, then:

1. G∗ is in fact V -generic overj (C).
2. The forcingj (C)/H is λ∗1-complete inM [H ], and it is thenceλ0-complete

in V [H ] (becauseM [H ] is λ0-closed inV [H ]).

7 Conclusion

We have proved the following theorem:

Theorem 7.1. Assume a cardinalκ and sequence L= 〈λi | i < ω〉 such that

B1: For λ = sup{λi | i < ω} andµ = λ+, eachλi , i > 0, is µ-supercompact.
B2: κ is the critical point of an embedding j: V −→ M where j(κ) = λ0 and

M µ ⊆ M .

Then there is a generic extension in which there are noℵω+1 Aronszajn trees.

Indeed, in Sect. 2.5 we saw that by making a preparatory extension we may
assume thatκ is such that ifC = Coll (L), then in V C κ is κ+(ω+1)-huge. So,
we go toV C , and find that the potential branching property forµ = j (κ)+(ω+1)

holds (by Theorem 6.1). But now, inV C , all the assumptions for theorem 5.1
hold. Thus, in a final extension, obtained as a product ofColl (κ+(ω+1), < j (κ))
andColl (ℵ0, κ

+ω), there are no Aronszajn trees onℵω+1.

Acknowledgements.Our thanks to Uri Abraham for writing up the paper and to both him and James
Cummings for simplifying some parts of the original proof.
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