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Abstract. Assuming some large cardinals, a model of ZFC is obtained in which
N,+1 carries no Aronszajn trees. It is also shown thak i6 a singular limit of
strongly compact cardinals, thexi carries no Aronszajn trees.

1 Introduction

The main results of this paper are (1) that the consistency of “ZFCNand
carries no Aronszajn trees” follows from the consistency of some large cardinals
(roughly a huge cardinal with supercompact cardinals above it), and (2) that

if a singular cardinal\ is a limit of strongly compact cardinals, then there are
no Aronszajn trees of height". The proof of (2) is in Sect. 3, and the forcing
constructions which prove (1) are given in Sects. 4, 5, and 6. The generalization
to higher singular cardinals of both (1) and (2) poses no problem.

2 Preliminaries

Recall that a tree is a partial ordering in which the set of predecessors of any
point is well ordered. Usually trees have a single minimal node—the root—and
no two distinct points have the same set of predecessors. Following an established
practice, if T, <t) is a tree thednlT may denote both the set of points and the
ordering. A pointa € T is of heighta (an ordinal) iff « is the order type of the
set of predecessors afin T. The set of all points ifT of heighta is denotedr,
and is called thexth level of T. The supremum of the heights of the non-empty
levels ofT is called theheightof T. A branchof T is a downward closed linearly
ordered subset of .
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A k tree is a tree of height (a cardinal) in which every level has sizex;
it is an Aronszajn tree iff it has no branch of lengthin this paper we will be
interested in Aronszajn trees of height where X is a singular cardinal. It is
convenient to assume that the universe of ahyree is the seA x A\*; moreover,
we stipulate that therth level of this tree has the forth x {a}(except the root).

A tree of height\* and in which every level has cardinalitg A (A any
cardinal) is said to bespecial iff there is a mapos from T into A such that
a <t b=0(a) # o(b). Any such special tree is clearly an Aronszajn tree, because
o is one—to—one on any branch. The existence of a special tree of heigat
known to be equivalent to a weak square property.

We use the convention concerning forcing by whizkc g means thag is
more informative thap. A forcing poset here is a separative partial oridewith
a least informative point (denotei$) and with no maximal point. (A poset is
separative if whenevey £ q then some extension gfin P is incompatible with
p. There is a canonical way of producing a separative poset from non-separative:
Define an equivalence relatign ~ p, if “any x is compatible withp, iff it
is compatible withp,”. Then, on the equivalence classes, defipg K [p2] if
everyx compatible withp, is also compatible withp;.)

VP denotes the class of @-terms, but when an expression such sV "
is a tree of hight\*” is used, we mean thdl, forces this statement.

A projectionfrom a poseP into Q is an order preserving mafj : P — Q
such thatZI(#p) = 0, and if II(p) = q andqg’ > g in Q then for some’ > p,
II(p’) > q’. (Some authors use a different definition!)

If IT : P — Q is a projection ands C Q is aV—generic filter, therP /G
is the separative poset defined by takiig'G and turning it into a separative
poset. TherP is isomorphic to a dense subset of the iterat@m (P/G): the
isomorphism is the map taking € P to (I1(p), [p]).

2.1 The preservation theorem

Theorem 2.1. Let )\ be a singular cardinal (of cofinality, for notational sim-
plicity), and suppose that P and R are two posets such that:

1. |P|l=x < A, andT is a\*-tree in VP, ||P|| is the cardinality of P.)
2. Risx*—closed.

Then any\*-branch ofT in VP*R is already in \P.

Proof. The preservation theorem makes sense even Wwhisrthe trivial forcing
consisting of a single point (no forcing). In this cag€ is V and the theorem
then says that:

If X is a singular cardinal of cofinalitw, T is a A* tree, andR is a
countably closed poset, then forcing wikhadds no new\*-branches to
T.
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For illustration of an important idea, let’'s prove this special case first. We need
the following lemma which will also be used in the full proof.

Lemma 2.2. Let S be any forcing poset. Suppose thand \* are a cardinal
and its successor, T is &'—tree, andB is a name of a\*—branch of T in \2.

If B is a new branchB is not in V), then for some there is a set XC T, of
cardinality A, in V, such that every x X is forced by some condition in S to be
in B.

Proof. We will say thats € S is A-wide atT,, if there are\ extensions of that
force pairwise distinct values fd N T,,. If we start with an arbitrary condition,
our proof will give that everys € S is \-wide at someT,,, a < A\*.

DefineE, in V, to be the set of possible nodes®f

E = {a | some condition irS forcesa < B}.

We want somex < A* such thatlE N T,| = A. So assume, on the contrary, that
|ENT, |< A for everya. ThenE C T satisfies the following properties:

1. Any node inE has extensions i at arbitrarily higher level.

2. E is downward closed ifT.

3. Any node inE has two incomparable extensions i (for otherwise, a
condition would force thaB is in V).

4. Foreverya < X", |[ENT, [< A

This is not possible: let) C \* be a closed unbounded set such that i€ U
then whenevery < «, if a € ENT,, thena has two incomparable extensions of
height< « in E. Then pick anyx € U such thatenU has order-type> \ and
a pointa a € T,, and conclude thaE N T, has size\ by splitting the points at
levels inU belowa. QED

Now to prove the special case of the theorem, assume that

r I+ Bis a new\* branch inT.

We are going to associate with each nede \<“ (the tree of finite sequences
from \) a conditionr, € R and a point, € T such that:

1. If o1 C oz in A<, thenr,, <rT,,.
2. For anyo € A<“ there is some level, < A\* such that the point$t, |
o' is an immediate successor @} are distinct points off,,_ .

Using the lemma, the definition af, is done by induction. Letx < A* be
the supremum of the level ordinals, for o € A<v.

Any branchs € \“ defines an increasing-sequence(rs;, | N € w} of
conditions, and hence has a supremunRjrdenotedrs.

Now extendrg to force the value oB N T, and leths be that point ofT,,.
Thens, # 5, = by # bs, becauses; ands, split in A<¥. But as|A\“| > A",
this shows thafl, has cardinality at least*, which is surely impossibleThis
proves the special case, and now we return to the theorem as stated.
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So P is a poset of cardinalityy < A and T is a name forced by every
condition inP to be a\* tree.R is a x*-closed poset. As beford,, = A x {a}
is the ath level of T, for « < u = A*. Let B € VP*R pe a name of a cofinal
branch ofT, supposedly not iV P. We also viewB as a name in\(P)R (that
is, a name irR—forcing, inVP).

Say (inVP) that two conditions'1,r> € R force distinct valuegor B N T,
iff for someay #a, in T, 1y IF & € B, fori =1,2. A weaker property, which
even may hold whem or r, do not determin®NT,, is that whenever; andr}
are extensions af, andr, that determine the value &N T, thenr; andr} force
distinct values foB N T,,. In this case we say that andr, force contradictory
informationonBNT,". Observe that it < 3 < A* andry, r, force contradictory
information onB N T,, then they force contradictory information &N T4 (the
argument is carried iv” whereT is defined). Observe also thatrif, r, force
distinct values forB N T,, then they force contradictory information &N Tg
for any 3 > a.

Working inV, our aim is to tag the nodes of the tr&&“ with conditions in
R and we will denote the tag of € A<“ with r, € R. The required properties
of this tagging are the following.

2. For every noder € A<¥ there is an ordinaly < A* such that, for any two
immediate extensionsy, o, of o, there is a dense s& C P, such that for
everypeD

1. If 01 C 0z in A<¥, thenr,, <r,, in R.

p Ikp r,andr,, force contradictory information oB N T,,.

Why this suffices? Because, assuming such a constructiofi,<efA* be above
all the ordinalsae mentioned in item 2 and look at the set of all full branches
A“. For eachf € ANV, letr; € R be an upper bound of the conditions,
tagged along the brandh We claim that iff # ¢ are full branches, then there is
a dense sdd C P such that for everp € D,

p Ikp s and r, force contradictory information ol N Tys.

Indeed, lets C f N g be the splitting node, then item 2 gives the required dense
set. To conclude the proof, we find that, W, any two branches ok“ give
distinct values foiT 5, and since\™ > X*, this shows thaTs = A x {3} contains
A* distinct nodes iV ?, which is not possible sinca* is not collapsed inv".
The taggingR, and the dense sets are defined below.

ConsiderS = P x R; we will say that p,r) € P x R is A-wide atT,, if
there are\ extensions of{, r) that force pairwise distinct values f&N T,. (It
is true thatT is not assumed to be M; however, its level-sets are, and so this
definition is meaningful.)

Lemma 2.3. 1. Any condition(p,r) € P x R is \—wide at some J.
2. If (p,r) is A-wide at T,, then it is alsoA—wide at any higher level gL
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Proof. Indeed, giveng,r) € P xR, let G be aV —generic filter oveP containing
p. In V[G], A and\* are not collapsed, and we can use Lemma 2.2 to find some
a < A* such that there are. possible values foB N T, (forced by some
extensions of ). Any such value is also a possible value for some extension of
(p,r) (in V), and hence when the set of possible valuesBforT,, is calculated
in V it must have cardinality\ as well.

For the second part assume thptr() is A wide at«. given anyg > «,
find first (o, r;) extending p,r), for i < A, that determine distinct values of
B N T, and then extend each pair to a conditig, /) that determine® N Ts.
Even though it may be possible for two such extensions to determine the same
point in Tg = A x {8}, it is not possible for|P||* extensions to determine the
same point (because in such a case we would have two extensions with the same
P coordinate, and this is not possible as the tfeés in VF). So that the\
conditions are partitioned into classes<0f|P|| members in each class, and thus
there are) classes, which gives possible values foB N Tg. Observe, however,
that if (p,r) is A-wide atT,, then extensions ofp(r) need not be\-wide at
the samerl,,, and it may be necessary to go to higher levels.

Lemma 2.4. If {r; | j < A} C R, and p € P are given, then, for some ordinal
there are extensions > r; in R, for every j< A, such that for every pair K |
there isp > poin P suchthatp I-p r{ and 1’ force distinct values foBNT,,.

Proof. First, by our last lemma, find for eveliy < A an ordinala; such that
(po, ri) is A—wide atT,,,, and then letx be above all of these;’s. By the second
part of the lemma, eaclpq, r;) is \-wide atT,. Now, by induction ori < A, we
will define an extensiom/ > r;, and two functionse andf;, wheree : P — P,
andf; : P — T,, such that:

1. For everya € P, e(a) extendsa, and € (a),r]) IFpxr BN T, ={fi(a)}.
2. Ifk <i < Xthen
fi(po) ¢ {fc(a) [a € P}.
That is, the value 0B N T, that & (a),r/) determines is different from all
the values determined by previous conditions.

Suppose that it is the turn of, g, f; to be defined. LeP = {p(§) | £ < x} be
an enumeration oP, starting with the given conditiop(0) = po. By induction
on ¢ < x, we shall define a condition® € R, and the values (p(¢)) > p(¢),
andf; (p(&)) € T, such that:

1. <rf € R| ¢ < x) form an increasing sequence of conditions extending

2. @(PE),rf) IFBNT, = {fi(p())}-
3. fi(p(0) ¢ {fk(@) |acP, k<i}.

First, use the fact thapg, r;) is A-wide atT,, to find an extensione((po), r°) >
(po, ri) that forcesB N T, = {fi(po)} for a valuef;(p,) that satisfies (3) above.
Then construct the increasing sequer}écand the values o§ andf; (using the
x" completeness dR at limit stages), and finally defing to be an upper bound
in R of that sequence.
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Let us check that the requirements of the lemma are satisfiegl.ftirk < i
is any index, look ap’ = g (pg), and letp; = e(p’). Thenp; is as required,
because the value @& N T, determined by (g, r/) (namelyf;(po)) is distinct
from the one determined by, r;) (namelyfi(p’)). This proves the lemma, and
the following completes the proof of the theorem by showing how the tagging
can be done.

Lemma 2.5. If r € R, then there are extensions» r for i < A such that, for
someq, ifi <] < Athen for some dense set®D; ; C P, for every pc D,

p Ikp r{ and y force contradictory information on B T,,.

Proof. EnumerateP = {p(¢) | £ < x}. Essentially, the proof is obtained by
repeatedly applying the previous lemma, varygso as to get the dense sets.
By induction on¢ < x we define:

1. A sequence of conditions R, <rf i< A).

2. A family D&(i,j) c P, increasing with¢, for everyi < j < A. Finally, we
will setD(i,j) =DX(i,]), and to ensure thd (i, j) is dense we demand that
p(€) has an extension iB&*(i,j).

3. An ordinal«(§) < p.

We require that for each (ri5 | £ < x) forms an increasing sequence, beginning
with r% =r. (Finally, r/ = r;,X will be the required extension.)

At limit stagesé, r? is an upper bound iR of the conditionsr ¢, & < 0.
D(i,j) is the union ofD4(i,j) for £ < 6.

At successor stage§,+ 1, the extensiongr:™ | i < A} are defined using
Lemma 2.4 for the collectiop{rf | i < A} and the conditiorpy = p(§). That
lemma gives an ordinak = «(£) and extensiong,(i,j) > p(§) for every pair
i <] < A, such that

1 and rf” force distinct values foB N T,,.

pa(i,j) IFT;
Then we definedd&*(i,j) by D&(i,j) = D&(i,j) U {p(i,j)}.
Finally, definer/ = r)X, o = sup{a(€) | £ < x}, andD;j; = DX(i,j). Dy is
dense inP, because everp(¢) has some extension B¢*Y(i,j). This ends the
proof of Theorem 2.1.

2.2 On systems

Let K be a forcing poset andl € VX a \*-tree (\* is a cardinal inv and in
VK). By our convention the underlying universe Bf(namely A x A*) is inV,
but the ordering<t is in VX of course.

Definition 2.1. Let T be a K-name of a\*-tree as above, wherd and \* are
cardinals both in V and ¥, then thepre-treeof T is the sequence of relations
(Ry | p € K) defined by
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aR biffp IFk a<tb.
So each Ris a binary relation on the universe of T, namely brx A*.

It turns out that the consistency proof for “no Aronszajn trees\Ghrelies on

an investigation of such pre-trees for posktssuch that|K| < A. An abstract
definition which captures the essential properties of these pre-trees but does not
refer to any tree or forcing notion is given next.

Definition 2.2. Systems: Suppose thag < X are cardinals, D C \* is un-
bounded, and F (T, | « € D) is a sequence of sets such thatT \ox {a},
for « € D. Let | be an index set of cardinality A\, and R={R |i €I}
a collection of binary relations such that for evengeil R C [J{T, x T3 |
a < (3 are both in D}. Then the pait¥” = (T, R) is calleda systenover A*
(or a A*—system) if the following hold:
1. For everya < g in D, there are ac T,, b € Tz and i € | such that
(a,b) € R.
2. Foreveryicl,anda < g8 <~vyinD,ifaecT,, beTg ceT, are
such that(a,c) € R and(b,c) € R, then{a,b) € R.
The set D is called the domain of the system and | its index set. The cardinal
Ao is thewidth, and A* the heightof the system.
An example of a\*—system is any\*—tree; in this example R consists of
a single relation—the tree ordering. The pre-tree as defined in 2.1 is more
illustrative; the number of relations is the cardinality of the forcing poset.
Strong systems: If condition (1) above is replaced by: “For ewery. 3 in D,
for every be Tg, there are ac T,,, and i € | such that(a,b) € R” (but (2)
remains unchanged) then the systémis calleda strong system
A pre-tree relative to some forcing poset K is in fact a strong system.
Subsystems: Le¥” be a system of width, over \* as above. Suppose that
Do C D is unbounded im*, \j < Xq is a cardinal, and § C | is any
subset of indices. Then the restrictionf is obtained by taking the sequence
(Ta N Ag x {a} | @ € Dyp), and taking the restrictions of the relations'&for
i €lp.
This restriction is not necessarily a system: Though item 2 is inherited auto-
matically, item 1 may not be. A restriction that happens to a system is called
a subsystem. A subsystem of a strong system may no longer be strong.
Narrow systems: A systeff is said to bg(p, t)-narrowiff \g < p, and| | |< ..
That is, its width is less thap and its index set has size .. A \*—system is
said to benarrowiff it is (A, A)—narrow.
Branches: A “branch” of the system is a set B such that for sorgelifor all
a,b € B (a,b) € R (if the level of a is below the level of b).
Thus, returning to a concrete example, a branch of a pre-tree gives a set B
forced by a single condition to be linearly ordered.
Derived-systems Suppose that Q is a forcing poset @net (T,R)isinVQ a
system with domain*, width Ay < )\, and index set some cardinal Then
thederived-syster;rDerivedQ(.Z’) is defined as the following*-system in V..
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DerivedQ(.Z) has as index set the product Q, its width remains\g, and
its relations R ; are defined for oc Q and i € 7 by:

(a,b) e Ry iffq IFqo (a,b) e Ri.

A pre-tree is an example of a derived-system. A derived-system is a system, and
itis strong if the syster:ﬁf is strong in \R (that is, forced by every condition to

be strong). If P= Q xK is a product of two forcing posets arfg' isaP-name
of a system, then Derivedz/) ~ Derivedy (Derivedk (.z‘)). (Formally,.z’
is not a K-name, so that the reader must interpret it accordingly.)

2.3 On collapsing

For a regular cardinak and an ordinalA > &k, Coll(x, \) is the poset that
collapsesh to «, using functions from ordinals below and into\. The poset
Coll(x, < A) is the product with support of cardinality ~ of all collapses of
ordinals betweem: and X (this is the “Levy” collapse, see Jech, Sect. 20). So if
g € Coll(k, < A) thenq is a function of size< « defined on ordinals: € (x, \)
such thatg(«) € Coll(x, a).

Now if L = (\j | i < w) is an increasing sequence of cardinals, tierr
Coll(L) is the full support iteration of the collapsing posésll(\, < Aj+1). In
detail, define by induction on £ n < w posetsP, as follows.P; = Coll(\g, <
A1), and

Pra1 = Py % Coll(An, < Ans)V -

ThenColl(L) is the full support limit of the posetB,.

Lemma 2.6. Suppose that Q is &closed forcing poset (any increasing sequence
of length< X has aleastupper bound). Let: be the cardinality of Q. Then there

is a projectionlI : Coll(\, u) — Q such that whenever G Q is V generic,
then the quotient poset C@M, 1)/G is A—closed. In fact, the projection is—
continuous: If f=J, _, fi is the supremum of an increasing sequence of length
Ao < A of conditions in Col(\, 1) thenII(f) is the supremum gffI(fi) | i < Ao}

in Q.

Proof. LetQ ={qi | i < p} be an enumeration @. Any condition inColl (A, 1)
is a functionf : « — u, wherea < A, and we defind(f) as follows. Define
by induction aQ-increasing sequenc@(é) | £ < «) by requiring that (1)a(0)
is the minimum ofQ (2) at limit stagest < «, a(é) is the least upper bound
of (a(§) | £ < ¢), and (3) ifgr(e) extendsa(f) in Q, thena(é + 1) = g, and
otherwisea(¢ + 1) = a(€). Finally, II(f) = a(a). It is easy to see thall is a
A-continuous projection.

Remark first that ifG c Q is V-generic, thenlI~1G is already separative.
That is, iff, g € Coll(\, 1) are such that £ g andII(f), I1(g9) € G, then there
is ¢’ € Coll(\, ) extendingg and incompatible witH such thati7(¢’) € G.

To prove theh—closure of the quotient, suppose that
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g ko (n |1 < Ao < A) is an increasing sequence iBoll(\, 1)/G = I'G.

We will find an extension of that forces a least upper bound to this sequence.
Define by induction on < Ao a Q-increasing sequenc@; | i < A\o) beginning
with go = ¢, such that for every, for somef; € Coll(\, i), Gi+1 IFo 7 = fi.
Let g’ be an upper bound iQ to this sequence. NoW C f; fori < j, and
f = Ui<AO fi is a condition. Sinc&) is separative/I(fi)) <q gi+1 follows from
the fact thatgi+1 I+ II(fi) € G. The continuity of I implies that/I(f) is the
least upper bound of all the conditiord$(f;), and hencdl(f) < q’. That isq’
forces thaff is in Coll(\, 1)/G.

A similar lemma holds foColl(\, < ) if Q is A—closed and with cardinality
less thank, but we need to apply such a lemma in a slightly more complex
situation (in Sect. 6). Suppose that:

1. A < A1 < pu < k are regular cardinal®) = Coll (A, < A1), and the projection
11 : Coll(\, < k) — Q is the obvious restriction projection.

2. P = Q xR is a two stage iteration wher@ is a name inv? such thatR
is forced to beh—closed (by every condition). The projection Bfon Q is
denotedl” (so I'(q,7) = Q).

Suppose that the cardinality &fis p.

Lemma 2.7. Under the conditions set above on P, Q, and R, there is a projection
I : Coll(\, < k) — P such thatl" o IT = II;, and such that whenever G P
is V -generic, then the quotient poset Gall< x)/G is A-closed.

Proof. Set an enumeratiofir; | i € p} of all the terms invVQ that are forced
by every condition to be iR, and where two names are identified if every
condition forces them to be equal. Given any conditipre Coll(\, < &), let

0. = I11(q), andf = q | {u} be the component of that collapses:. Then
I1(q) = (01, 7) € Q *R, wherer is defined by the following procedure. Suppose
that the domain of is o < A, and define an increasing sequerige| i < «) of
terms, by induction on as follows:

1. no is an assumed empty condition R (least informative).ji+y is 7 if
every condition inQ forces thatr ) extendsn;, andni+1 = 7 otherwise.

2. If 6 < «is a limit ordinal and all the terms; for i < § have been defined
such that fon <j < 6, i <rn; Is forced by every condition iQ, thenns
is defined as (the name of) the least upper bound of this increasing sequence.

Finally, the projection is defined by setting=n,. We leave it to the reader to
verify that IT is indeed a projection as required, and in particular thas ifs
generic oveP then the quotienColl (), < k)/G is A—closed.

2.4 On embeddings and ultrapowers

The dual characterization of supercompact cardinals is probably known to the
reader: Ifx > k thenk is u-supercompact if is the critical point of an el-
ementary embedding : V — M of the universeV into a transitive inner
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modelM such thaty < j(k) andM#* C M (which means that every function
from p to M is in fact in M). An equivalent, more tangible, definition is that
P.(u) ={X | X C u, |X] < x} carries a non-principal, fine;-complete, normal
ultrafilter (see Jech [2] Chapter 6, or Solovay [7]).

We say thatx is hugeif « is the critical point of an elementary embedding
j 'V — M into a transitive substructur®! such thatM!®) C M. If the
stronger demandy!0) C M, holds then we say that is 2-huge. For our
consistency result we need a cardinal that is slightly stronger than huge, but not
quite 2-huge. Its definition is given by the following lemma on the equivalence
between two characterizations, which we quote without proof (the proof is quite
standard; see for example Solovay, Reinhardt, and Kanamori [8]).

If > 7 are cardinals, defin®7(u) = {X C p | order-type of X isr}. If
?¢ C (P7(w)) is a non-principal ultrafilter, ther?¢ is said to be:

1. k—completdf the intersection of fewer thar sets in?Z is again inZ¢.

2. normal if any choice functionf is constant on a set i4. (f is a choice
function if f (A) € A for every A € P7(u). f is constant orX € %¢ if for
somey € u, f(A) =~ for all Ae X))

3. fineif Va < u {A€ P () | a € A} € ¢.

4. k—small belowr if {A€P7(u)| |ANT| <K} € 2.

Lemma 2.8. 1. Ifj : V — M is an elementary embedding into a transitive
structure M, with critical points, andr is such thak < 7 < j (k) <j(7) = i
and M* C M, if ¢ c &2(P7(u)) is defined by

Ac e iff (1) €j(A),

then %7 is a non-principal,x—complete, normal, fine, arg-small belowr
ultrafilter on P7 ().

2. If, on the other hands < 7 < p and %2 are such thatZz c (P7(u))
is an ultrafilter that satisfy the five properties above, and if the ultrapower
VP (1) /%4 is computed, then it is well-founded and the resulting elementary
embedding, i: V — N, is such that is the critical point of i,7 < i(k),
p=i(r)and N c N.

Definition 2.3.  is said to ber—huge iff either of the conditions 1 and 2 of
Lemma 2.8 hold.

2.5 The exact assumptions

For the consistency proof of “no Aronszajn treeshyn,” we need the following:

A cardinal x and an increasing sequence of cardifats (A | | < w)

with Ao > & such that:

Ag: For A = sup{\j || < w}andp = A*, each), fori > 0, is u-
supercompact.
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Ay If P = Coll(L), then inV; = VP & is 7-huge forr = x*@*D with
witness an embedding: V; — M (as in Definition 2.3) such that
j(m) = p.

(The final model, the one with no Aronszajn trees ¥, will be obtained
from a universe that satisfiely, A, by first collapsing withColl (L), and then
using the resulting embeddingo force with the producColl (x*“*V, < j (x)) x
Coll(w, ™). We shall return to this, and in detail of course, but the reader may
want to see at this early stage how the final model is obtained.)

This requirement 4;, Ay) of a “potentially” huge withw supercompacts
above it, is somewhat technical, but it may be obtained with the following more
familiar assumptions:

A cardinal x and an increasing sequenfg | i < w) such that:

Bi: For A = supl\j | i < w} andpu = A", each), i > O, is p-
supercompact.

B.: k is the critical point of an embeddirjg: V — M wherej (k) = Ao
andM# C M.

Our aim in this subsection is to prove that if cardinaland (\; | i < w) satisfy
B; and By, then there is a generic extension in which cardinals that safisfy
andA, can be found.

Let p be a cardinal, and. = (\ | i < w) with A\g = p be any increasing
sequence of cardinals with limit such that, fori > 0, \; is A*-supercompact.
ThanL is called he minimal supercompact sequence abpvié A is the least
cardinal abovep such that the intervalp(\) contains anw-sequence of\*-
supercompact cardinals withy = p and such that each;.; is the first A*-
supercompact cardinal above.

Fix a functiong such that, for every, g(p) = (Ai | i < w) is such that\, = p
and () | i < w) is the minimal supercompact sequence abaydif it exists,
andg is undefined otherwise).

Supposej : V — M is an elementary embedding with critical point
and such thaM#” c M wherep > 20 |t is not difficult to see thats
is j (x)-supercompact, not only iW but in M as well (use the combinatorial
characterization of supercompactness, and for AngZ P (j (x)) ask whether
i”j (x) € j(X)). Hence, as high as we wish below there are cardinals that are
Kk-supercompact. So, for evepy< k, g(p) is defined and its supremum is below
K, and thus, for every < j(x), supg(p)) < j(x) as well.

Let k, u, and ()i | I < w) be as inB; andB,. So« is the critical point of an
embedding : V — M, whereM# C M, and (by taking the minimal sequence
abovej (k)) we may assume that

9G (k)= (N |i <w) =L

Thus, if Lg is the minimal supercompact sequence abeyvandr = (suplg))”,
thenj(Lo) =L, andj(7) = p.  is thus7-huge.
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For every ordinakx < j(x) a cardinalpo(c) and an iteratiorP,, of length o
with Easton support, is defined below by induction. Then, we shall d&fing
as the required poset which gives an extension wheaadL satisfyA; andA;.

1. Py is the trivial poset angg(0) = N;.

2. For limit «, P, consists of all partial function$ defined ona such that
f | veP,forall vy < a, andf has the Easton support propertam(f) N~
is bounded belowy for every inaccessible. The cardinalpg() is the first
inaccessible cardinal above all thg(v)'s, v < «.

3. If P, and pp(«) are defined, thelr,.; = P, * Coll (L) for L* = g(po(c)).
The first inaccessible above the cardinals in the sequenseg(« + 1).

Standard arguments prove that for Mahfs that are closed under the func-
tion o — sup@(ca)), P, satisfies they-c.c. Also, for anya < 3, Ps can be
decomposed aB, xR, whereR is defined inv P~ as an Easton support iteration
of collapses determined by the same functigrbut beginning withpg(«). (Su-
percompact cardinals remain supercompact in any generic extension done via a
poset of smaller size; see Levy and Solovay [6].)

SetP = Pj(,). We will show inV P thatx andL = ¢(j (x)) satisfy the properties
A; and A;. Recall thaty = A* where A = sup(). In V, we have an elementary
embedding : V — M into a transitive inner modeM such thatM# C M.
Again, the argument that small forcing will not destroy supercompacness can
show that the sumpercompact cardinalsLirremain p-supercompact iV °;
that is, A, is easy. We promised to prove that i )'®), x is r-huge for
7 = x*@*) put in fact we will find a condition irP * Coll(L) and show that
extensions through this condition satisfy this requirement. The argument is fairly
standard, but we repeat it for completeness’ sake.

Observe that

j (Prs) = [Pj(es]™,

but the closure oM undery sequences implies that interpreting this iteration in
V or in M results in the same posé. So

Q =j(Px+1) = Pj(e)+1 = Pj (i) * Coll(L).

We will find a conditiong € Q that forcesx to ber-huge (as in Definition 2.3).
In fact, the following suffices:

Lemma 2.9. There is a condition ge Q such that if K is a V -generic filter
over Q containing q, then the collectidi(p) | p € K} has an upper bound in

1(Q)/K.

The meaning and proof of this lemma are clarified by the following: Decompose
Q = Pra+l *R (1)

whereR, the remainder, is an Easton support iteration, starting aGolég(x)),
of collapses guided by, going up toj (x) + 1. Now applyj to get
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J(Q) = [Py +j (RIM = [Q +j (R

SoQ is a factor of] (Q), andj (Q)/K can be formed iM [K]. The lemma claims
first that eachj (p), for p € K, is inj(Q)/K, and then that this collection has an
upper bound.

Since 2 =y, the cardinality ofQ is .. It follows that inV[K] (M[K])* C
M [K]. Certainly,j(Q)/K is p*-closed inM[K] (in fact it is mo-closed, where
70 is the first inaccessible iM above)). Hencej (Q)/K is u*-closed inV[K].
So, to prove the lemma, we only need to chogse Q which forces that

i(P) €i(@Q)/K

for p e K.

Analyzing (1), we writep € Q asp = (po,t,r) wherepy € P,, t is a name
forced to be inColl(L*), andr is forced to be inR. Thenj(p) = (po,j (t),j (r))
(becausg (po) = po by the Easton condition). Now(p) € j(Q)/K iff the pro-
jection of j(p) on Q, namely{po,j (t)), is in K.

The definition ofq can now be given, Defing € Pj(.)+1 as (0, o), where
o € VP is forced to be irColl(L). It is easier to describe the interpretatiorvof
in V[H], whereH C Pj() is V -generic. Well, look at all conditiong € P,..+1NH
(there are< j(x) of them); write each such asp = (po,t); interpretj(t) as a
condition inColl (L), and take the supremum @oll(L) of all of these conditions.
This proves the lemma and we now see how the result follows.

Lemma 2.10. Assuming ¢ is as in Lemma 2.9,lfg « is 7-huge.

Proof. Let K C Q be aV-generic filter containingy. Work in V[K] and let

% € j(Q)/K be an upper bound ofj(p) | p € K}. We are going to define in
V[K] an ultrafilter 24 over P7(u) that satisfy the properties of Lemma 2.3. For
this, we fix (A¢ | £ € u*), an enumeration of all subsets Bf (1), and plan to
decide inductively whetheh: € 22 or not. Construct by induction an increasing
sequencds; | £ < ') of conditions inj (Q)/K as follows:

1. At limit stagesy$ < p*, use theu*-completeness gf(Q)/K to find an upper
bound to(s; | £ < 9).
2. If s is defined, pick forA; a namea, such thata:[K], the interpretation of
ac in V[K], is Ac. Thenj(ag) € MI@, and we find an extensiog.; of s
that decides whethej’(i) € j (a¢) or not. If the decision is positive, then put
A¢ € 74, and otherwise not. Two comments are in order for this definition
to make sense:
a) First,j(a¢) is not a name if(Q)/K-forcing, but inj (Q). Yet, fromM [K]
any generic extension vigQ)/K takes us into a universe that is also
a j(Q) generic extension o, and it is as such that we ask about the
interpretation of (ag).
b) Apparently, this definition depends on a particular choice of a name for
A¢, but in fact ifa; is another name, then the same answer is obtained.
The point of the argument is that some conditmim K forcesa; = aé,
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and hencejfp) I i(ae) = j(aé)]"". But sincej(p) € j(Q)/K is
extended bys, it can be seen that the answer to #ie question does
not depend on the particular choice of the name.

We leave it to the reader to prove thar thus defined satisfies the required
properties of Lemma 2.3. For example, let us prove #ats x-small belowr =
x*@* D in VIK]. For some¢ € u*, Ac = {A€ P"(1) | JANT| < k}, and a name
ac for A was chosen and an extensign, deciding whethej” ;. € j(a¢) was
thought after. But some conditigne K forcesa; = {A € P™(u) | |JANT| < K},
and hencg (p), and decidedlys, forcesj(as) = {A € Pj’((;)) [JAN](1)] < ](k)}.
Now j”u = A has order-typeu = j(r), and AN j(r) = j”r has cardinality
T <j(K).

3 There are no Aronszajn trees on successors of singular limits
of compact cardinals

The paper really begins here with the following ZFC theorem.

Theorem 3.1.If A is singular and a limit of strongly compact cardinals, then
there are no\*-Aronszajn trees.

Proof. For notational simplicity, assume theft(\) = w. Let ()i | i < w) be an
increasingw-sequence of strongly compact cardinals with limkit(Recall that

a cardinalx is strongly compact if every.-complete filter can be extended to
a k-complete ultrafilter.) LefT be a\*-tree (i.e., of height\* and levels of
size < )\) and we will find a\* branch inT. We may assume that,, the ath
level of T, is the seth x {«}. Accordingly, we defin€l, n = An x {a}, so that
To = Un<w Ta,n- The proof for the existence of the branch is divided into two
steps:

Step oneWe claim that there is an unboundBdC A\* and a fixedn € w such
that whenevery < g are both inD, then, for some € T, , andb € Tg, a <t
b. We call an unbounded sBt and a collection T, | « € D) as above &pine
of T. Thus the first part of the proof provides a spine for evehtree.

Indeed, using the fact thaty is strongly compact, extend the filter of co—
bounded subsets df (that is, those subsets whose complement has cardirality
) to a countably complete uniform ultrafiltaroverT. Givena € A\* (considered
as a level ofT) definen,, € w by the following procedure: For every e T of
level > a, letry € T, be such thaty <t x, and seth = n, to be the leash
such thatr® € T, n. Since the seT \ (T | o+ 1) is inu, it follows from the
N;—completeness af that for somen=n,, {x €T |ns=n} =X, € u.

Now there is an unbounded C \* and a fixedn such thatn = n, for
a € D. If we take any two ordinals: < 8 in D, then the intersectioX,, N Xz is
in u, and anyx in this intersection is such that=r andb =r£ are comparable
(being both belowk), and in thenth part, as required.
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Step two:Every spine has a cofinal branch. Suppose Ehandn define a spine
of T as above. That is, assuni&, » | « € D}, whereD C A" is unbounded, is
a collection such that for every < 8 in D there area € T, n, b € Tgn such

thata <t b. Find an+1—complete ultrafilterp, over A* containingD and the
co-bounded subsets. Fix anye D. For everys > « in D find a(5) € T, » and

b(5) € T such thata(8) <t b(3). Use the completeness of and the fact
that the cardinality of each level of the spine is only, to finda, € T, » and

&a € Ay such that for a set of’s in v, a, = a(8) andb(8) = (£, 3) (which is

the £,—th element ofTs , = Ay x {5}). For an unbounde®’ C D the ordinal

¢. has the fixed valug for a € D’. Now the collection{a, | « € D’} is a

branch ofT, because itvy, ap € D’ then for somes3 (in fact for a set of3s in

v) botha,, anda,, are below the&th point of Tg ..

In a very direct way, one can generalize this to find that i§ singular and
a limit of strongly compact cardinals as above, then any strong system\éver
with index-set of size< A has a branch of siz&*.

4 The narrowing property

Definition 4.1. Let > x be two cardinals, wherg. = A*. A poset Q has the
narrow derived-system property g, x) if whenever¥” is a Q-name of a strong
p-system, with< x relations, then Deriveg(.#") has a narrow subsystem.

Theorem 4.1. Suppose thak is x*“*Y-huge. That is (see Definition 2.3},is
the critical point of an elementary embeddingy — M, where M is a transitive
class such that M C M, for . = \* = j (k)*@*D. Let Q = Coll(x*“*Y, < j(k))
(or any others*“*D-closed poset of size ). Then Q has the narrow derived-
system property fofu, ™).

Proof. Suppose¥ is forced by every condition i® to be a strong system on
u, andx* is its index set. Let¥”; = Derivedg(.#"o) be its derived-system; we
must find a narrow subsystem 6f'; (that is, one of width and index set of size
< A). Theath level of ¥ (and of.¥;) is A x {a}, and we denote it byS),.
The nth part of this level, which has siZéx)™, is denoted %)qn-

Observe thaf (Q) is u—closed inM since Q is x*“*Y—closed andu =
j (7@, In fact, j (Q) is u—closed inV sinceM is sufficiently closed.

j(0) is in VIQ a strongj (1)-system with relations indexed Gyx*) =
j(k)* = A. The ath level of (%) is j(A) x {a}. It is more convenient to
denote this level byj$).. Similarly, thenth part of this level is denotedS)qn
(i)™ x {a}).

It follows from the closure oM underpu-sequences (and the fact that<
j(w) thatj”p is a bounded subset ¢fu) in M, and we let3* < j(u) be a
bound ofj”u. Let b* be any fixed ordinal i (\) x {3*} (sob* is a node of
level 5* in j(.%0)).

Inductively, define—inM—a j (Q) increasing sequence of conditiofis, |
a < u}, starting with any condition, as follows:
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1. At limit stages, theu-closure ofj (Q) is used to find an upper bound to the
sequence of lengtk: i so far constructed.

2. If s, is defined, thers,+; is defined as follows: Sincg(.¥") is forced to
be a strong system, there existe (jSo);) and ¢ < A such that(a, b*) is
forced by some extension &f, to stand in theth relation ofj ((%"g). So we
pick s,+1, extendings,, a. € (1So)j), and¢, such that

Sa+1 IFj(@) (@a,b™) stands in thel,th relation

Since\ < pu there is a fixed,® < ), andn € w, such that for some unbounded
setD C pu, ¢, =¢° anda, € (jSo)a.n for all a € D.

Now the derived-systen¥”; has widthA and relations indexed b@ x ™.
We claim that the narrow substructure .6f; defined by{(S)a.n | @« € D}
is a system, thereby proving the theorem. If this is not the case, then for some
a1 < apinD,

there are n@y € (S)a,,n andaz € (S)a,.n Such that(a;, ay) stands in a
relation of.¥1,

or specifically, “there are na; € (S))ay.n, &2 € (V)ayn: 4 € Q, @and¢ € k™
such thatq I+q (a1, &) stand in the(th relation.” But then, applying to this
statement we get a contradiction to:

Supt1  IF {(8q,,D*), (aa,,b*) and hence(a,,,a,,) as well stand in the
¢Cth relation

Corollary 4.2. Let x be x*@*D-huge (as in the theorem). Then it is possible to
collapse j(k)*“*D to beX,.; with a forcing poset that has the narrow derived-
system property fofj (<)"“*1, w). In other words, there is a forcing poset P such
that

1. j(k)"“*D becomesX,+1 in VP, and
2. the derived-system Derive@l¥”) of every strong system orfs)*“*1 with
countably many relations in ¥ has a narrow subsystem (in V).

Proof. The desired poset is simply the collapsej ¢f) to becomeX,, but not

in the most direct way. It is rather the product of two collapses that works: the
collapse ofx*“ to Ny, and the one that makééx) the double successor af*
(both posets are defined ). Let Q = Coll(x™“*D, < j(k)), K = Coll(Xg, %),

and thenP = Q x K is the desired collapse. MF, x*“ is countablex*“* is

Ny, j (k) is Rp, andp = A* = (k)*“*D) becomes? .

So let.#o be in VP any strongu-system with a countable set of relations;
thenDeriveds (.¥o) can be obtained in two stages, corresponding to the product
P = Q x K and to the decompositiod” = (VO)X. First, inV?, form .7, =
Derived (* o). Then.#; is in VQ a strong system op, with [K| x Rg = x*
relations, one relation for each pair formed with a conditioiKiand a relation
(index) in.¥"o. Hence, by the theoremerivedy(-7"1) ~ Deriveds (.7"o) has (in
V) a narrow subsystem as required.
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5 The potential branching property
and a model with no Aronszajn trees

Suppose: = A*. The potential branching property far is the following state-
ment:

If . is a narrow system op, then for everyy < A there is ay-complete
forcing poset that introduces an unbounded branckto

Recall that a branch of a system is a set of nodes and a relation in the system
which includes every increasing pair from the set. In the following section we
will see how to obtain the potential branching property, but here we use it to
obtain a model with no Aronszajn trees 8p3+1.

Theorem 5.1. Let x be x*“*D-huge and suppose that the potential branching
property holds foru (Wherep = j (x)"“*D). Then there is a generic extension in
which . become®X?, and it carries no Aronszajn trees.

Proof. The poseP of Corollary 4.2 works. Recall th&@ = Coll (x*“*D, < j(k)),

K = Coll(Xg, x**), and thenP = Q x K. The cardinality ofP is x =j(x). We
know by Corollary 4.2 thaj(x)*“*V) is R,.1 in VP and that the derived-system
(via P) of any strong system ovg(x)*“*D with countably many relations has
a narrow subsystem ¥ . We will prove that there are np—Aronszajn trees in
A

Suppose thal is in VP a name of au-tree. We will first show that there
is in V a y*—complete poseR such that, in Y )R, T acquires an unbounded
branch. Then the preservation theorem (2.1, applied with (x)*) shows that
T has a branch already M".

To see howR is obtained, apply Corollary 4.2 16, considered as a single-
relation strong system, and findV¥ha narrow subsystertr” to Deriveds(T). But
then fory = |P| < X there is (by the potential branching propertyy‘acomplete
forcing posetR that introduces an unbounded branch#a This can be shown
to give an unbounded branch to the tfeen VP*R. But then the preservation
theorem shows thak already has a branch MP.

6 The final model

For the consistency afo Aronszajn trees oR,.; we must show how to obtain
the assumptions of Theorem 5.1, namely how to get a cardimdiich is *“*1-
huge with the potential branching property fiqr)"“*. The main point is to
prove that whenever aw sequence of supercompact cardinals converging to
A is collapsed, then the potential branching property Xdolds. When this is
combined with assumptios andA, described in Sect. 2.5, then the assumptions
for Theorem 5.1 are obtained.

Theorem 6.1. Suppose(\; | i < w), with X = [J;_, A and p = X", is an
increasingw—sequence gi—supercompact cardinals (except fag which is just
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a regular cardinal). Let C= Coll((A | i < w)) be the full support iteration that
makes\; to be\{'. Then, in \F, the potential branching property holds far

If .7 is a narrow system om, then, for every k< w, there is a\—
complete forcing that introduces an unbounded branclvto

Proof. We will actually prove the following combinatorial statementvr:

For everyn < w and functionF : [u]?> — x, wherey < \,, there is
a \,—complete forcingC* such that in Y ©)¢" the following holds: For
somev € x there is an unbounded ddt C . such that for every; < a;
in U there isg > «a» such that

Flaa, B) = F(az, ) = v. )

(We call such a seV “a branch” ofF.)

First, we argue that this statement suffices to prove the theorem¥Let
(T,R) € V€ be a narrow system over, and lety < X\ be such that the width
of .7 and the cardinality of its index set ate x. Suppose thay < A\, and we
will find a Ap.—complete forcing that introduces an unbounded branctr'td=or
this, define inv° a functionF : [p]? — x° by

F (a1, ag) = (¢, m, 1) iff the 7 member ofT,,, and ther, member ofT,,,
stand in theg relationR.

Then, by the assumed combinatorial principle, there is an unboundéd Get,
and fixed ordinals’ = (¢, 71, 2) as in Eq. (2). This implies that the-th points
of T, (that is (m,«)) for & € U form anR; branch of.¥” (use item2 in the
definition of systems).

We now explain why it suffices to prove the combinatorial principle for
n = 0. GivenF : [u]> — x wherey < \, in V¢ (suppose for simplicity that
everycondition inC forces thatF is into x), decompose&C ~ C, x C" where
Cn = Coll((\i | i < n)), andC" is the name iV of Coll((\ | n <i < w)).
In V& define\,, = An+m. Then each\l,, for m > 0 is u—supercompact. (Indeed
the embedding : V — M with critical point \¢, for k > n, can be extended in
V& to an embedding of © into M &, whereM © possesses the sameclosure
properties.) Thus, if we know case= 0 of the theorem vy = V[C,], we could
apply it there toC" = Coll((\ | i < w)) and get inV, " =VC the desired\;—
complete f,—complete) poset that adds a branchH-toTo save ourselves from
too many superscripts, we dendté by V. andM by M and assume = 0.

So, returning to the theorem, assume Bat aV -generic filter ovelC, and
F is in V[G] a function from []? into y < Ag. In the following lemma, we
will describe a\g-complete forcingP in V[G] that introduces a.-branch toF.
Letj : V — M be an elementary embedding with critical poikyt, such that
j(A1) > p andM s closed inV underp-sequences. The following lemma will
be proved later on.
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Lemma 6.2. There is in {G] a Ao-complete poset P such that in[®]" there
is an extension of the embedding j to an elementary embeddind ®f Wto
N =M (G)].

Accepting the lemma for a momentF) € N can be defined; it is a function
on [j (11)]? and intoy < Xo (j is the identity below),).

Sincej (i) > pu, there is an ordinab < j(u) above all the ordinals i’ .
Now, for eacha < 1 we can find somé& < x such that

J(F)( (), ) = <.

Sincex < Ap, and asu is regular inV and no new sequences of length\q are
added toV in V[G]P, we may find a singl& such that for unboundedly many
a’'s the equalityj (F)(j (o), 5) = ¢ holds. Sincq is elementary, it follows that
for any ay < a3 in this unbounded sét (a3, b) = F(az,b) = ¢ holds for some
b > as, b < p. Thus an unboundeg-branch for¢ was found invV [G]P, which
is a \g—closed extension of [G].

We turn now to the proof of Lemma 6.2. The collapsing p&&et Coll(\g, <
A1) is a factor ofC = Coll({(\i | i < w)), and for simplicity of expression, we
identify ¢ € C; with the condition{c; | i < w) € C defined bycy =c and¢; =
fori > 0.

Denote each (Aj) with Af. Then A\§ = Ao, but A; > p. In M, j(C) is
[Coll((\F | i € w))IM, andC; = Coll(Ag, < A}) (which is the same—defined in
V orin M) is a factor ofj (C) = [Coll (X | i < w))M.

Let G C C be aV-generic filter overC. Observe that ifc; | i < w) € G,
thenc € G as well. In order to extendl on V[G] and to prove the lemma,
we should find inV[G] a Ao-complete poseP such that inV[G]® there is a
V -generic filterG* overj(C) such that

If g € G, thenj(g) € G*.

If we do so, then an embedding ¥f{G] into M[G*] can be defined as follows:
For anyx € V[G], let x be a name ok in V. Thenj (x) is a name iV () and
we defingj’(x) to be its interpretation itM[G*]. We trust the reader to check
thatj’ is a well defined elementary extensionjof

Instead of writing dowrP, we will describe it as an iteration of two exten-
sions, each ongg-complete.

Since the cardinality o€ is p, 1 < A} is collapsed to\ in VC', Lemma
2.7 implies that there is a projectiofif, of C;" onto C, which can be used to
find a generic extension &f [G] which has the formVV[H] for a V -generic filter
H overC; such that:

1. The passage froM[G] to V[H] is done by forcing with a\o-closed forcing.
2. Foreveryce C;,ceGiff ce H.

Thus, for everyg € G, j(g) € j(C)/H. Indeed, anyg € G has the form
g ={(c,r) wherec € C; NG, andr is the remaining part of the sequence. Then
i(g) = (c,j(r)) wherec € C;f nH, and thug (¢g) € j(C)/H.
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It follows thatj”G (the image ofG under the restriction of to C) is in
M[H] a pairwise compatible collection of conditionsji(C)/H . Sincej(C)/H
is isomorphic taColl (A | i > 1)) in M[H], itis A;-complete, and a supremum,
denoteds € j(C)/H can be found foj”G. This is our “master condition”: If
G* is anyV [H]-generic filter overj (C)/H, containings, then:

1. G* is in factV-generic ovejlj (C).
2. The forcingj (C)/H is A\j-complete inM[H], and it is thence\o-complete
in V[H] (becauseM[H] is Ao-closed inV[H]).

7 Conclusion

We have proved the following theorem:
Theorem 7.1. Assume a cardinat and sequence & () | i < w) such that

Bi: For A=sup{)\ | i <w}andp=A* each), i > 0, is u-supercompact.
B,: « is the critical point of an embedding;jV — M where j(x) = Ao and
MHCM.

Then there is a generic extension in which there areXpg, Aronszajn trees.

Indeed, in Sect.2.5 we saw that by making a preparatory extension we may
assume thatk is such that ifC = Coll(L), then inVC & is x*@*D-huge. So,

we go toVC, and find that the potential branching property for j (x)*«*?

holds (by Theorem 6.1). But now, MC, all the assumptions for theorem 5.1
hold. Thus, in a final extension, obtained as a producColl (x*“*D, < j(k))

and Coll (R, x**), there are no Aronszajn trees 8n.1.

AcknowledgementsOur thanks to Uri Abraham for writing up the paper and to both him and James
Cummings for simplifying some parts of the original proof.
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