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Abstract. REF is the statement that every stationary subset of a cardinal reflects, 
unless it fails to do so for a trivial reason. The main theorem, presented in Sect. 0, is 
that under suitable assumptions it is consistent that REF and there is a x which is 
x +"-supercompact. The main concepts defined in Sect. I are PT, which is a certain 
statement about the existence of transversals, and the "bad" stationary set. It is 
shown that supercompactness (and even the failure of PT) implies the existence of 
non-reflecting stationary sets. E.g., i fREF then for many 2's --7 PT(2, N1). In Sect. 2 
it is shown that Easton-support iteration of suitable Levy collapses yield a universe 
with REF if for every singular 2 which is a limit of supercompacts the bad 
stationary set concentrates on the "right" cofinalities. In Sect. 3 the use of oracle 
c.c. (and oracle proper - see [Sh-b, Chap. IV] and [Sh 100, Sect. 4]) is adapted to 
replacing the diamond by the Laver diamond. Using this, a universe as needed in 
Sect. 2 is forced, where one starts, and ends~ with a universe with a proper class of 
supercompacts. In Sect. 4 bad sets are handled in ZFC. For a regular 2 
{6<2+:cf6<2} is good. It is proved in ZFC that if 2=cf2>N1 then 
{~< 2+ : e f t<  2} is the union of 2 sets on which there are squares. 

0 Introduction 

We continue here Magidor-Shelah rMgSh204] and rSh88a] (which is an 
improved representation of [Sh 108]), generalize the oracle c.c.c, forcing notion 
[Sh-b, Chap. IV], and solve a problem of Ben David [BD]. 

In Sect. 3 we rely heavily on the Laver indestructibility of supercompactness 
(Laver [L]) for <x-directed closed forcing notions, which Baumgartner gen- 
eralized to some not < x-directed closed forcing. 

For the background and the history of reflection see the recent Mekler and 
Shelah [MkSh367] and Jech and Shelah [JSh387]. For applications of Sect. 4 see 
[Sh300, Ch. III, Sect. 6,7] and Baldwin and Shelah [BSh387]. Lemma 4.4 
improves [Sh237e]. An argument which shows that assuming the GCH is 
natural for the problems we deal with is given in [-Sh 355]. 
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26 S. Shelah 

An innocent reader may wonder if he has read the author's name correctly. The 
author gave, in the spring of 1988 a handwritten manuscript to A. Levy for having 
it typed for submission to the Archive for Mathematical Logic. Since then he has 
been rewriting it, squeezing out of me lengthy replacements for many explicit and 
implicit "left to the reader", "well known", "clear f rom.. ." ,  etc. All the thanks for 
the presentation and the much better English (except in this paragraph) should be 
directed to him. 

In the statement of the next theorem REF denotes the assertion that all regular 
cardinals > NI are reflecting in the sense of Definition 1.2. Our main results are as 
follows. 

0.1 Theorem. (1) I f  V has sufficiently many supercompacts (see 3.7) then in some 
forcing extension: 

G C H +  R E F +  there is a x which is x+~ 

(2) I f  G C H + x  is x+('~ then REF fails. In fact, there are 
singular strong limit cardinals 21<2  a of cofinality co and a stationary 
S ~ {6 < 4 + :cf6 = 2 + } which does not reflect. 

For  a class A in which the axiom of extensionality holds we shall denote withja 
the Mostowski collapse of A. 

0.2 Definition. 1) x is a 2-supercompact for A c= Ord (really a ]H(2)l-supercompact 
for A) if: there is a normal x-complete fine ultrafilter D on ~<~(H(2)) 
= {a_-__ H(2) :lal < x} such that 

{a ~ 5e< ~(H(2)):jZ(anA) = A n j , "  a} ~ D 

In this case we say that D preserves A. 
2) F:  ~e~H(x) is a Laver diamond [ for  O] if for every 414 < 0] and x ~ H(2) for 

some normal x-complete fine ultrafilter D on 5e< ~(H(2)) 

{a ~ 6a< ~(H(2)) : x ~ a ^ ja(x) = F(anx)} ~ D. 

In this case we say also that F is a x-Laver diamond [for 0]. 

0.3 Fact. Forcing by a forcing notion of power < x preserves "x is 2-supercompact 
for A", for 2 with cf2 > x, and "there is a Laver diamond for 0". 

Proof Let P be a forcing notion of power < x  and let c f2>x .  Let x be 
2-supercompact for A and let D be an ultrafilter on 60< ~(H(2)) witnessing that. We 
define now an ultrafilter D ~ over 50< ~(H(2)) vt~l in V[G], where G is P-generic over 
V. For  a ~ 5e<~(H(2)) we define 

aG = a u  {ziG] : z ~ a ^ T is a P-name ^ 0 If- z[G] ~ H(2)vt~l}. 

For  X=cse<~(H(2)) we define X ~ = { a ~ : a ~ X } .  O~ is defined to be the filter 
generated by {X ~: X e D}. 

To prove that D ~ is a x-complete filter we shall show that if To= {XG:X  ~ D} 
and ]T[ vt~l < x then (-] T~ D G. Since [P[ < x there is a T' ~ V, T' __c D, IT'[ < x such that 
T_c {X ~ :X e T'}. Let Y= 0 T' then Y~__. 0 T, and since D is x-complete Y e D  and 
thus ( ' /Te  D ~. Since H(2) vt~l = {z[G] : z-e H(2) ^ z is a P-name ^ 0 Ik- ziG] e H(2)} 
it follows easily that D ~ is fine. Let us see now that D ~ is an ultrafilter. Let _o- be a 
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Reflecting stationary sets 27 

P-name of a subset of 50<~(H(2)) vw]. We define an equivalence relation E on 
50< ~(n(2)) by setting 

a E b ~ ( V p ~  P)(plF-aG~a_ .c~ p l~ -b~  a_). 

E has < I~(P)I = 21el < x equivalence classes, hence one of them, which we shall 
denote with X, is in D. Let a ~ X. If aG ~ _a[G] then X G__ _a[G] hence _a[G] ~ D G. If 
a G ~ _o-[G] then X ~ ~ 50< ,,(n(2))vt~l\a_ [G] hence 50< ~(H(2))\_a[G] ~ D ~. 

In order to show that D ~ is normal let us first mention a few simple properties 
of D. Since IPI < x  we can assume that PC=x and since D is fine and x-complete 

{a ~ 50< ~(H(2)): P = a} ~ D. 

Let F be a function on 50< ~(H(2)) such that for every a ~ 50<,(H(2)) F(a) c= a. Then, as 
easily seen by the fineness and normality of D, if 

F =  {u ~ H(2): {a ~ 50< ~(H(2)) : u e F(a)} ~ D} 

then {a ~ 5~ ~(H(2)) : F(a) = ac~F} ~ D. Similarly, it is easily seen that 

{a ~ 50< ~(H(2)) : (Vu, v ~ a) (u, v) c a} ~ D. 

Using these facts it is easy to prove that {a ~ 50< ~(H(2)): Every partial function from 
P into a is in a} ~ D. The same methods show that for the usual way of defining a 
P-name of a set in V {a E 50< ~(H(2)): a contains a P-name of every member of a} ~ D, 
hence for almost all a's a o = {ziG]: "c ~ a A �9 is a P-name /x 0 1~- ziG] ~//(2)}. 

Let _a be the name of a function ~ V[G] such that q[G](aG)eaa for every 
a e 5~ ~(H(2))- {0}. For  every a ~ 50< ~(H(2))- {0} let fa be a function on an open 
dense subset of P into a such that for p ~ D o m ( f )  either p 1[- _o-[G] (aG) r aG and fa(P) 
is an arbitrary member of a, or f,(p) is a P-name �9 such that _~ e a A 0 I~-_~[G] e H(2) 
and p I~- _a[G] (aG) = _~[G]. By what we saw above, for almost all a's, in the sense of 
D, fa e a, hence there is a function f from an open dense subset Q of P into 
50< ~(H(2)) such that for some Yr D we have for all a ~ Y f ,  =f .  Let p ~ Q c~ G. Since 
p e G it is not the case that p I~ _o-[G] (aG) ~ a~ hence for _~ =f(p)  we have for every 
ae Y Pll-a_[G](aa)=z[G], hence for every ae Y~ q[G](a)=~_[G], and we have 
established the normality of D ~. 

In order to complete the proof  of the preservation of the A-supercompactness 
we still have to prove the "for A" part of this property. It is easy to see that there is a 
Y e D  such that each member a of Y has the following properties (i)-(iii): 

(i) For every P-name ~ which is in a all possible values of z which are in H(2) are 
also in a (there are < x such values). 

(ii) a is an elementary substructure of H(2) and therefore, since P e H(2), also a~ 
is an elementary substructure of H(2) vtGl. 

(iii) j,"(ac~A)=Ac~ja"a (this is possible by our hypothesis on D). 
By (i) aGc~V=a and J , = L ~  IV. By (ii) Ja and Ja~ map only ordinals to 

ordinals and thus, by (iii), 

L~"(a c~ A) =j ,"(a  ~ A) = A ~j,~"a = A ~j,"(a ~ Ord) = A ~j~"(a~  ~ Ord) = A c~j,~"a~. 

This ends the proof that x is 2-supercompact for A in V[G]. 
Now let us assume that F:  x =~ H(x) is a Laver diamond for 0. Let F' ~ V[G] be 

defined by F'(~) = F(~) [G] if F(~) is a P-name, and F'(~) = F(~) otherwise. We shall 
prove that F' is a Laver diamond in V [for 0]. Let 2 < 0, and assume that for some 
p ~ G and some P-name _~ 
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28 S. Shelah 

PI~ "the value x of "c is in H(2) and is counterexample to F' being a Laver diamond". 

Thus for some # < 0 and q, p < q e P, q I~-~ e H(# § and without loss of generality 
2 = #  +. Since F is a Laver diamond for 0 there is a x-complete normal fine 
ultrafilter D on 6e<~(H(2)) such that 

{a e 5e< ~(H(z)) : _~ e a ^ j~(r) = F(a~x)} e O. 

It is easily seen that 

P I~-"D~ is as required for F' to be a Laver diamond in V[G]". 

1 Reflection of stationary sets versus existence of supercompaets 

1.1 Definition. 1) PT(#, 2, x) means: 
I fA is a family of power/~ of sets which are of power < x and every A' e I-A] <~ 

has a transversal then also A has a transversal. 
2) PT(</~, 2, x) is defined similarly except that Ial < #. 
3) PT(<  ~ ,  2, x) is defined similarly except that IAI can be of any cardinality. 
4) PT(2, x) is PT(2, 2, x). 

1.2 Definition. 1) Let 2 be a cardinal with cf2 > o~ and let S be a stationary subset of 
2. We say that S reflects at 6 if 6 < 2, cf6 > 09 and Sn6 is a stationary subset of 6. 
Since 6 has a club subset consisting entirely of ordinals of co finality < cf6, if S 
reflects at 6 then S must have members of cofinality < cf& We say that S reflects if it 
reflects at some 6. 

2) For a regular cardinal 2, we say that 2 is reflecting if for every regular x such 
that x + < 2 and for every S ~ {a: a < 2, cfa = x} which is a stationary subset of 2 S 
reflects. By the remark above S can reflect only at 6's with cf6 > x. 

3) For  a class K of regular cardinals REF(K) denotes the statement that every 
2 e K is reflecting. 

4) REF denotes the statement that every regular cardinal > Nx is reflecting. 

1.3 Fact (~CH). I f  x is supercompact then 
(*) there are singular cardinals 2x<22 and a stationary subset S of 2~-, 
S____ {6 < 2 + : cf6 = 2~ } which does not reflect. 

Proof This follows from 1.4 since if x is supercompact then, as is well known and is 
easily seen, PT( < ~ ,  x, x), and this implies for all 0 < x < 2 PT(2 +, 2 +, 0), which is 
the hypothesis of 1.4. 

1.4 Fact (GCH). I f  c f 2 = 0 < 2  and PT(2 +, 0 +) then 
(*)0 for some singular cardinals Z~ < 2 2 < 2  of coflnality 0 there is a stationary 
subset S of {6 < 2 +. cf6 = 2~ } which does not reflect. 

Proof Let (Z~: i < 0) be an increasing sequence of regular cardinals < 2 such that 

sup Z~ = 2. As shown, e.g., in [MgSh 204, Lemma 3], one can choose for every 
i<O 

~<2+ f~e X zl such that: 
i<O 

(i) For ~</~ f~<*f0, i.e., for all sufficiently large i<O f~(i)<fo(i). 
(ii) For every f e  X Zi there is an ~ < 2  + such that f<*f , .  

i<O 
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Reflecting s ta t ionary sets 29 

Let f =  (f~: ~t < 2 + }. For A _z__ ;t + and b _c 0 we say that f is ascending on A over b 
if 

(Ve, fle A) (Vie b)(a < fl~f~(i) < f;(0) �9 

We say that that f is almost ascending on A over b if for some i o < 0 f is ascending 
on A over b n  [io, 0), where [i, 0) = {i: i o N i < 0}. For  f we define the bad stationary 
subsets of 2 + to be as in [MgSh 204, Sect. 1, preceeding Theorem 11]: 

bad(~) = {6 < 2+ : cf(6) > 0 ^ for no unbounded subset A of 6 

is f almost ascending on A over 0}. 

bad'(]) = {3 �9 bad(]) : cf~ > 20}. 

As shown in [MgSh 204, Sect. 1] we have, for every 3 < 2  + 
(PrO 3 ~ bad'(])=~ cf3 is the successor of a singular cardinal of cofinality 0. 
(Pr2) 3 r bad ( ] )~  there is a club subset C of 3 disjoint from bad(f) .  
By the G C H  (Prz) holds also for every 3 r bad'(0. 
Now bad'(]) is stationary in 2 +, since otherwise, as follows from the proof of 

[MgSh 204, Theorem 2], our hypothesis PT(2 +, 2 +, 0) fails. 
Let 3 < 2 + be the least ordinal 3 such that 3c~bad'(]) is stationary in 3 [there is 

such a 3 since bad'C-f) is stationary in 2+]. By (Pr~), and the remark following it, 
3 �9  or 3 = 2  +. By (Prl), or by our choice of 2% cf3 is the successor of a 
singular cardinal 22 of cofinality 0. Let h:2~ ~ 3  be strictly increasing and 
continuous and with the range unbounded in ~, hence 

S '=  {~ <).2 :e = U e ^ h(a) e bad'C-f)} 

is stationary, and does not reflect. As cfct = cf(h(e)) for limit ordinals e, the cofinality 
of each a E S' is the successor of a singular cardinal 2] of cofinality 0. As 2] < 22, 
there is an ordinal 2~ < 22 such that S = {~ �9 S': 2~ = 21} is stationary. S, 21, 22 are as 
required. 

1.4A Remark. In the definition of badC0 we can replace, equivalently, the part "for 
no unbounded subset A of 6 is f almost ascending on A over 0" by "some 
unbounded subset A 0 of 6 has no unbounded subset A such that f is almost 
ascending on A over 0". 

Proof To prove the non-trivial direction of the remark let cf3 > 0 and let A be an 
unbounded subset of 3 such that for some y* < 0 f is ascending on A over [7*, 0), 
and we shall show that every unbounded subset Ao of 3 has an unbounded subset 
A' on which f is almost ascending over 0. 

We can assume, without loss of generality, that the order type of A is cf& Let 
A = {aj :j < cf3}. For everyj < cf3 let flj < 3 and kj <cf6  be such that aj < flj < ~,~ and 
flj e A o. We clearly have f~j <*fpj <*f~k, hence there is an ordinal 7j < 0 such that for 

. . . . .  J 

all 7j < * <  0 f~ 0 ) <  fp (0 < f ~  (0. Since cf6 > 0 there is an unbounded subset X1 of 
,~ j . �9 . . I[ II cf6 and a y < 0  suJa that fbr e v e r y j e X 1  7 j=y  . Since cf6 is regular there is a 

subset X2 of XI  such that if j  < f <  cf3 andj, j ' e  X2 then kj <j ' .  Let 7 '= max(y*, 7 u) 
and A' = {flj :j e X2}. A' is an unbounded subset of Ao and 7' < 0. We shall now see 
that f is ascending on A' over (7', 0). Let fl, fl' �9 A', fl < fl', then for somej  <j' < cf3 
j,j ' �9 X 2 we have fl = fl~ and fl' = fly, and, by the definition of X~, k; <j ' .  For ~' < i < 0 
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30 S. Shelah 

we have 

fp(i)=fp,(i)<f=~,(i), since i>T '~Tt l=Ta.  

f=,j(i)<f~j,(i), since kj<j' ,  ~kj, aj, e A  and i > ? ' > ~ * .  

f=~,(i) < fpj,(i) =fa,(i), since i > V' > VII = ~j,. 

1.4B Remark. The cardinals 2~, 22 and the set S which we have obtained in the 
proof of 1.4 can be chosen so that S_-r bad ' ((  f ' l a  < 2+ )), where for some increasing 

sequence (Z=,i: i<O) of regular cardinals with supz2,i=2= ( f~ la<2~- )  is such 
,<0 

that for every a < 2 ]  f~'e X z2,i and 
i<O 

(i) For a < f l < 2 ~  f '<*fA. 

(ii) For every f e  X z2,i there is an a < 2  + such that f<* f ' .  
i<O 

Proof For every fl < 2 + such that cffl > 2 o let f~* e X zi be a least upper bound of 
i<O 

(f= : a < fl), in the sense that f~ <*f~* for every ~ < fi and for every function g on 0 if 
g <*f~* then for some a < f lg <*f~. For a proof of the existence of such an f~* see 
[Sh68, L e m m a l l B  and (*), p. 61] or [ S h l l l ,  2.3, p. 269] or [MgSh204, 
Lemma 5]. We shall now see that if h is a function on 0 such that for every a < fl 
f~ <* h then f~* < h, i.e., for some io < 0 i > io +f~'(i) < h(i). Let g be the function on 0 
glven by 

g(i)= {~(i) ifotherwiseh(i)<f~'(i) 

Since, without loss of generality, f*(/) > 0 for every i < 0 we have g <*f~, hence for 
some ~ < flg <*f r  Since also fr <* h the set {i < 0 : g(i)= h(i)} is bounded hence, by 
the definition of g, {i < 0: h(/) < f~*(i)} is bounded, so f~* <* h. Now we shall prove 
the following lemmas and then return to 1.4B. 

1.4C Lemma. For 5 < 2 + with cf5 > 2 o let a~ = { i < 0" cff*(i) < cf5}. For every subset 
b of 0 there is an unbounded subset A of 6 such that f i s  almost ascending on A over b 
iff a~c~b is bounded. In particular, for b=O, 5Ebad'(-t) /ff c f 5 > 2  ~ and a~ is 
unbounded. 

Proof First we prove that there is an unbounded subset A of 6 such that f i s  almost 
ascending on A over O\aa. This implies, trivially, that if b = 0 and b~aa is bounded 
then f is almost ascending on A over b. 

Let h:c f6~6 be such that Range(h) is unbounded in 6. We shall define, by 
induction on j < cf5, aj and ~j such that 

(1) h(j), U a k < a j < 5 ,  
k < j  

(2)  j<o, 
(3) If k <j ,  ~k, ~j < ~ < O, and ~ ~ aa then f~(~) < f~(~) < f~*(~). 
In the j-th step we define a function g3 on 0 such that for ( <  0 

5sup{f~(~):k<j^f~(~)<fa*(~)} if (q~aa gj{~)= 
if ~ e a  a" 
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Reflecting stationary sets 31 

For ( r a6 we have, by the definition of a~, cff~*(0 > d6,  and since g j(() is the least 
upper bound ofj  < cf6 - many ordinals < f~*(0 we have also gj{() < f*((); for ( ~ a6 
g~(() < f~*((), since we can assume, without loss of generality, that f~* > 0 for every 
( < 0 .  Thus gj<*f~* and hence, since f~* is a least upper bound of {f~:~<g}, 
gj < f~ for some ~ < 6; let ~j be such an ~ which also satisfies (1). Let (j < 0 be such 
that 

(j < ( < 0 ~ g j{() < f~j(O) < f~*(0; 

clearly ~j and (] satisfy (1)-(3). Since c f6>2  ~ there is a ( * < 0  such that 
{j < cf6 : (j = (*} is unbounded in 6. Thus f is ascending on 

A =  {o~j:j <cf6 ^ ( j=(*}  

over ( 0 -  a~)n [(*, 0). 
To prove the other direction of the lemma it suffices to assume that f is 

ascending on A over b, where A is an unbounded subset of 3, and show that a~nb is 
bounded. Let g be the function on 0 given by 

~sup{f~(i):c~A} if i e b  
g(i) = (fz*(i) otherwise" 

For ~ < 6 f~ <*f~*; let (o < 0 be such that (o < i < 0 ~f,(i) < f~*(i). Since cf6 > 2 o A has 
an unbounded subset A' such that for some (' < 0 ~ e A ' ~ ( ,  = ('. Thus for ~ e A' and 
~'<i<O f~(i)<fo*(i), hence for iebn[~',O) 

g(/) = supf~(i) = supL(/) < f~*(i); 
aeA ~eA'  

thus g <*f~*. For any ~ < 6 let ~' ~ Ac~(~, 6), then, clearly, f~ <*f,, <*g. Thus g is an 
upper bound of {f~ : ~ < 6}, hence, as we have shown above, f~* =<*g. g =<*f~* and 
f~* =<* g imply that for some io < 0 io < i < 0-~f*(i) = g(i), hence io < i < 0 ~ cff~*(i) 
= cfg(i). For io < i ~ b the sequence <f,(/) : ~ e A> is ascending and hence cff~*(i) 
=cfg(i)=cfA = cf6. Thus aac~bC= io and a~c~b is bounded. 

1.4D Lemma. For 6 < A + with of 6 > 2 o and for every cardinal I~ such that/~ + < of 6 
the set b= { i < O : cf f~*( i) <=1~ + } is a bounded subset of  O. 

Proof For every i~ b let Ci be a co final subset of f~*(/) of cardinality cff~*(/). For  

every t ~ X C~ let gt be the function on 0 given by: 

otherwise" 
Clearly gt<*f~*, hence for some at < 6 g~ <*f~c 

,X C, = ~  cff*(i)< (# +)0 <cf3 

(since #+, 0 + <cf3). Therefore 

sup ~c~t : t ~ X c ~  < of 6, 
1 ieb J 

and if we denote sup ~et:te X Ci~ with ~ we have gt <*f~ for every t e X Ci. Since 
l ieb J i~b 

f~ <*f~* there is an io < 0 such that io < i < 0 ~f~(i) < fa*(/); hence there is an s ~ X c~ 
ieb 
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32 S. Shelah 

such that i e b\i o ~f~(i)< s(i)= g~(i). If b were unbounded this would contradict 
g~ <*f~. 

Proof of t.4B (continued). We change now somewhat the construction in the 
proof of 1.4. By (Prl), for every �9 ebad'(i) cfc~ =(2~) + where ;t~ is a singular limit 
cardinal of cofinality 0. Since 2~ <(2~) + =cfc~ <~  there is, by Fodor's theorem, a 
stationary subset T of bad'0) and a singular cardinal 2~ such that 2~ = 2~ for every 

~ T. For  every ~ ~ T__c bad' (i) cfc~ > 20 and a~ ____ 0, and since 0 = cf,~ < 2 < 2 + we have 
20 = 0 + < 2 <)~ +, and therefore there is an a = 0 and a stationary subset S of T such 
that for every a~S a~=a. Let 8 < 2  + be the least ordinal 8 such that 8nS  is 
stationary in 8, let cf8 =2~-, and for i<O let )~2,~= cff*(i). Clearly )~2 > 2~, since 8 
has a club subset of ordinals of cofinality < cf8 = 22. If 8 = 2 § then 1.4 B holds with 
f~ =f~ for 0~ < 2 + and Z2,1 = Zi for i < 0, so we are left with the case where 8 c bad'(1). 

Let us see now that a\a~ is bounded in 0. By 1.4C ~ has an unbounded subset A 
such that for some io < 0 f i s  ascending in A over ( a -  a~)n [io, 0). Let A' be the set of 
all accumulation points of A in 8. For every fle A' Ac~fl is an unbounded subset offl 
and (f~ : ~ < fl) is increasing in Ac~fl over (a\a~)c~ [i0, 0). Since A' is a club subset of 
8 and S is stationary in 8 there is a fle A'nS. Since fl ~ S aa = a. By 1.4C af~(a\a~) 
n [i0, 0) is bounded, hence also a\a~ is bounded. 

We shall now see that we can assume, without loss of generality, that a~ = 0, i.e., 
that for i < 0 Z2,~< 22, and, moreover, that (Zu,~: i < 0) is an ascending sequence. By 
1.4C a is an unbounded subset of 0, and since a\a~ is bounded ac~ae is unbounded. 
By l A D  {Z2,i:i~ac~ae} is unbounded below 22, and since cf22=0 ana~ has an 
unbounded subset b such that ()~2,~:i~ b) is an ascending sequence of infinite 
cardinals. Let h be the order-preserving function mapping 0 on b. For i<  0 let 
)~!l :Zh(i), )~,i=Z2,h(i), and for every function f on 0 let fll =fh. We shall now see 
that if we replace in 1.4 ( ) ~ : i < 0 )  and f = ( f ~ : e < 2  +) by ()~I I :i<O) and 
f l l = ( f ~ l l : ~ < 2 + ) ,  respectively, then the hypotheses of 1.4 still hold and 
S =c b a d ' ( ( f  II : c~ < 2 +)). By our choice of b (Z!I : i < 0) is an ascending sequence of 
regular cardinals < 2, sup )~!1 = 2, and for 0~ < fl < 2 § f ll <,f~l. Routine checking 

i<O 
shows that (Zll : i < 0) is a least upper bound of f ll and that for every fl < 2 § such 
that cffl > 20 f~*' II is a least upper bound of (f l l  : e < fl). Also, for fl < 2 § a~, which is 
naturally taken to be {i < 0: cff~*' il(i) < cfS}, satisfies 

a~ = {i < 0 : cffa II (h(i)) < cfS} = {i < 0: h(i) ~ aa} = h- l(aa). 

For fle S aa = a, and since b ~ a a~ = h - 1 (aa) = 0; by 1.4 C ,8 ~ bad' ( f  I i). Also, clearly, 
for i<  0 ZI2 I,i= cff~*' II (i) and the sequence (Z~. i : i <  0) is ascending. Thus we have 
established what we claimed at the beginning of the paragraph. 

Let C i be a club subset of f*(i) of order type Z2,i. We define, for o~ < 6 and i < 0, 
f~ = the order type of Citify(i) and 

f l(i)={~~ ifotherwisef~ 

It follows easily from f~<*f~* that f~  = . f o ,  where for functions g,h on 0 g=*h 
means that for sufficiently large i < 0 g(i) = h(i). Clearly f l e X )~u,i- Let a < cfS; we 

i<O 
define a function g on 0 by g(i) = the f~ (/) + 1 -st member of C i. Clearly f~ <* g <*f*,  
therefore there is a a < fl < 8 such that g <*fa. If i<  0 is such that f~ f~(i)< Z2, i 
then f~l(i)<f](O<)~=,i, hence f 2 < f ] .  Therefore, as easily seen, there is an 
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ascending function h on 4~ onto a club subset A of 6 such that for a < fl < 4~- 
fh~ <*fh~a~- We denote, for ~ < 4 f ,  f ~ = f ~ ,  and 

S ' = { ? < 2 + :  ? is a limit ordinal ^ h(y)eS]. 

S' is clearly a stationary subset of 42 which does not reflect. For  yeS '  
h(?) e S C= bad' (]'), hence cf7=cfh(?)=4~-, and we shall prove that ~ e bad'(f ').  If 

~ bad'(]') then Y has an unbounded subset B such that for some io < 0 <f~' : ~ < 4 § > 
is ascending on B over [io, 0). Therefore < f l : ~ <  6> is ascending on h(B) over 
I-i0, 0). Without loss of generality we can assume that for ~ e h(B) and io < i <  0 
f~l(i)>0, since otherwise we can omit the least member of B. Therefore also 
<fo : ~ < 6> is ascending on h(B) over [io, 0), and hence (f~: ~ < 6> is ascending on B 
over [i0, 0). Since h(B) is unbounded in h(y) this contradicts h(~,)e bad'(t). Thus we 
have shown that S'=Cbad'(<f~':~<4+>), which ends the proof of 1.4B. 

1.5 Theorem (GCH + REF). (1) For every regular 4 less than the first inaccessible 
-1 PT(4, N 1). 

(2) For arbitrarily large regular cardinals 4--7PT(4, N1). 
(3) Let 4 be a regular cardinal and let <4 i : i < n) be a finite sequence of cardinals 

such that 4 o = 4 and for every k < n 4 k + i is a successor of a cardinal of cofinality 4k, 
then ~PT(2~, 4 + + N1). 

Proof (1) and (2) follow immediately from (3). (3) is shown by an easy induction, 
using [MgSh 204, Sect. 1, Theorem 11] and 1.4. 

1.6 Definition. We write (22, < # 2 ) 7  (21' </21) if every structure J/ /with universe 
42 and with at most x-many relations and functions, all of which are finitary, has a 
substructure <N, . . .)  with INI =21 and for all ~ e N n # 2  !Nn~l <#1- 

1.7 Fact. (1) If 2, < 22 are strong limit singular cardinals of cofinality 0 such that 

<4D- (4L <4D 
then S =  {6 <4~- :cf6 = 4 [ }  ~ I[4~-], where I[2~-] is the ideal on 4~ defined in 2.1. 

(2) Under the assumption of (1), if <Z2,i:i< 0> is an increasing sequence of 
regular cardinals < 42 such that 

supz2,i=42 and f = < f a : ~ < 4 ~ - > ,  
i<O 

where the f,'s satisfy (i) and (ii) of the proof of 1.4 with respect to X x2,i then 
i<0 

b a d ( f ) n S  is a stationary subset of 2~-. 
(3) Under the same assumptions as in (2), if A eI[2~-] then bad(T)nSnA is a 

non-stationary subset of 2~-. 

Proof (1) We shall show that (1) follows from (2) and (3). Let <Z2.i:i< O> and f be 
as in (2). The existence of such an f i s  shown in I-Sh 355, Theorem 1.5], and is easily 
seen if we assume the GCH. By (2) bad(-f)nS is stationary in 2 +, hence, by (3), S 
cannot be in 1123]. 

(2) Let J / / be  a structure with universe 2~ and with the following relation, 
constants and functions: the order relation < ,  the binary function 
<f,(i): ~ < 2~-, i < 0>, constants for all the members of 0, a constant for 22, a unary 
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predicate C which is a club subset of 2~-, and all the Skolem functions for this 
structure. 

Since (2 +, <2J-)--~(2+, <2~) d// has a substructure s f f = ( N ,  . . . )  with 

[NI = 2+ and INnctl < ;q for every e e N. Since ~4/contains all its Skolem functions 
d is an elementary substructure of Jg. Thus the order type of N is )~+, and since 
22 e N INn221 < 21. Let ~ = supN then cf5 = 2 +. For every e e N and for all i e 0 
f~(/) e Nt'3J,2, hence 

[{L(i) : ~ ~ N ^ i < 0}l< INn22[ <)~1 < 2+ = cf6. 

Thus for no unbounded subset A of N can f be ascending on A over any non- 
empty subset of 0 (since {f~(i): ct e N ^ i < 0} does not have enough members for 
that). By 1.4A 6 e bad(t). Since sff is an elementary substructure of J / / C n N  is 
unbounded in N, hence 6=sup(NnC) ,  and since C is closed 5eC. Thus 6eS 
nbad(0nC,  so S n b a d C 0 n C # 0  for an arbitrary club subset C of 2+. Hence 
Snbad(-f) is stationary. 

(3) We shall now assume that $1 ~ bad(-0nS, $1 is a stationary subset of 2~- and 
S~ eI[2~-] and obtain a contradiction. By the definition of I[2~-] SI\S*~(?t) is a 
non-stationary subset of 2~-, where ~ is a sequence of length 2~ of bounded'subsets 
of 2~-. Without loss of generality we may assume that $1 has been decreased so that 
S ~ ( ~ ) .  Using Remark 2.3 and the fact that I [2~] is an ideal (2.4) we can 

- -  2 

replace $1 and a by S~ n C and ~', where C and d' are as in Remark 2.3. Therefore we 
may assume, without loss of generality, that for 5 e S~ 5 = supa~, the order type ofa~ 
is cf6 and (V~ ~ a,) (a~ = a~n~). Also, since $1 ~ S, cf5 = ~+ for every ~ ~ S r  Hence the 
order type of a~ is 2+ and for every ct e a~ the order type of a~ is < 2~-. 

Since in the hypotheses of (2) any initial segment of 0 is negligible and 
(%2, ~: i < 0) is increasing with limit 22 and 2+ < 22 we can assume, without loss of 
generality, that 2+ < Z~,~ for every i < 0. 

We shall now define, by induction on ~ < 2  + a function h : 2 ~ "  and 
functions 

gat e X ~(2,i 
i<O 

as follows. For i<  0 

Ssup({fa(i):flea.,u{~t}}u{ga(i):flea~})+l if la~l<2~- 
g~(i)= 

otherwise 

Notice that by what we have said above about the order type of a, the value g~(/) is 
defined according to the first case in its definition for every i e $1 or i e a~ for 6 6 $1. 
Since %2,~>2+ we have g ~  X z2,i- Also, if 6eS1 and ~,fl6a6 and ~<f l  then, by 

i<O 

what we hav8assumed above, ap = a6nfl, hence ct e aa and therefore gB(i) > g~(i), f~(i) 
for every i < 0.. By our assumption on f there is, for every ~ < 2~, a fl < 2~ such that 
g~<*fa, let h(g) be the least such ft. Let 

c*  = {a <).+ : ( w  < a) < a)}; 

C* is clearly club in )~-. Since S1 is stationary in 2~ there is a fi E $1 nC*. By our 
assumption on ~ a~ is an unbounded subset of 5. Therefore there is an unbounded 
subset b of a6 such that for ~, fle b if ~ < fl then h(~)< ft. Let h* be the function on b 
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defined by h*(~) = min(b\(~ + 1)). Let d = range(h*) =z b; d is an unbounded subset of 
b. For  ~ ~ d there is an ct' ~ b such that ~ = h*(~'). By the definitions of h* and h and 
since ct = h*(~') > h(~') we have g,, <*f,. Hence there is an i, < 0 such that g,,(i) < f,(i) 
for every i ~ [i,, 0). Since 0 < 21 there is an i*< 0 and an unbounded subset e of 
such that i, = i* for every ~ ~ e. We shall now see that f i s  ascending on e over [i*, 0), 
contradicting 6 ~ bad(0. 

Let ~, fl ~ e, ct < ft. Let fl' ~ b be such that h*([Y) = fl, then by our definition of h* 
and d, ~ < fl'. Since ~ ~ an we have f,(i) < g,(i) for all i < 0. Since ~ < ff and ~, fl' ~ ao 
g,(/) < gp,(i) for all i < 0. Since fl ~ e and fl ~ h*(fl') gp,(/) < f~(i) for all i ~ [i*, 0). 
Therefore f ,  < fp(i) for all i~ [i*, 0), which is what we have to show. 

1.7A Remark. 1. If we replace in Def. 1.6 

(22, <#2) by {(22,j, </~2,9:j<r} 

and "has a substructure ... INn~t <#z"  by "has, for some j < r ,  a substructure 
(N, . . . )  such that ]NI=22.j and for all ~</~1 INn~] </~2,~" then one can prove a 
version of Theorem 1.7 which corresponds to the changed Def. 1.6. 

2. The assumption of 1.7 that 21, 22 are strong limit cardinals can be dropped 
without changing the conclusion [Sh 355, 2.2]. 

2 Obtaining REF by repeated Levy collapses 

The following definitions and theorems are quoted from [Sh 88a], which gives a 
better representation of most of [Sh 108]. 

2.1 Definition [Sh 88a, 1, 2(1)]. Let 2 be an uncountable regular cardinal and let 
d= (a~:i < 2), where the ai's are bounded subsets of 2. 

1) S~P(d)~f{6 < 2: there is an unbounded subset b of 6 of order type el6 < 6 such 
that (V, < 6) (3fl < 6) (bn~ = ap)}, 

where p, n stand for "positive" and "negative", respectively. 

2) I[2]~f{x____ 2: X\S*P(gt) is a non-stationary subset of 2, for some sequence ~i 
of length 2 of bounded subsets of 2}. 

3) S~" is a set such that S*" c 2,112] = {S: S__c 2 ^ SnS*"  is not stationary in 2}. 
The existence of such a set S~" is shown in [Sh 88a, 3(3)], using 2 < ~ = 2 or some 

weaker assumptions. It is conjectured that the existence of such a set for every 
uncountable regular 2 cannot be proved in ZFC. 

S*P~f~\ ~*" ~*v is clearly the maximal member of I[2], up to a non-stationary 

set. 

2.2 Fact [Sh 88a, 3(1)]. 112] is a normal ideal on 2. 

2.3 Lemma. For all 2 and gt as in 2.1 there is an gt' = (a',: ~ < 2)  and a subset C of  2 
such that 

(1) C is club in 2 and contains only limit ordinals. 
(2) For all ~ < 2  ' c 
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(3) For every limit ordinal a < 2  s u p a ~ = ,  and the order type of  a', is cf~. 
(4) I f  O~CnS~P(d) and aea'~ then a'~=a'~na. 

Proof Let gd be a one-one mapping of the set of all n-tuples of ordinals < 2 into 2 
such that for a~,..., ~, < 2 gd(a~, ..., a,) > max(~ x ..... ~,). For  every i < 2 we define a 
function f~ on a~ as follows. For a e a~, if there is a fl < 2 such that aa = a~na then f~(a) 
is taken to be the least such fl, and f~(~t)= 0 otherwise w.l.o.g. / ~ /~  V ain7 = a~. 
We define also a function g~ on a, into 2 by ~ ?eai 3 

g,(~)=gd(~,f/(a),~.,.~.U gi(fl)) + 1. 

(a) f~ and g~ are clearly functions on a~ into 2 .  
(b) For i , j<2, if a i n ~ = a ~ n ~  then f~I~=f~I~ and hence g~Ist=g~I~. 
(c) For  i , j<2  if g~(~)=g~(fl) then e=f l ,  f~(a) =f~(e), hence 

a~n(a + 1) = a~n(a + 1) 

(since a ,na  = as,t, ) = a]na and a ~ ai, a~), and by (b) 

+ 

g, [a = g~ I~. Let C = {6 < 2:6 is a limit ordinal closed under the function gd and for 
all i < 6 Range (f~), Range (f~)____ 6}. 

We define now a~ for ( <  2 according to the following cases. 

Case 1. There are a, i<  2 such that a ~ ai and gi(g)= ~. 
We take a~ = {gi(fl) : fl 6 a~nct). By (c) a~ is well-defined. Since g~ is increasing we 

have a~____ (. 

Case 2. ( ~ S*P(ti)nC. 
Then ( is a limit ordinal. By the definition of S*P(d) there is an a___ ( unbounded 

in ( of order type cf( such that (Va < 0 (3fl < 0 (aria = ap). We define functions f 
and g on a by 

f ( c t ) : m i n { f l ' a n : a n a } < (  and g(a):gd(a,f(ct),a~a~ g ( f l ) )+ l .  

Since ff ~ C and the order type of a is cf( we have g(~) < ~. We take 

a~ = {g(fl) : fl 6 a} = (, 

Case 3. Otherwise. I f (  is a limit ordinal take a~ to be a club subset o f (  of order type 
cf(; otherwise a~=0. 

(1) and (2) hold by what was said just now. (3) holds since if ( is a limit ordinal 
then one of Cases 2 and 3 holds for (. To see that (4) holds let 6 e CnS~P(8) and 
(~  a~. By the definition ofa~ we have a~ = {g(fl): fl ~ a), where a, f g are as in Case 2. 
Since ( ~ a~ ~ 6 we have ( = g(7) for some 7 e a ___. 6. By the definition of f a n (  = asg ). 
Therefore for every a ~ a n ( =  ast o f(a)=fsg)(~ ), and, as follows immediately by 
induction, g(a)= gsg)(a). Since g is an increasing function with non-limit values 

= g(Y) > 7, hence gso(7) = g(7) = (, and by the definition of a~ in Case 1 we have 

a~ = {gsg)(fl) : fl ~ as~o nT} = (g(fl): fl ~ anT} = {g(fl): fl ~ a ^ g(fl) < g(7) = ~} 

= {g(fl) : fl e a} n(=a 'an~ . 
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2.4 Remark. Let 2, ti, d', and C be as in 2.3. Then S*P(d)c~Cc=S*P(~'), and for every 

6 ~ s~p(a) n C 

the subset a of 6 which witnesses that 6 ~ S*P(d) can be taken to be a~. 

Proof. Let 6 ~ S*P(d)c~ C; we shall see that 6 e S~'P(~i'), with a~ as a witness to it. By (3) 
a~ is an unbounded subset of 6 of order type cf6. Let ~ < 6 and let 7 be the least 

! l l l r r member of a~\~. Then, clearly, a~n~ = a~n 7. By (4) a~n7 = a~, hence a~n~ = a r and 
6 e SF(d'). 

2.5 Fact [Sh 88a, Def. 1, Lemma 2(1) and 2(2)]. For ~ = (~i  : i < 2), where for i < 2 
~ / i s  a set of bounded subsets of 2 and I~il<2 let S~P(~ )= t6<2 :  there is an 

L 

unbounded subset b of 6 such that (i) if 6 is singular then the order type of b is < 6, 
and (ii) (Va < 6) ( bc~ct E pU ~ ) } .  Then I[ 2 ] = { X C__ 2 : Xk  S*P( ~)  is a non-stationary 

subset of 2, for some ~ as above and Xn"se t  of inaccessibles" is non-stationary}. 

2.6 Fact. Let 2 be a regular uncountable cardinal and let Da denote the filter 
generated by the club subsets of 2. 

1) S~ ", whose existence is discussed in 2.1(3), is unique modulo Da and is equal, 
modulo D'~ to some S*~(ti) (as easily seen). By [Sh 88a, 14(1) and 16(1)] this is the 
case for every enumeration ti of all bounded subsets of 2, assuming 2 < ~ = 2 or some 
weaker assumptions. 

2) If 2 is a successor of a regular cardinal then 

[see (4.4(1))]. {6 < 2: (cf6) + < 2} e I[2] 

3) If 2 is strongly inaccessible then S~ 'p can be taken to be {6 < 2 :6  is singular} 
([Sh 88a, 4(1)]). 

4) If 2 = #  +, where # is a strong limit singular cardinal then 
(i) If 6 e S *~ then cf6 is not weakly compact. 

(ii) If # =  sup 2i, where ( 2 i : i < c f # )  is an ascending sequence of regular 
i < c f t t  

cardinals and 

(*) c: 2 • 2 ~ c f #  is such that 
for all ~,/~, y < 2 c(~,//) = c(/3, c0, 
and if ~ < fl < 7 then c(~, 7) < max {c(c~, fl), c(/~, ?;)}, 
and for all i < c f #  and e < 2  [{fl<~:c(c~,fl)=i}l~2 i 

(the existence of such a c is proved in 4.1) and we define 

S(c)~f{6 <2:  for some unbounded AC=6 c"((Ac~),) x (ANT)) 

is bounded in cf# for every 7 < 6} 

= { 6 < 2 : / f  c f6>cf#  then for some unbounded Ac=6 c"(A x A) 
is bounded in cf#} 

= { 3 < 2 :  if c f6>c f#  then every unbounded subset A of 6 
has an unbounded subset A' such that c"(A' x A') is bounded in cf#} 

= { 6 < 2 : / f  c f6>c f#  then for some unbounded A1,A2 C=6 
and i<O if e<fl,  e E A  1 and f l~A 2 then c(e, fl)<i} 

then S(c) can be taken to be S *p. 
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(iii) S*" exists and if 6 e S~" then cf6 > cf#. 
(iv) I fc  is as in (ii) for V, Q is a forcing notion and 1[--~'2=# + ^ #  is a strong 

limit cardinal" then also V~ can be taken to be S*"". 
5) If ( 2 i : i < 0 )  is a strictly increasing sequence of regular cardinals >0,  

2 = (sup 2~)+, f =  (f~: 0~ < 2), where f~ e X 2~, is < *-increasing (see the proof of 
\i<O / i<O 

1.4) and 
(Vf e Xo2i)(3~ <2) ( f  <*L) 

then bad( f )  includes no stationary set which is in 1[-2]. 
6) When the universe is increased S *p can only increase. 

Proof 4) (i) By [Sh 88a, 6(2)] it follows that if 0 is a weakly compact cardinal < cf# 
then O~p(O)2f, (this is a certain partition relation). Therefore, by [Sh 88a, 8(1)], 
{6 < 2:cf6 = 0} ~ 112]. Hence, by the definition of S*" no 6 with cf6 = 0 is in S *n. 
This is also proved in 2.9. 

(ii) The proof appeared, with a different notation, in [Sh 108]. The proof of 
S(c) e 112] is contained in [Sh 88a, 4(3) (c)]. Why is S(c) = S'P? et S c= 2\S(e)  ~ 112] 
and ~ is such that, without loss of  generality, S*P(~) ~ S (as in 2.3, 2.4). 

Also for some 0 < 2  and 2 : 0 ~ c f ( # )  we have: 

S 1 = { 6 e S :  cf(5)=0 and iea~ => c(5,i)=2(otp(a~nO)} 

is stationary. 
For some (<cf(/~), 0<2~ and { f l = 2 j < 0 :  2( j )<(} is unbounded in 0. 
Now choose by induction on 0~ < 2 

7~ =min{7 : (Vfl E a~,)c(fl, 7)= 2(otpa~)}. 

It suffices to prove that for a club of 6's (V~eao)7~<6 and 6~S~. This holds by 
Fodor 's  theorem; it suffices by the equivalence of the first and fourth definition 
of S(c). 

First let us prove the equivalence of the first two definitions of S(c). Let 6 be as in 
the first definition and cf6 > cf#. If supc"((An~) x (ANT)) < cf# for every 7 < 6 then 
since of 6 > cf#, {supc"((AnT) x (ANT)) : 7 < 6} is bounded in cf#. Thus c"(A x A) is 
bounded in cf/t and 6 satisfies also the second definition of S(c). Now assume that 6 
satisfies the second definition of S(c). If cf6 > cf/~ then 6 obviously satisfies also the 
first definition of S(c). If off < of# then every unbounded subset A of 6 of order type 
cf6 witnesses that 6 satisfies the first definition. 

To prove the equivalence of the second, third, and fourth definitions of S(c) it 
clearly suffices to prove that if 6 < 2, cf6 > of# and Ao, A ~ are unbounded subsets of 

6 such that {c(~0, 0q):~ 0 e A  o, o~ 1 ~ A  1 and ~o <al}  

is bounded in cf# then every unbounded subset A of 6 has an unbounded subset A' 
such that c"(A' x A') is bounded in cf#. Let 

= sup {C(~o, ax): ~o ~ Ao, al E A 1 and ~o < ~a} < cf#. 

Let A be an unbounded subset of 6. Without loss of generality the order type of A 0 
and A 1 and of A is cf6. Let us define, for i < cf6, a,, fli, 71 < 6 by recursion as follows. 

a i > s u p { a j +  1, flj+ 1, ? j+  1 : j< i} ,  

ai~A1, f l i~A,  7i~Ao, ~i<fl~<7~- 

Let, for i < cf#, ~, = max {c(a i, fl~), c(fl,, 7,)} < of#. Since cf6 > cfkt there is a 7" < cf# 
and an unbounded subset T ofef6 such that for i ~ T (, < ~*, and we can take ~* > ~. 
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Since the order type of A is cf6 A' = {fli : i ~ T} is an unbounded subset of A. We 
shall now see that c"(A' xA') is bounded by ?*. Let i,j~ T, i<j. By (*)r 

c(fli, fl~) < max (c(fl~, 7,), c(Ti, cO, c(~, fl~)} < max((~, 7, (~) 

(by the definition of ~i and since 7~Ao,  aj~A1, 7i<aj)<ff* (since i,j~ T). 
(iii) ~u<cru=# since /~ is a strong limit cardinal. Hence, by [Sh88a, 4(1)], 

{5 < 2: cf6 < cf#} ~ 112]. By the definition of S *n no 6 with cf6 < cf/~ is in S~ n. 
(iv) Follows from (ii) by 2.7, since in the transition to V Q the properties of c 

are unchanged, except that cf# may decrease and/or 2~ collpase - see 2.7. 
5) We essentially repeat here the proof given in [Sh 282]. It clearly suffices to 

show that for every set S*P(~) there is a club subset C of 2 such that S*P(~)nC 
n b a d ( f )  = 0. By 2.4 we may assume that ~ satisfies 2.3(2-4). We define by induction 
functions g,, a < 2 such that 

(i) g~ ~ X 2i, 
i<O 

(ii) f l<~<2-ogp<*g~,  
(iii) f ,  <* g,, and 
(iv) if i <  0 and 2~ > laJ then for every fl ~ a, gp(i)< g,(i). 
The existence of such a g, follows easily from our assumption on f ;  notice that 

if la~ < 2i then sup {gp(i) : fl c a,} < 2i so also (iv) can be satisfied. By our assumption 
on f there is a function h : 2-02 such that for every ~ < 2 g, <*fht,). Let C = {6 < 2: 
is a limit ordinal closed under h}. For 6 c S~P(d)nC let A be an unbounded subset of 
ao of order type cf6 such that if fl, ~ c A, fl < ~ then h(fl) < ~. For i such that 2i > cf6 
and ~ ~ A we have, by 2.3, a, = aan~ and laJ = cf6 < 2, hence la~{ < 2i. Since cf6 < 2 
= (sup 2i] + there is an i o < 0 such that 2~o < effi. Therefore by (iv) if fl ~ A, fl < u then 

\ i<o  / 
g~(fl)<gi(~r Thus (g,(i):~c~A) is strictly ascending. Let us enumerate A by 
A = {~ : v < cf6}, where (~r : v < cf6) is strictly ascending. For v < of 6 we have 
g~ <*f,~ + ~ <*g,~+~ [since u~+ ~ > h(~0]. Hence there is a ~ < 0 such that for every 
(~<i<O 

g,~(i) < f~+ ~(i) < g~+ ~(i). 

Ifcf6 < 0 then by the definition of bad(f)  we have 6 r bad(f).  Ifcf6 > 0 then there is 
a ~* < 0 and an unbounded subset T ofcf6 such that for v c T ~ = ~*. Thus for every 
i >  io, (* the sequence ( f~+ ~(i)'i6 T )  is strictly ascending; hence 6 r bad(f).  

2.7 Lemma. 1) Let 2, # be cardinals and Q an ordinal such that 2 = # +, Q < ~t, and cf# 
= cfQ < #, and let 

(**) c : 2 x 2-0 0 be such that 
for all ~, fl, 7 < 2 c(~, fl) = c(fl, ~), 
and if ~ < fl < 7 then c(ct, 7) < max {c(~, fl), c(fl, 7)}, 
and for all i<o supl{fl<~:c(~, f l)<i}l<#.  

or<). 

Then there is a c' : 2 • 2-0 cf/z which satisfies (*) of 2.6(ii) and such that for every A c= 2 
c"(A x A) is bounded in ~ iff c'"(A x A) is bounded in cf#. 

2) I f  in addition, /~=sup2 i, ( 2 i : i<Q)  is an ascending sequence of regular 
i<Q 

cardinals and (*) holds then (2 i : i < Q) has a subsequence (2'i: i < cfp) and there is a c' 
such that (*)holds for c'. 

3) As a consequence, if we define,for c as above, S(c) as in the three definitions in 
2.6 with "bounded in 0" replacing "bounded in cf#" we get S(e)= S(c'). 
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Proof By our hypothesis cf~=cf#. Let d : c f # ~  be a strictly increasing and 
continuous mapping of cf/t onto an unbounded subset of ~. For  (1) let c'(ct,/3) 
= min {tr: d(tr) > c(~,/3)}. For (2) we let for i < cf# let 2'~ be the first member of the 
sequence <2~: i < 0> such that 

(1) ,~>,~0,  
(2) 2~ > 21 for every j < i, 
(3) = 1(/3 < d(0) l. 
There is such a sequence (2~ : i < cf#) by our assumption about c. Let c'(~,/3) 

= the least a <  cf# such that c(a,/3) <d(a), then c':2 x 2~cf# ,  (2'~:i<cf#> is an 
ascending sequence of regular cardinals and sup 2; = kt. As easily seen <2~: i < cfkt> 
and e' satisfy (*)c The proof of (3) is easy. i< r 

2.8 Fact. 1) Let 2 be a regular uncountable cardinal such that 2 = 2 < ~, let S = S*", 
and let 

p~h = {<~, O>: �9 < 2 ^ O is a closed subset of ~ + 1 disjoint from S} 

be ordered by: 

(0q, O x > _< (~2, O2 > r ~xl --< 0{2 ̂  Ol = 02  ("~((x 1 "q- 1). 
Then p~h is a-strategically closed for every c~<2 (see Def. 3.1), Ip~hl = 2  and 

I~-P~h"S is not stationary", and hence cardinals are not collapsed and cofinalities 
are not changed by this forcing. 

2) If S e 1l-2] for a regular cardinal 2, and for every 3 e S cf6 < 0, and Q is a 
0-complete forcing notion then 

I~"S is a stationary subset of 2" 

(although 2 is not necessarily regular in V e) [Sh88a, 18 and 16(3)]. 

Proof 1) We shall prove that p}h is a-strategically closed for every a < 2. For the rest 
of (1), for x <),, "cf> x" is preserved. For  tr > 2  this follows from [p~h[ <2. 

Let ~ = (a~: i < 2> be an enumeration of all bounded subsets of,~, with each set 
occurring 2 times. By [Sh 88a, 2(2)] there is a sequence 4' such that for every 3 < 2 if 
6 has an unbounded subset b of order type < 3 such that (u < 6) (3fi < 3) (bc~a = aa) 
then 3 ~ S'P(6 ') - see 2.5. [-Notice that by the definition of S~P(a) if the order type of b 
is cf6 then 3 E S*P(~).] By the definition of S *n S*P(6')nS *" is non-stationary, hence 
there is a club subset C of 2 such that Cc~S~P(6')c~S~n= O. The strategy of Player I 
in the game G~e~sh, is to choose in the i-th step a member <~i, Di> of p~h as follows. 
For i = 0, let r = <0, D> then % = max(0, a + 1) > a and Do = D. For i = j  + 1, if the 
j-th move of Player II was <t j, E j> then Dj = Ej and ai is such that ai > t j, (~j, ~) 
c~ C 4= 0, and a,, = {ak : k < i}. There is such an ai by our assumption on ti and C. If i is 
a limit ordinal then let ?--- sup a j, d, = ~ O y  {?}, a~ > ?, and a,, = {ak : k < i}. In this 

j<i  j<i  
case, the only new thing we have to show is that ? ~ S. Since for every j < i  
(t~j, 0{j+ 1)()C :#0 we have ? ~ C. We shall now see that ? ~ S*P(~'), hence since ? ~ C 
? ~ S. b = {~j :j < i} is an unbounded subset of y. The order type of b is i < ~ < ~o < ?- 
For fl < ? let k < i be such that bn/3 = {ctj :j < k} then bc~/3 = a,~ and ~k < 7- Thus, by 
our choice of ~', ? ~ S*P(~'). 

2) Left to the reader. 

2.9 Lemma. Let 2, #, c be as in 2.7 and let 3 < 2. I f  cf 3 is weakly compact then 3 ~ S( c). 

Proof We use the second definition of S(c) and assume cf6 > cfp. Denote cf3 with ~:. 
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Let d be an ascending function from r onto an unbounded subset B of 6 and let 
c ' :2 x 2--*cf# be as in 2.7. 

Ic"(B x B)I < c f # < c f 6 = x .  

Since K is weakly compact r~(r )2~,  hence there is an A___ B such that Ihl = r and 
c' [(A x A) is constant. Thus 6 ~ S(c') and by 2.7 6 E S(c). 

2.10 Fact. Let Q be an arbitrary forcing notion. Let Q'<~Q mean that Q' is a 
complete sub-forcing of Q, i.e., Q' is a subset of Q with the same partial order, and 
every maximal antichain of Q' is also a maximal antichain in Q. If 2 is the successor 
of a strong limit singular cardinal # and this holds also for 2 and # in V Q, then 
Vo~ {6 < 2: there is a Q' <~Q such that Vo '~"  cf6 is weakly compact"} ~ 112]. 

Proof Let # = sup 2~, where (2~: i<  cf#) is a strictly increasing sequence of regular 
i<cf/~ 

cardinals. By 4.1 there is a function c which satisfies (*) of 2.6(4) (ii). cfVQ# may be 
< cf# but in any case c satisfies in V Q (**) of 2.7 and hence, by 2.7, S(c)V~ S(c') vQ 
where c' satisfies (*) in V e. As follows immediately from the first definition of S(c) in 

VQ V Q VQ t Vt2 VQ t 2.6(4) (ii) S(c) 3= S(c) . By 2.1 and 2.6(4)(ii) in V S(c) = S(c) ~ 112] . If Q < Q 
VO Q VQ VQ v o  and cf "6 is weakly compact in V ' then by 2.9 6 ~ S(c) ' c= S(c) e112] , which 

is what we have to show. 

2.11 Definition. We say that a cardinal 0 is pwccf above r, where pwccf is an 
acronym of"potentially of weakly compact cofinality', if for every forcing notion 
R of power at most 2 ~ there is a x-complete forcing notion Q in V R with IQ[ <2~ 
such that [}-R,Q"cf0 is a weakly compact cardinal". 

2.12 Fact. Suppose r < # < 0 ,  where 0 is a regular cardinal and # is 
2~ and F : #-~H(#) is a Laver diamond for 0 + [the Laver diamond 
is defined in 0.2(2)]. Then 0 is pwccf above r. 

Proof. Repeat the proof of Laver in [L]. 

2.12A Remark. In 2.12 one can considerably weaken the assumptions of the Laver 
diamond and the supercompactness - see Gitik-Shelah [GS]. 

Let Levy(x, < 2) denote the usual forcing notion which makes 2 the cardinal 
successor of r by collapsing all the cardinals between r and 2 to r by means of 
function with domains of cardinality < r. We shall use letters such as _P, Q, _R to 
denote names for appropriate forcing notions, and Levy(x, < 2) will be a name for 
Levy(r, < 2). 

We shall now give a sufficient condition for an iteration of the Levy collapse to 
yield REF. We shall use it later to prove Theorem 0.1 (see 3.8). 

2.13 Lemma (GCH). Suppose 
(A) ( r i :  i<  oo) is a strictly increasing continuous sequence of cardinals such 

that tCo=N o, if ic~ is singular then r ~ + l = r  + and if r~ is regular then t%+ 1 is 
supercompact. 

(B) Ai= { O : ~ci < O < lr + 1 A 0 is regular /x 0 is pwccf above tci}. 
(C) I f  r~ is singular then (~ 6 ~ S*"+~+ l : cf 6 ~iU<~ Ai~j is not stationary in r~+ r 

(D) Poo=lim(Pi, Q__ii:i<~) is the Levy collapse for ( r i : i < o o ) ,  i.e., it is 
Easton-support iterated forcing notion, Qi = Levy(ri, < ri+ 1)vP~if ri is regular, and 
Qi is trivial otherwise. 
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Then 
1) In V P~~ REF holds, as well as GCH. 
2) I f  2=~c~ is ~c~+,-supercompact for {~/: i<2} then in VP% 2 is 

2 +"-supercompact. 

Proof. 1) Clearly, {~h:i<oc} is the class of all infinite cardinals of V P~, and 
V e ~  GCH. Also the regularity of the ~i's is preserved. 

To prove REF we show that every regular ~/with i > 1 is reflecting. Let 0o be 
any regular cardinal < ~:i and assume that in V P~ 0~- < ~h and S =c {6 < ~i : cf6 = 0o} 
is stationar .y. Clearly, for some j ~ = 0 o .  ~j is necessarily regular, and 
~j+l = (0g) w ~ <  x~. Now for 6 e S, (cf6) v can have < tcj+ 1 < xi values, so, without 
loss of generality, for some 0 regular in V, x j < 0 < x j + l ,  we have for every 6 e S  
cfV6 = 0. Now we start working inside V Pj + ', so we have a (Poo/Pj+ 0-name S of S 
and let p be any member of P~o/Pj+ a. We shall prove that p does not force that S 
does not reflect. As Po~/P~+I adds no subsets to x~ we are really working in 
V P'+I]Pj+I I-so S is a P~+l/Pj+a)-name and peP~+I/P;+I]. 

Now comesthe main point. In V Pj+' So = {6 < ~h:cf ~ (6) = 0} E V is in I [ r J  [i.e., 
it is disjoint from (.q.,ivP~+ ,] ! This is seen as follows. If lq is inaccessible in V then, 
by 2.6(3), (6) I[~q] contains all subsets of {6 < lq: }~p6 is singular). By the definition 
of P~  the only case left is where i is a successor ordinal, lq= ~q+_ 1 and lq_ 1 is 
singular. D e n o t e i - - l w i t h & B y ( C ) , i f 0 ~  U A~ then Soc~S*i"=O. If  O ~ U A~ 

~ < i - - 1  ~ < i - - 1  

then we have that 0 e Aj hence, by (B), 0 is pwccf above ~c/, and by 2.10 So e I[K~]. 
We have, by Def. 2.6 (notice that Pj has power < 2  ~j and can therefore be 
substituted for R in 2.11) there is in V Pj a forcing notion Q, IQI<2 ~ Q is 
~ c o m p l e t e  and I~"cf0 is weakly compact." [One can omit the requirement that 

a M 
IQI _-__ 2 ~ in the definition 2.11 of pwccf since in order that 

Pj * Levy(~j, 01) ~ Levy(~cj, 01) 

it suffices that IQI =01 <~j+l .  Given any Q as in 2.11, since ~j+l is supercompact 
there is, by the reflection at a supercompact cardinal, such a Q of cardinality 

�9 - ~o e II~ci]. Now by 2.6(4) (iii) and 2.8 (if ~i is a successor of a < tr 1.] Thus in V P~*e " "- 
singular cardinal) or by 2.6(3) [if ~i is not a successor of a singular cardinal and 
therefore, by Assumption (A) it is strongly inaccessible] we know that also in 
V~'~*- e*L~176 SocaS,*"=O, where 0a=[Q[. However, as Q is ~cfcomplete of 
cardinality < ~cj, Q �9 Levy(~j, 01) is equivalent, as a forcing notion, to Levy(~,  01). 
Let 

G"g Pj  * Levy(~cj, 01) 

be generic over V, and without loss of generality p I(]+ 1)e G". Now we use the 
supercompactness of ~ +  1, which is preserved in V[G"] since the forcing notion is 
of cardinality < tr to find N~((H(~),  e>, for a sufficiently large ~c, such that 

{~" ~ < ~}, ~,  ~ ,  O~,p e N  

and N c ~ j +  1 is a cardinal, N is isomorphic to some <H(~c'), e> for some ordinal ~c'. 
Now let 

G ~ c=jN(P i + 1/P~. �9 Levy(tcj, 01) ) 

be generic over Ju" N[G"] (equivalently, over V[G"]) so that iN(P)e G. Now in 
V[G", G ~] iN(S_) is interpreted as a stationary subset of js(~ci), and in V[G"] 
iN({6 < ~ci: cf6 = 0}) is in I[jN0q)], hence in 

V[G", G b ]  Levy(rJ'  < r  J+ ~') 
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it is still so, by 2.6(6). But, again, in V eJ 

Levy(xj, 0) *jN(P~+ ~/P~ * Levy(x j, 0)) * Levy(x~, rj+ x) 

is equivalent to Levy(x,, x,+ ~), and without loss of generality we can compute G a 
and G b in V e~+~. N o w j ~  ~(G b) is a directed subset of P~+~/P~+~ and has an upper 
bound q, which forces what we need. 

2) This is proved by essentially the same proof. 

3 Oracle forcing for Laver's diamond 

3.1 Definition. 1) A forcing notion P is 0~-strategically closed if for each r e P  
Player I has a winning strategy in the following game G~,r: A play consists of a 
rounds of moves. In the fl-th round Player I chooses a paeP such that 
r <pa A r</k a qr < pa and then Player II chooses a qp e P such that pp < qp. Player I 

wins if he has always a legal move. 
2) P is < x-strategically closed if P is a-strategically closed for every a < x. 
3) Q = (Pi, Qi:i < 0~,j < a )  is a < x-Easton-support iterated forcing notion if Pi 

is a forcing notion, Q~ is a P~-name in this forcing notion, and Pi is the set of all 
functions f from subsets of i such that 

(i) if 2 is inaccessible and > x and for all j < 2 [P~[ < 2 then [2nDomf[  < 2, 
(ii) for every j ~ Dora f, I~j"f(J) ~ Q__/'. 
For  j r D o m f  we shall identify f(j)  with 0j, which is the least member of Qj. 
f <  g iff for all j < D o m f  g rJ [~ej "f(J) < g(J)". 
4) Q = (P~, Qj: i < a, j < a)  is a x-Easton-support iterated forcing notion if the 

same conditions as in (3) are satisfied, except that in (i) we have 2 > x. 

3.2 Fact. 1) Suppose that Q=(Pi ,  Q~: i<a , j<a)  is a <x-Easton-supported 
iterated forcing notion, ( <  x and each Q~ is (-strategically closed (in V P j) then so is 
P ,= l imQ.  This holds also if we require a <  x instead of ( <  ~c. 

2) If P is a-strategically closed forcing then P adds no new sequences of 
ordinals of length < a. 

Proof The proof of this fact is known. 
1) For every i < ~  and, in V e`, let s~Q~ and let I~ '~ be a winning strategy for 

Player I in the game GCe,,~. The strategy of Player I in the game G~,,~ is to maintain 
the following properties of the initial part (pp, qa : fl < ?)  of the play. 

(i) i f f l < Q <  7 then q~<=q~, P~<-qo, r<po, 
(ii) for every j < a if there is a fl such that j ~ Dom qa then let flj be the least such 

and (p& + 1 + ~(J), qa -+ ~ + ~(J): 6 < ? - (fir + 1)) is (a name of) an initial part of a play of 
J . . 

G~ q t/) played by Player I according to the strategy I~',~j) 
J ,  ~ j  . �9 ~ �9 . 

2) Let_f be a name in P of a function from fl < a into the ordinals, and let r e P. 
Pick a winning strategy for Player I in the game G~,~ and let (p,, q~: i < a )  be a play 
where Player I plays according to this strategy, and for every i <fl  q, is such that 
Pi < q, and qi forces a value for f_(i), po + 1 forces all the values of the function hence 
the function is already in V. 

3.3 Definition. For a given supercompact cardinal # 
1) F is called a direct oracle diamond (for < #-strategic closure and < p-Easton 

support) if for every sequence /~= (Pi, Qj: i =< ct, j < a)  <o-increasing each Pi 
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< #-strategically closed forcing notions and every x a V and for every sufficiently 
large ordinal ~ so that 0., x ~ H(Z) there is a fine normal ultrafilter D on St< ,(H(z)) 
such that the following set is in D. 

{a e 6P<u(H(z)): ac~/t is strong Mahlo cardinal O, 

F(O) = (j ,(x), ja"a,j ,((Pi:i< ~), <Gi:i < ~)))  

where ja is the Mostowski collapse of a, Gic=P ~ is generic over ja"a, (j,"a) [ G j  is of 
the form H(Z' ) and i <j =:. G i c= G j}. 

2) F is called an oracle diamond if for some V '~V and Q e V '  Q is 
</t-strategically closed in V', F is a direct oracle diamond in V' and V=(V') q. 

3.4 Definition. Let # be a supercompact cardinal, F : / t~H( / t )  a direct oracle 
diamond, Q* e V a forcing notion, G* __r Q* generic over V and Q e V[G*] a forcing 
notion. We say that Q satisfies the F-oracle condition in V[G*] if: 

(a) Q is < #-strategically closed. 
(b) For all x ~ V, p e Q, and Z such that x, p e H(D and for every fine normal filter 

D on 6~<~(H(z)) (in V!) the set of those a t  Se<~(H(x)) which satisfy the following 
implication belongs to D (i.e. to the filter D generated in V[G*]). 

If (i) xl = a n x  is a regular cardinal. 
(ii) For the Mostowski collapse Ja of a ja"a = H ~ H(~I) , Z1 =J,"Xl. 

(iii) F(xl) is of the form <x,j,"(a), ( e i : i < a ) ,  (Gi:i<__a)). 
(iv) For  some transitive H such that P =  < P ~ : i< a) a H c= H(Z), G~ c= p~ is generic 

over n and H(Z) = H [ G j .  
(v) In H /~  is r- increasing (see 2.10 for the definition of 4 )  and each Pi is a 

< xl-strategically closed forcing notion. (The main case is where there are Qi, for 
i<a such that (Pi, Qj: i < a , j < a )  is an iteration with <x , -Eas ton  support each 
_Q_Qi is < Xl-strategically closed. 

(vi) j~(Q** Q)is Pe .  (P,/Pe) for some ~ <17 < a and j~"(G*c~a)= G r 
Then {q~ Q c~a: j~(a) ~ Gr has an upper bound in Q. 

3.5 Theorem. Suppose that K is supercompact and ). < to. 
1) There is a forcing notion Q, 2-complete such that tQ] = x and [[g"there is a 

/t-Laver diamond in V ~ (A ~t-Laver diamond f is f :  I ~ H ( # )  which is a Laver 
diamond.) 

2) Let F o be a Laver diamond for x, then for some ).-strategically closed ~-c.c. 
forcing notion R we have in V R that some F:x~H( t r  is an oracle diamond. 

3) Let qg(-, --) be a formula of set theory (with parameters) any instance of to 
is satisfied iff it is satisfied in some (H(z), e) such that to(Q, 2) implies that Q is a 
forcing notion which does not add sequences of length < 2. Assume 

(*) For every < x-Easton-support iterated forcing notion ( Pi, Q_Qj : i <= a, j < a), if 
for every j < a ]~,to(Qj, x) then also to(P~, x). 

(**) I f  ( Pi, Q_j : i <= a, j < a) is a < x-Easton-support iterated forcing notion and 
for every i < a there is a strongly Mahlo cardinal ~, such that K < x: and �89 co(O. tc.] 
and either IPil < x, or P~ satisfies the xi-chain condition, IP,I = x,, x~ = i and for every 
j < i IPjI < x~ then to(P~, x). 

Let F o a x-Laver diamond and let the parameters of to be in H(x) then there is a 
forcing notion R such that to(R, x), R satisfies the x-chain condition and has power x 
and in V g there is a function F : x ~ H(x) which is an oracle diamond for the class of 
all forcing notions Q for which to(Q, x) (i.e., F satisfies the definition of a direct 
oracle diamond with all the P,'s in 3.3(1) and the Q in 3.3(2) required to satisfy 
to(-, x) ). 

4) In (3) one can drop the requirement that the support be < x-Easton provided 
that (*) and (**) hold as well as 
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(***) For every iteration Q = (P~, Qj: i < a, j < a ) with the same support and for 
every i<a there is a strongly Mahlo cardinal tci such that IP~l<x, or IP,l=x,, Pi 
satisfies the x-chain condition and (p(Pi, re). 

Proof 1) See Laver [L]. 
2) Let Q=<P~,Q~:i<x> be the 2-Easton-support iterated forcing notion 

defined by: Q__i is Ri if i is strongly Mahlo and > 2 and F0"i =c H(i), where R i is such 
that Fo(i) = (x,  R~) and R~ is a P~-name ofa  </-strategically closed forcing notion, 
and Qi is trivial otherwise. In V P~ let F(i) be y[Gl, i,Ri ] if Fo(i ) = (y, Ri> and y is a 
Pi* Ri-name, and 0 otherwise. The proof is exactly as in Laver [L]. 

3), 4) The proof is like that of (2). 
Theorem 3.5 yields a universe in which we can iterate many forcing notions 

preserving supercompactness. 

3.6 Lemma. Let F : x ~ H ( x )  be an oracle diamond. 
1) I f  Qo satisfies the F-oracle condition then II Qo ''F is an oracle diamond". 
2) I f  Qo satisfies the F-oracle condition and Q1 is a Qo-name satisfying the 

F-oracle condition then Qo * Q1 satisfies the F-ordcle condition. 
3) I f  (Pi, Qi: i < a, j < a> is a < x-Easton-support iterated forcing notion (or a 

< r-support forcing notion) and each Q_i satisfies the F-oracle condition then P~ 
satisfies the F-oracle condition. 

Proof The proof is straightforward. 

3.7 Fact 
(A) Suppose: 
(a) ~ = Q q : i < ~ >  is a strictly increasing and continuous sequence of 

cardinals, and for every limit ordinal 6, if tr is singular then ~q + 1 = x] .  
(b) F : O r d ~  V, Range(F Ixi) c= n(Ki). 
(c) Ifxi is regular then F rtq+ 1 is a ~i+ 1-Laver diamond, and thus xi+ 1 is super- 

compact. 
(d) Notation. F o and F1 are defined by F(a) = <Fo(a), Fl(a)> when F(a) is a pair, 

and Fo(a ) = Fl(a) = 0 otherwise. 
(B) We define an iterated forcing notion by: 
(a) (P~, Q~: i<  ~ >  is an Easton-support iterated forcing notion. 
(b) IP,I _-<--x~. 
(c) Let i(a) = min {i: xi > a}. We take F*(a) to be Fo(a) [Ge c ~] if this is defined, 

and F*(a)= 0 otherwise. We shall prove, inductively, that for' ~i regular, in V e~ +1 
F* rx~+ 1 is a direct oracle diamond. 

(d) If x, is regular, Qi = lim (P~, Q~: a < x, +1 > (in v e') Q~ is F 1(~) if it is a P~. * P~- 
name of a < a-strategically closed forcing notion, a is inaccessible and > IPbl + x, 
for fl < a and Fl(a ) satisfies the F* Ix j+ ~-oracle condition for j < i with xj regular, 
and otherwise Q~ is trivial. 

p. +~- def-  
(e) In V ' , A i = {0: x i < 0<  xi+ 1 ̂  0 is a pwccf above tq} (see 2.6). 
(0 If t% is singular then Q~ is P ~  where 

(see 2.1). 
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Then: 
(1) F o r ,  < fl Pp/P~ satisfies the (F I~ + 0-oracle condition, for i+  1 ____, and a 

regular ~. 
(2) P~  preserves the supercompactness of ~+ ~. 
(3) V v~ is as required in 2.13(D). 
(4) If 2 = lq is supercompact, n < co, D is a normal fine ultrafilter on ~< ~(H0q)) 

and D preserves {ri: i < oo } [see Def. 0.2(1)] then in V v~ 2 is xi-supercompact by an 
ultrafilter which preserves {Kj :j < oo }. 

(5) Condition (C) of 2.13 holds. 

Proof. The proof is straightforward (using 3.7, 2.8(1)). 

3.8 Claim. Suppose ( r i  : i < ~ > is as in 3.7(A) (a), i.e., for every i if x i is regular then 
wi+ 1 is supercompact, and 2 = tq is supercompact for {~:i : i < oo }, (Pi, Q_i: i < oo ) is 
an Easton-support iterated forcing notion, and Q_~ is such that if i is strongly 
inaccessible then Q~ adds a Cohen subset to i and otherwise Q~ is trivial. 

Then, in V v~ there is an F as required in 3.6 for {~h: i < oo }-~uch that 2 = s:a is 
supercompact. 

3.9 Remark. Claim 3.8 yields an F and this F is as required in the assumptions of 
3.7. Also 3.7 yields what is required for the assumptions of 2.13. Thus 2.13 
completes the proof of 0.1. 

Proof. First one obtains F I[~, sh+ ~) from G~,, the generic subset of Q~,. By 3.5(1), 
(2) this makes F to be as required in 3.7, but what about 4? We correct 
F I{tq: i<2}  by the generic subset of Qa. 

4 On the i d e a l / [ Z ]  

4.1 Lemma. I f / ~ =  sup 2 i, where <2i: i < c f # )  is a strictly ascending sequence o f  
i<cfg 

uncountable cardinals and 2 = #  + then there is a function c :2  x 2--,cf# such that 
for  all , , f l , 7 < 2  

(i) c(a, fl) = c(fl, a), 
(ii) /f �9 > f l>7 then c(,, 7)=<max(c(,, fl), c(fl, 7)), and 

(iii) for  all i < of# [{ B < a : c(,, fl) = i}l < 2~. 

Proof  [Sh 88a, 4(3)]. We shall define c(,, fl) for fl =< a by induction o n ,  as follows, 
and for a < fl we define c(,, B) = c(fl, ,). Let (a~: i < of#) be an ascending sequence of 
sets such that for i<c f#  lai{<21 and U a~=, .  For i<c f#  let a~=aiu{f l : for  some 

i<ef# 
a'~ a i such that fl =< a'< a c(~', fl)~ i}. We define c(a, fl) to be the least i such that 
fl ~ a'i. (i) holds trivially, and (iii) is easily seen, by induction on a. Also (ii) is proved 
by induction on a as follows. Assume a > fl > ? and c(~, fl), c(fl, 7)<-_ i. Since c(~, fl) 
= j  ~ i  then fl ~ a)~ a' i. By the definition of a' i one of the following two cases holds. 

Case a. fl ~ ai. Then, since ? < fl < a and c(fl, 7) =< i we have ? ~ a'i and c(,, 7) =< i. 

Case b. For some a' ~ a~ such that fl =< , '  < ,  c(~', fl) =< i. Then, since c(,', fl), c(fl, ?) <= i 
we have, by the induction hypothesis, c(,', 7) ~ i. Now we have 7 =< ~' < ~, ~' ~ a~, and 
c(a', 7)_-< i, hence ? e a i and c(. ,  7) =< i. 

4.2 Fact. 1) Let ~ be a strong limit singular cardinal, Q a forcing notion such that 
[~"2 is a strong limit cardinal and (2+)v=(2+) vQ'', 0 a regular ordinal < 2  and 

S = { 5 < 2 : c f t 5 = 0 } .  
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Each of the following (a)-(c) is a sufficient conditions for 

I~Q S n ( S ~ )  v = Sn(S~'2) ve (mod D~+). 

(a) Q is 0-complete. 
(b) Q adds no new subsets of 0. 
(c) Out of any 8 members of Q 0 are pairwise compatible in Q. 
2) We can replace in Part (1) S*~ by bad(f).  

Proof. Let c be a two-place function from 2 + to 0 as in 4.1, where we take 2 for #, 
and therefore 2 § for 2. Thus 

S ~  = S(c) = {3 < 2 + : / f  cf~ > cf2, then for some unbounded A c= 3 
c"(A x A) is bounded in cf2} 

= {fi < 2 + : /f cf~ > cf2 then for any unbounded A c= 3 

there is an unbounded A'C=A 

such that c"(A' x A') is bounded in cf2}. 

and this holds in V e too as c, 2, and 2 + are as required also in VQ; the cofinality of 2 
in V ~ may be less than cf2 but this makes no difference, by 2.7. 

Clearly S(c)Vc=S(c) vQ. Suppose 3 e S(c)VQnS, then (cf3)v=O, so let A be an 
unbounded subset of ~ of order type 0, A e V. By the second characterization above 
of S(c) there is an unbounded subset A' of A in V Q such that c"(A' x A') is bounded 
in cf2. By (b) A' e V, hence 6 e S(c) r. By (c) there is a p e Q and a Q-name _A'such that 

p I~"A' is an unbounded subset of A A c"(_A' x A') is bounded in cftV)2 '' . 

Without loss of generality p I~- "c"(_A' x A')__c e", where e < cf2. 
Let _A be the range of the increasing sequence (_~: i < O>. For each i < 8 choose, 

if possible, a P<Pi e Q, such that Pi I [ -~e  _A' A otp(~in~l)> i. Let B =  {i< 0: Pi is 
defined}. Clearly IB[ = 0, and by (c) there is a B'__-_ B of cardinality 0 such that any 
two p~'s with i e B' are compatible. Let A' = {~i: i e B'}. Clearly A' is unbounded in 
A, A' e V, and since any two pr with i e B' are compatible c"(A' x A') c= e. Therefore 
3 e S(c) v. Assuming now (a), there is an increasing sequence (pi:i  < 0) such that 
Po =P, P~ determines the first i+  1 members of A'. Let ~ be such that p~ IF-~ is the 
i-th member of  A'. Since pi>_p and p I~- _A'__CA we have 0~ieA. Clearly (0q: i<O) is 
an increasing sequence in V of members of A hence A"={~i: i<O} is an 
unbounded subset of A. It follows easily that c"(A" x A")__c ~, hence 6 e S(c) v. 

4.3 Lemma. Let 2 be an uncountable regular cardinal, B c= A, [B[ < [A[ = 2, A = U Ai, 
i < 2  

B = U Bi, where the sequences (Ai: i < 2), (Bi : i < 2) are increasing and continuous 
i < A  

and ]Ai[, [Bi] <2  for i<2.  Then 

E = { i < 2 : A i A B = B i }  
is a club subset of 2. 

4.4 Lemma. Let 2 be an uncountable regular cardinal. 
1) Td--ef{~<2 + :cf~<2} is in 112+]. 
2) T is the union of  2 sets which have the square property, i.e' there are sequences 

(Si : i  < 2), and (C~:3 ~ St) for i< 2 such that: 
(a) U si = T. 

i<A  
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(b) For 8 ~ S  i C~ is a subset of 8 n T  of cardinality < 2  closed in 8, and if 8 is a 
limit ordinal then C~ is unbounded in 8. 

(c) For all 61, 82 i f  62 ~ Si and 61 ~ C~ 2 then fi 1 ~ S i and C~ = C~2nSt. (Notice 
that 81 may also be a successor ordinal.) 

3) For each regular 0<2,  let TO={6<2 + :cf6<0}.  There are ( S ~ : ( < Z )  and 
( C] : 3 ~ S~) such that 

(a) U s i=  To. 
i < ; t  

(b) For 8 ~ S i C~ is a subset of 8 n T o of order type < 0 closed in 6 and if 8 is a limit 
ordinal then C~ is unbounded in 8. 

_ i (c) For all 81,82 if 82~S i and 81EC~ then 81~S i and C~I-Co~n61. 

Remark. In (2) and (3) we can add: 

(d) I f  ct+ l ~Si and c f~<2 then C~+i 1--C~u{~t}. 

Proof. 1) We show that (2) implies (1). For  ~ < Z  + let 

Notice that, using the notation of 2.5, S ~ ( ( ~ :  c~ < 2 + )) v__ T\2.  By 2.5 T~ 112 + ]. 
2) We deal now with the case where 2 > N1, leaving the case 2-- N ~ to the end of 

the section (after 4.5). We choose for each ~ < 2 + a sequence (D / : i < 2) such that: 
(i) o ; c  IV l < 2. 

(ii) (D~:i < 2)  is increasing and continuous. 
(iii) ~-- U D~ �9 

(iv) The closure in ~ of D~ is included in D~ + 1. 
(v) For  ~ > 0 0 e D'-, and if ~: + 1 ~ D~ then 7 ~ Di-. 

(vi) If cf~ < 2 then D o is unbounded in ~. 
For  each �9 e T and i < 2 such that cfi > co we define C / as follows. For  an ordinal 

let b(~) be the ordinal fl such that �9 = fl + n, where fl is 0 or a limit ordinal and 
n.< co. 

Case a. If cfb(e)* cfi then 

i def i 
C, = {fl ~ D~: cffl < Z} w {3 < ~ : 6 = sup(D~nT)}. 

Case b. If cfb(~) = cfi (>  co) then 

i d e f  
C~ = N U c~ w [b(~), ~). 

W i s  a c l u b  subse t  of  b(~O fl6WnTn{fl<2+:cfb(fl)*cfi} 

Notice that for ~e  T, if c fb(~) ,  cfi, i<Z, and cf i>  co then C~ is a closed subset of~  
and C~_-c T. It follows immediately, by induction on ~, that for every ~ ~ T C~ =c T. 
For  i < 2, cfi > co let 

si~f{~ ~ T: C i is closed in ~ and if ~ is a limit ordinal then Ci~ is unbounded 
i i in ~ and for every fl~C~ C # - f l n C ~  and if fl is a limit ordinal then C~ 

is unbounded in fl}. 

Thus (S~: i<ZAc f i>co)  and ( ( C ~ : 6 ~ S ~ ) : i < Z ^ c f i > c o )  are defined, and we 
have to prove (a), (b), and (c). 

a) We shall prove by induction on c~ ~ T that  there is a club subset E of Z such 
that for every i < 2 if i ~ E and cfi > co then ~ ~ S~. The following simple fact will be 
useful for the inductive proof. 
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(1) If ? < e ,  yeS~, and C~=Ciny then for every f l<y  if fleCi, then 
C~ = Cinfl  and if fl is a limit ordinal then C} is unbounded in ft. 

Let us prove (1). Since 7eSi C/~ is unbounded in ?. Let f l<?  and f l �9  C~ then 
fl �9 Cin7 = Ci~ and hence C~nfl = C~ and iffl is a limit ordinal then C~ is unbounded 
in ft. Therefore 

- , C~ n f l -  Cfl. 

For  every 6 �9 T n ~  there is, by the induction hypothesis, a club subset E~ of 2 
such that i �9149 i. Also, by (ii) and (iii), for 6�9 the set 
E~ = {i < 2:6 �9 D~} is an interval [a, 2) for some a < 2 and hence a club subset of 2. 
For 2 < 6 < a  take in 4.3 A = a ,  B=6, Ai=Di~, and Bi=D ~ then, by 4.3, 
E~={i<2:D~nb=D]} is club in 2. For 6<2,  since 2 is regular there is, by (ii), a 
jo < 2 such that D~ = 6 for every i >= jo. Let j~ = sup jfl then D~ = 6 for every i => j. For  

.#<~ 
6<2,  ~ we set E~ = [j~,2), so if i�9 then D'~nc~=~c~6=6=D~. For 6 � 9  T n ~  let 

Now we deal separately with the following cases. 

Case O), e=0 .  We take E = 2 ;  this case is trivial. 

Case (ii), a = 6 + 1, where 6 �9 T. We take E = E ~. Let i �9 E, cfi > co, we shall prove that 
a �9 S i. Since i e E ~ C ~ ~'~ ~ =~,--,2,,~a we have 6�9 6�9 and D~=D~w{6}. By the 
definition of C~ either both C~ and C~, are defined by Case a, and then D~=D~u{6} 
implies c , - i  _ C~u {6} and we know also that C~ is closed in a or else both are defined 
by Case b and then C,-~ - C]u {6} holds trivially, and hence C~ is closed in a since C~ 
is closed in 6 as 6 �9 St. Thus (1) holds for 7 = 6, and a satisfies the requirements for 
membership in S~. 

Case (iii), ~ is a limit ordinal, and we restrict ourselves to i < 2 with cfi # cf6 when 
= 6 + co. As ~ �9 Tcf~ < 2. Let <~, : a < cfa> be increasing and continuous with 

limit ~ and such that for j < cf~ which is not a limit ordinal cf6j < co and cfb(fj) 
# cfi, and if cfc~ > co then cf6i = co for every such j. Clearly 6, �9 T for a �9 cfcc Let 

e= N 
. i < c f  o~ 

Suppose i �9 E, cfi > co, and j < cfa then, since i e E ~, we have 6j �9 S~, 6j �9 D/, and 
D nO =D]; 
Subcase (iii 0, cfa :4: cfi. In this case C / is defined by Case a. Now, for j  < cfe 6j �9 D~, 
hence 6~e C~, therefore C~ is unbounded in ~, and it is clearly closed. For  a 
successorj<cf~ C~ is defined by Case a, so since O~-O~nOji _ ~ also C~i =Cinb j .  
Thus (1) holds for arbitrarily large ? < a so a �9 S~. 

Subcase (iiiz), cf~ = cfi (>  co). Let Wo = {6, : a < cf~ A cf6, # cfi}. We shall see that 

if ~ ,~ �9  then C~=C~ne. (2) 

Let e = 6,, ( =  ~,  a < z. We know that 

i _  ~ _ r = D i n e  D~ - D~ - D~ n 6, 

and similarly i ~ D~i = D~ne,i i D;=D~ch(. Therefore and since e, ( � 9  Wo both C, and C~ 
are defined by Case a and we have also C~ = C~che. Let W' be a club subset of 
{6,: a < cfa} and let W" = W'n  Wo. W" is clearly an unboundetl subset of a. Thus, 

by(2), U c~=  U c ~ =  U c~. 
f l  ~ W " c'~ {fl < a : c f  b (fl ) * e f  i } f l e W "  fl ~ W o 
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This immediately implies, by Case b, 

U G- (3) 
~ W o  

For/~ e Wo ~ is a limit ordinal (since in this case cf~ = cfi > co) and B e S~ hence C~ is 
club in ]~, hence by (2) and (3) C~ is club in ~. Also for Be Wo C~n~= C~. Thus (1) 
holds for every 7 e Wo, and ~ e S~. 

Case(iv), ~=6+w,  and we restrict ourselves to i < 2  with cfa=cfi .  Let (6~:a 
< cf6) be an increasing sequence of ordinals in T with limit 6. We take 

E =  ~ E~~ ~ E ~+". 
a < e f 6  n<co 

Let i e E, cfi > o~, we shall prove that ~ e Si. 6 e Si since E__c El, and D~n6 = D~ since 
E =c E~. C~ is defined by Case a hence C~ is closed in ~, and for n < o i e E = E~ +" 
hence 6 + n e D~____ C~. Thus C'. is unbounded in ~. In order to prove that ~ e S~ it 
clearly suffices to show that (1) holds for arbitrarily large 7 < ~; we shall now see 
that it suffices to prove (1) for 7 = 6. In this case we have for 6 < 7 < ~ C~r = C~u [6, 7)- 
Also, since ieE~ +" for every n e w  we have D~ [ 6 ,~ )  and hence C ~ [ 6 , ~ ] .  
Therefore for 6 < 7 < ~  we have, since (1) holds for 6, 

= [6, = I-6, 7 )=  

and since i e E~ (1) holds for 7. 
Now we prove (1) for 7 = 6. 6 e Si since i e El. As we have seen above 6 e D~ and 

since cf6 < 2 and C~ is defined by Case a also 6 e C~. For a < cf6 D~ = D~na~, since 
i e E~% and if cf 6~ ~: cfi we have also C~, = C~na~, since bo th  C / and C~ are defined 
by Case a. Let W' be a club subset of {6,:a<cfa} and let 

W" = W'c~ {/~ < 6: cfb(/~) :~ cfi}. 

W" is dearly an unbounded subset of 6. Thus 

U G = U G=c;  
#~W'c~{#<&cfb(p)~cfi} #~W" 

This immediately implies, by Case b, C~ = C~na. 

Case (v), ~ = 6 + 1, where cf6 = 2. Let (6~ : a < 2) be an increasing' continuous 
sequence converging to 6 such that for each a < 2 if a is 0 or a successor then 
c f a , = o .  Since the sequence (D~: i < 2 )  is increasing and continuous and for 
i< 2 D~,\{6} is a subset of 6 of cardinality < 2 the set E ' =  {i < 2:i  is a limit ordinal 
and D~C=6~u{6}} is a club subset of 2. Let 

E =  D Ea~nE '-, 
~r<), 

where D denotes diagonal intersection (i.e., D Ej={i<A:(Vj<i)ieEj}~. We 
\ j<,~ } 

assume now that icE, cfi>o~ and we shall prove that c~sS~. In this case C~ is 
defined by Case a hence C~ is dosed in ~, i.e., since we know that C~ is closed in ~ as 
C/~ is defined by Case a, all we have to show is that for every fl e C~ 

C~=flnC~ and if fl is a limit ordinal then C~ is unbounded in 8. (4) 

Let a<i  and c fa~c f i  then, since ie D E~=_E ~ 6 ~ S i  and D~na , -D  i and 

since both C~ and C~ are defined by Case a also C ~ n a , -  i - C~. Thus (1) holds for 
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? = 6, hence (4) holds for every fl < 6i = sup 6,, as i is a limit ordinal�9 Since i t  E' 
, < i  

D~C=giu{6 } hence, since C~ is defined by Case a, C~c=6~+1. Since we know 
already that (2) holds for every fl < 6~ we still have to prove (2) for fl = 6~. Since i is 
a limit ordinal {6, :~r < i} is a club subset of 6i. Let Wo = {6~ :a  < i ^  Cf6o :~ cfi}. As 
in Subcase (iii2) we have (2) and C], = U c~. Since we know already that for 

/ ~ W o  

t Wo Cp-C~nfl and C~ is unbounded in fl we have C~,= C*,n6~ and C~, is 
unbounded in 6~. Thus (4) holds also for fl = 6i, which ends the proof. 

b) By our definition of S,, ifa s S~ then C~ is a closed subset of a, and ifa is a limit 
ordinal it is unbounded in ~. We prove now by induction on a that IC~I < 2. If C~ is 
defined by Case a this obvious. If C'_' is defined by Case b and a is a limit number 
then by Subcase (iii2) * - C~-  g C~, where W0 ~ ~, [W o[ = [cfa[ < 2. By the induction 

# e W o  
hypothesis lEVI < 2 for fl + Wo, hence, since 2 is regular also IC~l < 2. If C'- is defined 
by Case b and ~ is not a limit number then IC~] < 2  follows immediately from 

= u [b( : ) ,  
c) follows immediately by the definition of S~. 
3) We shall use (2) and define sets S~,: for i,e<2 such that E=0 or co<c fa<0  

and C~'~= (C~':: 6 �9 S~,~). We shall prove that for the set 

{(i,e) : i , e<2  A (e=0 V co=<cfe< 0)} 

of indices (a)-(c) of (3) are satisfied. For  co < cfe < 0 let O(e) be a club subset of e of 
order type cf e such that the members of D(e) which are not accumulation points of 
D(e) are successors�9 For Si and C~ as in (2) we define 

i, 0 Si, o = { a < 2  + "~=0 or ~ is a successor}, C, =0, 

and for co<c fe<0  

Si,~={~eS~:otpC~eD(~)u{e}}, i"-{ f leC~:otpC~D(e)}  C ~  - -  �9 

We shall prove now (a)-(c). 
a) Let ~ ~ To, then ~ ~ Si for some i < 2, and let e = otp C~. If cfe < 1 then ~ is 0 

or a successor and ~ e S~. o; otherwise clearly ~ ~ Si.,. 
b) For  S~. o this is trivial; so we assume now that e is a limit ordinal. Given ~ ~ To 

and i <  2 let f be the function which counts the members of C/,, i.e., f is the 
increasing function from otp C~ onto C~. Since C~ is closed f is continuous. For 
fleCk, C~=C~c~fl, hence f(otpC~)=fl. By the definition of C/'~ we have C~ '~ 
= f"(O(e)c~otp Ci,). Since f is continuous and D(e)notp C~ is closed in otp C~, C~ ~ is 
closed in supf"otpC~=supC~. Since C/~ is closed in a also C/'' is closed in ~. 
Clearly otp Cig ~ < otpD(e) = cfe < 0. 

F o r f l ~  i'~ i C, ~ C~, if fl is a limit ordinal then since C~ is unbounded in fl also 
otp C~ is a limit ordinal with the same cofinality and since, by the definition of C~'~, 
otp C~ e D(~) we have, by our choice of D(e), cfotp C~ < O, hence cffl < O, i.e., fle To. 

If a is a limit ordinal then C~ is unbounded in ~ hence also otp C~ is a limit 
ordinal. Since 6 �9 Si, otp C~ �9 and the members of D(e) which are not 
accumulation points of D(�9 are successors otp C / is an accumulation point of D(e), 
i.e., D(e)~otp C~ is unbounded in otp C~. This is preserved by f hence C/'~ is 
unbounded in C~ which is unbounded in a, hence C/'~ is unbounded in a. 

(c) If 7eSi,, and fleC~ "~ then f l<?  and otpC~eD(e). Since 7~Si, e.c=Si and 
i t  i , e  i i i " i C~ ~ C~ also t e S~ and C~ = C~n t. Since otp C~ ~ D(e), t e Si ~. Since C~ -- C~c~ l 

�9 " i v  i e  i e  i e  " we have, by the defimtlon of C~ and C b' , also C~ = C~' nil. 
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4.5 Lemma. For every set A of ordinals there is a function rl a = < rl~ : i ~ A )  such that 
for every i ~ A 

(i) rh a is an ascending sequence of members of Ac~i. 
(ii) I f  l < length(q~) then rla~fo) = ~1~ Il. 

(iii) For every accumulation point 3 of A of cofinality co there is an ascending 
sequence ~ of length co of members of A such that sup ~, = 6 and for every n <co, ~ In 
- -  ~ l ~ ( n ) "  

Proof By induction on ~ which is the order type of A. 

Case 1. ~ =0.  Take q0= 0. 

Case 2. ~ is a successor. Let ~ = ~ + 1 and let/~ be the maximal member of A. Take 

Case 3. ~ = co. Let </~, : n ~ co> be an increasing enumeration of the members of A. 
Take qa={</~,, </~0 . . . .  ,/~n-l>>:neco}. 

Case 4. �9 is a singular limit ordinal. Let <~i:i < cf~> be an ascending sequence of 
members of A such tha t /~0=0  and sup/~i = supA. Take qA__ U ~/(P,,#i+l)na 

i < e f ~  i < e f ~  

w~/{p,: i< cf~}. It is easily seen that qa satisfies (i)-(iii). 

Case 5. ~ is a regular cardinal > co. We define for i < ~, ~ < supA by induction on i 
as follows. ~o =0,  for a limit ordinal i, ~i= sup ~j, and ~i+ 1 is chosen so that 

j< i  
(~i+1 >(~i and otp[(~i,~i+x)nA]~co2"otp[~inA]. For  i<ct let 

Bi = {the a-th member of (~i, ~i+ 0 c~A : ~ is a limit ordinal < otp [(~i, ~i + 0c~A]}, 

and Ci = ([-~i, ~i + a)c~A)\Bi �9 By our choice of ~i+ llBi[ > I~c~AI + N0. We define i/A as 
a _  c, a = 0 a n d  for 76Bi, i>0 ,  we define ~/a by follows. For  y r C~, qr - qr ,  for 7 ~ Bo, ~/~ 

induction on i as follows. Let T~ be the set of all finite ascending sequences 0 of 
members of ~ Bj such that for every l<length(~) ~O(1)a = ~ II, and let F~ be a 

j< i  
mapping orB i onto T~. We define for 7 r Bi tin = Fi(?). There is such an F since U Bi 

j< i  
= ~c~A and IB~I > I~ic~AI + No. (i) and (ii) hold by the definition of/'/a. To prove (iii) 
let 6 be an accumulation point of A of cofinality co. If for some i<  ~, a~ < 6 < a~ + 
then, by our definition of B~ and C~, 6 is also an accumulation point of Ci and hence, 
by the induction hypothesis concerning ~/c,, there is a ~ as required by (iii). If 6 = ~, 
where i is a limit ordinal, then let <i,: n < co> be an increasing sequence such that 
sup i, = i. We define by induction on n a sequence ( =  <~, :n e co> such that for 
tl "< (,0 

n ~ oo, ~, e Bi as follows. ~n is taken to be a member of B~ such that F~(~,) = ~-In; there 
is such a Cn since F~:B~-oT~, is onto, ~-is clearly as required in (iii). 

Proof of 4.4 (continued). We shall prove that the set T =  {6 < N2 :cf6 < co} itself 
has the square property, so S~ = T for all i < 2. Let A = {6 < N2 : cf6 < co} and let ~/A 
be as in 4.5. For  6 ~ T if cf 6 < co let C~ = Range ~ .  If cf ~ = co let C~ = Range r where 

is an ascending sequence of length co of members of A with limit a such that for 
A . every n < co, ~ In = ~/0(,), there is such a ~ by 4.5. It follows directly that (b) and (c) 

hold. 
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Note added in proof. 1. Note that it is proved in [Sh 420] that for regular cardinals 2 and x 
satisfying 4 > x + there is a stationary S C {6 : 6 < 2, cf(,t) = x} which belongs to 114]. On the other 
hand (by a handwritten manuscript) it is consistent with ZFC that no stationary subset of 
{6 < N2 : cf(6) = N1} belongs to I[N2], and it is also consistent that fIN2] is not generated by the 
ideal of non stationary subsets of N2 plus one set. 

2. We can strengthen REF by demanding: (*) if 2 is inaccessible, c~ < 2 § 2 is (c~ + 2)-Mahlo, 
S C Mahlo~(2)- Mahlo~ + 1 (2) then {6 ~ Mahlo~ + 1 (2)-  Mahlo~ + 2 (2) : Sn  6 stationary} is station- 
ary, where we define Mahlo~(4) by induction on e, if �9 = O, Mahlo~(2) = {#:/2 < 2 is inaccessible}; 
if e = fl + 1 then Mahlo~ (2) = {/2 :/2 < 4 is inaccessible,/2nMahloo (4) is stationary}; 
ff c~ is a limit ordinal, let e be a club of c~ of order type cf(c~) and MahIo~(4) = {6 < 2: 6 ~ Mahlo~(4) 
for every j?~e, otp(en~)<6}.  
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