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Abstract. REF is the statement that every stationary subset of a cardinal reflects,
unless it fails to do so for a trivial reason. The main theorem, presented in Sect. 0, is
that under suitable assumptions it is consistent that REF and there is a ¥ which is
k *"-supercompact. The main concepts defined in Sect. 1 are PT, which is a certain
statement about the existence of transversals, and the “bad” stationary set. It is
shown that supercompactness (and even the failure of PT) implies the existence of
non-reflecting stationary sets. E.g., if REF then for many A’s 1 PT(4, X,). In Sect. 2
it is shown that Easton-support iteration of suitable Levy collapses yield a universe
with REF if for every singular 4 which is a limit of supercompacts the bad
stationary set concentrates on the “right” cofinalities. In Sect. 3 the use of oracle
c.c. (and oracle proper — see [Sh-b, Chap. IV] and [Sh 100, Sect. 4]) is adapted to
replacing the diamond by the Laver diamond. Using this, a universe as needed in
Sect. 2 is forced, where one starts, and ends, with a universe with a proper class of
supercompacts. In Sect.4 bad sets are handled in ZFC. For a regular A
{6<AT:cfd<A} is good. It is proved in ZFC that if A=cfA>N; then
{a<A*:cfa< A} is the union of A sets on which there are squares.

0 Introduction

We continue here Magidor-Shelah [MgSh204] and [Sh88a] (which is an
improved representation of [Sh 108]), generalize the oracle c.c.c. forcing notion
[Sh-b, Chap. IV], and solve a problem of Ben David [BD].

In Sect. 3 we rely heavily on the Laver indestructibility of supercompactness
(Laver [L]) for <xk-directed closed forcing notions, which Baumgartner gen-
eralized to some not < x-directed closed forcing.

For the background and the history of reflection see the recent Mekler and
Shelah [MkSh367] and Jech and Shelah [JSh387]. For applications of Sect. 4 see
[Sh300, Ch.III, Sect.6,7] and Baldwin and Shelah [BSh387]. Lemma 4.4
improves [Sh237¢]. An argument which shows that assuming the GCH is
natural for the problems we deal with is given in [Sh 355].
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An innocent reader may wonder if he has read the author’s name correctly. The
author gave, in the spring of 1988 a handwritten manuscript to A. Levy for having
it typed for submission to the Archive for Mathematical Logic. Since then he has
been rewriting it, squeezing out of me lengthy replacements for many explicit and
implicit “left to the reader”, “well known”, “clear from ...”, etc. All the thanks for
the presentation and the much better English (except in this paragraph) should be
directed to him.

In the statement of the next theorem REF denotes the assertion that all regular
cardinals >N, are reflecting in the sense of Definition 1.2. Our main results are as

follows.

0.1 Theorem. (1) If V has sufficiently many supercompacts (see 3.7) then in some
forcing extension:

GCH + REF +there is a x which is k™ “-supercompact .

() If GCH+x is x*“*Y-supercompact then REF fails. In fact, there are
singular strong limit cardinals 1,<2, of cofinality w and a stationary
SC{0< Ay :cf6=2{} which does not reflect.

For a class 4 in which the axiom of extensionality holds we shall denote with j ,
the Mostowski collapse of 4.

0.2 Definition. 1) x is a A-supercompact for ACOrd (really a |H(1)|-supercompact
for A) if: there is a normal x-complete fine ultrafilter D on <. (H(A)
={aCH(A):|a| <k} such that

{ac P (HA):j, (anA)=Anj, a}eD

In this case we say that D preserves A.
2) F:wr—H(k)is a Laver diamond [ for 6] if for every A[1<0] and x e H(Z) for
some normal x-complete fine ultrafilter D on &% (H(1))

{ae S (H(A):xeanj(x)=Flank)}eD.
In this case we say also that F is a x-Laver diamond [ for 6].

0.3 Fact. Forcing by a forcing notion of power < x preserves “k is A-supercompact
for A”, for 4 with cfA=«, and “there is a Laver diamond for 6.

Proof. Let P be a forcing notion of power <k and let cfi=x. Let x be
A-supercompact for A and let D be an ultrafilter on &, (H(1)) witnessing that. We
define now an ultrafilter D¢ over %, (H(A))"'¥in V[G], where G is P-generic over
V. For ae . (H(A)) we define

ag=au{t[G]:teatis a P-name A0 [t[G] e H(7)"'1}.

For XC¥. (H(A) we define X®={ag:aeX}. Dy is defined to be the filter
generated by {X%: X eD}.

To prove that D% is a x-complete filter we shall show that if TC{X¢: X e D}
and |T|"'%) <k then (| Te D®. Since |P| <k thereisa T' e V, T'S D, |T’| <k such that
TC{X%:XeT}. Let Y= T then Y*C(\ T, and since D is x-complete Ye D and
thus () Te DC. Since H(A)"'9={<[G]:te H(A) At is a P-name A O|—t[G] e H(4)}
it follows easily that D€ is fine. Let us see now that D¢ is an ultrafilter. Let ¢ be a
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P-name of a subset of &, (H(1))''°l. We define an equivalence relation E on
. (H(A) by setting

akb<(YpeP)(pl-aceg<pl-bgeg).

E has <|2(P)|=2"l <x equivalence classes, hence one of them, which we shall
denote with X, is in D. Let ae X. If ag € 6[G] then X9 L g[G] hence ¢[G] e DC. If
ag¢ ¢[G] then X°C S (H(A)"'N\g[G] hence ¥ (H(W))\e[G]e D°.

In order to show that D is normal let us first mention a few simple properties
of D. Since |P|<x we can assume that PCx and since D is fine and x-complete

{aeF (H(A):PCa}eD.

Let F be a function on %, (H(2)) such that for every ae ., (H(4)) F(a) € a. Then, as
casily seen by the fineness and normality of D, if

F={ueH(}):{ae L. (H():ueF(a)} e D}
then {ae ¥, (H(1): F(a)=anF}eD. Similarly, it is easily seen that
{ae S (H()):(Vu,vea){u,v)ealeD.

Using these facts it is easy to prove that {a € &_ (H(4)): Every partial function from
P into ais in a} € D. The same methods show that for the usual way of defining a
P-name of asetin V {a e ¥, (H(A)): acontains a P-name of every member of a} € D,
hence for almost all a’s ag={t[G]: tea At is a P-name AO[-1[G]eH(4)}.

Let ¢ be the name of a function € V[G] such that g[G](ag)ea, for every
ae & (H(A)—{0}. For every ae ¥, (H(2))— {0} let f, be a function on an open
dense subset of P into a such that for pe Dom(f) cither p | 6[G] (a¢) ¢ ag and f,(p)
is an arbitrary member of g, or f,(p)is a P-name 7 such that tea A O |-z[G] e H(4)
and p |- o[ G] (ag) =z[ G]- By what we saw above, for almost all a’s, in the sense of
D, f,ea, hence there is a function f from an open dense subset Q of P into
. (H(A) such that for some Ye D we have for all ae Y f,=J. Let pe QnG. Since
pe G it is not the case that p|— o[ G](ag) ¢ ag hence for 7= f(p) we have for every
aeY pl—a[Gl(ag)=1[G], hence for every ae Y¢ ¢[G]}(a)=1[G], and we have
established the normality of D€.

In order to complete the proof of the preservation of the A-supercompactness
we still have to prove the “for A” part of this property. It is easy to see that thereis a
Ye D such that each member a of Y has the following properties (i)—(iii):

(i) Forevery P-name 7 which is in a all possible values of r which are in H(A) are
also in a (there are <« such values).

(i) aisan elementary substructure of H(1) and therefore, since P e H(4), also ag
is an elementary substructure of H(1)"1¢,

(iii) j,“(eanA)=Anj,“a (this is possible by our hypothesis on D),

By (i) agnV=a and j,=j,, V. By (i) j, and j,, map only ordinals to
ordinals and thus, by (iti),

Jag (anA)=j (anA)=Anj,“a= Anj,“(@anOrd)= Anjac“(aGnOrd) =Anj, “ag

This ends the proof that «k is A-supercompact for 4 in V[G].

Now let us assume that F: x = H(x) is a Laver diamond for . Let F' € V[G] be
defined by F ’(a) F(o) [G] if F(o) is a P-name, and F'(x)= F(x) otherwise. We shall
prove that F’ is a Laver diamond in V [for ¢]. Let A <0, and assume that for some
pe G and some P-name 1
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plE “the value x of 1 is in H(A) and is counterexample to F’ being a Laver diamond”.

Thus for some y<8@and g, p<qeP, q|z€H(u"), and without loss of generality
A=p*. Since F is a Laver diamond for 6 there is a x-complete normal fine
ultrafilter D on %, (H(4)) such that

(ae S (H): 160 Ajft)=Fan)}eD.
It is easily seen that
p|—“DC is as required for F' to be a Laver diamond in V[G]”.

1 Reflection of stationary sets versus existence of supercompacts

1.1 Definition. 1) PT(y, 4, ) means:
If A is a family of power u of sets which are of power <x and every A'e[A]<*
has a transversal then also A has a transversal.
2) PT(<u, 4, x) is defined similarly except that |A4| < .
3) PT(< o0, 4, k) is defined similarly except that |[4| can be of any cardinality.
4) PT(4,x) is PT(4, 4, x).

1.2 Definition. 1) Let A be a cardinal with ¢f1 > w and let S be a stationary subset of
A. We say that S reflects at 6 if § <A, cfd >w and Sn§ is a stationary subset of 5.
Since § has a club subset consisting entirely of ordinals of cofinality <cfd, if S
reflects at § then S must have members of cofinality <cfd. We say that S reflects if it
reflects at some 4.

2) For aregular cardinal 4, we say that A is reflecting if for every regular x such
that k* <A and for every SC{o: 0 <4, cfo=x«} which is a stationary subset of 1 S
reflects. By the remark above S can reflect only at §’s with cfd >«.

3) Foraclass K of regular cardinals REF(K) denotes the statement that every
A€ K is reflecting.

4) REF denotes the statement that every regular cardinal >N, is reflecting.

1.3 Fact (éCH). If x is supercompact then
(*) there are singular cardinals 1;<A, and a stationary subset S of AJ,
SC{6< iy :cf6=A7} which does not reflect.

Proof. This follows from 1.4 since if x is supercompact then, as is well known and is
easily seen, PT(< 00, k, k), and this implies for all # <x <2 PT(A*, A%, 0), which is
the hypothesis of 1.4.

1.4 Fact (GCH). If cfi=8<21 and PT(.",07) then
(*)o for some singular cardinals 1; <1, <1 of cofinality @ there is a stationary
subset S of {§ <17 :cfd=A;} which does not reflect.

Proof. Let {y;:i< 8> be an increasing sequence of regular cardinals < such that

sup y;=A4. As shown, e.g., in [MgSh 204, Lemma 3], one can choose for every

i<
a<it fe X ¥; such that:

(1) For oc< B f.<*fs e, for all sufficiently large i <0 f(i) < f(i).
(ii) For every fe X X there is an a<A* such that f<*f.
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Let f=(f,:a<A™>.For ACA* and b0 we say that f is ascending on A over b

(Va, Be A)(Vie b) (a< - £,(i) < f4(i)) .

We say that that f is almost ascending on A over b if for some i, <0 f is ascending
on A over bn[iy, ), where [i, 0)={i: i, <i<0}. For f we define the bad stationary
subsets of A* to be as in [MgSh 204, Sect. 1, preceeding Theorem 11]:

bad(f)={6< A" :cf(6)>0 A for no unbounded subset 4 of J
is f almost ascending on 4 over 6}.

bad' ()= {5ebad(®:cfd>2%}.

As shown in [MgSh 204, Sect. 1] we have, for every 6<i™

(Pr,) debad'(f)= cfd is the successor of a singular cardinal of cofinality 6.

(Pr,) 6¢bad(f) = there is a club subset C of & disjoint from bad(f).

By the GCH (Pr,) holds also for every 6 ¢ bad’(f).

Now bad'(f) is stationary in A%, since otherwise, as follows from the proof of
[MgSh 204, Theorem 2], our hypothesis PT(1", 1%, ) fails.

Let §<A* be the least ordinal 6 such that nbad’(f) is stationary in & [there is
such a ¢ since bad'(f) is stationary in A*]. By (Pr,), and the remark following it,
debad'(f) or §=21*. By (Pr,), or by our choice of 1*, cf§ is the successor of a
singular cardinal 1, of cofinality 6. Let h:i; -3 be strictly increasing and
continuous and with the range unbounded in d, hence

S'={0C</'{; ;(;(:UOC/\&({X)Ebad’G)}

is stationary, and does not reflect. As cfa = cf(h(x)) for limit ordinals «, the cofinality
of each a €S’ is the successor of a singular cardinal A% of cofinality 6. As 15 <4,,
thereis an ordinal 1, </, suchthat S={0eS: 1] =4,} is stationary. S, 1, 1, are as
required.

1.4A Remark. In the definition of bad (f) we can replace, equivalently, the part “for
no unbounded subset 4 of & is f almost ascending on A over 6” by “some
unbounded subset 4, of 6 has no unbounded subset A such that f is almost
ascending on A over §”.

Proof. To prove the non-trivial direction of the remark let c¢f6 >0 and let A be an
unbounded subset of 6 such that for some y* <0 f is ascending on A over [y*,6),
and we shall show that every unbounded subset 4, of § has an unbounded subset
A’ on which f is almost ascending over 6.

We can assume, without loss of generality, that the order type of A is cfd. Let
A={a;:j<cfd}. Foreveryj<cfdlet B;<dandk;<cfé be such that a; < ;< o, and
B;€ Ay. Weclearly have f, <*f; <* fakj, hence there is an ordinal y;< 0 such that for
all y;<i<0 f, ()< f3,)) < fy, (). Since cfo > 0 there is an unbounded subset X, of
cf5 and a y <@ such that for every je X, y,=7". Since cf§ is regular there is a
subset X, of X, such that if j<j’ <cfd and j,j € X, then k; <j'. Let ¥ =max(y*,y")
and A'={f;:je X,}. A'is an unbounded subset of 4, and y’' <. We shall now see
that f is ascending on A’ over (v, ). Let 8, € A, B< [, then for some j <j' <cfd
j.j'€ X, wehave 8= B;and §'=f;, and, by the definition of X ,, k; <. Fory <i<8
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we have
S)=10<fy (D, since i>yzyl=y;.
f,,kj(i)< fo, (), since k;<j, oy,0,€A and >y 2y*.

Lo < fp,)=fpD), since i>yzyl=y;.

1.4B Remark. The cardinals 1,,1, and the set S which we have obtained in the
proof of 1.4 can be chosen so that SCbad’({ f; |« <17 »), where for some increasing

sequence {, ;:i<8) of regular cardinals with sup y, ;=4, {f;|la<23 ) is such
i<@

that for every a<; f,e X x..; and
i<@
(i) For a<f<i; fo<*f;
(i) For every fe X y,.; there is an a <A such that f<*f;.
i<@

Proof. For every < A" such that ¢f§>2let f*e X x; be a least upper bound of
i<@

{fyra< ), in the sense that f, <*f;* for every a < f and for every function g on 0 if
g <*fi then for some a < § g <*f,. For a proof of the existence of such an fg* see
[Sh68, Lemma 11B and (*), p. 61] or [Sh111, 2.3, p.269] or [MgSh204,
Lemma 5]. We shall now see that if 4 is a function on 6 such that for every a < §
fo<*hthen f¥<h,ie.,for some iy <8iZiy—f*(#) < h(i). Let g be the function on §
given by

L Jh@ if R < [0
80)= {0 otherwiselz '

Since, without loss of generality, /*(i) >0 for every i <0 we have g <*f;*, hence for
some y < f g <*f,. Since also f, <*h the set {i <8:g(i)="h(i)} is bounded hence, by
the definition of g, {i <8: h(i) < f*())} is bounded, so f;* <*h. Now we shall prove
the following lemmas and then return to 1.4B.

1.4C Lemma. For § <A™ withcfd>2%let a;= {i<0: cf f*(i) < cf5}. For every subset
b of 0 there is an unbounded subset A of 6 such that f is almost ascending on A over b
iff a;nb is bounded. In particular, for b=0, sebad’ () iff cf6>2° and a; is
unbounded.

Proof. First we prove that there is an unbounded subset 4 of 6 such that f is almost
ascending on A over 6\a;,. This implies, trivially, that if »C 8 and bna, is bounded
then f is almost ascending on A over b.

Let h:cf6— 68 be such that Range(h) is unbounded in J. We shall define, by
induction on j<cfé, a; and {; such that

(1) G, U ae<a;<6,

k<j
(@) {;<0,

(3) I k<j, {i {;<{<b, and {¢a, then [, (0) < f, (0)<fs*(0).
In the j-th step we define a function g; on 0 such that for { <0

(0= {BP RO LO<O) i Cta
& 0 if lea,
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For { ¢ a; we have, by the definition of a;, cf f;*({) = cfé, and since g,({) is the least
upper bound of j < ¢fé —many ordinals < f3*() we have also g{{) < f;*(); for { e a,
g0 < f55{), since we can assume, without loss of generality, that f3* >0 for every
{<6. Thus g;<*f;* and hence, since f;* is a least upper bound of {f,:a<é},
8;< [, for some a <§; let a; be such an « which also satisfies (1). Let {;< @ be such

that
(;=0<0=gfO)< [, (O)<fHD;

clearly «; and (; satisfy (1)-(3). Since cfd>2° there is a (*<@ such that
{j<cfd:{;=_*} is unbounded in ¢. Thus f is ascending on

A={o;:j<cfd A {;=(*}

over (8 —azn[(*,0).

To prove the other direction of the lemma it suffices to assume that f is
ascending on A over b, where A is an unbounded subset of 4, and show that a;nb is
bounded. Let g be the function on 6 given by

. Jsup{f):aed} if ieh
8= { 15G) otherwise

Fora<d f,<*f;*;let {, <0 be such that {, <i< 8- f,(i) < f3*(i). Since cf6 > 2° A has
an unbounded subset 4’ such that for some {' < ac A'—»{,={". Thusforae A’ and
{'<i<8 fi)< f*(9), hence for iebn[{, 6)

gli)= Sugﬂ(i) = Sugﬂ(i) = f50);
thus g <*f3*. For any a < d let o' € An(a, d), then, clearly, f, <*f,, <*¢. Thus g is an
upper bound of {f,:a <4}, hence, as we have shown above, f;* <*g. g <*f* and
f5¥ <*g imply that for some i, <8 iy <i<6—f;¥({@)=g(i), hence i, <i<O—cff5*i)

=cfg(i). For iy<ieb the sequence {f,(i):ae A) is ascending and hence cf f3*(i)
=cfg(i)=cf4d=cfd. Thus a;nb<i, and a;nb is bounded.

1.4D Lemma. For § <A™ with cf6>2° and for every cardinal u such that u* <cfé
the set b={i<@:cff;*(i) Su*} is a bounded subset of .

Proof. For every ieb let C; be a cofinal subset of f3¥(i) of cardinality cf /3*(i). For
every te X C; let g, be the function on 0 given by:
ieb

) t@ if ieb
&)= {0 otherwise’

Clearly g, <*f3¥, hence for some o, <4 g, <*f,.
‘x C| =Tl cffFH S ()P <cfs
ieb ieb

(since pu*, 0% <cfd). Therefore
sup{fxt:te X Ci} <cfé,

ieb

ieb
Jo<*fs¥ thereis an iy < 6 such that i, £i<0—f (i) < f;*(i); hence there isan se Xb C;
. le

and if we denote sup {oc,: te X Ci} with o we have g, <*f, for every te X C,. Since
ieb
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such that ieb\iy—f (i) <s()=gJi). If b were unbounded this would contradict
8s <*fe

Proof of 1.4B (continued ). We change now somewhat the construction in the
proof of 1.4. By (Pr,), for every aebad'(f) cfa=(A3)* where 1} is a singular limit
cardinal of cofinality 6. Since A} <(4%)* =cfa <« there is, by Fodor’s theorem, a
stationary subset T of bad’(f) and a singular cardinal 2, such that A7 =4, for every
ae T.For every a. ¢ TCbad'(f) cfe > 2% and ¢, 6, and since 0 =cfi <A< A* wehave
2°=0" <1< 41", and therefore there is an a L0 and a stationary subset S of T such
that for every a€S a,=a. Let 6<A* be the least ordinal é such that énS is
stationary in 4, let cf5 A5, and for i< let y, ;=cff*(i). Clearly 1,> A,, since ¢
has a club subset of ordinals of cofinality <cfé=A1,.If6=1" then 1.4B holds with
fi=ffora<i* and y, ;=y; for i<, so we are left with the case where 6 € bad'(f).

Let us see now that a\a; is bounded in 6. By 1.4C 6 has an unbounded subset A
such that for some i, < 8 f is ascending in 4 over (a— az)n[ig, 0). Let A’ be the set of
allaccumulation points of Ain §. For every e A’ An fis an unbounded subset of §
and {f,:a< B> is increasing in Anf over (a\a;)N[iy, 6). Since A’ is a club subset of
o0 and S is stationary in J there is a fe A'NS. Since e S ay=a. By 1.4C a;n(a\a,)
n[iy, 0) is bounded, hence also a\a, is bounded.

We shall now see that we can assume, without loss of generality, that a; =0, i.e.,
thatfori<#8y, ;<4,,and, moreover, that (y, ;:i<8) is an ascending sequence. By
1.4C ais an unbounded subset of 8, and since a\a, is bounded ana; is unbounded.
By 14D {y, ;:ieana,} is unbounded below 4,, and since c¢fA,=0 ana, has an
unbounded subset b such that {y, ;:ieb) is an ascending sequence of infinite
cardinals. Let h be the order-preserving function mapping 6 on b. For i<#8 let
' =Xy 2,1= A2,n, and for every function f on 0 let f I = fh. We shall now see
that if we replace in 1.4 (y;:i<8)> and f={f,:a<A*> by (y):i<> and
Fl=fV:a<A™), respectively, then the hypotheses of 1.4 still hold and
SChad ({f]l:a<A*). By our choice of b {x/' :i< 0 is an ascending sequence of
regular cardinals </, sup xl'=4, and for a< <A™ fl <*f]. Routine checking

shows that (y/':i< )i isa 'least upper bound of f! and that for every < A% such
that cff>2° f* Il isa least upper bound of { £l :a < 8. Also, for f< 1 a}}, whichis
naturally taken to be {i<0:cff () <cfs}, satisfies

af ={i<@:cffJ (@) <cfd} ={i<0:h()eas}=h""(ay).

ForfeSas=a,andsincebCa a” =h""(az)=6;by 1.4C febad’ (1. Also, clearly,
for i<@ x} ;=cff7* (i) and the sequenoe {x} ;:i<0) is ascending. Thus we have
established what we claimed at the begmnmg of the paragraph.

Let C; be a club subset of f3*(i) of order type ¥, ;. We define, for a < and i< 6,
)= the order type of C;nf,(i) and

0 0
fa()_{fam i L0 <2

otherwise
It follows easily from f, <*f* that f,! =*f°, where for functions g, % on 0 g=*h
means that for sufficiently large i <6 g(i)=h(i). Clearly f;' € X x,.;- Let a<cfd; we
i<o

define a function g on 6 by g(i) =the f,!(i) + 1-st member of d Clearly [ <Fg <*fF,
therefore there is a « < ff < d such that g <*fp. Hi<Ois such that £,2(), f{ () <¥a,i
then f()<f;()<yx.., hence f!<f;. Therefore, as easily seen, there is an
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ascending function h on A; onto a club subset 4 of & such that for a<f<A;
Jrtwy <*fiks We denote, for a< A3, f, =f(n, and

§'={y<A*:yis a limit ordinal A h(y)eS}.

§’ is clearly a stationary subset of 1, which does not reflect. For yeS’
h(y)e SCbad’(f), hence cfy=cfh(y)=41{, and we shall prove that yebad'(f"). If
y¢bad’(f) then y has an unbounded subset B such that for some ig<8 {f/:a<A*)
is ascending on B over [iy, 0). Therefore {f,!:a <) is ascending on h(B) over
[ip, 8). Without loss of generality we can assume that for ce h(B) and i, <i<#6
(>0, since otherwise we can omit the least member of B. Therefore also
{fY:a<8)isascending on h(B) over [iy, ), and hence { f,: a < 8> is ascending on B
over [iy, ). Since h(B) is unbounded in h(y) this contradicts h(y) e bad’ (). Thus we
have shown that §'Cbad'({f, :«a< S )), which ends the proof of 1.4B.

1.5 Theorem (GCH + REF). (1) For every regular A less than the first inaccessible
—PT(4, ¥)).

(2) For arbitrarily large regular cardinals A PT(4,R)).

(3) Let A be aregular cardinal and let {1;:i<n) be a finite sequence of cardinals

such that Ao =2 and for every k<n A, , | is a successor of a cardinal of cofinality A,,
then 7 PT(4,, A" +¥)).

Proof. (1) and (2) follow immediately from (3). (3) is shown by an easy induction,
using [MgSh 204, Sect. 1, Theorem 11] and 1.4.

1.6 Definition. We write (1,, <u,) — (A,, <u,)ifevery structure .# with universe

4, and with at most xk-many relations and functions, all of which are finitary, has a
substructure <N, ...» with |[N|=4, and for all ae Ny, |Noa| <p,.

1.7 Fact. (1) If A; <4, are strong limit singular cardinals of cofinality 6 such that
(3, <) —> (G, <))

then S={6<A; :cfo=21]}¢I[A; ], where I[1;] is the ideal on A} defined in 2.1.
(2) Under the assumption of (1), if {y, ;:i<@) is an increasing sequence of
regular cardinals <A, such that

S_ggXZ,i=j-2 and f={fira<iy),

where the f’s satisfy (i) and (i) of the proof of 1.4 with respect to X y ; then
i<@

bad(f)nS is a stationary subset of A5
(3) Under the same assumptions as in (2), if A€I[1;] then bad(HnSnA4 is a
non-stationary subset of /5.

Proof. (1) We shall show that (1) follows from (2) and (3). Let (y, ;:i<8) and f be
asin (2). The existence of such an f is shown in [Sh 355, Theorem 1.5], and is easily
seen if we assume the GCH. By (2) bad(f)nS is stationary in A}, hence, by (3), S
cannot be in I[1]].

(2) Let .# be a structure with universe 1; and with the following relation,
constants and functions: the order relation <, the binary function
{fld):a< A7 ,i<0), constants for all the members of 0, a constant for 1,, a unary
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predicate C which is a club subset of 1, and all the Skolem functions for this
structure.
Since (4;, <43)—>(A{, <A{) # has a substructure A =(N, ...) with

|N|=A; and |Nna| < A, for every a e N. Since .# contains all its Skolem functions
A is an elementary substructure of .#. Thus the order type of N is 4], and since
2,€N [NNAy|£4,. Let §=supN then cfé=A;. For every ae N and for all ic
e Nni,, hence

{f):aeNAi<O} SN S A <] =cfd.

Thus for no unbounded subset 4 of N can f be ascending on A over any non-
empty subset of 6 (since { f,(i):xe N Ai<8} does not have enough members for
that). By 1.4A debad(f). Since 4" is an elementary substructure of # CnN is
unbounded in N, hence é =sup(NnC), and since C is closed e C. Thus d€S
nbad(NC, so Snbad()nC+0 for an arbitrary club subset C of /;. Hence
Snbad(f) is stationary.

(3) We shall now assume that §; Cbad()nS, S, is a stationary subset of 1; and
S, €I[4;] and obtain a contradiction. By the definition of I[4;] §,\S}%(a) is a
non-stationary subset of 15, where a is a sequence of length A5 of bounded subsets
of 15. Without loss of generality we may assume that S, has been decreased so that
S,E5%(a). Using Remark 2.3 and the fact that I[4,] is an ideal (2.4) we can
replace §; and aby §;nCand ', where C and & are as in Remark 2.3. Therefore we
may assume, without loss of generality, that for § € S, d =supa;, the order type of a;
iscfé and (Vo € a;) (a, = a;na). Also, since S, €S, cfd =1 forevery € ;. Hence the
order type of aj is A and for every a e a; the order type of 4, is <A].

Since in the hypotheses of (2) any initial segment of 6 is negligible and
{Xa,;:i<8) is increasing with limit 4, and 1{ <1, we can assume, without loss of
generality, that A{ <y, ; for every i<@.

We shall now define, by induction on a<A; a function h:i; -4 and
functions

gaEiZ(OXLi
as follows. For i< @
o [P0 Beaulalule ):pead)+1 i lalsit
& 0 otherwise

Notice that by what we have said above about the order type of a, the value g,(ij is

defined according to the first case in its definition for every ie S, oricajfordeS;.

Since y, ;>A{ we have g,€ X ¥,.; Also, if 6€ S, and a, fea; and a < f then, by
i<s

what we hav€assumed above, a; = a;n f, hence a € a; and therefore gg(i) > g,(i), £,(i)
for every i < §. By our assumption on f there s, forevery a <15 ,a f< A7 such that
g, <*f3, let h(x) be the least such . Let

C*=1{6<2}:(Va<0) (h(x)<O)};
C* is clearly club in A} . Since S, is stationary in A7 there is a € S, C*. By our

assumption on & a; is an unbounded subset of 5. Therefore there is an unbounded
subset b of a; such that for o, f e b if < § then h(x) < f. Let h* be the function on b
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defined by h*(«) =min(b\(o: + 1)). Let d =range(h*)C b; d is an unbounded subset of
b. For o ed there is an o’ € b such that o= h*(«'). By the definitions of h* and h and
since a=h*(a') = h(«') we have g, <*f,. Hence there is an i, < 0 such that g,.(i) < f,(i)
for every ie[i,, 0). Since § < 4, there is an i* <0 and an unbounded subset e of «
such that i, =i* for every o € e. We shall now see that f is ascending on e over [i*, §),
contradicting é € bad(f).

Let o, fee, a<f. Let p’ b be such that h*(f')= 8, then by our definition of #*
and d, a < §'. Since a e a; we have f,(i)< g, (i) for all i<#0. Since x<f' and «, f' € a;
gli) S gg(i) for all i<6. Since fee and Beh*(f) gpl(i)< f4(i) for all ie[i*,6).
Therefore f, < f,(i) for all ie[i*,0), which is what we have to show.

1.7A Remark. 1. If we replace in Def. 1.6
(las <ta) by {(Az,j <p,p):j<r}

and “has a substructure ... |Nnaj<y,” by “has, for some j<r, a substructure
{N,...> such that |[N|=4, ; and for ali x <y, |[Nna|<p, ;” then one can prove a
version of Theorem 1.7 which corresponds to the changed Def. 1.6.

2. The assumption of 1.7 that 4,, 4, are strong limit cardinals can be dropped
without changing the conclusion [Sh 353, 2.2].

2 Obtaining REF by repeated Levy collapses

The following definitions and theorems are quoted from [Sh 88a], which gives a
better representation of most of [Sh108].

2.1 Definition [Sh 88a, 1, 2(1)]. Let A be an uncountable regular cardinal and let
a=<{a;:i< Ay, where the a,s are bounded subsets of .

1) Sj'{"(ﬁ)d;f{é < A:thereis an unbounded subset b of 3 of order type cfd < & such
that (Va<d)(3f <) (bna=ay)},

def

§3M(@)=A\81"@),

where p,n stand for “positive” and “negative”, respectively.
def R .
2) I[A]={X C4:X\S$?(a) is a non-stationary subset of A, for some sequence a

of length 4 of bounded subsets of 1}.
3) S¥"isasetsuchthat S$"CA, I[A]={S:SCA A SnS§%" is not stationary in A}
The existence of such a set S3" is shown in [Sh 88a, 3(3)], using A <*= A or some
weaker assumptions. It is conjectured that the existence of such a set for every
uncountable regular 4 cannot be proved in ZFC,

S}‘Pdgl\ij“. S¥P is clearly the maximal member of I[A], up to a non-stationary
set.

2.2 Fact [Sh88a, 3(1)]. I[A] is a normal ideal on A.

2.3 Lemma. For all . and @ as in 2.1 there is an & = {a,,:a < Ay and a subset C of )
such that

(1) Cis club in A and contains only limit ordinals.

(2) For all a< A a,Cu.
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(3) For every limit ordinal o< 2 supa,=a and the order type of a, is cfa.
(4) If de CnSE?(a) and o€ aj then a,=asno.

Proof. Let gd be a one-one mapping of the set of all n-tuples of ordinals <A into 4
such that for oy, ..., a, <A gd(ay, ..., a,) >max(x,, ..., &,). For every i < A we define a
function f; on a; as follows. For a € a;, if there is a f < A such that a;=a;na then f(o)
is taken to be the least such B, and f(«)=0 otherwise w.Lo.g. A /\ Vany=a;
We define also a function g; on g; into 4 by treas j
g{@=gd (a, fl, U & (ﬂ)) +1.

(@) f; and g; are clearly functions on a, into A.

(b) For i,j<4, if a;na=a;no then f;la=f;[a and hence g;fa=g;la.

(c) For i,j <A if g{0)=gP) then a=pf, f(a)=f{x), hence

a;n(a+1)=a;n(+1)
(since a;Na=a;,=a;no and aea,,a) and by (b)

Sile+D)=fla+1),

g;la=g;la. Let C={6<A:0dis a limit ordinal closed under the function gd and for
all i<d Range(f) Range(f)Cé}
We define now a; for { <1 according to the following cases.

Case 1. There are a,i< 4 such that aea; and g(0)=
We take a;= {g,(B): B a;na}. By (¢) a; is well-defined. Since g; is increasing we
have a,C{.

Case 2. [e STP(@NnC.

Then { is a limit ordinal. By the definition of $3?(@) there is an ¢ C{ unbounded
in { of order type cf{ such that (Va <) (3f <{) (ana=agz). We define functions f
and g on a by

fl@)=min{B:az=ana}<{ and gl®)=gd (oc, f(@), ﬂeLajm g(ﬁ)) +1

Since { € C and the order type of a is cf{ we have g(a)<(. We take
={g(B): Bea}cl.

Case 3. Otherwise. If { is a limit ordinal take a; to be a club subset of { of order type
cf{; otherwise a;=9.

(1) and (2) hold by what was said just now. (3) holds since if { is a limit ordinal
then one of Cases 2 and 3 holds for {. To see that (4) holds let § e CnS¥?(a) and
{ e ;. By the definition of a we have a;={g(f): f € a}, where g, f, g are as in Case 2.
Since { € a;< 6 we have { =g(y) for some y € aCd. By the definition of f an{=ay,.
Therefore for every aean{=ay, f (@) =freo(®), and, as follows immediately by
induction, g(a)=g (). Since g is an increasing function with non-limit values
{=g(y)>7, hence g, (y)=g()={, and by the definition of a; in Case 1 we have

a;= {gf(;)(ﬁ) :Be af(;)“?} = {g(ﬂ)5 Beany}={g(B):BeangB)<gly)= C}
={gf): fea}n{=a;n{.
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2.4 Remark.Let A, d, @, and C be as in 2.3. Then S¥*(@)nC L S¥™(@'), and for every
oeS¥anC
the subset a of & which witnesses that é € S¥°(@’) can be taken to be aj.

Proof. Let 6 € S¥P(@n C; we shall see that é € S¥%a’), with aj as a witness to it. By (3)
a; is an unbounded subset of ¢ of order type cfd. Let «<J and let y be the least
member of aj\a. Then, clearly, a;na=a;Ny. By (4) a;ny =a;, hence a;na=a, and
e SI(a).

2.5 Fact[Sh88a, Def. 1, Lemma 2(1) and 2(2)]. For Z = (Z,:i<Ay, wherefori<i
2, is a set of bounded subsets of 4 and |# </ let S¥P(P)=]d < A: there is an

unbounded subset b of 6 such that (i) if § is singular then the order type of bis <4,
and (i) (Vo < 9) (bnoc e | %)}. Then I[A]={X C1: X\S¥*(P) is a non-stationary
p<a

subset of 4, for some Z as above and X n“set of inaccessibles” is non-stationary}.

2.6 Fact. Let A be a regular uncountable cardinal and let D, denote the filter

generated by the club subsets of A.

1) Si", whose existence is discussed in 2.1(3), is unique modulo D, and is equal,
modulo D, to some S$"(a) (as easily seen). By [Sh 88a, 14(1) and 16(1)] this is the
case for every enumeration a of all bounded subsets of 4, assuming A <*= 1 or some
weaker assumptions.

2) If 4 is a successor of a regular cardinal then

[see (4.4(1))]. {6<Ai(cfé)* <A}el[A]

3) If Ais strongly inaccessible then S$P can be taken to be {6 <A: § is singular}
([Sh 88a, 4(1)]).
4) If A=pu™*, where u is a strong limit singular cardinal then
(i) If 6 S¥" then cfJ is not weakly compact.
(i) If p=sup 4;, where (4;:i<cfu) is an ascending sequence of regular
i<cf
cardinals and g

(*) c:AxA—cfu is such that
for all o, B,y <4 c(o, B)=c(B, ),
and if a<f<y then c(o, y) Smax {c(a, B), c(B,7)},
and for all i<cfu and a<i [{f<o:cle, f=i}Z 4

(the existence of such a c¢ is proved in 4.1) and we define

S(c)d=ef{5 <A: for some unbounded A3 c“((Any) x (Any))

is bounded in cfu for every y<d}
={0<A: if cfo>cfu then for some unbounded ACo c*(A x A)
is bounded in cfp}
={6<A: if cfd>cfu then every unbounded subset A of 6
has an unbounded subset A’ such that ¢“(A’ x A’} is bounded in cfu}
={d<A: if cfd>cfu then for some unbounded A, A,S0
and i<0 if a<p, ac A, and B A, then c(a, f)<i}
then S(c) can be taken to be S%¥P,
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(iii) S¥" exists and if 6eS3" then cfd>cfpu.
(iv) If cis as in (ii) for V] Q is a forcing notion and |-GA=pu" Ay is a strong
limit cardinal” then also V2=“S(c) can be taken to be S¥™.
5) If {A4;:i<0) is a strictly increasing sequence of regular cardinals > 6,
A= (supA,\*, f={f,:a<l), where f,e )(0 A is <*-increasing (see the proof of
i<@ i<

1.4) and (er X Ai) Qu<A(f<*f)

then bad(f) includes no stationary set which is in I[A].
6) When the universe is increased S*® can only increase.

Proof. 4) (i) By [Sh 88a, 6(2)] it follows that if 8 is a weakly compact cardinal <cfu
then 8- ,(6)%, (this is a certain partition relation). Therefore, by [Sh 88a, 8(1)],
{o<i: cf5=0$ € I[4]. Hence, by the definition of §%" no  with cfd=0 is in S¥".
This is also proved in 2.9.

(i) The proof appeared, with a different notation, in [Sh 108]. The proof of
S(c) e I[A]is contained in [Sh 88a, 4(3) (c)]. Why is S(c)= S¥*? et SCA\S(c) e I[4]
and 4 is such that, without loss of generality, S¥°(@)2S (as in 2.3, 2.4).

Also for some <A and A:60—cf(u) we have:

S,={0€8: cf(0)=0 and iea, = c(5,i)=Motp(a,ni)}

is stationary.
For some {<cf(u), 0<4i, and {f=1;<0: A(j)<(} is unbounded in 6.
Now choose by induction on a <2

7. =min{y:(¥fea,)e(B,y)=Aotpa,)} .

It suffices to prove that for a club of &’s (Yaeay)y, <d and §e§,. This holds by
Fodor’s theorem; it suffices by the equivalence of the first and fourth definition
of S(c).

Firstlet us prove the equivalence of the first two definitions of S(c). Let d be as in
the first definition and cfé > cfu. If supc“((Any) x (Anvy)) < cf u for every y <4 then
since cfd > cfy, {supc“(Any) x (Any)):y <} is bounded in cfu. Thus c*(4 x 4) is
bounded in cfu and § satisfies also the second definition of S(c). Now assume that &
satisfies the second definition of S(c). If c¢f 6 > cfu then & obviously satisfies also the
first definition of S(c). If ¢f§ < cf i then every unbounded subset 4 of 6 of order type
cfd witnesses that o satisfies the first definition.

To prove the equivalence of the second, third, and fourth definitions of S(c) it
clearly suffices to prove that if d < 4, ¢fd >cfu and A,, 4, are unbounded subsets of
9 such that {clogs 1) 1 tgE Ag, 2ty €Ay and ag <oy}
is bounded in cfu then every unbounded subset 4 of § has an unbounded subset A’
such that ¢“(4’ x A’} is bounded in cfu. Let

{=sup{clog, 1) : 09 € Ag, 0t; € A and oy <oy} <clp.

Let A be an unbounded subset of 8. Without loss of generality the order type of 4,
and A, and of A is cf8. Let us define, for i < cf$, a;, §;, ;< d by recursion as follows.

a;>sup{o;+1, B;+1, y;+1:j<i},
wed;, Pped, pedy,, o<fi<y,.

Let, for i <cfy, {;=max{c(o;, B), ¢(B;7,)} <cfu. Since cfd>cfyu there is a y* <cfp
and an unbounded subset T of ¢fd such that forie T'{; < {*, and we can take {* = (.
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Since the order type of A is cfé A'={f;:ie T} is an unbounded subset of 4. We
shall now see that c“(A’ x A"} is bounded by y*. Let i,je T, i<j. By (*),

c(ﬂia B}) é max {c(ﬂis Yi)a C('Yi; aj)s c(‘xjr ﬁ])} é max (Ci’ Vs C;)

(by the definition of {; and since y;€ Ay, a;€ 44, ;<o) {* (since i,je T).

(i) p<*=pu since u is a strong hmlt cardinal. Hence, by [Sh 88a, 4(1)],
{6 <A:cféd<cfu}eI[A]. By the definition of S¥* no & with cfd <cfu is in SF".

(iv) Follows from (ii) by 2.7, since in the transition to V2 the properties of ¢
are unchanged, except that cfu may decrease and/or 4; collpase — see 2.7.

5) We essentially repeat here the proof given in [Sh 282]. It clearly suffices to
show that for every set S¥P(a) there is a club subset C of A such that S¥*(@)nC
nbad(f)=90. By 2.4 we may assume that d satisfies 2.3(2—4). We define by induction
functions g,, « <4 such that

0) 8€ X o

(i) B<a<Ai—gz<*g,

(i) f,<*g, and

(iv) if i< 0 and A;>|a,| then for every Bea, g4i) <g,().

The existence of such a g, follows easily from our assumption on f; notice that
if |a,| < 4; then sup {g4(i): f e a,} < ; so also (iv) can be satisfied. By our assumption
onf there is a function h: A— A such that for every a <A g, <*fy Let C={d<1:0
is a limit ordinal closed under h}. For § € $¥?(@)nC let A be an unbounded subset of
a; of order type cfd such that if 8,2 € A, f <a then A(f) <. For i such that ;> cfd
and x€ A we have, by 2.3, a,=a;na and |a,| =cfd < 4, hence [a,] < 4;. Since cfé <A
= (sup li>+ there is an i, < such that 4, <cfd. Therefore by (iv) if f€ 4, B<a then

i<@
g{p)<gie). Thus {g(i):xcA) is strictly ascending. Let us enumerate A by
A={a,:v<cfé}, where {a,:v<cfd) is strictly ascending. For v<cfé we have
8o, <*fr.,<*8,,., [since o, > h(a,)]. Hence there is a {, <6 such that for every
{,<i<®

82,0 < foy . ,() <8y, ().
If cf 6 < 0 then by the definition of bad(f) we have 6 ¢ bad(f). If cfd > 0 then there is

a {* <0 and an unbounded subset T of cf6 such that for ve T {, = {*. Thus for every
i>iy,{* the sequence < f,, . ,(i):ie T is strictly ascending; hence & ¢ bad(f).

2.7 Lemma. 1) Let A, i be cardinals and ¢ an ordinal such that A=p™, 9 < u, and cfu
=cfo<p, and let

(**) c¢:Ax A—g be such that
Jor all o, B,y <2 c(, f)=c(B, o),
and if a<f<y then c(a,y) < max{c(x, B), c(8,7)},
and for all i<g sup|{f<a:c(e, f)<i}|<p.
a<i

Then thereis ac': A x A—>cfy which satisfies (*) of 2.6(ii) and such that for every ACA
c¢“(A x A) is bounded in ¢ iff ¢“(4 x A) is bounded in cfu.

2) If, in addition, ,u—supﬂ,, {A;:i<g) is an ascending sequence of regular

cardinals and (*) holds then (l i< ) has a subsequence (;:i<cfu) andthereisac
such that (*)-holds for c'.

3) As aconsequence, if we define, for ¢ as above, S(c) as in the three definitions in
2.6 with “bounded in @” replacing “bounded in cfy” we get S(c)}=S(c').
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Proof. By our hypothesis cfo=cfu. Let d:cfu—g be a strictly increasing and
continuous mapping of c¢fy onto an unbounded subset of g. For (1) let c'(a, f)
=min{o:d(c) 2 c(a, B)}. For (2) we let for i <cfu let 1] be the first member of the
sequence {4;:i<g> such that

(1) j':—)"d(l)’

(2) ;> A; for every j<i,

() A2 ({B<a:clo B},

There is such a sequence {A;:i<cfu> by our assumption about c. Let ¢'(a, f)
=the least ¢ <cfu such that c(a, f)<d(o), then ¢': A x A—cfu, (A;:i<cfu) is an
ascending sequence of regular cardinals and sup A;=u. Aseasily seen (1j:i<cfu)
and ¢’ satisfy (¥),. The proof of (3) is easy. <cf#

2.8 Fact. 1) Let A be a regular uncountable cardinal such that A=1<% let SCS¥™,
and let

PP={{a,D): a<iAD is a closed subset of a+1 disjoint from S}

be ordered by:
oy, DD =<0, Dy) oy Sy AD =D;yn(ay +1).

Then P is a-strategically closed for every a <4 (see Def. 3.1), |P§|=4 and
I-Ps™“S is not stationary”, and hence cardinals are not collapsed and cofinalities
are not changed by this forcing.

2) If SeI[A] for a regular cardinal A, and for every de S cfd<0, and Q is a
O-complete forcing notion then

l5“S is a stationary subset of ”
(although 1 is not necessarily regular in ¥¢) [Sh88a, 18 and 16(3)].

Proof. 1) We shall prove that P§* is a-strategically closed for every a < 1. For the rest
of (1), for k<1, “cf>«” is preserved. For x = 4 this follows from [P <A

Let d=<a;:i< ) be an enumeration of all bounded subsets of 4, with each set
occurring A times. By [Sh 88a, 2(2)] there is a sequence 4 such that for every 6 < A4 if
6 has an unbounded subset b of order type < 6 such that (Vo < 6)(AB <d)(bna=ay)
then § € S¥P(a@) —see 2.5. [ Notice that by the definition of S¥7(g) if the order type of b
is cf then 6 € $%7(a).] By the definition of S¥" S¥?(@')nS%™ is non-stationary, hence
there is a club subset C of 4 such that CnS*?(@)nS*"=0. The strategy of Player I
in the game Gy, is to choose in the i-th step a member <a;, D> of P as follows.
For i=0, let r= (g,D) then oy =max(g,x+1)>a and Dy=D. For z—-]+1 if the
j-th move of Player II was {$,,E;> then D;=E; and «; is such that ;> f,, (x; ocl)
NC=*0,and a, = {o,: k<i}. There is such an e, by our assumptlon ongand C.1fiis
a limit ordinal then let y= sup o, dy= U D u{y} 27, and a,, = {o; : k<i}. In this

case, the only new thmg we have to show is that y¢S. Slnoe for every j<i
(@), ;. 1)NC +0 we have ye C. We shall now see that y e S¥*(@), hence since y€ C
P¢€S.b={0;:j< z} is an unbounded subset of . The order type of bisi<a Sy 7.
For <y let k <ibe such that bnf = {«;:j <k} then bnf=a, and o <y. Thus, by
our choice of a', y e S¥a).

2) Left to the reader.

2.9 Lemma. Let A, u,c be asin 2.7 and let 6 < A. If cfd is weakly compact then § € S(c).

Proof. We use the second definition of S(c) and assume cfd > cfu. Denote cfd with k.
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Let d be an ascending function from x onto an unbounded subset B of 4 and let
¢ AxA-cfube asin 2.7.

lc“(B x B)|<cfp<cfd=x.

Since x is weakly compact k—(x)2,, hence there is an A< B such that |4|=« and
¢’ (4 x A) is constant. Thus é € S(¢') and by 2.7 € S(c).

2.10 Fact. Let Q be an arbitrary forcing notion. Let 0’ <Q mean that Q' is a
complete sub-forcing of Q, i.e., Q' is a subset of Q with the same partial order, and
every maximal antichain of Q' is also a maximal antichain in Q. If 2 is the successor
of a strong limit singular cardinal u and this holds also for A and u in V<, then
V2= {6<A: there is a Q' <Q such that V2= cfé is weakly compact”} e I[1].

Proof. Let p= sup 4, where (4;:i<cfy) is a strictly increasing sequence of regular

i<cfpu
cardinals. By 41 there is a function ¢ which satisfies (*) of 2.6(4) (ii). cf* Q,u may be
<cfy but in any case ¢ satisfies in 72 (**) of 2.7 and hence, by 2.7, S(c)" ¢ = S(c')"®
where ¢’ satisfies (*)in V2. As follows immediately from the first deﬁmtlon of S(c)in
2.6(4) (i) S(c)”°25(c)”. By 2.1 and 2. 6(4) (i) in V2 S(c)"° =S(c) e I[A]V2.1f Q' <0
and cf"° 6 is weakly compact in V2 then by 2.9 5 € S(c)"® £ S(c)"° e I[4]"°, which
is what we have to show.

2.11 Definition. We say that a cardinal 6 is pwecf above x, where pwecf is an
acronym of “potentially of weakly compact cofinality”, if for every forcing notion
R of power at most 2* there is a x-complete forcing notion Q in V® with |Q| <2°
such that |, ,“cf6 is a weakly compact cardinal”.

2.12 Fact. Suppose k<u<®, where 0 is a regular cardinal and u is
2%-supercompact and F: u— H(y) is a Laver diamond for 6% [the Laver diamond
is defined in 0.2(2)]. Then 0 is pwecef above «.

Proof. Repeat the proof of Laver in [L].

2.12A Remark.In 2.12 one can considerably weaken the assumptions of the Laver
diamond and the supercompactness — see Gitik-Shelah [GS].

Let Levy(x, < 4) denote the usual forcing notion which makes A the cardinal
successor of x by collapsing all the cardinals between x and A to xk by means of
function with domains of cardinality <x. We shall use letters such as P,Q, R to
denote names for appropriate forcing notions, and Levy(k, < 4) will be a name for
Levy(x, <A). -

We shall now give a sufficient condition for an iteration of the Levy collapse to
yield REF. We shall use it later to prove Theorem 0.1 (see 3.8).

2.13 Lemma (GCH). Suppose

(A) <x;:i<oo) is a strictly increasing continuous sequence of cardinals such
that ko=NW,, if x; is singular then x;, =x; and if x; is regular then x,,, is
supercompact.

(B) A;={0:x;<0<k;, A0 is regular A0 is pweef above k;}.

(C) If x5 is singular then |6 S¥! :cfd¢ () A;l is not stationary in kj, ;.

6+1 i<o
(D) P, =lim{P;,Q;:i<oc0) is the Levy collapse for {k;:i<co}, ie, it is
Easton-support iterated forcing notion, Q;=Levy(x;, <K;4 1) Ui K, is regular, and
Q; is trivial otherwise.
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Then

1) In VP~ REF holds, as well as GCH.

2) If A=k, is kK, ,-supercompact for {x;:i<A} then in VP, 1 is
A ¥ -supercompact.

Proof. 1) Clearly, {x;:i< o0} is the class of all infinite cardinals of V7=, and
V¥=}=GCH. Also the regularity of the ,’s is preserved.

To prove REF we show that every regular Kk; with i> 1 is reflecting. Let 6, be
any regular cardinal <x; and assume that in VP= 05 <ix;and SC{d<x;:cf6=0,}
is stationar Iy Clearly, for some j x;=0, x; is necessarily regular, and
K1 =(05)" = <ik; Now for 6 €S8, (cf&)" can have <k;., <k; values, so, without
loss of generality, for some 0 regular in V, x;£0<x;,,, we have for every de§
cf”5=0. Now we start working inside V*/+! so we have a (P /P;..,)-name S of S
and let p be any member of P/P;, ;. We shall prove that p does not force that S
does not reflect. As P, /P;,; adds no subsets to x; we are really working in
yFPi+uPi+1 g0 Sis a P;y4/P;, )name and pe Py, /Py ]

Now comes the main point. In ¥*/*1 §o={§ <x;: cf{’ )=0}eV isin I[x] [ie.,
it is disjoint from (S#")""/* ]! This is seen as follows. If x; is inaccessible in V then
by 2.6(3), (6) I[x;] contains all subsets of {6 <x;: |- 0 is smgular} By the definition
of P, the only case left is where i is a successor “ordinal, x;=x;_, and x;_, i§
smgular Denote i—1 with 6. By (C),if0¢ (] A,then SenS* =0 Ifé‘e U A¢

{<i—1
then we have that € 4; hence, by (B), 0 is pwccf above «;, and by 2.10 S‘, € I [x]
We have, by Def. 2.6 (notlce that P; has power <2 and can therefore be
substituted for R in 2.11) there is in V¥a forcing notion Q, [Q|<2% Q is
—complete and ||5“cff is weakly compact [One can omit the requirement that
|Q| <2%1in the definition 2.11 of pwecf since in order that

P;*Levy(x; 0,)=Levy(x,0,)

it suffices that |Q| =6, <x;, ;. Given any Q as in 2.11, since x;, is supercompact
there is, by the reflection at a supercompact cardinal, such a Q of cardinality
<k;4.] Thusin VP2 S, e I[k,]. Now by 2.6(4) (iii) and 2.8 (if x; is a successor of a
singular cardinal) or by 2.6(3) [if x; is not a successor of a singular cardinal and
therefore, by Assumption (A) it is strongly inaccessible] we know that also in
yPr@rlews0) g ~S¥2=(, where 0,=|Q|. However, as Q is x;complete of
cardinality <x; Q * Levy(x;, 0,) is equivalent, as a forcing notion, to Levy(x;, 6,).
Let
G°CP;xLevy(x;,0,)

be generic over ¥, and without loss of generality p[(j+ 1)e G*. Now we use the
supercompactness of «;, 1, which is preserved in V[G“] since the forcing notion is
of cardinality <« to find N<<H(x),e), for a sufficiently large x, such that

{r;: 6, <k}, K,6,0,peN

and Nnk;. , is a cardinal, N is isomorphic to some {H(x'),€) for some ordinal x".
Now let

Gbng(PH 1/Pj * LCVY(K,', 0,))
be generic over j,” N[G] (equivalently, over V[G"]) so that jy(p)e G. Now in
VIG% G*] ja(8) is interpreted as a stationary subset of jy(x;), and in V[G"]
n{d<x;:cf6=0}) is in I[ jy(k;)], hence in

V[Ga, Gb]Levy(xj, <Kj+1)
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it is still so, by 2.6(6). But, again, in V7%
Levy(ky, 0) * ju(P;41/P;* Levy (i, 0)) * Levy(x, ;4 1)

is equlvalent to Levy(x;,«;, ), and without loss of generality we can compute G*
and G” in V?+1. Now jy !(G®) is a directed subset of P, ,/P;, ; and has an upper
bound ¢, which forces what we need.

2) This is proved by essentially the same proof.

3 Oracle forcing for Laver’s diamond

3.1 Definition. 1) A forcing notion P is a-strategically closed if for each reP

Player I has a winning strategy in the following game G} ,: A play consists of «

rounds of moves. In the f-th round Player I chooses a pzeP such that

r<pgA /\ﬁ q,=pg and then Player II chooses a g, € P such that p;<q;. Player I
<

wins if he has always a legal move.

2) Pis <xk-strategically closed if P is a-strategically closed for every a<x.

3) 0=(P,Q;isua,j<a)isa <k-Easton-support iterated forcing notion if P;
is a forcing notion, Q, is a P,-name in this forcing notion, and P; is the set of all
functions f from subsets of i such that

(i) if A is inaccessible and =« and for all j</ |P;/ <4 then |[AnDom f| <,

(ii) for every je Dom f, B, (e,

For j¢ Dom f we shall 1dent1fy 1( (1) w1th @, which is the least member of Q;.

fSgiff for all j<Dom  gljlks, “/()<g()’.

4) 0=(P,Q;isw j<ayisa K- Easton-support iterated forcing notion if the
same conditions as in (3) are satisfied, except that in (i) we have 1> x.

3.2 Fact. 1) Suppose that Q=(P,Q;:iSa,j<a) is a <x-Easton- supported
1terated forcing notion, { <k and each ( Q is {-strategically closed (in V*7) then so is
P,=limQ. This holds also if we require o < x instead of { <«x.
2) If P is a-strategically closed forcing then P adds no new sequences of
ordinals of length <a.

Proof. The proof of this fact is known.

1) For every i<a and, in V" let se Q; and let I be a winning strategy for
Player Iin the game G}, . The strategy of Player I in the game G}_, is to maintain
the following properties of the initial part {p;, q,:f<y) of the play.

(i) if B<@<y then q;<q,, p,=q, r = Ppo,

(ii) for everyj<aif thereis a f such that je Domgj then let §; be the least such
and <pg; +1+5(1); 4, + 1 +8(7): 6 <y —(B;+1)) is (a name of) an 1n1t1al part of a play of
Go,.q 5,00 played by Player I according to the strategy I7 ;.

2) Let £ be aname in P of a function from f <« into the ordinals, and let r € P.
Pick a winning strategy for Player Iin the game G} , and let (p, g;:i <a) be a play
where Player I plays according to this strategy, and for every i < g g, is such that

:=q; and g; forces a value for f(i). p; ., forces all the values of the function hence
the function is already in V.

3.3 Definition. For a given supercompact cardinal u
1) Fiscalled a direct oracle diamond (for < u-strategic closure and < u-Easton
support) if for every sequence P={P,Q;:i<a,j<a) <v-increasing each P;
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< u-strategically closed forcing notions and every x € V and for every sufficiently
large ordinal y so that Q, x € H() there is a fine normal ultrafilter D on %, ,(H(x))
such that the following set is in D.

{ae L (H(y):aop is strong Mahlo cardinal 6,

F(G) = <ja(x)7ja“a’ja(<Pi : l_—<: (Z>, <Gz : l§ (X>)>

where j, is the Mostowski collapse of a, G;S P, is generic over j,“a, (j,“a)[G,] is of
the form H(y') and i<j=>G,CG}}.

2) F is called an oracle diamond if for some V'CV and QeV’ Q is
< p-strategically closed in V’, F is a direct oracle diamond in V' and V=(V")2.

3.4 Definition. Let y be a supercompact cardinal, F:u— H(u) a direct oracle
diamond, Q* € V a forcing notion, G* C Q* generic over V and Q € V[G*] a forcing
notion. We say that Q satisfies the F-oracle condition in V[G*] if:

(a) Qis < u-strategically closed.

(b) ForallxeV,pe Q, and y such that x, p e H(y) and for every fine normal filter
D on & (H(x)) (in V) the set of those ae ¥, (H(x)) which satisfy the following
implication belongs to D (i.e. to the filter D generated in V[G*]).

If (i) k, =anx is a regular cardinal.

(ii) For the Mostowski collapse j, of a j,“a= H S H(x,), 31 =J."Y1-

(iif) F(x,) is of the form {x,j,“(a),{P;:i<a),{G;:iZa}.

(iv) Forsome transitive H such that P=<(P;:i<a)e HCH(y),G, L P, is generic
over H and H(y) =H[G,].

(v) In H P is <e-increasing (see 2.10 for the definition of <¢) and each P;is a
<k ,-strategically closed forcing notion. (The main case is where there are Q,, for
i<a such that (P, Q;:i<a,j<a) is an iteration with <x,-Easton support each
Q; is <w,-strategically closed.

(vi) jQ@** Q) is P, +(P,/P,) for some ¢ <y <a and j,“(G*na)=G*.

Then {qg€ Qna:j,(a)€G,} has an upper bound in Q.

3.5 Theorem. Suppose that k is supercompact and A<x.

1) Thereisa forcmg notion Q, A-complete such that |Q|=x and |z “there is a
p-Laver diamond in V2”. (A4 u-Laver diamond f is f: u—H(u) whlch is a Laver
diamond.)

2) Let F be a Laver diamond for x, then for some A-strategically closed k-c.c.
Jorcing notion R we have in VR that some F :x— H(x) is an oracle diamond.

3) Let ¢(—, —) be a formula of set theory (with parameters) any instance of ¢
is satisfied iff it is satisfied in some (H(y),€) such that o(Q, A) implies that Q is a
forcing notion which does not add sequences of length <. Assume

(*) For every <x-Easton-support iterated forcing notion (P, Q;:i<a, j<a} if
for every j<als @(Q k) then also (P, k).

(**) If <P, Q Q;:isa, j<ayis a <x-Easton-support iterated forcing notion and
for every i< there is a strongly Mahlo cardinal x, such that k <x; and 5, 9(Qis k)
and either |P;| <i; or P; satisfies the x-chain condltlon |P)| =, k;=1i and for every
j<i|Pj<x; then (p(Pm, K).

Let Fy, a x-Laver diamond and let the parameters of ¢ be in H(x) then there is a
Jforcing notion R such that o(R, k), R satisfies the x-chain condition and has power
and in VR there is a function F : x— H(x) which is an oracle diamond for the class of
all forcing notions Q for which ¢(Q,«) (i.e., F satisfies the definition of a direct
oracle diamond with all the P;s in 3.3(1) and the Q in 3.3(2) required to satisfy
o(—,x)).

4) In (3) one can drop the requirement that the support be <k-Easton provided
that (*) and (**) hold as well as
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(***) For every iteration Q={P;,Q;:i<a, j<a) with the same support and for
every i< there is a strongly Mahlo cardinal x; such that |P| <k, or |P)|=kx, P;
satisfies the x-chain condition and (P, k).

Proof. 1) See Laver [L].

2) Let 0=<{P,Q;:i<k) be the A-Easton-support iterated forcing notion
defined by: Q, is R, if i is strongly Mahlo and > 4 and F,“iC H(i), where R, is such
that Fo(i)=<{x, R;> and R, is a P-name of a <i-strategically closed forcing notion,
and Q; is trivial otherwise. In V*= let F(i) be y[Gp,.g,] if Fo(i)=<y,R;) and yisa
P;* R-name, and 0 otherwise. The proof is exactly as in Laver [L].

3),4) The proof is like that of (2).

Theorem 3.5 yields a universe in which we can iterate many forcing notions
preserving supercompactness.

3.6 Lemma. Let F:x— H(x) be an oracle diamond.
1) If Q, satisfies the F-oracle condition then | , “F is an oracle diamond”.

2) If Q, satisfies the F-oracle condition and Q, is a Qy-name satisfying the
F-oracle condition then Q,* Q, satisfies the F-oracle condition.

3) If (P, Q;:i<a,j<a) is a <k-Easton-support iterated forcing notion (or a
< K-support forcing notion) and each Q; satisfies the F-oracle condition then P,
satisfies the F-oracle condition. N

Proof. The proof is straightforward.

3.7 Fact
(A) Suppose:

(a) k=(x;;i<oo) 13 a strictly increasing and continuous sequence of
cardinals, and for every limit ordinal J, if k; is singular then x;,, =x; .

(b) F:0Ord— ¥, Range(F [k;) € H(x;,).

(¢) Ifx;isregular then F {k;, { isa k; . -Laver diamond,and thus x;, , is super-
compact.

(d) Notation. F,and F are defined by F(o) = { Fo(2), F,(«)> when F(«)is a pair,
and Fy(o)=F(0)=0 otherwise.

(B) We define an iterated forcing notion by:

(a) (P, Q;:i<o0) is an Easton-support iterated forcing notion.

(b) IP{=xk;".

(c) Leti{e)=min{i:x;>o}. We take F*(a) to be Fo(2) [Gp, ] if this is defined,
and F*(x)=0 otherwise. We shall prove, inductively, that for x; regular, in VFi+1
F*!x;,, is a direct oracle diamond.

(d)If x; is regular, Q,=lim{P., @ :a <, ,» (in VF) QLis F () ifitis a P,* Pi-
name of a <a-strategically closed forcing notion, « is inaccessible and > |Pj|+x;
for <« and F,(o) satisfies the F* [, ;-oracle condition for j <i with x; regular,
and otherwise Q! is trivial.

(e) In WP+, Aﬁ—if{G:K,-<0<Ki+1 A8 is a pwecf above k;} (see 2.6).

(f) If x; is singular then Q; is P§. where

S5= {C<K§+1:€ES:;'“+1 but CfVC¢ U A]}

j<é

(see 2.1).
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Then:

(1) For a<f P,/P, satisfies the (F[«;, ,)-oracle condition, for i+1=a and a
regular «;.

(2) P, preserves the supercompactness of x; ;.

(3) V¥~ is as required in 2.13(D).

4) If A=x 1s supercompact, n <, D is a normal fine ultrafilter on & ,(H(x,))
and D preserves {k;:i< oo} [see Def. 0.2(1)] then in V¥~ is k;-supercompact by an
ultrafilter which preserves {x;:j<oo}.

(5) Condition (C) of 2.13 holds.

Proof. The proof is straightforward (using 3.7, 2.8(1)).

3.8 Claim. Suppose (x;:i< ) isasin 3.7(A)(a), 1.e., for every i if k, is regular then
K;+ 1 is supercompact, and A=k, is supercompact for {x;:i <o}, (P, Q;:i<0) is
an Easton-support iterated forcing notion, and Q; is such that if i is strongly
inaccessible then Q; adds a Cohen subset to i and otherwise @ is trivial.

Then, in V"= there is an F as required in 3.6 for {k;:i< oo} such that A=x, is
supercompact.

3.9 Remark. Claim 3.8 yields an F and this F is as required in the assumptions of
3.7. Also 3.7 yields what is required for the assumptions of 2.13. Thus 2.13
completes the proof of 0.1.

Proof. First one obtains F [[x; ;. ,) from G, , the generic subset of Q,. By 3.5(1),
(2) this makes F to be as required in 3.7, but what about 1? We correct
Fl{k;:i<4} by the generic subset of Q,.

4 On the ideal I[A]

4.1 Lemma. If pu= sup 4, where {J;:i<cfu) is a strictly ascending sequence of
i<cfu
uncountable cardinals and .=u™ then there is a function c: A x A—cfu such that

Sfor all o, B,y< 4

(@) cler, py=c(B, ),
(i) if a> B>y then c(a,y)<max(c(o, f), c(B,y)), and
(iii) for all i<cfp [{f<a:cla, py=i}l<A;.

Proof [Sh 88a, 4(3)]. We shall define c(e, f) for f<a by induction on « as follows,
and for o < f we define c(a, f)=c(B, @). Let {a}: i <cfu) be an ascending sequence of

sets such that for i <cfu g} <4, and |J af=uo. For i<cfu let aj=a,;0{p: for some
i<cfu

o' €a; such that B<o’ <o c(of, f)<i}. We define c(a, f) to be the least i such that
p € d.. (i) holds trivially, and (iii) is easily seen, by induction on a. Also (ii) is proved
by induction on « as follows. Assume o> f>7 and c(x, f), (B, y) £i. Since c(«, f)
=j<ithen fea;La;. By the definition of a; one of the following two cases holds.

Case a. fea;. Then, since y<f<a and ¢(f,y)<i we have yea; and c(a, y) <i.

Case b. For some o € g; such that § <o <a c(o, f}<i. Then, since c(o/, f), (B, ) <i
we have, by the induction hypothesis, ¢(¢’, y) <i. Now we have y <o’ <o, &' €a;, and
c(e,7)<i, hence yeq; and c(o, p) <.

4.2 Fact. 1) Let A be a strong limit singular cardinal, Q a forcing notion such that
kg “A is a strong limit cardinal and (A*)Y =(A*)"®”, 0 a regular ordinal <1 and

S={5<iicf6=0}.
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Each of the following (a)—(c) is a sufficient conditions for
k5 SA(S#2)Y =S(S#)”° (mod D, +).

(a) Q is A-complete.

(b) Q adds no new subsets of 6.

(¢) Out of any # members of Q 6 are pairwise compatible in Q.
2) We can replace in Part (1) S by bad(f).

Proof. Let ¢ be a two-place function from A* to 8 as in 4.1, where we take A for y,
and therefore A* for A. Thus

S =8(c)={6<A*: if cfd>cfl, then for some unbounded ACS
c“(A x A) is bounded in cf}
={0<A™: if f5>cf] then for any unbounded AL 6
there is an unbounded A'CA
such that c“(A" x A') is bounded in cf 1} .

and this holdsin V2too as ¢, A,and 1™ are as required alsoin V9; the cofinality of A
in 2 may be less than cf . but this makes no difference, by 2.7.

Clearly S(c)” £5(c)"°. Suppose e 5(c)"°nS, then (cfd)” =6, so let A be an
unbounded subset of § of order type 8, A € V. By the second characterization above
of S(c) there is an unbounded subset A’ of 4 in V2 such that ¢*(4’ x A’) is bounded
incf . By (b) A" e ¥, hence 6 € S(c)". By (c) there is a pe Q and a Q-name A4’such that

pl5“A’" is an unbounded subset of A Ac*“(4'x A') is bounded in cfM)”.

Without loss of generality p|“c“(4’ x A')C&”, where e<cfA.

Let A be the range of the increasing sequence <o, :i< 8. For each i <@ choose,
if possible, a p<p;eQ, such that p;|-a;€ A’ Aotp(x;n4)=i. Let B={i<0: p; is
defined}. Clearly |B| =0, and by (c) there is a B'C B of cardinality 6 such that any
two p;’s with i€ B’ are compatible. Let A'={a;:ie B'}. Clearly A’ is unbounded in
A, A’ e V, and since any two p;’s with i € B are compatible ¢*“(4’ x A’}Ce. Therefore
5€S(c)’. Assuming now (a), there is an increasing sequence {p;:i< 8> such that
Po=D, p; determines the first i+ 1 members of 4". Let «; be such that p; |—o; is the
i-th member of A'. Since p,=p and p|—4’'C A we have o, € A. Clearly {a;:i< 0 is
an increasing sequence in V of members of A hence A”={a;:i<6} is an

" unbounded subset of 4. It follows easily that ¢“(4” x A”)Ce, hence de S(c)”.

4.3 Lemma. Let 1 be an uncountable regular cardinal, BC A, |B|<|4|=4, A= |) 4,
i<i
B={] B,, where the sequences {A;:i<A), {B;:i< ) are increasing and continuous
i<i
and |A4],|B)| <A for i<A. Then

E={i<A:A,nB=B}
is a club subset of A.

4.4 Lemma. Let A be an uncountable regular cardinal.
1) TE{5<A* :cf6<A} is in I[A*].
2) T istheunion of A sets which have the square property, i.e., there are sequences
{S;:i< Ay, and {Ci:6€8;> for i< such that:
(@ US=T
i<
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(b) For €8, Cj is a subset of 60T of cardinality <2 closed in d, and if S is a
limit ordinal then Ci is unbounded in 8.

(c) For all 5,0, if 6,€S; and 6,€C}, then 6, €S; and Ci =Cj nd,. (Notice
that 3, may also be a successor ordinal.)

3) For each regular <A, let Ty={6<A" :cf6 <0}. There are {S;:{ <) and
{C5:8€8,> such that

(@) U 8;=T,

(b) F or 0€8; Ciisasubset of 5Ty of order type <0 closedin é andif 6 is a limit
ordinal then Ci is unbounded in 6. . ) A
(c) For all 51,52 if 0,€8; and 6,€C;, then 6, €S; and Cj,=C;,nd,;.

Remark. In (2) and (3) we can add:
(d) If a+1€S; and cfu< A then C.,,=Ciu{a}.
Proof. 1) We show that (2) implies (1). For a<A* let
P={CLii<AinaeS;}.

Notice that, using the notation of 2.5, S¥2({Z,:a <17 >)2 T\A. By 2.5 TeI[A*].
2) Wedeal now with the case where 1> ¥, leaving the case A=, to theend of
the section (after 4.5). We choose for each 2 <A™ a sequence (Di:i< A) such that:
(i) Dica, |D: |</1.
(i) (D' i< 4y is increasing and continuous.
(iii) «= ) Di.

i<
(iv) The closure in o of D! is included in Di*1.
(v) For a>0 0eD, and if y+ 1€ D}, then ye D,
(vi) If cfa < A then D? is unbounded in o.
For each o€ T and i < 4 such that ¢fi > o we define C. as follows. For an ordinal
o let b(e) be the ordinal B such that «= f+n, where f is 0 or a limit ordinal and
n<w.

Case a. If cfb(a)+cfi then

def{ﬁeD‘ cfp<itu{d<a:d=sup(Dind)}.
Case b. If cfb(o)=cfi (>w) then

.def
C.= N U Chulb(@),0).
Wisaclubsubset of b(a) fe WnT{f<A*:cfb(B) +cfi}
Notice that for a e T, if cfb(e) #cfi, i< 4, and cfi> o then Ci is a closed subset of «
and CLC T It follows immediately, by induction on «, that for every xe T C,CT.
For i<A, cfi>w let

S; def{oce T:C. is closed in o and if o is a limit ordinal then C. is unbounded

in a and for every peC. Cy=PpnC: and if B is a limit ordinal then C
is unbounded in f} .
Thus (S;:i<Ancfi>w) and {Ci:6€8,):i<incfi>w) are defined, and we
have to prove (a), (b), and (c).
a) We shall prove by induction on o e T that there is a club subset E of A such

that for every i< A if ie E and cfi>w then o€ S;. The following simple fact will be
useful for the inductive proof.
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(1) ¥ y<a, yeS, and C,=Ciny then for every f<y if feCi then
Ci=Cinp and if B is a limit ordlnal then Cj is unbounded in .

Let us prove (1). Since y€S; Ci is unbounded in y. Let f<7y and BeC! then
ﬁ eCiny= C! and hence C’ NpB=Cjandif fis alimit ordinal then Ciis unbounded
in f. Therefore

Cinp=(Cirny)nB=Cinp=Ci.

For every 6 € Tra there is, by the induction hypothesis, a club subset E{ of 4
such that ie E$ ancfi>w=05€S,. Also, by (ii) and (iii), for deTna the set
E‘; ={i<A:de D'} is an interval [0 J) for some ¢ < 1 and hence a club subset of 1.

For A<dé<a take in 43 A=a, B=4, A;=D., and B,=Dj then, by 4.3,
Ej={i<A:Diné=Dj} is club in 4. For 5<l since 4 is regular there is, by (ii), a
js<Asuch that Di=4foreveryiz j;. Let j;= sup jgthen Di=4foreveryi j. For

8< ), o we set E3=[j;, 4), so if i€ E} then D’m& and=06=D% For e Trna let
E'= E‘imE‘;nE"

Now we deal separately with the following cases.
Case (i), x=0. We take E=1; this case is trivial.

Case (ii), =+ 1, where 6 € T. We take E = E°. Let i € E, cfi > w, we shall prove that
«eS,; Since ie E°CE}, E5, ES we have §€S,, deDi, and D,=Dju{6}. By the
definition of C. either both Cj and C! are defined by Case a, and then Di=DiU {5}
implies C! = C{u {8} and we know also that C, is closed in o or else both are defined
by Case b and then C,= C5u{4} holds tr1v1ally, and hence C! is closed in « since C
is closed in & as § € S;. Thus (1) holds for y=46, and « satlsﬁes the requirements for
membership in S;.

Case (iii), o is a limit ordinal, and we restrict ourselves to i < A with cfi=cfé when
a=8+m. As ac Tcfa<4i. Let (5, a<cfoc> be increasing and continuous with
limit « and such that for j<cfa which is not a limit ordinal cfé;<w and cfb(5;)
#cfi, and if cfo > then cfd;=w for every such j. Clearly 6, ¢ T for gecfa. Let

E= () E%.
j<cfa
Suppose i€ E, cfi>w, and j<cfa then, since ie E%, we have 6;€8;, 6,€ D, and
D,nd;=D;..

Subcase (iii, ), cfa =+ cfi. In this case C'. is defined by Case a. Now, for j <cfa §,€ D,
hence §;€C, therefore Cj, is unbounded in o, and it is clearly closed. For a
successor j<cfa C¢s is deﬁned by Case a, so since Dz =DinJ; also Cl =Ciné;
Thus (1) holds for arbrtrarrly large y<a so xS,

Subcase (iii,), cfa=cfi (>w). Let Wy={4,:0 <cfa A cfd,+cfi}. We shall see that
if &leWy,e<{ then Ci=Cine. 2
Let e=4,, {=90,, a <t. We know that
| Di=Dj_=Dind,=Dine

and similarly D{=Din{. Therefore D} =D;ne, and since ¢,{ € W, both Ci and C;
are defined by Case a and we have also Ci=Cine. Let W’ be a club subset of
{6,:0<cfa}and let W' =W nW, W"is clearly an unbounded subset of a. Thus,
by () U Cﬂ"‘ 95 C=U C.

BeW’ ' n{f <a:cfb(f)Fcfi} BeWqo
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This immediately implies, by Case b,
Ci= |y Ci. 3)

BeWg
For fe W, B is a limit ordinal (s1nce in this case cfa=cfi>w) and fe S, hence Cj is
club in B, hence by (2) and (3) Cj is club in a. Also for fe Wy, C;nf= C,, Thus (1)
holds for every ye W,, and a €S,

Case (iv), a=0+ w, and we restrict ourselves to i< with cfd=cfi. Let {(d,:0
<¢fé) be an increasing sequence of ordinals in T with limit §. We take

E= () E¥n[) E**".

a<cfé n<w

Let i€ E, cfi>w, we shall prove that a € S;. d S since EC E%, and Diné = Dy, since
ECES. C! is defined by Case a hence C is closed in «, and for n<w ie ECE}*™"
hence 6 +neDiCCE Thus C! is unbounded in o. In order to prove that a€S; it
clearly suffices to show that (1) holds for arbitrarily large y <«; we shall now see
that it suffices to prove (1) for y=4. In this case we have for § <y <a C, = C50[4, 7).
Also, since i€ E5*" for every new we have D:2[4,0) and hence Ci2[8,a].
Therefore for 6<y<<x we have, since (1) holds for 5,

Ciny=Cinéulé,y)=Ciu[8,7)=C

and since i€ E} (1) holds for y.

Now we prove (1) for y=4. 6 € S; since i € ES. As we have seen above 6 € D and
since cf § < A and C} is defined by Casea also é e Ci. For 6 <cf 6 Di_=Diné,, since
ie E¥,andifcf§, +cf i we have also Ci_= Cin4,, since both C} and Ci_are deﬁned
by Case a. Let W' be a club subset of {6,:0<cfd} and let

W'=W'n{f<d:cfb(f)+cfi}.
W is clearly an unbounded subset of §. Thus
= |J C;=Cind.

BeW'n{p<o:cfb(f)Fcfi} eWw”
This immediately implies, by Case b, C5=C.n4.
Case (v), x=0+1, where cfo=4 Let {J,:0<1) be an increasing‘continuous
sequence converging to ¢ such that for each 6 <4 if 6 is 0 or a successor then
cfd,=w. Since the sequence ¢(D;,:i< i) is increasing and continuous and for
i< D,\{0} is a subset of § of cardinality <A the set E'={i<A:iis a limit ordinal
and D{C5;0{d}} is a club subset of A. Let

E= D E%nE,

a<i
where D denotes diagonal intersection (ie, D E;={i<A:(Vi<i)ieE;}). We
j<i

assume now that i€ E, cfi>w and we shall prove that a€S,. In this case Ciis
defined by Case a hence C; is closed in «, i.e., since we know that C is closed in a as
C: is defined by Case a, all we have to show is that for every feC,

Ci=BNC. and if B is a limit ordinal then C} is unbounded in f3. @

Let 6<i and cfo=cfi then, since ie D E*CE% §,eS; and Dind,=Dj_, and
, . e<i . .

since both C; and Cj_ are defined by Case a also C;né,=Cj_. Thus (1) holds for
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7=20, hence (4) holds for every f<J,=supd,, as i is a limit ordinal. Since i€ E’
a<i

D;C6,0{8} hence, since C. is defined by Case a, C:C4,+1. Since we know

already that (2) holds for every p <, we still have to prove (2) for f=4,. Since i is

a limit ordinal {d,: 0 <i} is a club subset of 0. Let Wo=1{d,:0<in cféO #cfi}. As

in Subcase (iii,) we have (2) and Ci,= ) Cﬁ Since we know already that for
BeWo

peW, CB—C‘mﬂ and Cj is unbounded in f we have Ci =Cing; and Ci. is

unbounded in J;. Thus (4 ) holds also for f=4,, which ends the proof.

b) Byour deﬁnition of S, ifa € S; then C! is a closed subset of o, and if & is a limit
ordinal it is unbounded in o, We prove now by induction on « that |Ci|< A If Clis
defined by Case a this obvious. If C. is defined by Case b and « is a limit number
then by Subcase (iii,) C = U Cy, where Wy Ca, |W,| =|cfa| < A. By the induction

hypothesis |Ci| < A for B e WO, hence since 4 is regular also |Ci| < A Xf Ci is defined
by Case b and « is not a limit number then [Ci| </ follows 1mmed1ate1y from
Ci=C},yb(0), ).

¢) follows immediately by the definition of S,.

3) We shall use (2) and define sets S; , for i, ¢ <ﬂ. such that e=0or w<cfe <6
and C»*={C3*:5€S; ,>. We shall prove that for the set

{Ge):Le<in(e=0vwcfe<)}

of indices (a){(c) of (3) are satisfied. For & Zcfe <6 let D(¢) be a club subset of ¢ of
order type cf ¢ such that the members of D(g) which are not accumulation points of
D(g) are successors. For §; and C! as in (2) we define

S;o={a<i*:0=0 or a is a successor}, C:°=0,
and for o <cfe<6
S;.={xeS;:otp CieDie)ufe}}, Ci*={BeCi:otpCieD(e)}.

We shall prove now (a)}-{c).

a) Let ae Ty, then a€S; for some i< 4, and let e=otpCL. If cfe <1 then o is 0
or a successor and « €S, ,; otherwise clearly a€S, ,.

b) For§; , thisis trivial; so we assume now that ¢ is a limit ordinal. Given o e T,
and i<A let f be the function which counts the members of C, ie., f is the
increasing function from otp C}, onto Ci. Since C: is closed f is continuous. For
BeC;, Cy=Cinp, hence f(otp Cﬂ) B. By the deﬁnltlon of C-* we have Cb*
=f ”(D(s)r\otp C.,)- Since f is continuous and D(s)motp Ciis closed inotp Ci, C:¢is
closed in sup f” otpC;,=supC.. Since C, is closed in a also C:® is closed in o.
Clearly otp C:*<otpD(g)=cfe < 6.

For Be CL*CCL if B is a limit ordinal then since Cj} is unbounded in B also
otp C: s 1s a limit ordlnal with the same cofinality and since, by the definition of C%¢,
otp Cy eD(s) we have, by our choice of D(s), cf otp Ci <6, hence cf <9, ie., e 7},

If a is a limit ordinal then C. is unbounded in § hence also otp C! is a limit
ordinal. Since §¢8,, otp C: eD(g)u{s} and the members of D(e) which are not
accumulation points of D(e) are successors otp C! is an accumulation point of D(e),
ie., D(s)motp C! is unbounded in otp C,, Th1s is preserved by f hence C: is
unbounded in C’ which is unbounded in «, hence C-® is unbounded in a.

(c) If yeS,, and feCh® then f<y and otp C} eD(s) Since yeS; ,£S; and
BeCi*cCt alsoﬁeS and C‘ C’mﬂ Since otp CﬁeD(s),ﬁeS, o Since Cy=Cinf
we have by the definition of C® and C%, also Ci*=Cinp.
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4.5 Lemma. For every set A of ordinals thereis a functionn=(n:ie A) suchthat
for every ie A
(i) #f is an ascendmg sequence of members of Ani.
(i) If l< length(y;)) then ;1,,,,(,)—11, M.
(iii) For every accumulatlon point 0 of A of cofinality w there is an ascending
sequence & of length w of members of A such that sup &,=20 and for everyn<w, £[n
A

n<o

=Nsmy

Proof. By induction on a which is the order type of A.
Case 1. a=0. Take 1°=0.

Case 2. o is a successor. Let =y + 1 and let § be the maximal member of A. Take

n*=n"PU{<B.05}.

Case 3. a=w. Let {(B,:new) be an increasing enumeration of the members of A.

Take 71A= {<Bm <ﬁ0a AR ] ﬂn— 1>> : new}.

Case 4. o is a singular limit ordinal. Let {f;:i<cfa) be an ascending sequence of
members of 4 such that B,=0 and sup B:=supA. Take n*= |) nfehirina

i<cfa

untfei<etd Tt is easily seen that n? satlsﬁes (i)(ii).

Case 5. aisaregular cardinal >w. We define for i <o, o; <sup A4 by induction on i
as follows. a,=0, for a limit ordinal i, ;= supcx and %;.y 18 chosen so that

o; 41 >o; and otp[(a;, o4 )NA] = w? - otp[a; nA] For i<ua let
B;={the o-th member of (o, a;,)NA: 0 is a limit ordinal <otp[(o; 0,4 1)NAl},

and C;=([a;, o; 4 )N A)\B;. By our choice of &, , (|B;| = |a;nA| +R. We define 7 as
follows. For ye C,, ni=n%, for ye By, i =0and for ye B,, i>0, we define ;' by
induction on i as follows. Let T be the set of all finite ascending sequences g of
members of U B; such that for every I<length(g) ny,=c¢ll, and let F; be a

mapping of B; ‘onto T, We define for y € B; ;' = F (y). There is such an F since U B,

=a;nAand |B}| = |, A| + X, (i) and (ii) hold by the definition of . To prove (111)
let 6 be an accumulation point of A of cofinality w. If for some i<a, 0;<d=Z 0,
then, by our definition of B; and C,, d is also an accumulation point of C; and hence,
by the induction hypothesis concerning 7, there is a ¢ as required by (iii). Ifé=o,
where i is a limit ordinal, then let {i,:n<w) be an increasing sequence such that
supi,=i. We define by induction on n a sequence £=<{¢,:new) such that for

n<w

new, &, e B;asfollows. £, is taken to be a member of B; such that Fi(¢,)= &|n; there
is such a &, since F;: B; - T, is onto, £ is clearly as required in (iii).

Proof of 4.4 (continued). We shall prove that the set T={6<N,:cfé <w} 1tse1f
has the square property, so S;=T forall i<A. Let A={6<¥,:cfd <w} and let n*
beasin4.5.Forde T1fcf5<wlet Ci=Rangeni. If cfa=wlet C,;—Rangeg where
o is an ascending sequence of length @ of members of 4 with limit « such that for
every n<w, g [n=1y; there is such a g by 4.5. It follows directly that (b) and (c)
hold.
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Note added in proof. 1. Note that it is proved in [Sh420] that for regular cardinals 4 and x
satisfying A >x* there is a stationary SC{6:5 <4, cf (4)=x«} which belongs to I[4]. On the other
hand (by a handwritten manuscript) it is consistent with ZFC that no stationary subset of
{6<N,:cf(8)="N,} belongs to I[X,], and it is also consistent that I[¥,] is not generated by the
ideal of non stationary subsets of X, plus one set.

2. We can strengthen REF by demanding: (*) if 1 is inaccessible, a <1*, 4 is (¢ +2)-Mabhlo,
SCMahlo,(A)— Mahlo, . (3) then {6 Mahlo, ., ,(3)— Mahlo,. ,(1): SN stationary} is station-
ary, where we define Mahlo,(4) by induction on a, if x=0, Mahlo,(1)={p: p <A1 is inaccessible};
if a=f+1 then Mahlo,(A)={u: p<4 is inaccessible, unMahloy(2) is stationary};
if o is a limit ordinal, fet e be a club of « of order type cf(a} and Mahlo,(A)={5<A: 5 Mahio(})
for every fice, otplenf)<é}.



