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1 Introduction

In [2] Anderson began a study of the extension property of C �-subalgebras that
he continued in [3]. A C �-subalgebra A of a C �-algebra B is said to have the
extension property if every pure state on A has a unique extension to a state on B.
In his concluding remarks in [4] Anderson expresses the following view: “In order
to make further progress on the extension problem for atomic masas in B.H / it
appears that a clearer understanding of the structure of the masas in the Calkin
algebra would be useful.” As a test question, Anderson asks whether every masa
in the Calkin algebra which is generated by its projections lifts to a masa in the
algebra of all bounded operators on separable Hilbert space. He later provides a
negative answer to this question assuming the Continuum Hypothesis [4].

The starting point for the present investigation is a potential argument producing
the same negative conclusion as Anderson’s in [4] but not relying on the Contin-
uum Hypothesis. It will be seen that this argument runs into a serious difficulty
but, even if it did work, the argument would not produce masas that can be tested
for the sort of properties Anderson had in mind. For example, another test question
he asks in [2] is whether every masa in the Calkin algebra that is generated by its
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70 S. Shelah and J. Steprāns

projections is permutable1. This concept will not be explored further here, but it
serves to illustrate that the lack of a classification of masas in the Calkin algebra
should not be misunderstood to mean that the structure of these objects can not be
further investigated.

Before continuing, some notation will be established. Let H denote a fixed sep-
arable Hilbert space with inner product hx; yi and let ¹enºn2! be a fixed
basis for H. For x 2 H define supp.x/ D ¹i 2 ! j hx; ei i ¤ 0º. Define
S.H/ D ¹x 2 H j kxk D 1º. For X � N define H.X/ to be the subspace of
H generated by ¹ei j i 2 Xº and define PX to be the orthogonal projection onto
H.X/. When thinking of H as `2 then the ei will be identified with characteristic
functions of singletons. Moreover, PX can be identified with multiplication by the
characteristic function of X , an element of `1.

Let B.H/ denote the algebra of bounded operators on H and let C.H/ be
the compact operators. For any orthonormal family X � H define D.X/ to
be the subalgebra of B.H/ diagonal with respect to X; in other words, T 2
D.X/ if and only if there is bounded function D W X ! C such that T .z/ DP
x2Xhx; ziD.x/x. Let C be the Calkin algebra B.H/=C.H/ and � W B.H/!

C be the quotient map. A masa in a C �-algebra is a maximal, abelian, self-adjoint
subalgebra.

There are two important facts about masas in C relevant to the present investi-
gation. The first is the following result due to Johnson and Parrott [10]:

Theorem 1.1. If A � B.H/ is a masa then �.A/ is a masa in C .

The second is that the masas in B.H/ can be characterized as those algebras of
the form L1.�/ acting on L2.�/ where � is a regular probability measure. The
following result states this more precisely (see, e.g., [7, pp. 48 and 53]).

Theorem 1.2. If A is a masa in B.H/ then there is a locally compact subset X �
R and a regular Borel probability measure � on X such that A is �-isomorphic to
L1.�/ acting on L2.�/ and, moreover, the �-isomorphism is a homeomorphism
with respect to the weak operator topology.

The two key cases are provided when � is an atomic measure on a countable set
or when it is an atomless measure on a set without isolated points. Since L1.�/
is not separable, this result on its own does not guarantee that the number of masas
in B.H/ is not greater than 2@0 . However, given a Borel probability measure � on

1 A C�-subalgebra A of a C�-algebra B is permutable in B if there are mutually orthogonal
projections ¹pnºn2! in A and unitaries un 2 B such that unAu�n D A and unp0u�n D pn
for each n. A masa is permutable if it is permutable in the Calkin algebra.
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Masas in the Calkin algebra without the Continuum Hypothesis 71

X , the �-isomorphism from L1.�/ to B.H/ is determined by it values on C.X/

which is separable (see [7, p. 49]). This yields the following.

Corollary 1.3. There are no more than 2@0 masas in B.H/.

To begin, it is worth noting why Anderson is concerned in [4] only with masas
in C that are generated by their projections. In [2] he points out he has obtained
in [3] a characterization of when a C � subalgebra has the extension property; in
other words, each pure state has a unique extension to the larger algebra. However,
the characterization only applies if the subalgebra is generated by its projections.

Let S be the uni-lateral shift defined by S.en/ D enC1. Then �.S/ is normal
– in other words, �.S/�.S/� D �.S/��.S/ – and so there is some masa in C

containing it. On the other hand, SS� ¤ S�S so this algebra is not the quotient
of any masa in B.H/ containing S – indeed, by an argument using the Fredholm
index, it can be shown that there is no normal T 2 B.H/ such that �.T / D S

and hence there is no abelian algebra containing �.S/ which is the quotient of a
masa in B.H/. However, by virtue of containing �.S/ this algebra will not be
generated by its projections. To see this, one can rely on a proposition found in [8]
showing that every projection in C is the image of a projection under � . Hence,
if �.S/ were approximated by commuting projections, then tail ends of S would
also be approximated by projections that were as close to commuting as desired.
This would contradict that SS� ¤ S�S . Nevertheless, Anderson showed in [4],
that, assuming the Continuum Hypothesis, there is a masa in C which is generated
by its projections but is not the quotient of any masa in B.H/.

There is a simple strategy for constructing a masa in C which is not the quotient
of any masa in B.H/. (See [8] for a description of an argument of Akemann and
Weaver [1] using this.) Let A be a family of almost disjoint subsets of N of size
2@0 . For each A 2 A choose a pair of projections Q0A and Q1A such that

� PAQ
0
APA D Q

0
A and PAQ1APA D Q

1
A,

� Q0AQ
1
A �Q

1
AQ

0
A is not compact.

Note that for any function F W A! ¹0; 1º the family

A.F / D
®
�
�
Q
F.A/
A

�
j A 2 A

¯
is a commuting family of projections. Let Ac.F / be the C �-algebra generated by
A.F /. It is immediate that the algebras Ac.F / and Ac.F

0/ are distinct if F and
F 0 are. If it can be shown that each Ac.F / can be extended to a masa this will
complete the proof since it follows that there are 22

@0 distinct masas contradicting
Corollary 1.3 if each of them lifts to a masa in B.H/.
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72 S. Shelah and J. Steprāns

Each Ac.F / is clearly abelian, self-adjoint and generated by projections, but
extending to a maximal such family poses a problem. To see this, the following
simple fact will be useful:

If A is an abelian C �-subalgebra of C generated by projections then A is max-
imal abelian if and only if for every self-adjoint operator S 2 C nA there is some
projection Q 2 A such that SQ ¤ QS .

In order to establish this, let T 2 C n A be arbitrary and suppose that T com-
mutes with every element of A. Let T D AC iB where A and B are self-adjoint.
Each element of A must be normal since A is an abelian C � algebra. Therefore
the Fuglede Lemma [9] implies that T � also commutes with every element of A

and, hence, so do both A and B . Hence both A and B belong to A and, therefore,
so does T .

Therefore, in order to extend Ac.F / to a masa it suffices to add to Ac.F / all
self-adjoint T 2 C which commute with each member of Ac.F /. The catch is that
in order for the extended family to be generated by projections it is necessary to
also add to Ac.F / some projections generating T . Before presenting the following
example showing that this might not be possible the following definition is needed.

Definition 1.4. The cardinal p is defined to be the least cardinal of a family of F

of subsets of N such that

� A \ B 2 F for any A and B in F ,
� there is no infinite X � N such that X n A is finite for all A 2 F .

Theorem 1.5 (Bell [6]). If c D p then Martin’s Axiom for � -centred partial orders
holds; in other words, given

� a partial order P such that P D
S1
nD1 Pn where each Pn is centred (that is,

any finite subfamily has a lower bound), and
� a family ¹D�º�2� such that � < c and each D� is a dense subset of P (that

is, for all p 2 P there is d 2 D� below p),

there is a centred G � P such that G \D� ¤ ; for each � .

Example 1.6. If p D c then there is a self-adjoint operator A 2 B.H/ and an
abelian subalgebra C of C such that

� �.A/ commutes with each member of C,
� C is generated by projections,

� if kA �
Pk
iD1 diPi C Kk < 1=4 where K is compact and each Pi is a

projection and each di 2 R then there is some j � k such that �.Pj / does
not commute with C,
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Masas in the Calkin algebra without the Continuum Hypothesis 73

� if Q is a projection not commuting with A modulo a compact operator then
there is C 2 C such that �.Q/ and C do not commute.

In other words, if C is extended to this masa then this will not be generated by
projections.

Proof. Recall that the essential spectrum of an operator T is denoted �ess.T / and
is defined to be the set of all complex numbers in the closure of the spectrum which
are either non-isolated or have infinite multiplicity. For an operator f 2 `1 the
essential spectrum satisfies the equation

�ess.f / D
\
n2!

¹f .j / j j � nº

and so this describes the essential spectrum for self-adjoint operators.
Let A be any self-adjoint operator such that �ess.A/ D Œ0; 1�. Without loss of

generality A can be identified with some ˛ 2 `1 such that A.en/ D ˛.n/en. In
this case the range of ˛ is dense in Œ0; 1�. The family C D ¹�.C�/º�2c will be
constructed by an induction of length c. Let² k�X

iD1


 i�P
i
�

³
�2c and � even

enumerate all finite linear combinations of pairwise orthogonal projections in C

such that 


A � k�X
iD1


 i�P
i
� �K




 < 1

4
(1)

for some compact K. Let ¹Q�º�2c and � odd enumerate all projections that do not
commute with A modulo a compact set. The required induction hypothesis is that
for each � the following hold:

� C� is a projection commuting modulo a compact operator with A,
� �ess.AC�/ is nowhere dense,
� �.C�/ commutes with �.C�/ for each � 2 � ,

� if � is even then there is some j � k� and � � � such that �.P j
�
/ does not

commute with �.C� /,
� if � is odd then there is some � � � such that �.Q�/ does not commute with
�.C� /.

It should be clear that this suffices. The one point the reader may question is the
utility of �ess.AC�/ since if AC� is not normal the usual spectral theory does not
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74 S. Shelah and J. Steprāns

apply. However, one should observe that if Q is a projection commuting with A
modulo a compact set then, letting ¹wnºn2! be an orthonormal basis for the range
of Q, it follows that for any � > 0 for all but finitely many n there is a subset S�n
of the support of wn such that

� the projection ofwn onto the subspace spanned by ¹ej ºj2S�n has norm greater
than 1 � �,

� j˛.i/ � ˛.j /j < � for any i and j in S�n.

The essential spectrum of AQ can then be calculated to be\
�>0

\
k2!

¹˛.ej / j j 2 S
�
k
º

and this will be used in the following argument.
In order to perform the induction, assume first that � is even. It may as well be

assumed that each P I
�

commutes modulo a compact operator with A and each C�
for � 2 � . The following claim applies only the case that � is even.

Claim 1. There is some t 2 Œ1
3
; 1� and distinct integers Ni and Nj such that for each

� > 0 both of the sets .t � �; t C �/ \ �ess.AP
Ni
�
/ and .t � �; t C �/ \ �ess.AP

Nj

�
/

have non-empty interior.

To see this, note first that

k�[
iD1

�ess.AP
i
� / �

�
1
3
; 1
�

because otherwise there is an open U � Œ1
3
; 1� such that the corresponding spectral

projection P – namely, the characteristic function of ˛�1U – has the property that
kAP k > 1

3
and P i

�
P is compact for each i � k� . This contradicts that (1) holds

for some compactK. Similar reasoning shows that the diameter of each �ess.AP
i
�
/

is less than 1=2. Hence there are at least two distinct i and j such that �ess.AP
i
�
/\

Œ1
3
; 1� has non-empty interior. If the claim fails then an elementary compactness

argument yields a contradiction to the connectedness of Œ1
3
; 1�. In particular, if the

claim fails then it is possible to choose an i.t/ � k� and a neighborhood Vt of
each t 2 Œ1

3
; 1� such that the interior of �ess.AP

i.t/

�
/ is dense in Vt . Note that if

Vt \ Vs ¤ ; and i.s/ ¤ i.t/ for some s and t then the claim is proved. Hence,
each of the sets

Uj D
[
¹Vs j i.s/ D j º

is clopen in Œ1
3
; 1�. Since there are at least two distinct i and j such that
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Masas in the Calkin algebra without the Continuum Hypothesis 75

�ess.AP
i
�
/ \ Œ1

3
; 1� has non-empty interior, this yields two non-empty Uj and a

contradiction.
Let t , Ni and Nj be as in Claim 1 and define the partial order P to consist of

conditions
p D

�
Bp; ¹z

p
i º
kp

iD1

�
where

(1) Bp is a finite subset of �,

(2) each zpi has finite support and rational range – as an element of `2 – and
kz
p
i k D 1,

(3) 2=3 < kP J
�
.z
p
n /k < 3=4 for each n � kp,

(4) kA.zpn / � tz
p
n k < 2

�n for each n � kp.

Define p � q if and only if

� Bp � Bq ,

� kp � kq ,

� z
p
n D z

q
n for n � kq ,

� if � 2 Bq and n > kq then kC�.z
p
n /k < 2

�n.

It is immediate from Condition 2 in its definition that P is � -centred and that the
set of all p such that � 2 Bp is dense for any � 2 �. It will be shown that the
set of all p such that kp � m is also dense for each m. Given this, let G � P
meet all these dense sets and define C� to be the orthogonal projection onto the
subspace spanned by ¹zpn j p 2 G and n � kpº. It follows from Condition 3 that
C� and P J

�
do not commute modulo a compact set. From Condition 4 it follows

that �ess.AC�/ D ¹tº. The definition of � guarantees that C� commutes with each
C� modulo a compact if � 2 �.

In order to establish the required density assertion it suffices to show that for
any p there is some q � p such that kq D kp C 1. To this end let p be given.
From the Weyl–von Neumann–Berg Theorem it follows that it is possible to find
an orthonormal basis ¹znºn2! such that there are compact operatorsK, ¹K�º�2Bp

and ¹Kiºk�iD1 as well as functions ¹X�º�2Bp and ¹X iºk�iD1 from ! to ¹0; 1º and a
function  W ! ! .0; 1/ such that

� A.zn/ D  .n/zn CK.zn/,

� C� .zn/ D X� .n/zn CK� .zn/ for � 2 Bp,

� P i
�
.zn/ D X

i .n/zn CK
i .zn/ for 1 � i � k� .
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76 S. Shelah and J. Steprāns

Let � D 2�k
p�1 and let M be such that kK.zn/k < �, kKi .zn/k < � and

kK� .zn/k < � for n > M and i � k� and � 2 Bp.
Using the fact that �ess.APNi /\ .t � �; tC �/ and �ess.AP Nj /\ .t � �; tC �/ both

have non-empty interior together with the fact that �ess.AC� / is nowhere dense for
each � 2 Bp it follows that there are integers i 0 and j 0 greater than M such that

� X
Ni .i 0/ D 1 and X Nj .j 0/ D 1,

� X
Ni .j 0/ D 0 and X Nj .i 0/ D 0,

� X� .i
0/ D X� .j

0/ D 0 for � 2 Bp,

� j .i 0/ � t j < � and j .j 0/ � t j < �.

Let z D .zi 0Czj 0/=
p
2 and note that 2=3 < kP

Nj

�
.z/k < 3=4. Also kA.z/� tzk <

2�. Moreover, kC� .z/k D kK� .z/k < 2� for � 2 Bp. Hence, it is easy to define
z0 to satisfy Condition 2 and yet be so close to z that all these inequalities are still
satisfied with z0 in place of z. Let

p D
�
Bp; ¹z

p
i º
kpC1
iD1

�
so that zk

pC1 D z0.
Now assume that � is odd. It may be assumed that A D  2 `1 and acts

on `2 by multiplication where  W N ! .0; 1/ has its range dense in .0; 1/. If
Q�C� � C�Q� is not compact for some � then there is nothing to do, so assume
that Q�C� � C�Q� is compact for all � 2 �. Since  Q� �Q� is not compact a
pigeonhole argument produces a < b, ı > 0 and a sequence ¹'nº1nD1 such that

� 'n 2 `
2 for each n,

� kP'�1n .b;1/'nk > ı,

� kP'�1n .0;a/'nk > ı,

� the supports of the 'n are pairwise disjoint finite sets,

� limn!1Q�.'n/ D 1,

where projections are being identified with characteristic functions thought of as
elements of `1. Let F be a free ultrafilter on N and note that for each � 2 �
there is �� 2 ¹0; 1º such that limF C� .'n/ D �� . Using that p D c there is a set
X � N such that limn2X C� .'n/ D �� for each � 2 �.

Now let ¹Inºn2! enumerate all intervals with rational endpoints in .0; 1/. Then
construct Jn, Ain, kn and Zn such that

� Jn is a rational interval such that Jn � In,

� Zn � N is infinite and ZnC1 � Zn,
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Masas in the Calkin algebra without the Continuum Hypothesis 77

� Z0 D X ,

� Ain � '
�1
n .0; a/ are finite sets such that AinC1 � A

i
n for each i 2 ZnC1,

� k'iPAin
k > ı.1 �

Pn
jD0 2

�j�2/ for i 2 Zn,

� kn 2 Zn,

� the image of Ajn under 'j is disjoint from Jn for every j 2 Zn including kj ,

� if j ¤ i then Akjj is disjoint from the support of 'ki .

If this can be done, then letting C� be the orthogonal projection onto the subspace
of `2 spanned by ®

'kjPA
kj

j
j̄2!

it is immediate that C�Q� �Q�C� is not compact. Also immediate is the fact that
�ess.C�/ is disjoint from

S
j2! Jj and hence is nowhere dense. Since Z0 D X it

follows that C� commutes with each C� for � 2 � .
To carry out the induction suppose that Zn is given. Choosing kn to satisfy the

last clause is then easy. Let InC1 D
SL
iD1 I

i be a partition of InC1 into intervals
of length less than ı2�n�3. For one of these intervals it must be that there is an
infinite set ZnC1 and some k � L such that



'iPAinP'�1¹InC1nIkº

 > ı
�
1 �

nC1X
jD0

2�j�2
�

for every i 2 ZnC1. Then let AinC1 D Ain \ '
�1.InC1 n I

k/ for i 2 ZnC1 and
let JnC1 D I k .

Question 1. Is the hypothesis p D c necessary for the example? In other words,
is it consistent with set theory that every abelian, self adjoint subalgebra of the
Calkin algebra generated by projections can be extended to a masa generated by
projections?

It must be noted at this point that a successful implementation of the strategy
outlined before the preceding example would not signal any progress towards gain-
ing the “clearer understanding of the structure of the masas in the Calkin algebra”
seen to be useful by Anderson. Since the Axiom of Choice is invoked to obtain
maximality, very little can be said about the structure of the masa produced this
way. For example, one can still ask whether there is a masa in the Calkin algebra
which is not locally the quotient of a masa in B.H/. The following definition
makes this precise:
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78 S. Shelah and J. Steprāns

Definition 1.7. A masa A � C will be said to be locally the quotient of a masa in
B.H/ if there is a non-trivial projection p 2 A, a Hilbert subspace H0 � H and
a masa A � B.H0/ such that �.A/ D ¹pap j a 2 Aº.

It is not possible to say whether or not a masa produced by invoking Zorn’s
Lemma is locally the quotient of a masa in B.H/. The next section will provide a
method for constructing masas with some control over their structure. In particular,
it will be immediate that these masas are locally the quotient of a masa in B.H/.

Before continuing, it is worth remarking that Anderson’s construction of masa
in [4] can easily be modified to produce a masa which is not locally the quotient
of a masa in B.H/. The idea Anderson exploited is that for any algebra of the
form L1.�/ there is an operator which commutes with only countably many pro-
jections in L1.�/. With the assistance of the Continuum Hypothesis, Anderson
constructed a masa in C which contains an uncountable set of projections which he
called almost central, namely every element of C commutes with all but countably
many of them. Clearly this can not be the quotient of any L1.�/. It is routine to
modify the transfinite construction used by Anderson to ensure that not only does
his masa contain a central family P , but also that for any non-trivial projection
q 2 C the family ¹qpq j p 2 P º is central. This guarantees that Anderson’s masa
is not locally the quotient of a masa in B.H/.

Question 2. Is there a masa in the Calkin algebra which is not locally the quotient
of a masa in B.H/?

Question 3. Is there a masa in the Calkin algebra such that for any non-trivial
projection q 2 C the family ¹qpq j p 2 P º is central?

Of course, it has already been noted that a positive answer to Question 3 will
yield a positive answer to Question 2 and, assuming the Continuum Hypothesis,
the answer to both is positive. It would also be interesting to know whether the
two questions are, in fact, equivalent.

2 Masas from almost disjoint families

The goal of this section is to provide a construction, using only a very weak set
theoretic hypothesis, of a masa generated by its projections which is not equal to
�.A/ for any masa A � H. The important point to emphasize here is that the masa
to be constructed is generated by its projections; without this restriction such ex-
amples can be produced by simple arguments as discussed in §1. The set theoretic
hypothesis used is described in Definition 2.1. The description of the hypothesis
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Masas in the Calkin algebra without the Continuum Hypothesis 79

as very weak is justified by the fact that it is not known to be consistently false and,
in fact, the consistency of the failure of a similar hypothesis – to be discussed later
– is a long standing open problem. Hence, it is possible that the hypothesis used
in the construction is not an extra set theoretic hypothesis at all.

Definition 2.1. If 	 is an ideal on N then define an ideal 	� on the family of finite,
non-empty subsets of N to be generated by ¹h 2 ŒN�<@0 j h\X ¤ ;º forX 2 	.
For any ideal 	 the positive sets with respect to 	 are defined to be P .[	/ n 	

and are denoted by 	C. An almost disjoint family A of subsets of N will be said
to be strongly separable if and only if for every H 2 	.A/C� there are 2@0 sets
X 2 A such that for any n 2 N there is h 2 H such that h � X n n.

As a guide to understanding this definition, it is worth noting that H 2 	.A/C�
if and only if for every finite subfamily ¹AiºkiD1 � A there is h 2 H such that
h \

Sk
iD1Ai D ;.

Definition 2.2. For any ideal 	 on N define a subset Z � S.H/ to be 	-large if
and only if

¹supp.z/ j z 2 Zº 2 	C�

and define Z to be 	-small otherwise.

This definition should be understood to apply only to subsets Z consisting of
vectors in the unit sphere with finite support since if supp.z/ is not finite then it
is not even in the domain of 	�. So, for example, 	-large sets will never be large
subsets of S.H/ in the sense of category or measure.

Lemma 2.3. IfW � S.H/ is 	-large then for all � > 0 and all bounded operators
ˆ there is some k such that ¹w 2 W j kPŒk;m/ˆ.w/k < �º is 	-large for all
m � k.

Theorem 2.4. If there is a strongly separable almost disjoint family then there is
a masa in the Calkin algebra generated by its projections which does not lift to a
masa of B.H/.

Proof. If A is strongly separable then it is possible to choose for each A 2 A a
sequence ¹wAn º

1
nD0 � S.H/ such that

(i) supp.wAn / is a finite subset of A for each n,

(ii) max.supp.wAn // < min.supp.wAnC1// for each n,

(iii) for each W � S.H/ which is 	.A/-large there is some A 2 A such that
wAn 2 W for each n.
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80 S. Shelah and J. Steprāns

This is accomplished by a transfinite induction of length c. Let ¹W�º�2c list all the
sets W � S.H/ which are 	.A/-large. For each � there are 2@0 sets A 2 A such
that ¹w 2 W� j supp.w/ � Aº is infinite. Hence, at each stage � of the transfinite
induction it is possible to find A 2 A for which the wAn have not yet been defined
and such that ¹w 2 W� j supp.w/ � Aº is infinite. Let ¹wAn ºn2! enumerate an
appropriate infinite subset of this set.

Now, for each A 2 A extend ¹wAn ºn2! to an orthonormal basis BA;n on the
space `2.supp.wAn // and let BA D

S1
nD0BA

n . Let A0 be the subalgebra of B.H/
generated by [

A2A

D.BA/:

Let A1 be the quotient A0=C.H/ and let A be the quotient norm closure of A1.
The almost disjointness of A guarantees that A is abelian as well as self adjoint.

To see that A is maximal abelian let ˆ 2 B.H/ and suppose that ˆ commutes
modulo a compact operator with every member of A0 but �.ˆ/ is not in A. Let
ˆm D P

?
mˆP

?
m for any m 2 N. For any m 2 N and � > 0 let

B.�;m/ D
®
x 2 S.H/ j kP?supp.x/ˆm.x/k > �

¯
and let

Z.�;m/ D
®
x 2 S.H/ j kˆm.x/ � hˆm.x/; xixk > �

¯
noting that hˆm.x/; xix is simply the projection ofˆm.x/ onto the subspace gen-
erated by x. The next two lemmas establish that for sufficiently large m both
B.�;m/ and Z.�;m/ are 	-small.

Claim 2. For every � > 0 there is some k D k.�/ such that B.�; k/ is 	.A/-small.

Proof. For any w 2 S.H/ define

m.w/ D min.supp.w//

and suppose that the conclusion fails for �. In other words, B.�; k/ is 	.A/-large
for every k. Then define

B D
°
w 2 S.H/ j



PŒm.w/;1/ˆ.w/ � hPŒm.w/;1/ˆ.w/;wiw

 > �

2
p
2

±
and observe that B is 	.A/-large. To see this, let A 2 A and let k be the least
element of N not belonging toA and choose j > k so large that kPŒj;1/ˆ.ek/k <
�=2. Since B.�; j / is I.A/-large it is possible to find w 2 B.�; j / such that

supp.w/ \ .A [ j / D ;
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Masas in the Calkin algebra without the Continuum Hypothesis 81

and then it follows that Nw D .w C ek/=
p
2 2 B . To see this, note that m. Nw/ D k

and 

PŒk;1/ˆ. Nw/ � hPŒk;1/ˆ. Nw/; Nwi Nw


�


P?supp. Nw/PŒk;1/ˆ.w C ek/



=p2
�


PŒkC1;1/nsupp.w/ˆ.w C ek/



=p2
�


PŒj;1/nsupp.w/.ˆ.w/Cˆ.ek//



=p2
�
�

PŒj;1/nsupp.w/ˆ.w/



 � 

PŒj;1/ˆ.ek/

�=p2
D
�

P?supp.w/ ĵ .w/



 � �=2�=p2
>

�

2
p
2
:

Then there is A 2 A such that wAn 2 B for each n. Choose an increasing
sequence ¹ynº1nD0 from N such that if mn D m.wAyn/ and wn D wAyn then

PŒmn;mnC1/ˆ.wn/ � hPŒmn;mnC1/ˆ.wn/; wniwn

 > �=2p2
and supp.wn/ � Œmn; mnC1/ for each n. Then let Q be the projection onto the
space spanned by ¹wnº1nD0. It then follows that

PŒmn;mnC1/.ˆQ �Qˆ/.wn/



D


PŒmn;mnC1/ˆ.wn/ � PŒmn;mnC1/�X1

jD0
hˆ.wn/; wj iwj

�


D


PŒmn;mnC1/ˆ.wn/ � hˆ.wn/; wniwn



D


PŒmn;mnC1/ˆ.wn/ � hˆ.wn/; PŒmn;mnC1/wniwn



D


PŒmn;mnC1/ˆ.wn/ � hPŒmn;mnC1/ˆ.wn/; wniwn



>
�

2

contradicting the compactness of Qˆ �ˆQ.

Corollary 2.5. For every � > 0 and k � k.�/ the set B.�; k/ is 	.A/-small.

Proof. If B.�; k/ is 	.A/-large then note that

B D B.�; k.�// [ ¹w 2 S.H/ j Pk.w/ ¤ 0º
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82 S. Shelah and J. Steprāns

is 	.A/-small. Hence it is possible to choose w 2 B.�; k/ n B and for such a w
the equality

P?supp.w/ˆk.w/ D P
?
supp.w/ˆ.w/ D P

?
supp.w/ˆk.�/.w/

holds, contradicting that w 2 B.�; k/ n B.�; k.�//.

Claim 3. For every � > 0 and k � k.�=2/ the set Z.�; k/ is 	.A/-small.

Proof. If the conclusion fails let � > 0 witness this. From Corollary 2.5 it follows
that W D Z.�; k/ nB.�=2; k/ is also 	.A/-large. Choose A 2 A such that wAn 2
W for each n and let Q be the projection onto the space spanned by ¹wAn º

1
nD0.

Note that it follows that if n > k then

Psupp.wAn /
.Qˆ �ˆQ/.wAn /




D


hˆ.wAn /; wAn iwAn � Psupp.wAn /

ˆ.wAn /




D


hˆk.wAn /; wAn iwAn �ˆk.wAn /Cˆk.wAn / � Psupp.wAn /

ˆk.w
A
n /




�


hˆk.wAn /; wAn iwAn �ˆk.wAn /

 � 

P?supp.wAn /

ˆk.w
A
n /




>
�

2

and this contradicts the compactness of Qˆ �ˆQ.

Let Bı.z/ denote the open disk of radius ı and centre z in the complex plane.
Let � > kˆk and for � 2 B�.0/ and ı > 0 and m 2 N let

X.�; ı;m; �/ D
®
w 2 S.H/ nZ.�;m/ j jhw;ˆm.w/i � �j < ı

¯
and let

C.�;m/ D
®
� 2 B�.0/ j .8ı > 0/X.�; ı;m; �/ is 	.A/-large

¯
and note that C.�;m/ is closed. It will be shown that C.�;m/ does not depend in a
significant way on � orm. After this has been established it is worth first remarking
that C.�;m/ can be considered an essential spectrum of ˆm with respect to A.

To begin, note that if k � k.�=2/ then X.�; ı; k; �/ is 	.A/-large if and only if

X.ı; �/ D
®
w 2 S.H/ j jhw;ˆ.w/i � �j < ı

¯
is 	.A/-large. To see this, suppose that X.ı; �/ is 	.A/-large and let A 2 	.A/.
Of course, A [ k is also in 	.A/ and so, by Claim 3, it is possible to find w 2
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Masas in the Calkin algebra without the Continuum Hypothesis 83

S.H/ nZ.�; k/ with finite support such that jhw;ˆ.w/i � �j < ı and supp.w/ \
.A [ k/ D ;. It follows from the last equality that hw;ˆk.w/i D hw;ˆ.w/i
and hence jhw;ˆk.w/i � �j < ı. Therefore X.�; ı; k; �/ is also 	.A/-large. The
other implication follows from a similar argument.

Hence, if k � k.�=2/ then

C.�;m/ D
®
� 2 B�.0/ j .8ı > 0/X.ı; �/ is 	.A/-large

¯
and note that C.�;m/ depends on neither � nor m. Now defining

C D
®
� 2 B�.0/ j .8ı > 0/X.ı; �/ is 	.A/-large

¯
it follows that C.�;m/ D C for any k � k.�=2/.

It will be shown that C is not empty. If not, it is possible to choose for each
� 2 B�.0/ a ı� > 0 such that X.ı�; �/ is 	.A/-small. Compactness then yields
a finite F � B�.0/ such that

S
�2F Bı�.�/ � B�.0/. It is possible to choose

w 2 S.H/ n
S
�2F X.�; ı�; k; �/ with finite support. Note that hw;ˆ.w/i must

have some value in B�.0/ and, hence there is some � 2 F such that w 2 Bı�.�/.
This contradicts that w … X.ı�; �/.

Now, with the aim of obtaining a contradiction, suppose that � and �0 are dis-
tinct elements of C . Let � > 0 be such that 9� < j� � �0j=

p
2 and let M be so

large that M � k.�=2/ and M � k.�/. Define W to be the set of all w 2 S.H/
such that

� w D x0 C x1 such that supp.x0/ \ supp.x1/ D ;,

� kx0k D kx1k D 1=
p
2,

� khx0; ˆM .x0/ix0 �ˆM .x0/k � � ,

� khx1; ˆM .x1/ix1 �ˆM .x1/k � � ,

� khx0; ˆM .x0/i � �k < � ,

� khx1; ˆM .x1/i � �
0k < � ,

� kP?supp.w/ˆM .w/k � � .

It will first be shown that W is 	.A/-large. To see this, let A 2 	.A/. Then
choose x0 2 X.�; �;M; �/ n B.�;M/ such that supp.x0/ \ A D ; and then
choose x1 2 X.�; �;M; �0/ nB.�;M/ such that supp.x1/\ .A[ supp.x0// D ;.
Letting w D .x0 C x1/=

p
2 it is immediate that w 2 W .

Now let A 2 A be such that each wAn belongs to W and let Q be the projection
onto the space spanned by ¹wAn ºn>M and let wAn D x

0
nCx

1
n be the decomposition
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84 S. Shelah and J. Steprāns

witnessing that wAn belongs to W . Before proceeding it is worth noting that for
any n the following inequality holds:



Q.�x0n C �0x1n/ � .�x0n C �0x1n/

 � � � �0
p
2

(2)

as can be seen by noting thatQ.�x0nC �
0x1n/ D �x

0
nC �x

1
n �Q..�

0 � �/x1n/ and
kQ.x1n/k D 1=

p
2.

Then for any n greater than M the projections Psupp.wAn /
and Q commute and

ˆM .w
A
n / D P?Mˆ.w

A
n /. Hence from the inequalities defining W and using in-

equality (2) at the end it follows that

Psupp.wAn /
.Qˆ �ˆQ/.wAn /




D


Q.Psupp.wAn /

.ˆM .w
A
n // � Psupp.wAn /

.ˆM .x
0
n/CˆM .x

1
n//




D


Q.Psupp.wAn /

.ˆM .x
0
n/CˆM .x

1
n///

� Psupp.wAn /
.ˆM .x

0
n/CˆM .x

1
n//




�


Q.Psupp.wAn /

.hˆM .x
0
n/; x

0
nix

0
n C hˆM .x

1
n/; x

1
nix

1
n//

� Psupp.wAn /
.hˆM .x

0
n/; x

0
nix

0
n C hˆM .x

1
n/; x

1
nix

1
n/


 � 4�

�


Q.hˆM .x0n/; x0nix0n C hˆM .x1n/; x1nix1n/

� hˆM .x
0
n/; x

0
nix

0
n � hˆM .x

1
n/; x

1
nix

1
n



 � 4�
�


Q.�x0n C �0x1n/ � .�x0n C �0x1n/

 � 8�
�
j� � �0j
p
2
� 8� � �

and this contradicts the compactness of Qˆ �ˆQ.
It will be shown that for any � > 0 there is k 2 N and some T 2 A0 such that

kˆk � T C �Ik < �. To see this, let k D k.�=4/. For each � 2 BkˆkC1.0/ n
B�=3.�/ choose ı� > 0 such that X.�=2; ı� ; k; �/ is 	.A/-small. Let E �
BkˆkC1.0/nB�=3 be a finite set such that

S
�2E Bı� .�/ � BkˆkC1.0/nB�=3. For

each � 2 E choose A� 2 	.A/ witnessing that X.�=2; ı� ; k; �/ is 	.A/-small.
Let A 2 	.A/ witness that Z.�=2; k/ 2 	.A/ and let C D A [

S
�2E A� .

Then for any x 2 H such that supp.x/ \ C D ; it must be that khx;ˆkix �
ˆk.x/k � �=2 since x\A D ;. Moreover, jhx;ˆk.x/i�� j � ı� for each � 2 E
and, since jhx;ˆk.x/ij � kˆk, it follows that jhx;ˆk.x/i � �j < �=2. In other
words, 

ˆkP?C .x/ � �P?C x

 < � (3)
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Masas in the Calkin algebra without the Continuum Hypothesis 85

for all x. Since PC 2 D.BC / � A0 it follows that PCˆkPC commutes with
all members of D.BC / modulo a compact set. By Theorem 1.1 it follows that
�.PCˆkPC / 2 A0. Furthermore, PCˆkP?C and P?C ˆkPC are both compact
because PC commutes with ˆk modulo a compact operator. Therefore

.ˆk � �I/.x/ D .PC C P
?
C /.ˆk � �I/.PC C P

?
C /.x/

D P?C ˆkP
?
C .x/C PCˆkPC .x/C �PC .x/C �P

?
C .x/

and combining this with inequality (3) yields that

k.ˆk � �I/.x/ � .PCˆkPC .x/C �PC .x//k

� kP?C ˆkP
?
C .x/C �P

?
C .x/k < �:

Since PCˆkPC C �PC 2 A0 this yields the desired conclusion.
The final thing to show is that A is not the lifting of a masa on Hilbert space. To

begin notice that if A is the lifting of a masa on Hilbert space then Theorem 1.2
yields that masa is of the form L1.�/ acting on L2.�/ where � is a probability
measure on a locally compact subset of R. The first thing to notice is that � must
be atomic because otherwise there is some set X such that �.X/ > 0 and the
restriction of � to X is atomless. However, it is immediate from the definition of
A that for every projection P 2 A there is a projectionQ 2 A such thatQP D Q
and QA is isomorphic to �.`1/ D C.ˇN nN/. However, if L1.�/ is atomless
then �.L1.�// D C.X/ where X is the Stone space of the measure algebra and
it is known that C.X/ and C.ˇN nN/ are not isomorphic because X and ˇN nN
are not homeomorphic.

Now suppose that X D ¹xnºn2! is an orthonormal basis for H such that
A D �.D.X//. Let Rs denote the projection onto the subspace spanned by
¹xn j n 2 sº. Now let V.�/ D ¹w 2 S.H/ j .9j /kw � xj k < �º. It will be shown
that V.�/ is not 	.A/-large for any � > 0. If this fails for some � > 0 then the
complement of V.�/ is 	.A/-large. It follows that there is some X 2 A such that
X \ A is finite and kwXn � xj k > � for each n and j .

It is then possible to choose for all but finitely many n a finite set s.n/ such that

�=2 < kRs.n/w
X
n k < 1 � �=2. (4)

In order to see this, let wXn D
P1
iD0 
ixi . Then first observe that j
j j < 1 � �=2

for each j because otherwise

1 �

�X
i¤j

j
i j
2

�
C j
j j

2
�

�X
i¤j

j
i j
2

�
C .1 � �=2/2
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86 S. Shelah and J. Steprāns

and hence
P
i¤j j
i j

2 < � � .�=2/2 and therefore

kwXn � xj k
2
D

X
i¤j

j
i j
2
C .1 � 
j /

2 < �

contradicting that wXn does not belong to V.�/. If there is some j such that
j
j j > �=2 then let s.n/ D ¹j º. Otherwise let s.n/ be a minimal set such thatP
i2s.n/ j
i j

2 > �=2. Then, letting j 2 s.n/ be arbitraryX
i2s.n/

j
i j
2
D

X
i2s.n/n¹j º

j
i j
2
C j
j j

2 < �=2C .�=2/2 < 1 � �=2

yielding inequality (4).
There is then an infinite Y � N such that

�

P
m¤n

P
i2s.m/ jhxi ; w

X
n ij

2 < �3,

�

P
m¤n jhw

X
n ; w

X
m ij

2 < �3

for each n 2 Y . Let ‰ be the projection onto the space spanned by ¹wXn ºn2Y and
let C D

S
n2Y s.n/. It will be shown that RC and ‰ do not commute modulo

compact.
To see this, note that

RC‰.w
X
n / D RC .w

X
n /C w1 D Rs.n/.w

X
n /C w2 C w1

where kw1k < �3 and kw2k < �3. Hence kRC‰.wXn /k � kRs.n/.w
X
n /k � 2�

3.
On the other hand,

‰RC .w
X
n / D ‰.Rs.n/.w

X
n /C w2/ D hw

X
n ; Rs.n/.w

X
n /iw

X
n C w3 C‰.w2/

where kw3k < �3. So

k‰RC .w
X
n /k < jhw

X
n ; Rs.n/.w

X
n /ij C 2�

3
D kRs.n/.w

X
n /k

2
C 2�3

and hence

kRC‰.w
X
n / �‰RC .w

X
n /k � kRC‰.w

X
n /k � k‰RC .w

X
n /k

� kRs.n/.w
X
n /k � 2�

3
� .kRs.n/.w

X
n /k

2
C 2�3/:

Since �=2 < kRs.n/.wXn /k < 1 � �=2, it follows that

kRC‰.w
X
n / �‰RC .w

X
n /k > �=2 � �

2=4 � 4�3 > 0

provided 0 < � < 1=4. This contradicts the compactness of the commutator.
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Masas in the Calkin algebra without the Continuum Hypothesis 87

Therefore°z C z0
p
2
j supp.z/ \ supp.z0/ D ; and z 2 V.�/ and z0 2 V.�/

±
is also 	.A/-large. Let A 2 A be such that for each n there are zn and z0n in V.�/
such that

� wAn D .zn C z
0
n/=
p
2,

� supp.zn/ \ supp.z0n/ D ;.

Let m.n/ and m0.n/ be the integers satisfying that kzn � xm.n/k < � and kz0 �
em0.n/k < �. Let ‰ be the projection onto the space spanned by all the wAn and let
M D ¹m.n/ºn2N . It is routine to check that RM and ‰ do not commute modulo
a compact provided that � has been chosen sufficiently small. Since ‰ 2 A this
shows that �.D.X/ ¤ A.

It is not known whether it is possible to construct an almost disjoint family
which is strongly separable without assuming some extra set theoretic axioms.
However, there are many models of set theory known in which there is such a
family. Certainly assuming that a D c suffices. This provides an easy way to
see that some axiom like the Continuum Hypothesis is necessary for Anderson’s
construction in [4] if it is to rely on almost central families.

Corollary 2.6. It is consistent that there are no almost central families yet there is
a masa in C which is generated by its projections and not the quotient of any masa
in B.H/.

Proof. Assume that the union of @1 meagre sets never covers the reals and that
there is an almost disjoint family which is strongly separable. (Martin’s Axiom
and 2@0 > @1 will do.) There is then a masa in C which is not the quotient of
one in B.H/. Moreover, the space S of all orthonormal sequences is a closed
subspace of H! with the product topology. Given any projection P 2 B.H/
such that �.P / ¤ 0 and k 2 !, the set D.k; P / of all � 2 S such that there is
some n > k such that the distance from �.n/ to the range of P is greater than
1=2 is co-meagre. Hence, given any family P of projections of cardinality @1 the
intersection \

k2!

\
P2P

D.k; p/

is not empty. Moreover any orthonormal sequence in this intersection yields a
projection not commuting modulo a compact with any projection in P . Hence
there are no almost central families in this model.
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88 S. Shelah and J. Steprāns

It must be remarked that in the absence of the Continuum Hypothesis it is nat-
ural to define a family of commuting projections P in a C �-algebra A to be �-
almost central if and only if jP j > � and for every a 2 A the cardinality of
¹p 2 P j pa ¤ apº is less than �. So, with this terminology, an almost central
family is an @1-almost central family. It can be shown that Anderson’s argument
from [4] extends to show that if A � B.H/ is a masa then �.A/ does not contain
a �-almost central family for any uncountable �; in particular, it does not contain a
2@0-almost central family. Moreover, the argument of Corollary 2.6 does not rule
out the existence of 2@0-almost central families. However, Anderson’s construc-
tion of a masa with an almost central family will only yield a masa containing an
@1-almost central family because it relies on Voiculescu’s theorem which does not
generalize beyond the countable. This points to relevance of Corollary 2.6 and
begs the following question.

Question 4. Can one prove, without assuming the continuum hypothesis or any
similar axiom, that there is a masa in the Calkin algebra containing a �-almost
central family for some uncountable �?

Question 5. Is there an almost disjoint family A of subsets of N such that for
every H 2 	.A/C� there is at least one X 2 A such that for any n 2 N there is
h 2 H such that h � X n n?

Question 6. If there is an almost disjoint family such as in Question 5 does it
follow that there is a strongly separable one?

Petr Simon has constructed [5] an almost disjoint family A such that if X 2
	.A [ 	.A/?/C then there are 2@0 sets A 2 A such that A \ X is infinite.
Recently, Saharon Shelah has constructed a maximal almost disjoint such family
assuming only that 2@0 < @! .

Question 7. Does there exist an almost disjoint family A such that if X 2 	.A [

	.A/?/C� then there are 2@0 sets A 2 A such that A \ X is infinite? Does the
existence of such a family allow the construction of a masa in C which is not the
quotient of one in B.H/?
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