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WHEN DOES ALMOST FREE IMPLY FREE?
(FOR GROUPS, TRANSVERSALS, ETC.)

MENACHEM MAGIDOR AND SAHARON SHELAH

0. INTRODUCTION

We say that a (Abelian) group is almost free if every subgroup of smaller
cardinality is free. Suppose that G is an almost free (Abelian) group. Is G
free? For Abelian groups a counterexample was given by R. Baer [Fu]. For
groups, Higmann in [Hi] constructed a nonfree group of cardinality X, such
that every countable subgroup of it is free; hence it is almost free. For abelian
groups the problem of “when does almost free imply free?” can be considered to
be a generalization of Pontryagin’s theorem (see [Fu]), claiming that a countable
Abelian group is free if and only if every subgroup of it of finite rank is free.
An excellent reference to most of the results mentioned in this introduction is
the book by Eklof and Mekler [Ek-Me].

The Baer and Higmann counterexamples are of size X, . Work by Hill [Hill],
Eklof [Ek] (for Abelian groups), and Mekler (for groups) [Me] showed that one
can have such construction for X, (n < w) . Eklof (and independently Gregory
and Shelah) actually proved a “pump up” lemma, by which a counterexample of
cardinality x (x regular) can be pushed up to 4 (4 regular), provided there
exists a stationary subset of A, E, of points of cofinality ¥ which does not
reflect; namely, Va < 4, E N ais nonstationary in «.

Since in the constructible universe (by a theorem of Jensen [Jen]) at every
reguiar cardinal A, which is not weakly compact, one can find a nonreflecting
stationary set whose points are of any given cofinality k¥ < 4, it follows that in
L there is an almost free nonfree group (Abelian or not) at any regular cardinal
which is not weakly compact. (As shown by Eklof “almost free” implies “free”
for ¥ which is weakly compact.)

What about singular cardinals? Can one find an almost free nonfree group
of cardinality ¥ when k is singular? The problem for Abelian groups was
attacked by Hill who proved in [Hil2] that if x has cofinality X, then every
almost free Abelian group of cardinality x is free. (In [Hil3] he extended it to
the case where the cofinality of x is R, .)

The major step was taken by Shelah in [Sh1] (see also [Ho]). Shelah realized
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that Hill’s theorem can be generalized to all singular cardinals, but more impor-
tantly the cases of groups and Abelian groups are just special cases of a much
more general phenomenon. Shelah considers a general notion of “freeness”;
namely, given a set 4, one can consider a notion of “freeness” as a collection
F of pairs of the form (B, C) where B, C C A, where (B, C) € ¥ means
intuitively “B is free over C”. (Being free means being free over the empty set.)
F has to satisfy a certain set of axioms (which are very natural in the context
of algebra on A4, where (B, C) € & if the subalgebra generated by B, B” is
free over the subalgebra B* N C* where C" is the subalgebra generated by C;
“free” means free in the appropriate variety). This set of axioms has a cardinal
parameter ¥ which for the example of free groups and free Abelian groups, etc.
is N, . (For this set of axioms see §2 of this paper.)

Shelah proved a general compactness theorem for singular x ; namely, say
that 4 (with respect to the notion of “freeness” #) is k free if every B C
A of cardinality less than x is free. Shelah showed that if ¥ satisfies the
required axioms with some parameter y < k, then k free implies x* free.
(In particular, if |4| = k, then A is free if it is “almost free”.) In particular if a
group (Abelian group) is almost free and of cardinality x, where k is singular,
then it is free. This theorem is called the compactness theorem because it is
the kind of theorem where properties of a “small” substructure of a structure
imply a global property for the whole structure. Following this terminology we
shall call a cardinal ¥ A compact if x free implies A* free for any notion of
freeness satisfying the set of axioms described in §2 of this paper with parameter
x < k. Kk is fully compact if it is A compact for all A >k, and k is compact
if it is k¥ compact. Hence by Shelah’s theorem any singular x is compact.

There are many more examples satisfying Shelah’s axioms than indicated by
the examples of free varieties. For instance suppose that A4 carries a graph
structure, and let A < k, x singular. Define (B,C) e & if B,C € A4
and B — C can be well ordered so that every element is connected to less
than A many elements preceding it in this well order. This notion of freeness
satisfies Shelah’s axioms; hence we get as a corollary that if every subgraph of
A of cardinality < x can be well ordered as above (= has coloring number
A), then A has coloring number A. Similarly let us consider the problem of
transversals. Suppose that A4 is a family of sets, each of them of cardinality
< y where y < k. A transversal for A4 is a one-to-one choice function on 4.
For B,C C A we say (B, C) € & if there is a one-to-one choice function
on B whose range is disjoint from |JB. & satisfies Shelah’s axioms with
parameter y ; hence if |4] = k and « is singular, and every subfamily of 4 of
cardinality < x has a transversal, then A4 has a transversal. Since this property
will be important in this paper we define PT(x, ) to mean: Given a family of
K sets, each of which is of cardinality < A such that every subset of cardinality
< k has a transversal, then the whole family has a transversal. If PT(x, 4)
fails (i.e., there is a counterexample) we denote this fact by NPT(x, 1).

In [Sh4] it is shown that NPT(x, X,) is equivalent to the existence of an
almost free nonfree Abelian group of cardinality k. Also NPT(x, X,) implies
the existence of an almost free nonfree group of cardinality x. (The inverse
direction is open.)
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Which regular cardinals can be compact in our sense? We already know that
R (0 < n < w) are not compact (since we have counterexamples which are
Abelian groups). Similarly in L no regular cardinal except weakly compacts is
compact in our sense. As noted by Eklof, a weakly compact cardinal is compact
in our sense, so if one accepts the consistency of weakly compact cardinals, one
gets the consistency of a regular compact cardinal. (A much larger cardinal,
supercompact, gives a fully compact cardinal.) But even a weakly compact
cardinal is very large (strongly inaccessible, etc.). Can smaller regular cardinals
be compact? The first cardinal we have to consider is R, . Shelah [Sh2] has

shown that if 2™ < R, , then NPT(R, _,,R,); hence R, is not compact
under this cardinal arithmetic assumption. It will follow from the results of
§1 of this paper that one can eliminate any cardinal arithmetic assumptions, so
R, ., is never compact. By Eklof’s pumping up lemma (or alternatively using
the Milner-Shelah pumping up for NPT [Mi-Sh], claiming that NPT(x, 4)
implies, for regular k¥, NPT(x", 1)), one can show that Ryi2> Reyzs--- are
not compact. Our arguments in §1 generalize to X ., .. (This was done in
[Sh2] under the assumption that X .,  is a strong limit.) Hence for every
regular cardinal x less than R . we have NPT(x, ®,), and so we have an
Abelian group of cardinality x which is almost free but not free. Since the
corresponding notions of freeness satisfy the axioms from [Sh1], we get that
there is no compact cardinal below R o -

Thus the next regular cardinal we have to consider is R . ,. In §3 of this
paper we shall show that assuming the consistency of infinitely many supercom-
pact cardinals, one can get a model of ZFC+G.C.H. +“R , , is compact”. In
particular in this model an almost free (Abelian) group of cardinality R . , is
free. The method of §3 can be easily adapted to show that (under the same
assumption) for @ < w, one can get a model of ZFC+G.C.H. +*R  free
implies X, free”. (In particular, R ,  is Nﬂ compact for f <a.)

Can R, be fully compact? If not, which cardinal can be the first fully

compact cérdinal? In §1 we show that R . , cannot be fully compact. There
we prove that NPT(leJrl , R,). (Also NPT(NwlM, X)) for 0<n<w.) In

general we show that if x is regular, x <R, _, then NPT(R,,,, k). We are more
interested in NPT(R, _,, ®,), but, if we can show that NPT(x, ®,) holds, we
can get NPT(R,,,, X,). As usual [Sh4] implies that if k carries an almost free
nonfree Abelian group, then one can get such a group of cardinality X, , . So
we get that Nwl 41 18 not compact (and the counterexample can be assumed to

be an Abelian group). Similarly if we define inductively k) = @, , k,,; =X,

we get that each «, is not compact. So there is no fully compact cardinal below
sup,_,, K, - sup,_, K, is the first cardinal fixed point, i.e., the first k¥ such that
k = X_. Again, the counterexample to compactness is an Abelian group, so
below the first cardinal fixed point we get arbitrarily large cardinals carrying an
almost free nonfree Abelian group. ,

So which cardinal can be the first fully compact? In §4 we show (under
the assumption of infinitely many supercompacts) that one can have a model

of ZFC+ G.C.H. +“the first cardinal fixed point is fully compact”. So the
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first cardinal fixed point is the smallest cardinal which can consistently be fully
compact. In particular (assuming the consistency of @w many supercompacts),
one cannot prove in set theory that there are almost free nonfree Abelian groups
whose cardinality is above the first cardinal fixed point.

The structure of the paper should be clear by now, except for §2, where
sufficient conditions are given for A compactness (or full compactness). These
sufficient conditions will be used in §§3 and 4 to verify, in the appropriate
models, that R . , and the first cardinal fixed point are compact and fully
compact respectively. In §2 we introduce two reflection principles A, , and

A, which will be used to prove the full compactness of k. A,_ is a stronger
principle, and in some sense it is more natural; however, when in §4 we get a
model in which the first cardinal fixed point is fully compact, we are not able
to prove that A, holds in that model (though the weaker A is heavily used).
We think that A is of independent interest. By a construction which is similar
to the construction of §4 we are able to get a model in which the first cardinal
fixed point of second order (namely, the first ¥ having x¥ many fixed points
below it) satisfies A,_. This modified construction will be published in a later
paper.

Our notation and terminology are (hopefully) standard (see [Je]). V' isa
generic extension of the model V', using P as the forcing notion. The cor-
responding generic filter will be G,. We also assume familiarity with basic
facts about supercompact cardinals and normal ultrafilters on P, (1) (see [S-
R-K] or [K-M]). (Actually no forcing or large cardinals are needed for reading
881 and 2. Especially for §2 the set theoretical requirements are minimal.) For
iterated forcing terminology see [Sh3] or [Ba2]. Each section will have its own
numbering for theorems, lemmas, etc., where cross-reference will be denoted by
“Theorem 2.17, etc.

1. MORE CASES OF INCOMPACTNESS

In this section we prove in ZFC that many cardinals are not compact. In
particular, we show that the cardinals for which our theorem applies carry an
almost free nonfree Abelian group. Some of the results we give here were known
before under some cardinal arithmetic assumptions (for instance, for X ) as-

suming that M < R, ; see [Sh2], and here we prove it without any assumptions.
For other cardinals their incompactness was not known before. Actually in the
first version of this paper these incompactness results were proved using some
weak version of G.C.H. (For instance in Theorem 4 below we had to assume
2¥ < A, so in Definition 2 below we did not have to worry about case IIL.
When the second author made progress in PCF theory (see [Sh5]) the cardinal
arithmetic assumptions could be eliminated.)

Recall from the introduction that NPT(4, k) means that there is a sequence
of sets indexed by A, each of them of cardinality less than x such that the
family is almost free but not free. Namely, every subfamily of cardinality less
than A has a transversal, but the whole family does not have a transversal. For
instance we have NPT(R,, R,). (Take as the family & = {{n}|n € w}U{w}.)
By [Shd4] NPT(4, X,) is equivalent (for A > X;) to A carrying an almost free
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nonfree Abelian group. The main theorem of this section is

Theorem 1. Let &; be the smallest set of cardinals containing the regular car-
dinal 6 and closed under taking successor cardinals and under the operation
(A, k) — A" Assume that NPT(5, R,) holds. Then for every A € %, we
have NPT(A, R,).

Corollary 2. For every n,m < w, m > 0 we have NPT(Nw,n+m). Hence we
have an almost free nonfree Abelian group in every uncountable regular cardi-
nality below R . ,. In particular, there is no regular compact cardinal below

Nw2+l

Proof. We have NPT(R,, ®,). All the cardinals mentioned in the corollary are
in &, .
0

Corollary 3. If there is an almost free nonfree Abelian group of cardinality ¥,
then there exists one of cardinality X, , . Hence there are arbitrarily large almost
free nonfree Abelian groups below the first cardinal fixed point. In particular, there
is no fully compact cardinal below the first cardinal fixed point.

Proof. The first claim follows immediately from Theorem 1 for A =X, and «.
The second claim follows from the first by defining by induction a sequence of
cardinals k, for n < w.

K0=Nl’ Kn+l =Nx"

By the first claim each x, carries an almost free nonfree Abelian group, and
clearly the supremum of the x,’s is the first cardinal fixed point. O

For the sequel we need the following generalization of NPT(x, 4):

Definition 1. Let 4 be a set and I an ideal on 4. A family of sets (B, |a € 4)
is said to be I free if for every C C A, C € I, the family (B |a € C) has a
transversal. NPT(A4, I, k) holds if there exists a family of sets of cardinality
less than «x , indexed by A, which is I free but not free. In case that the set 4
is clearly fixed by the ideal I, we shall write NPT(/, k) for NPT(4, I, k).

Note that NPT(4, k) is exactly NPT(4, I_,, k), where I_, is the ideal of
sets of cardinality less than A. Note also that an example for NPT(4, I, k) is
also an example for NPT(A, J, k) for every ideal J included in .

If S is a stationary subset of A, we let NS¢ be the nonstationary ideal

restricted to S. If S is a finite sequence of sets and K = k---k, is a finite
sequence of regular cardinals such that S, is a stationary subset of k; , we denote
by I the ideal on [[X which is the product of the ideals NS Recall that the
product IxJ of two ideals I and J, where I ison A and J ison B, is the
ideal defined on AxB by Z C AxB, Z € IxJ iff {b|{a|(a,b) e Z} € I} eJ.

The main technical tool for proving Theorem 1 is the following theorem,
which is of interest by itself.

Theorem 4. Let x, A be regular cardinals, k < A. Let T = A7 Then there
exist a stationary subset of 1, S, of points of cofinality A and a sequence of
sets (A |a € S) such that, for a € S, A, is a subset of A1 of order type Kk
such that for every nonstationary subset of S, T, one can find (D |o € T) and
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(B,la € T) such that, for a € T, D, is a closed unbounded subset of o and
B, is a subset of A satisfying |A,—B_| < x and the sets (B, x D |o € T) are
mutually disjoint.

Theorem 4 immediately gives examples of the failure of the transversal prop-
erty. As an example we have

Corollary 5. Let k and A be as in Theorem 4; then NPT(A™*' 17).

Proof. Let S, (4, |a € S) be the witnesses to Theorem 4. For each a € § pick
E_ which is a closed unbounded subset of o of order type cf(a) = 4. The

family of sets (E  x 4 _|a € S) is an example of NPT(/I“CH , AT). This family

is clearly of cardinality A***! and every member of it is of cardinality A. This
family does not have a transversal because such a transversal will be essentially
a function F defined on S such that, for a € S, F(a) € a x ™. Easy
application of Fodor’s lemma shows that F is constant on a stationary subset
of S, so F cannot be one-to-one. Every subfamily of smaller cardinality does
have a transversal. Without loss of generality the smaller cardinality subset is
(E,xA |a€SNB) for some B < AT Let (D,la € SNB) and (B |a € SNB)
be as in the conclusion of Theorem 4. If we let F(a), for a € SN, be any pair
of the form (y, é), where 6 € B, and y € E, N D_, then F is a one-to-one
choice function on the given subfamily. O

Proof of Theorem 1 from Theorem 4. Let & = &; . By induction on the cardinals
7 € & we prove the following strengthening of Theorem 1.

Claim. Assume NPT(6,R,). For every finite increasing sequence of cardinals
in € — {0}, [, there exists another finite increasing sequence in € — {6}, j,
containing all the members of [ and having the same maximum, and there
exists a sequence of sets S such that S, is a stationary subset of p, such that
we have NPT(I, X,), where I is the ideal 1_g x I.

The proof of the claim is by induction on the maximal member 7 of {d}Uj .
The initial case 7 = & is vacuously true since we assumed NPT(J, R,). If
7= u+ , where u € €, then we can invoke [Mi-Sh]. In that paper one starts with
an example for NPT(x, X,) and “pumps it up” to an example for NPT(z, R,).
The particular example constructed in [Mi-Sh] is indexed by the set of pairs
T ={(a, Bla<rt, cfla) =u, B < u}. Their proof actually shows that if the
example for u is actually an example for NPT(u, I, X,) for some ideal I on
1, then, for every subset of 7', U such that

{a<tl{B <ul(a, B) e U} ¢ I}

is not stationary in 7, the subfamily of sets with indices in U has a
transversal (which by our terminology means that this is an example for
NPT(u, I x NS, R,) where § is the stationary subset of 7 of points of cofi-
nality u).

Given a finite sequence of cardinals in %, #, all of them less than 7 and
above J, we shall verify the claim for the sequence # {7}. One can assume
without loss of generality that u appears in 7, and, by the induction assump-
tion, we have a sequence of stationary sets S (S; astationary subset of 7, such
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that we have NPT(/, X,), where I is the ideal I_s x Is). I can be considered
to be an ideal on u, so applying the Milner-Shelah construction to this example,
we get an example of NPT(I", R,), where [ * is the ideal N. S{ x1I;
thus we proved the claim for this case.

The second case is when 7 = A***! where the induction assumption was
already verified for k and A. Without loss of generality we can assume that
K < A, because if 4 < k¥ we can replace A by k. The value of 7 will not be
changed by it. (Note that all the cardinals in our set & are less than the first
cardinal fixed point above ¢.) We are also given a finite sequence of cardinals
below 7, §'; all of the members are in & —{d} . Again without loss of generality
we can assume that x appears in § (or k = J) and that A is the maximal
member of § by replacing A with the maximal member of j, if necessary. By
the induction assumption we can also assume that for some sequence of sets
S, such that S, is a stationary subset of p;, we have NPT(/, X,) where [
is I¢ x I_s. Fix a sequence of countable sets (X[ € 6 x [1S) which is an
example of NPT(/, R,). Let S and (A4 |o € S) be witnesses to the truth of
Theorem 4. Let a(a, y), for y € k, be the yth member of 4 . We shall verify
that if we extend S by the stationary subset of 7, .S, we will be able to prove
NPT(I*, R,), where I" is the ideal I x NS, and our claim will be verified
also in this case.

For each o € § fix a closed unbounded subset of a of order type 4, E, .
For a € § and y € 4 let e(a, y) be the yth member of E_  in the monotone
enumeration of E_ . ’

The family of countable sets that will witness NPT(z, I", R,) is Y,7 , where

7e6x[[SxS. For 7€ 6x[[SxS,let A7), ©(7), and x(7) be the members

—

of # corresponding to A, 7, and k, respectively, and let #* be # with its last
coordinate (namely, the coordinate corresponding to 7) omitted. We define

Y, = Xgo x (1)} U LT, ale(@), k() e(x(@), A} -
We assume, without loss of generality, that the members of X.. are not a
finite sequence of ordinals, so that the union in the definition of Y,7 is a disjoint
union. Yﬁ is clearly a countable set. The family of sets Y,7 has no transversal,

because if ¥ is such a transversal, then for every a € S there exists fia with
7(#,) = a such that

F(f,) =", a(x(f), k(7)) , e(z(7), A(7))

(Otherwise one can use ¥ to define a transversal for (X ﬁ|r'1‘ €d x[[S).) But

an easy application of Fodor’s lemma for the stationary set S will get o and
!’ . ’

a in S (a# a) such that

ala<t, cf(a)=u}

which is of course a contradiction.
We are left with the task of verifying that W is a set in the ideal I"; then
the family (Y{7 € W) has a transversal. For a € S put

W,={f"lie W, 1(i) = a}.
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By definition of I* the set
T={alaesS, W, ¢ I}

is not stationary in 7. We are ready to use the fact that S and the sequence
(A, la € S) witness the truth of Theorem 4. Hence we can find (B |a € T) and
(D, loc € T) such that all the clauses of Theorem 4 are satisfied. Without loss of
generality we can assume that, for a € T, D, C E . By definition of the ideal
I it is clear that, for a € T,

Q,={T1ieW,, ala,x(7) ¢ B,, ore(a, (i) ¢ D,} 1.

For a € S—T put Q, = W_, sothat we have Q €I forevery a € S. Since
(XE|5E 5 x [IS) was a witness to NPT(I, R,), we can find for each a € S a
transversal # for (XA¢ € Q). The transversal & for the set {Y.|7f € W}
will be defined by (where a = (%))

F () =(Z,(T), )

for 7€ Q, and

F() =7, ala, k() e(a, A7)
if 7 ¢ Q_. Note that in the second case we must have o € T and ¥ (%) €
{i"} x B, x D_. It can now be easily verified that .# is a one-to-one choice

function on W, using the facts that .# is one-to-one on Q_  and that the
family of sets {B, x D_|a € T} is a family of mutually disjoint sets. O

Proof of Theorem 4. Let A, k,and 7 be as in the statement of Theorem 4. Our
main tool will be the study of reduced products of sequences of regular cardinals
done by the second author (“The PCF theory”; see [ShS, B-M]). It follows easily
from the PCF theory (for instance using Theorem 2.1 in [Sh5] or Corollaries
2.2 and 4.4 in [B-M]) that there is a sequence (lili < k) of regular cardinals
cofinal in A™™ (all of them above A) such that the reduced product [ A/
has true cofinality 7. Namely, there is an increasing sequence (f |a < 1), in
[1,c, A;/1., » which is also cofinal. Recall that a function f in [[,_ 4, is the
least upper bound of B C [[,_ 4,/1 . if g <, f for every g € B, and if
g <; f, then, for some h € B, g <, h. (For the rest of this proof I stands
for I_, .) Without loss of generality we can assume that, for all « < 7, if there
is a L.u.b. for { fﬂl B < a}, then f is this Lu.b. (It is unique up to equivalence
modulo 7.)

We shall classify the limit ordinals o € 7 according to the behavior of the
sequence (fﬁlﬁ <a).

Definition 2. 1. a < 7 is good (or of the first kind) if f is the Lu.b. of ( fﬂ| B <
a) and the function g(i) = cf(f (7)) is constant modulo I, where this constant
value is greater than x . (Note that in this case every lL.u.b. for ( fﬁl B < a) has
a fixed cofinality modulo 7.)

II. a < 7 is bad (or of the second kind) if there is a sequence of sets of
ordinals (s;|i < k) and an ultrafilter D on x such that, for i€k, |5 <4, D

is disjoint from 7 (i.e., D is uniform), and [],_, s; cuts (fﬂlﬂ < a) cofinally.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

WHEN DOES ALMOST FREE IMPLY FREE? 777

(Namely, for every B < a there exist g € [[,_, 5, and B <y < a such that
fﬂ <p &<p fy . Note that without loss of generality we can assume that for all
i <k wehave s, C f (i).)

III. o < 1 is chaotic (or of the third kind) if it is not bad and there exists
a function g € [],_, 4,/1_, such that the sequence of sets ¢, = {ili < k,
fﬂ(i) < g(i)} is positive modulo I for f < a, but it is not fixed modulo 7.
(We clearly have, for f<y<a, t sCrt, since the fﬂ’s are increasing modulo
I, but in this case we also have that for every f < a there is y < a such that
1gCrt,.)

The following lemma is a slight variation of Claim 1.2 of [ShS5, Chapter 2].

Lemma 5. 1. For every a € 1, cf(a) > A, «a is either good or bad or chaotic
(and exactly one of these cases holds).
II. For a € 1, cf(a) = A; then, if o is good, a is neither bad nor chaotic.
IIL. If o < 1 has cofinality bigger than A, then, if a is good (respectively,
bad, chaotic), there is a closed unbounded subset of a, C, such that for B in
C, cf(B) >k, B is good (respectively, bad, chaotic).

Proof. A basic observation that will be used also later is

Lemma 6. If o < 7, cf(a) >k ; then o is good iff there exist a cofinal subset of
a,B,and A€l suchthatfor i ¢ A, B <y in B, we have

1,G) < £(0).
Proof of Lemma 6. Assume that o < 7 is good. Let ux be such that cf(f (i))
is constantly u modulo /. By definition of “good” we have u > k. Without
loss of generality assume that, for all i € x, cf(f (i) = 4. For each i € k fix
a cofinal subset of f (i) of order type u and denote it by E,. For J € u let
hs € [, 4;/1, be defined by
hs(i) = the dth member of E,.

We claim that if g € [],_ 4,/I_, satisfies g <, f , then there is § < u such
that g <, h;. Without loss of generality we can assume that g(i) < f(i) for
every i < k. For each i <k let p;, be an ordinal less than u such that g(i)
is less than the p;th member of E,. Let p < u be an upper bound for p,,
i < k. Clearly we have g <, hp. Since also the set { fﬂ|ﬂ < a} is cofinal in
the set {g €[], A,/1_.18 <, f,}, we get u=cf(a).

By the previous remark, for each # < a we can find §(8) < u such that
fﬁ < ha(p)' Also f is the Lu.b. of (fﬂlﬂ < a); hence for every d < u we
can find B < a such that A; <, fﬂ . Using the last two observations, one can
define by induction an increasing sequence (B,|i < u), cofinal in «, such that
fori<j<u

o, <1 sy <1 Jp,-
For i € u let B, be the set in I such that for k ¢ B,
15, ) < g (k) < £y (K).

The ideal I is generated by x sets and u > x; hence we can find 4 € [
such that the set D = {i+ 1|i < pu, B, | C A} is unbounded in u. We claim
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that the set A4 and the set {B, ,|i + 1 € D} are witnesses to the claim of the
present lemma. If i + 1 < j+ 1 are two members in D, then for k ¢ A we

have
I, (K) < hyp (k) < hyg (k) < fp (k)

where for the second inequality we used the fact that if 6 < y then hy(k) <
hy(k) for every k. We have verified one direction of the lemma.

For the other direction of the lemma, let 4 € I and B C a be as in the
statement of the lemma. Without loss of generality the order type of B is
u = cf(a). Let f € [, A;/1., be defined by f(i) = sup{fﬂ(i)lﬂ € B}.
By assumption, for i ¢ A4, cf(f(i)) = u. We claim that f is a Lu.b. for
( fﬂl B < «). It is clearly a bound for every fﬁ for B € B. Hence it is an upper
bound for (f4|B < ), since B is cofinal in a. Let g <, /. Without loss of
generality g(i) < f(i) for every i € k. By definition of f, forevery i ¢ A4,
we can find B, € B such that g(i) < fﬂ (i). Let B = sup{p,|i < x}. Since
1 >k, we have f < o and by the assumption about 4 and B we have, for

i¢ A,

g(i) < f(0)
which proves that f is the least upper bound for ( fﬁl B < a). Since f was
picked to be a Lu.b. for { fﬂ|ﬂ < a), if one exists, f is such a Lu.b., and it

must be equivalent to f modulo I; hence cf(f)) is the constant x4 modulo
I, and we have verified that o is good. O

Lemma 7. Let o < t be such that f, isthe Lu.b. of (fﬂlﬂ <a). Let yu=cf(a).
Then

{i<k|cf(f(i))>utel.
Proof of Lemma 7. If the statement of the lemma fails, then the set

A= {i <x|cf(f(i)) > u}
isnotin I (it is positive with respect to 7). Let B be a cofinal set in a of order
type u. Define g € [, 4,/1_, by g(i) = sup{f3(i)IB € B, fp(i) < f, (1)}
if i€ A and g(i) = 0 otherwise. Clearly g <, f , so by f being the Lu.b.
for ( f/il B < a), we get B <a (and without loss of generality we may assume
B € B) such that g <, fB' But from the definition of g, for every i € B
satisfying fﬂ(i) < f,(i), we have fﬂ(i) < g(i). We get a contradiction since
fﬂ is less than g on a set which is positive with respect to /. O
The next lemma can be considered to be a converse of Lemma 7.
Lemma 8. Let o and u be as in Lemma 7 where u > k . Assume that for some
0>k theset B={i<k|cf(f (i) =0} isnotin I. Then u=45.
Proof of Lemma 8. The argument in the proof of Lemma 6 shows that if I” is
an ideal generated by k sets and if f is the least upper bound of ( fﬂl B <a)

modulo /™ such that, modulo I*, cf(f, (i)) is constant, then this constant must
be cf(a). The assumptions of the lemma can be rephrased to say that if we put
I" to be the ideal generated by I and x — B, then I" is a proper ideal and
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£, is the Lu.b. for ( fﬂ|ﬂ < a) modulo I*. Also, modulo I*, the cofinality
of f (i) is the constant J . Hence by the first part of the proof of Lemma 6,
nw=94. 0O

We can now resume the proof of Lemma 5(I). The main tool is Claim 1.2
from [Sh6]. (In the sequel we shall refer to it as the main fact.) Let a be as
in the statement of the lemma (I). In particular cf(a) > x*. If ( fﬂl B < a) has
no least upper bound, then by the main fact either a is bad (actually the s’s
witnessing it satisfy |s;| < x) or a is chaotic. So assume that there is a L.u.b.
for ( fﬂl B < a). (Hence f issuchlLu.b.) We distinguish two cases:

Case 1. The set

A={i<x|cf(f (i) >A}el.

Recall that © = A***!| cf(a) = u; hence p = A*°*!

Lemma 7 we know that the set
B = {i < k| cf(f,(i)) > u}
is in I. Consider the set
C={i<k|d<cf(f (i) < u}.

If C ¢ I then, since there are less than x cardinals between A and u and I
is k¥ complete, for some A < n < u the set

{i<k|ef(f,(D))=n} ¢ I.
(This is, by the way, the only place in the proof where we use the fact that 7 =
A1) But this contradicts Lemma 8. So C € I, butthen D = AUBUC €1,
and, for i ¢ D, cf(f (i)) = u. We have proved that the cofinality of f, (i) is
constant modulo 7, which shows that « is good.

Case 2. Case 1 fails. For i ¢ A let s; be a cofinal subset of f (i) of order
type cf(f (i)), hence of cardinality less than 4. For i € 4 let s; be any subset
of f (i) of cardinality less than 4. Let D be any ultrafilter on x disjoint from
I'. Clearly [],,s;/D is cofinal in [],_, f (i)/D. We have shown that in this
case « is bad. .

This concludes the proof that a < 7 of cofinality greater than A is either
good, bad, or chaotic. The fact that o can satisfy only one of these three
possibilities is exactly as in the proof of the main fact. The same argument also
works in the case cf(a) = A, so we have verified parts (I) and (II) of the lemma.

For the proof of part (IIT), assume that « is good. Use Lemma 6 and get a
cofinal subset of o, B,and aset 4 € I,suchthatfor i ¢ 4, f <y in B,
f (1) < /,(i) . The closed unbounded C will be the set of limit points of the set
B . Any such limit point J of cofinality greater than x satisfies the claim of
Lemma 6, using the same 4 and BNA for B. So in this case we have verified
(III) of the lemma.

Now assume that « isbad. Let s; for i < x be sets of ordinals of cardinality
less than A such that for some ultrafilter on «, D disjoint from I, [] /D
cuts ( fﬁlﬂ < a) cofinally. Namely, for every g < a there is g € [] /D
and y(f) < a such that

for some § < k. By

i<k Si
i<k Si

T <0 & <p fyp-
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One can easily get a closed unbounded subset C of a such that, for # <J in
C, y(B)<d.If B isalimit point of C, then g is clearly bad, as witnessed
by the same sequence of sets s, .

The last case is that « is chaotic. Let g € [],_, 4,/I_, be the witness to the
fact that a is chaotic. Namely, if we define for £ <

1, = {i <klfy() < gD},
then the ¢ B’s are positive modulo 7, but they are not fixed modulo 7. Hence
for every f < a thereis f < y(B) < a such that tg and L, are different
modulo 7. As in the previous case, get a closed unbounded subset of o, C,

such that, for § <d in C, y(B) <. Any limit point of C will be chaotic
using the same function g. This proves Lemma 5. O

So far we did not use the fact that the sequence (f |a < 1) is cofinal in
1, 4;/1_, - This will play a major role in the next lemma.

Lemma 9. The set
S ={a< 1|cf(a) =4, a is good}

is Stationary in T.

Proof of Lemma 9. Let C be a closed unbounded subset of 7. We shall produce
a member of SNC. Let ¢ = (2)" and consider the structure % = (H,, €)
where H_ is the set of all sets hereditarily of cardinality less than o. Let
(N;|li < A) be an increasing sequence of elementary substructures of ./, each
of cardinality A such that for i <j N, € N;. We also assume that (f |a < 1)
and C as well as all the members of x are in N,. Let N be the union of the
N;s. For i <4 let o; be sup(N;N7) and let a be sup(NN1t) = sup{e;|i < A}.
Clearly cf(a) =4 (The «;’s are increasing!) and since C € N we have a € C.
If we show that a is good, we shall show that SNC # .

We shall show that « is good by verifying the condition which is claimed by
Lemma 6 to be equivalent to it. For i < 4 let {; be the function defined on «
by ,(m) =sup(N;N4,). Note that ¢, is a member of [],_, 4, and since ¢;
is definable from N, we have for i < j ¢, € Nj . Since k C N, we get that
all the values of ¢; are in Nj , so that £,(m) < éj(m) for every mek.

Since (f |a < 7) are cofinalin [],_, 4,/I_, , forevery i <A thereis B, such

i<K <K’
that ¢, <, fﬂ_ . Note that we must have o; < B, because otherwise we shall

have, for some y € N;Nnt, B, <y, but since all the values of fy are in N, we
get for all m < k that fy(m) <¢;(m), so

f ﬂi S I f;, < I éi >
which is a contradiction. Also by elementarity, if k < j, then g, isin N 5 80
we get

ﬂ i <a J S ﬂ i
so that the sequence (B,|i < 4) is increasing and cofinal in a. We clearly have
fﬂ_ € Nj. Again, it implies that all the values of fﬂ. are in N ;> S0 that, for

every m < K, fﬂ,-(m) <¢;(m). For i <4, let
4, = {m <x|f, (m) <&(m)}.
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By definition of ;, 4, € I for all i < A. Since I is generated by xk sets, we
can find a set 4 € I such that the set

B ={i <4, C 4}

is unbounded in A. Let B* = {B,|i € B}. We know that B" is cofinal in .
We claim that the pair 4 and B witnesses, through Lemma 6, the fact that «
is good. Let B, < ,Bj be two members of B*. (Of course i < j.) For m ¢ 4
we have

£y m) < &(m) < £, (m)

(where the first inequality holds for every m < k¥ and the second one holds for
every m ¢ A i but 4 i € A.) The last inequality proves that « is good. O

We are ready to define the stationary set S and the sequence (A4 |a € S)
that will witness the truth of Theorem 4. Let S be the set {a < 7|cf(a) =4,
a is good}. By Lemma 9 S is a stationary subset of 7. Each f is a subset of
& x AT of cardinality x . By simple coding we can consider it to be a subset of
A** of cardinality k. Denote the coded version of f, by A,. We claim that
S and (4 |a € S) satisfy the statement of Theorem 4. This will follow from

Lemma 10. Let y < 0 < 1. Let Sf={aeS|y<a§5}. Then for aGSf
we can define B, C A, and D, a closed unbounded subset of «, such that
|4, - B,| <k and DNy =3, and for a, B € Sf, a # B, we have that
B x D, and By x Dy are mutually disjoint.

Theorem 4 follows easily from Lemma 10, because if 7 is a nonstationary
subset of S, we can pick C, which is a closed unbounded subset of 7 disjoint
from T. If y < § are two adjacent members of C, we can apply Lemma

10 to the Sf and get B , D, for a € Sf as in Lemma 10. Note that every
member of T is in Sf for some two adjacent members of C, y < J. Putting

together the choices of B ’s and D_’s for the different Sf gives witness to the
truth of Theorem 4. The main point is that if a < f € T and y < J are two
adjacent points of C such that y < f <, thenif ¢ isin Sf the disjointness

of B, x D, and By x D, follows from Lemma 10. If o ¢ S, (which is
equivalent to a < y), then D, and Dﬂ are disjoint since Dﬂ Ny =0, and so
B x D, is disjoint from By x Dy

Proof of Lemma 10. The proof of Lemma 10 is by induction on J. We first
deal with the case that cf(d) < A or cf(d) > A and ¢ is not good. In this case
we can find a closed unbounded subset of , C, disjoint from Sf . We get such
a C because if cf(d) < A we can assume that every point in C has cofinality
< 4 (hence it is not S), and if J§ is not good (hence bad or chaotic), we can

use Lemma 5 to get a closed unbounded C such that every point in C is not
good, hence not in S . We can also assume that the first point in C is y. Each

a€ Sf (except maybe J, if J € S§) belongs to a unique S,‘,‘ where p<u<d
are two adjacent points in C. Using the induction assumption for u, we can
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get a choice of B, D, for a € SZ which will satisfy the requirements of our
lemma. Combining the choices of B ’s and D_’s made by different pairs of

adjacent points of C, p < u gives the required choice for Sf by an argument
similar to the argument above, deriving Theorem 4 from Lemma 10. We still
have to define B; and D; if § € S. But in this case we put B; = A; and
Dy =5C' This choice does not conflict with the choices of B, and D, for
@ €S, , a<J, because by our construction D, is disjoint from C = D;.
The interesting case is the case when cf(d) > A and ¢ is good. We use
Lemma 6 and get a set D cofinal in § and a set 4 in the ideal / such that
for p<pin D and v ¢ A we have fp(u) < fﬂ(u). We are assuming the first
point of D is above y. Let C be the closed unbounded subset of § formed
by the limit points of D with the additional point y. Every point in Sf is
either a limit point of C (hence a limit point of D) or is a member of S:]‘ for
a unique pair p < u of adjacent points of C. If p < u are adjacent points
in C, we use the induction assumption for x4 and fix sequences (B, |a € S;,‘ )

and (D |a € S:,‘ ) satisfying the requirements of our lemma. So we get B, and

D, defined for every a € Sf which is not a limit point of C. We still have to
define B, and D, for o which is a limit point of C and belongs to .S'. (We
do not have to deal with § because cf(d) > 4, and hence J ¢ S.)

Fix an o < J such that ¢ € S and « is a limit point of C. For f < a let
Ey;={v<klv€4d or f4(v)> f,(v)}. Note that E} € I. By definition of D
and A the sequence of sets (E;I B € DNa) is an increasing sequence of subsets
of x¥. D iscofinal in o and cf(a) = A4 > k ; hence this sequence is eventually
constant. Let F_ be subset of x such that, for large enough g € DN a,
E; = F, . Of course we have F, € I. Let n(a) be the first member of D
above a. Note that n(a) is smaller than the first member of C above a. We
have that f <, f”(a) ; hence the set

H ={v<klveF, or f(v)> fn(a)(u)}

isin 1. B, is the set of members of 4  coding the pairs (v, f (v)) for
v ¢ H, . Since I is the ideal I_ and H € I, we have |4, - B | < k.
We also define D, = C Na. This completes the definition of B, and D,
for a € Sf . We claim that it satisfies the conclusion of our lemma. The only
nontrivial fact is the mutual disjointness of B, x D and By x Dy fora< g,

both in Sf . If both o and B are not limit points of C, then the disjointness
is argued as above. If one of them, say «, is a limit point of C where the other
one is not, then note that D 5 is disjoint from C, hence disjoint from D . The
last (and interesting) case is when both a and S are limit points of C . In this
case we claim that B, and Bﬂ are disjoint. In view of the definition of B,
and B, the claim amounts to the fact that if v € x and v ¢ H, ZUH,, then
L) # fﬂ(u). Let n = n(a) as above. We have 1 < #. Let £ be a member

of D, n <& < B, such that Ef:Fﬂ. If v <k is not in HaUHﬂ,wehave
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v¢g¢Aand v ¢ Eg Hence (using 7, & € D)

L) < L,0) < fi0) < ).
Therefore, f (v) #fﬁ(v) and B, is disjoint from B;. O

a

This completes the proof of Theorem 4. O

2. SUFFICIENT CONDITIONS FOR COMPACTNESS

In this section we formulate a sufficient condition for a cardinal x to be
compact. The general framework is an abstract notion of freeness as introduced
by Shelah ([Sh1]; see also [Sh4]). We are given a set H , and we have a family of
pairs of subsets of H, ¥ . Intuitively, (4, B) € ¥ means “A is free over B”.
As an example, if H is an Abelian group, then (4, B) € & if G(AUB)/G(B) is
free where G(C), for C C H , is the subgroup of H generated by C . Following
this example we say in the abstract setting that 4/B is free if (4, B) € ¥ .

There are natural requirements one can impose on our notion of freeness. We
reproduce those axioms from [Sh4] we need. (Note that the set of axioms has
one cardinal parameter x.) We follow the notation for the individual axioms
used in [Sh4]; hence the numbering of the axioms is not consecutive. (We do not
need some of the axioms of [Sh4], so we skip them.) Also we use for instance
Axiom I"*, which is a version of Axiom I in [Sh4]. For stating the axioms we
need

Definition. 1. We say that for the y majority of subsets of H a certain property
holds if there exists an algebra on H with x operations such that for every
subalgebra the property holds.

II. A sequence of sets (4 |a < A) is said to be continuous if, for limit a < 4,

A, = Uﬁ<a Aﬂ .
Axiom I'*. If 4/B is free, A* C A, then A*/B is free.

Axiom II. (a) A/B is free iff AUB/B is free.
(b) A/A is free.

Axiom III. If 4/B is free, C C B, and B/C is free, then A/C is free.

Axiom IV. If 4; (i <4) is increasing and continuous, 4,/B is free, and, for
all i<A, 4,,,/4;UB is free, then (JA4,/B is free.

Axiom VI. If 4/BU C is free, then, for the y majority of X C AUB, AN
X/(BNX)UC is free.

Axiom VIL If 4/B is free, then, for the y majority of X C 4, A/XUB is
free.

(Note that for the Abelian group example Axioms VI and VII hold for x =X, .)

Axiom A. Suppose 4/BUC isnot free. If § = |4|+x, then, for the § majority
of XCB, A/XUC is not free.

(For instance, in the Abelian group case if 4/BU C is not free, it is enough to
have an X C B such that G(4) N G(BU C) is included in G(X U C).)
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Definition. Given a notion of freeness ¥ , A/B is A free with respect to &
if for every subset C of A4 of cardinality < A, C, C/B is free.

Shelah in [Sh1] proved that if A is singular and our notion of freeness satisfies
Axioms II, III, IV, VI, VII (for y < 1), and A/B is A free, then A/B is At
free. (See subsequent work in [Bd] and [Ho].) Note that under Axiom I** if
A/B is free, then it is 4 free for all A. Also if A is a regular cardinal > x
and 4 =J,_; 4, with |4,| <A and 4,/B free, then A/B is free if and only if
S ={i <4|4/A;UB isnot A free} is nonstationary in A. The “if” direction of
the last claim follows from Axiom IV since we have a closed unbounded subset
of 4, C, such that for a € C and § > «, Aﬂ/AaUB is free. So we can write
U,<; 4, as a continuous increasing union as required by Axiom IV. The other
direction follows from Axiom VI (where in the axiom we take B =, C = B).
We get the algebra witnessing Axiom VI. The set {a < 4|4 is a subalgebra} is
a closed unbounded subset of A disjoint from S.

We shall now formulate several reflection principles which will help us get
compactness results.

(AK’ ,) Forevery Ry < u <k, S CA such that S is stationary in 4, and
such that § € S implies cf(d) < k, and for every algebra 4 on A with u
operations, there is a subalgebra A4’ whose order type (as a subset of 1) is a
regular cardinal 7, 7 < x, and such that SN A4’ is stationary in sup(4’).

(A,) For every regular 1>k, Ax, , holds.

The main theorem of this section is

Theorem 1. Let ¥ be a notion of freeness satisfying Axioms I**, 11, 11, IV, VI,
VII, and A for some x < k. Let A" be a cardinal > x such that for all regular
A, A< A", wehave A_ ,; then every pair (A, B) which is k free with |A] < A*
is free.

Proof. We start by proving

Lemma 2. Let F be as in the hypothesis of the theorem. Assume C/B UD is
not free, while D/B free. Then there exists E C D, |E| < |C|+ x, such that,
forall ECY CD, C/BUY is not free.

Thus E can be considered to be the “evidence” of the nonfreeness of C/BU
D, in the sense that once a subset Y of D contains this evidence then C/BUY
is not free.

Proof. By Axiom A, if we put § = |C| + x, for the § majority of X C D
C/BUX is not free. Also by Axiom VI for the y majorityof X CD D/XUB
is free. Hence we can find E which is closed under the operations of both
algebras where |E| < 6. Hence D/E U B is free, and C/B U E is not free.
E is the required set because if £ C Y C D, then by Axiom I** Y/EUB is
free. Hence Y UB/E U B is free. If we had C/Y U B free, then by Axiom III
C/E UB is free, contradiction. O

K,A°

For future applications we need a weaker version of the reflection principle.
(A;’ ,) Forevery Xy < u <k, SCA such that S is stationary in 4, and
such that 6 € S implies cf(d) < k, and for every algebra 4 on A with u
operations and for every sequence of sets (D;|d € S) such that, for § € §,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

WHEN DOES ALMOST FREE IMPLY FREE? 785

Ds; C 6, |Dy4| < u, there is a subalgebra A" whose cardinality is a regular
cardinal 7, n < k, and such that 4’ can be written as a continuous increasing
union 4’ = U, i where the cardinality of each A, is less than 7, each
A; is bounded in sup(A') , and the set T = {i < 1|0 = sup(4,;) implies & €
SnA',D;C A4} is stationary in 7.

It follows easily that if A4’ is the subalgebra of A witnessing A, for the

stationary set S, then SN A4’ is stationary in sup(4’); hence it follows that
for every S a stationary subset of A whose points have cofinality less than x,
there exists f < A such that SN g is stationary in f (“S reflects”).

Claim. A_ implies A,

Proof. If A, S,and (D 5|0 € S) are as in the statement of A ;> We can assume
without loss of generality that for every subalgebra of 4, B, if § € BNS then
D; C B. Let A’ be a subalgebra of 4 witnessing the truth of A, ;- The order
type of 4’ is n, which is a regular cardinal. So let f be an order-preserving
function from 7 onto 4'. The set

Q = {i < n|f"i is a subalgebra}

is a closed unbounded subset of n. Similarly using the fact that SN A4  is
stationary in sup(A4’), we get that

R={i<nlsup(f"i)eSnA}
is stationary in sup(4'). For i € R, sup(f") = f(i), but, for i€ R, D, C
f(iyn A"; hence D,y < f "i. Let g be an increasing enumeration of the
closed unbounded set Q. For i < n let 4, = f"g(i). A = Uicy 4; is a
representation of A’ as a continuous union as required by A, - The set T in
the statement of A, , contains g_'(R) , and hence it is stationary in 7. 0O

Theorem 1 will now follow immediately from

Theorem 3. Let F be a notion of freeness satisfying Axioms I**, 11, 111, IV, VI,
VII, and A for some xy < x. Let A* be a cardinal > k such that for all regular
A, A< A%, wehave A_ ,. Then every pair (A, B) which is k free with |A| < A
is free.

Proof of Theorem 3. Assume A/B is k free but not free with |4| minimal.
We distinguish two cases:

Casel. |[A|=A>k.

In order to simplify notation we assume that 4 = A. Note that by mini-
mality of |A4|, if |4| = A, then A/B is A free. By Shelah singular cardinal
compactness, 4 is regular. Write 4 = |J,_, 4, as an increasing continuous
union where |4| < A. (Note that 4,/B is free by assumption.) By a remark
we made above, {i|i <4, A/4;UB is not A free} is stationary in 4; hence
thereis C, C 4, |C)| <4, and C,/4,UB is not free. Pick C; to be of minimal
cardinality. By minimality of |4| we know that C;/4,U B cannot be k free,
and hence, by minimality of C,;, |C,| < k. By Lemma 2, since C,/4,UB is

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

786 MENACHEM MAGIDOR AND SAHARON SHELAH

not free, whereas A;/B is free, we can find D, C 4;, |D,| < x + |C;|, and if
D;CY C A; then C;/Y UB is not free.

We claim that without loss of generality we can assume that for J € S, the
cofinality of J is less than x ; otherwise {J|0 € Scf(d) < k} is nonstationary.
Note that |D;| < k and that, for most i € S, cf(i) > x; hence for most
members of S, i, we can find A(i) < k such that D, C Ah(i) . By Fodor’s

lemma there is a stationary subset of S, S", such that 4 is constant on it,
say h(i) = j, for i € §*. Let j > j,. We claim that A/A4;U B is not 2
free. Pick i € S*, j<i, D, C Ay =A; S A4;C A;. Bya property of D,,
C;/A; UB is not free, and hence 4/4; U B is not A free. By definition of §
we get that if j > j, then j € .S. Hence S contains a tail of 4; in particular,
stationary many points in S have cofinality less than x, a contradiction. So
we can assume that we have a stationary .S such that, for i € S, cf(i) < k
and A/A;UB isnot k free. Without loss of generality we can assume that, for
ieS, |D],|C)|<u<k for some fixed p.

Using the fact that |D,|, |C;] < u we can easily define an algebra with u
operations such that if X is a subalgebra of it then

(@ u+1CX;

(b) if i € X then sup(4,) € X ;

(c) if @ € X then the minimal ; such that a € 4, isin X;

(d)if ie XNS then D,UC, C X.

Now we use A;, , for our algebra and the stationary set S. We get a sub-

algebra A’ such that the cardinality of 4’ is a regular cardinal # < k (note
that by 4+ 1 C X, u < n) and such that A’ can be written as a continuous
increasing union |J ian X where X ; (for j < n) is a subalgebra of cardinality
less than 7, and the set

T={j<nsup(X;) €SNA, Dyyr)CX}

is stationary in 7. Fix j < 7 and let § = sup(X j). By the properties of the
algebra A (recall that X ; is a subalgebra), we know that X s As. Ag/B is

free, and hence X;/B is free (by Axiom I**). It follows that A'/B is free iff
the set
T" ={j <n|4'/X,;UB is not n free}

is nonstationary in 7. Butif j € T we have that 6 € SN 4’ and that D;CX,.
Also C; C A4'. By definition of D; we get C;/X;UB is not free, so A'/X;UB
is not n free, so we have proved T C T*. Since T is stationary in 7, we
conclude that 4'/B is not free, so A/B is not x free. We get a contradiction
to our assumption that 4/B is k free but not free.

Casell. |[A|=«k.

Of course in this case (in view of Shelah singular compactness) x is regular.

We follow the proof of Case I and define 4,, S, C;,and D, asin Case . As
in Case I we assume without loss of generality that 4 = k. The only difference
is that now we cannot assume without loss of generality that, for some u < k
and for i € S, |D,|, |C;| < u. Note that if, for a stationary subset S* C S and
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ieS", |C|<i,then |D;] < i and by Fodor’s lemma we can find $™* C S*,
S** stationary, and |C,| for i€ S** constant, and we can conclude the proof
as in Case I, so without loss of generality we assume that, for i € §, i <|C|.
Since |C,| < x, we get that k is a limit, hence inaccessible, cardinal. Hence
we can assume without loss of generality that, for i € S, 4, = |4,/ = i. Using
Shelah singular compactness again, and the minimality of |C,|, |C;| is regular.
We claim

Claim. For i€ S, if x <i then |C|=1i.

Proof. By Axiom A, C;U 4,/B is free since |C,U 4,| < k. (Recall that 4/B
is k free.) By Axiom VII, for the x majority of X C 4,UC,, C;U4,/XUB
is free.

Let A: be the closure of 4; under the relevant y operations; hence C; U
A;/A UB is free. If we had 4’ UB/A,UB free, then C;UA,/A;U B, is free,
which is a contradiction to the definition of C;; hence 4;UB/A4;UB is not free.
But for y < i, |A:| = i, and hence, by minimality of |C,|, |C;| < |A;| <i. O

It follows from the claim that if / € S then i is regular. By A x We get
that the set 7 = {f|SNp is stationary in f} is a stationary subset of x . (Note
that if g € T then B is regular.)

By T being stationary, we can find g € T such thatif i < 8 then C;C f.
Forsucha g, |4 ﬂl = f and as in Case I we can show (using SN f stationary
in #) that 4 8 /B is not free. Hence we get a contradiction to 4/B being «
free but not free. This completes the proof of Theorem 3, which was needed to
finish the proof of Theorem 1. 0O

For future applications we need an equivalent form of A,_ ,:

Lemma 4. Assume A, ; holds. Then for every algebra &/ = (4, fy, f,, ...)
with less than k many operations such that A C A and every stationary subset
of S C A such that, for a € S, cf(a) < k there is a subalgebra of &/ , %, of
cardinality less than k such that % N A has an order type which is a regular
cardinal and SNF s stationary in sup(% N4).

Proof. Without loss of generality assume that the operations in & are closed
under composition. Let & [ = (4, fy[4, f[A,...) (where f [A means that if
LPyseoosp) 4, pyseens p < m,then (fTA)(py, ..., ) =0). Use A,
for &[4 and S, and get & a subalgebra of &/ |n of cardinality < k such that
the order type of & is a regular cardinal and S N% is stationary in sup(%).
Let % be the closure of & under the operations of % ; % is the required
subalgebra of &7 . (Note that & NA = % because the operations of &/ were
assumed to oe closed under composition.) O

3.R +1 CAN BE COMPACT

Definition. A cardinal x is compact if, for every notion of freeness satisfying
Axioms I**, II, IIL, IV, VL, VI, and A, k free implies «* free.

The main theorem of this section is
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Theorem 1. Assuming the consistency of infinitely many supercompact cardinals,
there is a model of ZFC +G.C.H. in which R . , is compact. (The model will
be obtained by getting a model of A

R .
Nwz > Cwlel

In our ground model we fix a sequence (x,|n < w) of supercompact cardi-
nals. Using the construction of Laver in [La] we can assume that our supercom-
pacts satisfy the following assumption:

(x) If P isa x, directed closed forcing notion (i.e., every directed subset

of P of cardinality < k, has a lower bound), then vt e Kk, is supercompact.
By looking at the proof of the consistency of (x) in [La] one can easily verify

+

that we can get (x) to hold together with 2 = k) (for n < w) or even

+k
2 = k! for k < w. Also since the truth of (x) is not changed by a
x:; directed closed forcing, we can assume without loss of generality that, for

A2K,, 2* = A" . Also we can assume that G.C.H. holds below R, .

For a pair of regular cardinals 4, u, 4 < u, denote by Col(4, < u) the Levy
collapse of all cardinals less than u to 4. (Namely, Col(4, < u) is the set of all
partial functions of cardinality < A from A x u into 4 where f(J, a) € a for
a € u—A and o a cardinal, partially ordered by inverse inclusion.) Recall that
Col(4, < u) is A directed closed and if u is strongly inaccessible, it satisfies

the u chain condition. Denote by S, = [] Col(k::;2 ,» < K,,.,)- Note that

S, is k, directed (actually even x: 2 directed closed); hence vk K, 1s

supercompact. Also standard arguments show that in S K, = Sup, _, K,
+w

K, - Let F . b€ a term denoting in 75" a normal ultrafilter on Pxn(x;) . (It

m>n
is

exists since k, is supercompact in VS"; see [K-M] for definition of normal
ultrafilters, etc.) F , has a natural projection to a normal ultrafilter on «,

(namely, 4 € U, < {PIPNk, € A,P € Pxn(x;)} € F)). Recall that we

assumed that 2 = x: , and that forcing with S, does not introduce new

sets which are hereditarily of cardinal < x: ; hence U, € V. So we get a
normal ultrafilter in V', U, , such that some condition in S, forces it to be the
projection of some normal ultrafilter on P, (x:;) . Since S, is a homogeneous
forcing notion, we get that the empty condition in S, (hence any condition in
S§,) forces that U, is the projection of some normal ultrafilter on Pxn(rc;) .
Let M, be the transitive collapse of the ultrapower Vi Uu,. j: V- M,
will be the corresponding elementary embedding. Members of M, are of the

form [f], , which is the equivalence class of the function f € V* mod-

ulo U,. Consider the forcing notion T = Col*(x**, < j (k,)) (where

Col” ... means the collapse forcing notion defined in A, ). Recall that M,
has the property that every sequence of its members of length «, isin M, , that
M, E j(x,) is inaccessible, and M, F T satisfies the j, (x,) chain condition.
Therefore M k there are exactly j,(k,) dense subsets of 7. On the other
hand, V F|j, (k)| = x;' ; hence we can enumerate (in V) the dense subsets of
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T which lie in M, in a sequence of length x: . Every initial segment of this
sequence isin M, ,and also M, F T is x;“ closed; hence one can easily define
(in V) a T generic filter over M, by inductively meeting each dense set in
M, . Fix such a generic filter G, .

We are at last ready to define our forcing notion £ , such that in Ve E A,

w’K;
and V7 E x, = R_,. Also V7 will satisfy the G.C.H., so it will be the
required model for proving Theorem 1. The definition of the forcing uses
ideas of Foreman-Woodin [F-W], Woodin [Cu-Wo], and Gitik [Gi], modifying
the original construction of [Ma], of models violating the singular cardinals
hypothesis.

The idea is to use the sequence of the normal ultrafilters (U,|n < w) to
get a generalized Prikry sequence (o;|i < w) such that k;_, < o; < k; (for
simplicity put x_, = ®,), and then collapse all cardinals in the intervals

(@5, @), (a7, Kky), (K32, @), (o{“”’2 ,K,), etc., so that a, becomes R,,

k, becomes R ., a is R o (k, is Nw(n+1)+3), K, willbe R ..

Definition of the forcing notion. % : The forcing notion & is made up of all
sequences of the form

p=(a0,...,an_l,(Aj|n§j<w),g0,g1,...,gn,j%,...,fn_l,
(Filn<j<w),(gln<j<w))

such that

(a) x,_, <a;<k;, a; inaccessible (recall x_, = w,) for 0 <i<n;

(b) Aj € Uj for n<j<w,every a€ A; is inaccessible;

+w+2 . .

(c) f; € Col(a,.:: , <K;) (f <n);

(d) g €Col(k,_,,<aqa;) (i<n);

(e) g; € Col(x;",, <k,), j>n,suchthat g; € Col(k;™,, <a) for a € 4;.
(Note that (e) implies that (g;|j >n) €S, .)

(f)For j=n, F; is a function defined on A; such that, fora € 4,, Fj(a) €
Col(a+w+2 , < k;) and such that the equivalence class of F;, asa member of
the ultrapower V"//U; isin G,.

n is the length of the condition p. Its a-partis (a;,...,a, ;). Its 4
part is (Aj|j > n); similarly the f-part of p is (f,,..., f,_,), and the
g-part of p is (g,,..., &,). Its S-part is (gjlj > n), and its F-part is

(F;|j > n). The lower part of p is (the a-part of p, the f-part, the g-part).
(Note that there are at most x, different lower parts of conditions of length
n.) For a condition p as above we put a,(p) = «;. Similarly we define
A;(p), fip), g;(p), and F(p). p[k, the restriction of p to k (k < n), is
{({ogs vves0p_y)s (8-> &)» (fy» - -+ » fx_y)) - Note that the lower part of p
is exactly p[n.

Intuitively «, ..., @, is an initial segment of the “generalized Prikry se-
quence”. A ; is the set of possible candidates for being « i & and f; are part
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of the Levy collapse, making sure that there are no cardinals in the intervals
k%, a,), (a2, k,), respectively. F;(a) is a commitment that if o € 4,
will be picked in the future as o Iz then the corresponding f] will have to ex-

tend Fj(a) -8 for j > n is a commitment about the possible value of 8, in

the future. (Note that if g € Col(lc;'_z1 , < rcj) , then, for large enough a <k,
g € Col(x o150 < a), so g; is implicitly also the commitment to pick « ; SO
large that g; € Col(x;_,, < a).)

These intuitive remarks should motivate the definition of the partial order

on P, where the formal definition is
p= (aoa v ’an—l’ (AJIJZn), g()’ DR gnafba s ’f;,_la
(Flj 2 n), (g,lj > n)

extends
P =A0gs s QAT =), &g s Gs Sy s oo Sy
(F[1j = m), (glj > m))
(p<p") if

(@ m<n and for i <m, o, =a, and f, extends f,* as a member of
Col(a*?, < k,);

(b) for i < w, g; extends g’ ;

(c) for n < j, A, C 4] and, forall @ € 4;, F;(a) extends F/(a) (as a
member of Col(a™*?, < )

(d) for m<i<n, a;€ A} and f;2 F(a,).

p is a length-preserving extension of p* if n = m. p is a k-length-
preserving extension (for k < m) if p is a length-preserving extension of p*
and p[k = p"[k. We shall denote it by p <k p*. We say that p is a triv-
ial extension of p* if they have the same lower part. (It is the same as being
m-length-preserving.) Being a k-length-preserving extension means that we did
not change the information p* was giving below Q.

Lemma 2. Let (ps|6 < n) bea <, decreasing sequence all of them of length n,
where n < o, (p,) if k <n and n <k, if k=n. Then the sequence has a <,
lower bound.

Proof. We define ¢, which is going to be the <, lower bound of the sequence,
by making the a-part of g equal to the common a-part of the conditions in
the sequence. For i < n, f(q) = U,;<,,f,-(17,5)- (For i < k we get f(q) =
fi(p)» and for i > k fi(q) € Col(a}®*?, < ;) by the Col(a/”"’, < k)
being af closed.) Similarly we put gj(q) = Ukn 8;(p;). For j=n, Aj(q) =
ﬂkﬂAj(pé) —n. Here we use 7 < k, to get that 4,(q) € U;. For j >n
and a € Aj(q) we define F].(q)(a) = U,,<5Fj(1’5)(a)- Fj(q)(a) is easily seen
to be in Col(a“"+2 , <K ].) . We have only to verify that the equivalence class
of F j(q) is in Gj. But M. is closed under sequences of length 7. Hence
since G f is a generic filter for a forcing notion considered to be 7 closed by

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

WHEN DOES ALMOST FREE IMPLY FREE? 791

M, (which means that it is 7 closed in V), we get that |J; <,,[1"]‘(1)5)](/._ is in
7
Gj , but the last union is exactly [Fj(q)]U . O

The dual notion to k-length-preserving extension is the notion of k-direct
extension, where we do not add any information on the collapse maps above
o, , but we may change the information below o, . Formally p is a k-direct
extension of p* (for k < n) if in (a) we have f, = f;* for m > i >k, in (b) we
have g, = g/ for i >k, in (c) we have A; = A; , except for thecase k =m=n

where we make 4, = {a € 4]|g, € Col(x, |, < @)}. (We needed this special
case in order to satisfy clause (e) in the definition of the forcing conditions.)
Fi(a) = Fj*(a) for j>n,a€d;,andin(d) f, = F(a;) for i >m, k. (Note
that if p is a k-direct extension of p* then p is determined by p*, p[k, and
(@, --- >, ;); hence there are at most k, k-direct extensions of p.) p is
a direct extension of p" if it is a O-direct extension and we also have & = gg .
Note that if p is an extension of p* and given k < n, then we can get p from
p* by taking a k-direct extension of p*, s, such that p isa k-length-preserving
extension of s. s can be easily shown to be unique, and it will be called “the
k interpolant of p* and p”, denoted by Int(k, p*, p).

The following lemma is typical for this class of forcing notion. It is known as
the “Prikry Lemma”. (See for instance [Gi], Claims 2, 3, 4 in §3 of this paper,
or the main technical lemma in [Ma].) The proof is essentially along the lines
of the quoted papers. At the insistence of the referee we include the proof.

Lemma 3. Let D be an open subset of . Let p € P be a condition of length
n and k < n; then there exists a k-length-preserving extension of p, q, such
that

(@Q)if " <q and q" € D, then Int(k, q,q") € D.

(b) If ¢* < q, q" € D, and the length of q* is m, then any q** satisfying
g <q, length(¢"")=m, and ¢"" [k =q"[k isin D.

(c) If D is the set of conditions deciding a given statement ®, we can assume
that ¢* - ® iff ¢*" - ® (¢" and q"* as above).

g satisfying the statements in Lemma 3 is said to be in D modulo k-direct
extensions. If D is the dense set of conditions deciding the value of some term
7, which is forced to denote an ordinal, then ¢ as above is said to determine
T up to k-direct extensions. If D is the dense set of conditions deciding the
truth value of some statement @ in forcing language, then ¢ as above is said
to decide ® modulo k-direct extension. Note that in this case if ¢* < q ¢*
decides @, then any r which extends ¢ and satisfies [k = ¢" [k decides ®
in the same way. In particular the unique r which is a k-length-preserving
extension of g and satisfies r[k = ¢"[k decides ®. Namely for deciding ®
below g we have only to change gq[k.

Proof of Lemma 3. We first prove a restricted version of Lemma 3, in which
we get the conclusion for ¢ of fixed length.

Lemma 4. Let p, n, and D be as in the statement of Lemma 3. Let | be a
natural number. Then there exists a k-length-preserving extension of p, q, such
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that for every extension of q, q" of length n+1, if ¢* € D then Int(k, q, q") €
D.

Proof. We prove the lemma for every p and n by induction on /. There is a
slight difference in the proof between the case k < n and the case k = n. We
shall deal with both cases simultaneously.

We start with the proof for / = 0. The set {q[k|g < p} has cardinality
a, = oy (p) if k <n and cardinality x, if kK =n. Define n =0, if k <n
and n =k, if Kk = n. Let (r;]6 < n) be an enumeration of this set. Put
rs = (g, ..., 0y, gg, cee g,‘:, j‘s, cee f,'f_l). Without loss of generality
we can assume that the enumeration is such that for J inaccessible then g,f €

Col(xk 1» < 90) iff p <. (Namely the enumeration restricted to 6 enumerates
exactly those r mentioning only cardinals below J.)

By induction on 6 < n we define a <, decreasing sequence of conditions
(g510 < n) where g, =p and

[ J J
q(§=<a0a-“’an_1’(AjIJZn>7 go:--*agka gk+1:'--’ n?

Sor oo oo fe oo foy (D 2 m) (801 > ).

Note that this notation does not conflict with the notation we had above for the
components of r;. The notation uses the fact that g; is a k-length-preserving
extension of p. Forlimit §, g; isa <, lower bound for (qp|p < 0). In order

to define g;,, we “merge” r; and g; to form

5 . K )
S5 =(ags--es @y (Aj|j >n), 85 n,f(‘f, ,]f_l,
5 . 5 .
(Fjlj=n),(gli>n).
If there is a k-length-preserving extension of s; of length n, f;, such that

t; € D, we define g5, , by putting, for k </, ﬂm = fi(t;). For k < j<w

we put g5+1 = g,(t;), and for n < j < @ we put F; L = F,(t;) and A‘s+l
(t(,) If no such ts exists, we define g, , =g, .
The condition g, witnessing the truth of the present lemma, will be a <
lower bound of (gs|d < 7n),if k <n.Inthecase k =n, g is a “diagonal” <,
lower bound to (g < 7).

q=(a0,...,an_l,(A;ljZn),go,...,gk,g,:H,..., o
ﬁ),-.-,ﬁ(_l,f;,---,ﬁ_,,(Ff|1'2”),(g;|j>"))

* o
where, fork<z<n = U6<nf6 For k < j, & = U;., & - For
j>n, A ;= =; <n j . ; is the diagonal intersection of the Ai’s. Namely,

* 6 * . * ) *
A, ={B<k,|B€N;pA4,}. Fora€d; and j>n, F(a)=U,_, F; - F,
is defined by F'(a) = U,_, F(a)

This definition can be easily verified to give ¢ € & . The proof that [Fj*] v €

J
G f is as in Lemma 2, using the fact that G f is closed under unions of length
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<k i 4q is the required condition for the case / = 0. If ¢* < ¢q, ¢* of length
n,and ¢* € D, then q*[k =r; forsome 6 <#n. ¢q" isa k-length-preserving
extension of s; whichisin D. Hence f; exists. But Int(k, g, q") extends ts;
hence it isin D . The fact that Int(k, g, ¢*) <t 5 1s straightforward in the case

k < n. In the case kK = n we need that A,(Int(n, g, q’)) C A,(ts) = Ai“ , but
if u is the sup of the inaccessibles below J, g,‘f must mention some cardinal
above u, by our assumption about the enumeration (r;|6 < ), so that every
member of A4, (Int(n, g, q")) is above J. Since it is in A; and it is a limit
ordinal, it is i*n A,(t;). Similarly for a € 4,(Int(n, q,47)), F,(t;)(a) C
Fn(Int(n ’ q s q ))(a) N

We now deal with the induction step from / to /+ 1. The set {(a, f)|a €
A,, f € Col(a*®*?, < k,)} has cardinality x,. Enumerate this set in a se-
quence of length x,: ((a;, f;)|0 < x,). By induction on J < x, we define
an increasing sequence in S, , (gflj >n+ 1), where g](.’ = g;(p) . For limit &

(gflj >n+1) is a lower bound of {{(g]|j > n+ 1)|n < d}. For defining g;s+1

we consider the condition
p§ = <a0, L] an_la a§9 (AJI.]Z n+ 1)3

8os e s Barts Jor oos Fyrs fy (Fli 2 n+ 1), (g]17 > n+1)).
p; haslength n+ 1. By the induction assumption for / applied to p;, we can
find g5, which is a k-length-preserving extension of p; such that g; satisfies
the conclusion of our lemma with respect to all ¢* < q; provided the length of
q" is (n+1)+1=n+(l+1). We define, for j > n+1, gj‘.s+l = g;(q5) . Wealso
denote f; = f,(gs). f; clearly extends f;. Given the inductive definition,
we define, for j >n+1, g; =U; <, g;s . Clearly

g € Col(x >

i1 <K'j).

Fix a € 4,. Let D, be the set of all conditions 4 € Col(a*“"?

that there is a condition in % of the form
h,. h h *
(aoy"-,an_l’a,(Aj|JZn+1>,g09"~3gk’gk+1a‘°',gn9gn+13*
h, . * .
Soroois i fes o fo  (FH i 2n+ 1), (g1 > n+ 1)

satisfying the conclusion of our lemma with respect to ¢* of length n+(/+1).
Fix h € Col(a™®*?, < k,). For some & < k, we have (a, h) = (a;, f;).
By our construction f; extends #, and it is in D . So we have shown that
D, is dense in Col(a™*?, < k,). It is clearly open. Consider the function
H(a) =D, on A4, . Since 4, € U,, the equivalence class of H modulo U, ,
[H ]U,. , represents a member of M, which is (in the sense of M) a dense subset,
D", of Col(k**?, < j (k,)). G, is generic over M,,so D*'NG, #D. Let
[Fl, € D*'n G,,and [F], extends [F,], . Without loss of generality we can
assume that, for every a enAn , F(a) extends F,(a) anditisin D, .

, < k,) such
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For a € A4, let

=0, s Qs ees (A7|j2n+l),go,...,gk,g:+1,...,g:,g;,
Jos o oo fosooos T (FS LT 2 n+ 1), (g7 1) > n+ 1))

be a witness to the fact that F(a) € D, . Namely for every q" < r, of
length n+/+1,if ¢° € D then Int(k,r ,q") € D. The sequence X =
(feseos fools 8ksrs -+ » &) can be coded as a bounded subset of o. Hence
by the normality of U, we get C C 4,, C € U,, such that this bounded set
is fixed for a € C; namely for a € C, X, = (f, ..., [ (> 8s1> -+ &)

for some fixed sequence (f, , ..., f,_;> &xyys---> &) - ForaeC and j>n
we also have ij’ X¢; - G ; is K ; closed, so we can find [Fj'] v €G ; such that
J

[F;]U_ < [F;’]U for every a € C. We can also assume that [Fj*]UA <[Fly -
J J J J
We also define F, = F. For j > n we define

A;= () 470 (V{8 € A|F(B) < F(B)} N {B € 4,|F; (B) < F;(B)}.
a€C a€C
Clearly A4 ; € U;. We also define A; = C. We are ready to define the k-

length-preserving extension of p that will satisfy the present lemma for / + 1.
It is

q=<a0,-'-aan_1’<A;lj2n), g()a-”:gka g;+1a~--’g;’.f6a0--af;(_l’
fo e S (E 2 ), (gl > )

q satisfies the lemma for / + 1 because, if ¢* < g, ¢* € D, and the length of
g is n+l+1. Let a =a,(q"). Of course a € C. ¢" can be easily seen
to be an extension of r_, so, by the definition of r_, Int(k,r_, q") € D, but
Int(k, g, ¢") is an extension of Int(k, r_ , g"), so it isin D. This concludes
the proof of Lemma 4. O

Lemma 3 follows from Lemma 4 by applying Lemma 4 ® times; namely
we construct a <, -decreasing sequence (¢, |k < w) such that ¢, =p and g, ,
satisfies Lemma 4 for extensions of ¢, , of length n+/. Let r bea <, lower
bound for the sequence. It satisfies clause (a) of Lemma 3. We shall find a
trivial extension of r that will satisfy (b). Let (B;|j > n) be the A-part of
r. Let T={q"[klg" <r}. If k <n then |T| < k,. If k =n we put, for
a€d,, Tla={q"[nlg" <r, o,(¢") <a}. In this case |T[a| = . We define
a partition of U, H5.=n B, F , where

& (a,, ..., o) = {s € T|the k-direct extension of r determined by s
and @, ..., o, is in D}.
Note in the case k = n, F(a,,...,q) € T[a,, so we can consider
F (a,,---, ;) tobe essentially a subset of «,. Standard partition arguments,

like Rowbottom’s theorem, using the normality of the U f for j > n, give a
sequence of sets (C;|j > n) such that C; € U, (for j > n) and such that
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for se T and (a,,...,q)) € H§=n Ci, (By»---» B) € Hi.:n C; (in the case
k =n we also assume s € T[a,NT[B,)

seF(a,,...,q) iff seF(B,,....H8).

Let g be the condition which is exactly like r except that its A-partis (C,|j >
n). q clearly satisfies both (a) and (b) of Lemma 3. In order to get (c) (namely
we are in the case that D is the set of conditions deciding a sentence ®) we
replace D by D", the set of conditions forcing ®. A condition g satisfying
(a) and (b) for D* will satisfy (a), (b), and (c) for D. O

Note that if p and k are as in Lemma 3 (k < n) and we have a collection
of <a,_,(p) open subsets of &, we can find g satisfying Lemma 3 simulta-
neously for all the dense sets in our collection. Given a term 7 which is forced
to denote a subset of n for some # < a,_,(p), we can apply this observation
to the collection of open subsets of %, {Dy|B < n}, where Dy = {r € Z|r
decides “B € 1t”}. We get that an extension of p forces that the realization of
7 lies in V[G[k], where G[k = {r[k|r € G, the length of r > k}. G[k is
essentially a generic filter in

k k—1
Col(w, , < ag) x [[ Col(x}2,, < a;) x [ Col(a;***, < k)
j=1 Jj=0

where (o, o, ...) is the union of all the a-parts of conditions in the generic
filter. As usual it follows from this remark that in the generic extension obtained
by using & no cardinals below x, are collapsed, unless we specifically provided
for their collapse in our forcing notion. So the sequence of infinite cardinals
below k, is

+ +o 4w+l +w+2 +  ++
W, W, ), Ay, ..., 0 > O > Kgs Ko > Ky »
+ +@ +w+1 +w+2
Qp, Qp e, Oy, Oy » O > Ky

Clearly k, in the extension is R ..
Since our forcing notion does not satisfy the A chain condition, where 4 =
x_ , we have to prove

Lemma 5. In VF E A is a cardinal.

Proof. We shall prove that Ve , A is still regular. Assume otherwise, and let
p € 2 be a condition and 7 a term such that

p I “1: u — A cofinally where u = cf(A)” (where u < 4).

Since x,, is singular, u < k. Since the sequence (a j| J < w) is cofinal in k,
u < a, for some k. Without loss of generality we can assume that the length
of p > k. Using Lemma 3 for the collection of (Dﬂl B < u) where Dy is the
collection of conditions deciding the value of 7(8), we get ¢ < p such that,
for B < u, q determines 7(a) up to k-direct extensions. Since every possible
value of 7(B) is determined by some k-direct extension of ¢, and since there
are at most x,, such direct extensions, there are at most x,, possible values for
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7(B). Hence once we are below g there are at most x, possible values for
7(B) for all B < u. Since this set of possible values is bounded in 4,

g I+ the range of 7 is bounded in 4,
which is a contradictionto ¢ <p. 0O

We are now left with the main task of the proof of Theorem 1, namely
showing
vZEA ..

Ko Ky

Let 7, S be terms, 4 <K, ,and p € % be a condition such that p IF 7 is an
algebra on A with u operations and S is a stationary subset of A. Since, for
a <4, cf(a) <k, and since forcing the conclusion of A, Kt for a subset of

S instead of S is enough, we can assume without loss of generallty that
plFaesS —cf(a) <k

for some / < w. We can assume without loss of generality that also u < k,

and that the length of p is n, where /[ <n-—-1.

The main idea of the rest of the proof is to argue in ySn , where we assume
that the S part of p is in the S, generic filter G(S,). Recall that in ySa
Kk, is still supercompact. In VSh we shall get a “fake” version of 7 and of
S, and then use the supercompactness of k, to get an elementary substructure

of the “fake” 7% , of a regular order type less than x,, such that SN F is
stationary in sup(&%). This seems almost a proof of A, except that & isa

substructure of the “fake” 7, not the real 7 as realized in V7 , but the “fake”
7 and % will be similar enough to their “real” counterparts that we will be able
to extend ptoa condition in £ forcing that % is an elementary substructure
of the real 7 and that the “fake” SN.% isa subset of the real S.

Before we start defining the “fake” S and T, we have to normalize S some-
what. So for a little while let us argue inside % . For every member f € S
there exists some condition g in the generic filter G(&) suchthat g, Fa € S.
Since there are less than A many possible lower parts of g 5> there is a stationary
subset of S, T, such that for g € T, the lower part of s is fixed. Without
loss of generality we can assume that the lower part of p extends this fixed part;
hence

pIFT ={B|B <A, there is some q € G(F),
q trivial extension of p, g I+ g € S}

is stationary in A. The nice feature of T is thatif ¢ <p and ¢ II— aeT for
some a<i, then, for some n-length-preserving extenswn of p,q", g<q" <
p,q Fae T.

We now move to V57, In ¥+ define %" to be the set of q € & such that
length(g) > n and its S, part belongs to G(S,) . Partially order P asin L.
(Note that, by our assumption about G(S,), p € P* . We are slightly sloppy
here, since if the length of ¢ is k > n then its S-part formally does not belong
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to §, butto S, , but we can naturally consider S, to be embedded into S, if
k > n in such a way that G(S,) naturally induces an S, generic filter.)

Lemma 6. Let D € V be a dense subset of & . Then

(a) V5" EDNP" is a dense subset of " .

(b) If g € P*, k < length(q), then there is a k-length-preserving extension
of q, 4", ¢" € P*, such that q* satisfies the conclusions of Lemma 3.

This lemma implies that if we force with #* over VS we introduce a V
generic filter for &, so we can consider 7 to be a submodel of V5

Proof. (a) Let r = (g;/n—1 < i < w) be a member of S, suchthat ri-q € K7
but no extension of ¢ isin DN.P*.

Let ¢* be an extension of ¢, such that the length of ¢" is / > n, such that
its S-part extends (g,;|/ < i < w). (It can be done since rl- g € #".) Let ¢*
be an extension of ¢* in D of length m. Let (h|m < i < ) be its S-part.
Let r* = (g/|n < i< w) where g’ =g, for i<m and g =h, for i >m.
Clearly r* IF ¢** € 2" n D, which is a contradiction since r* <r.

(b) Let r be as above, rl- g € #*. Let m = length(q) . Find an m-length-
preserving extension of ¢, ¢*, such that if the S-part of ¢" is (h;|m < i < w)
then g, C h,. Apply Lemma3to ¢* toget ¢**, a k-length-preserving extension
of ¢**, which is in D modulo k-direct extensions. Let (A]|m < i < w) be
the S-part of ¢**. Define g/ =g, for n—1<i<m, g/ =h for i >m.
r"=(g'ln—1<i<w) extends r and forces ¢** to be in #*. O

We are now ready to define in V5 our “fake” version of the stationary set
T, T .

T" = {aJa < A, some trivial extension of p, which is in #", forces a € j"} .

Let g, € P*(a € T") be a trivial extension of p forcing a € T. g, has of
course the same lower part as p . Let (4, (a)lk > n), (F (a)lk > n), (g (a)lk >
n) be q,’s A-part, F-part, and S-part respectively. For a ¢ T* make q,=p.

Lemma 7. V5 E T* is a stationary subset of 4.

Proof. Assume otherwise, and let C be an S, term forced by r € S, to be
a closed unbounded subset of A disjoint from 7. Define an equivalence
relation ~ on §, by (gln -1 <i<w) = (hln-1<i< w) if, for large
enough i, g = h,. For r € §, let [r] be its equivalence class. Let V|, be
VI{Irllr € G(S,)}]. Clearly V C ¥V, C VS Clearly V] is obtained from V
by forcing, where the forcing notion is S, /~, namely {[r]|r € S,}, where the
partial order is defined by [(g;/n — 1 < i < w)] < [{h,|n < i < w)] if, for large
enough i, h, C g;.

Claim. V> is obtained from V| by a A c.c. forcing. Hence in V| there is a
closed unbounded subset of A included in C .

Proof of the Claim. Let G* = {[r]|r € G(S,)}. Clearly ¥, = V[G"] and G~ is
S,/ ~ generic over V. V5 is obtained by forcing with S,/G" ={r[reS,rle
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G*}. So we really claim that ¥, S /G" satisfies the A c.c. Let D be a term
forced by [r] (over S,/=) to be a maximal antichain in S, /G* . Let 0, be
Il i<icm Col(lc;r2 , <k,,,). Note that the cardinality of Q, is k,, ; hence we
can enumerate U, ,_,.., @, 1D a sequence of order type «,, (pﬂl B <x,),
where, for n < i, kK, < B <k, pg € Q,, - Also,for g€ S, , p€ Q,, define
g *p to be the element of S, , q", where ¢ (i) = p(i) for n—1<i< m,and
q* (i) =q(i) for i>m.

We now define by induction a decreasing sequence of elements of S, , (r ;;l B <
k,),suchthatif x, < B,y then,for n < j<i, rﬂ(j) = ry(j). (Namely, above
k; we “freeze” the coordinates of rg below i+1.) r, is r. For limit B de-
fine rp(i) = U)’<ﬂ r,(i). It is a member of S, since if K; < B <k, then if
J < i then Col(rc:*2 < k,,;) is closed under unions of cardinality < k; and, for
i <j, r,(i) is eventually constant below B. For defining the successor stage,
namely Tpit where I is given, consider the following statement:

)] 5 There exists a member of D , 4 , such that ¢ is compatible with rg*Dg
where, if pg € Q,,, 4m =Dpg-

(Note that if p s €0,,,then g <k, ) Define rg,y to be a condition such that
[rlm] decides the truth of CDﬂ , [rﬂH] < [rﬂ], and moreover if [rﬂH] I+ d>ﬁ
then, for some s> 4p [m= Py 4 compatible with rg*Dg.

[rs1l- a5 €8,/G NgzeD.

Since [rg 11 [gp] € G*, we must have gl < [qﬂ]. Since we can replace
rg.; by an equivalent condition and since, for j > m, dg(J) > rg( Jj) are com-
patible, we can assume that, for j < m, I al) = ﬂ( J) (hence since B <k,
our inductive assumption is satisfied) and, for j > m, rpa U )2 q5(J) -

Let r (i) =U p<x, rg(i). As before, it is easily checked that r_ € S, . Let
E={r_*plp € U,_icmee @m} - We claim that [r_] II—S"/z ‘Every element of
D can be extended to an element of E’. Since D is supposed to be an antichain
in S,/G" and since |E| < k,, (note that [r_]IF E C S,/G"), this will prove
that |D| < k. Assume our last claim fails; hence we can find s such that
[s]1 <[r,] and g such that [s]IFq € D but g does not have an extension in
E . Without loss of generality we can assume s < r__. Also [s] IF [¢] € G,
and hence [s] < [¢]. Hence there exists m such that, for m < i, s(i) 2 q(i).
Consider g[m . It appears in our enumeration as some pg (B <k,,). Consider
the statement @ 5 d clearly witnesses its truth; hence since [s] < [y +1]> we
must have that [rﬁH] I <I>ﬂ . Hence we also get [r,9+1] I 4 € D, where, for
J < m, q5(j) = pg(j) and, for j > m, rs(j) 2 44,,(J). Since, for j > m,
$(J) 21, (J) 2 rg,,(J) and s(j) 2 g(j), we get that sxp, < g, s*xpg < g, (as
members of S,), but [s]Fsxp; €S,/ G* ; hence

[s]E g and qp are in D and are compatible.

Since D is an antichain, we must have g = dp > but then 7 * Py Srp *Pp <

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

WHEN DOES ALMOST FREE IMPLY FREE? 799

4=4q. Hence g € E, which is a contradiction and proves the claim.

We resume the proof of Lemma 7. In view of the claim we can assume that
the closed unbounded subset of A, C, disjoint from T lies in V,. We force

over V% with %" . By Lemma 6 we get a & generic filter over V', G(&). In
particular we have a realization of the set 7', which in v s supposed to be
stationary. By the definitions of 7 and T it is clear that T C T*. We claim
that ¥V, C v?  1tis enough of course to show that {[r]|r € G(S,)} € v? . Note
that if g € & then its S-part determines a unique element of S,/ =, denote
itby 7, and since G(£) is included in #*, {glg € G(L)} C {[r]Ir € G(S,)} .
A simple genericity argument also shows that if [r] € G(S,) then, for some
g € G(#), q <[r]. (Assume otherwise; hence there is g € G(£),

g+ forno g* € G(#) [¢"1<[r].

But ¢ € #*, and hence g is in {[r]|r € G(S,)}. In particular g and [r] are
compatible. One can easily extend ¢ to ¢g* such that g* < [r], which is a
contradiction.) Hence {[r]| for some g € G(¥), q < [r]} = {[rllr € G(S,)}.

Therefore this set is in V7 . In particular C € v? ,but CNT" = J; hence

CNT =@. We showed that V7 E T is not stationary in A, which is a
contradiction. O

So we already get in V5" our version of the stationary set T, namely T~ .
We are now going to construct our version of the algebra 7. This algebra will

be defined not in ¥ but in a forcing extension of it. Let R; be

++

++
j n—1>

X Col(a”, k) x X Col(k]™, < a;) x Col(k}™,, < x,)
0<i<n

0<i<n
(where (o, ..., a,_,) is the a-part of p). For technical simplicity we re-
place R: by an isomorphic partial order R, = {{og, ..., a,_;)} x R; (where
({ags -5 ), 1) < ((@g, ..., a,), r') if r <r' as members of R); the ad-
vantage of using R, is that if g is of length n then the lower part of ¢ is in
R, , and for the rest of this section, whenever we shall refer to an R, generic
filter, we shall assume that it contains the lower part of p as a member.
Recall that in V5" we have defined #* C % . In VSR we shall define
P CP . qe P if g e P, q of length n, and the lower part of g is in
G(R,) . Note that, by our assumptions on G(S,) and G(R,), p € #**. Note
that any two members of &#** are compatible. (If g,, g, € ™" then their
lower parts are compatible since both of them belong to G(R,). Their S-parts
are compatible because they belong to G(S,). Any two A-parts and F-parts
are compatible. It is obvious for the A-part. For the F-part use the fact that
the equivalence class of F,(g,) and F,(g,) modulo U; belongs to the generic
ultrafilter G, . Hence

B, = {a|F,(q,)(a) is compatible with F, (q,)(a)} € U,

which lets us find a joint extension of the A-part and F-part of ¢, and g,
respectively.) Actually using the countable closure of S, x R, one can show
that if ¢,, i < w, are in &*", then they have a joint extension in #**.
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Lemma 8. (a) Let ® be a statement in the forcing language (over V') for P,
then there exists r € ™, r < p, such that r decides ®.

(b) Let D C % be dense, D € V ; then there is r € #**, r < p, such that
r is in D modulo direct extensions, and there exists m such that any direct
extension of r of length m is in D. (Note that, by the remarks above, any two
r’sin P which decide ® assign to ® the same truth value.)

Proof. Let ((h,Ji > n),t) € S, x R, force that the lemma fails, where we
assume that (A,|i > n) extends the S-part of p and ¢ extends its lower part.
Let p* < p be defined by specifying it to have ¢ as its lower part. Its A-
part and F-part are like p, and its S-part is (h,Ji > n). Use Lemma 2 for
p" and get ¢* < p* having the same lower part as p*, deciding ® up to n-
direct extensions. Let r < ¢* decide ®. By the remarks after Lemma 3 we can
assume the length of r is n. Let (h;.' |i > n), t" be, respectively, the S-part and
the lower part of r; ((h;|i > n), t") clearly force that r € #** and r decides
@ . Hence we get a contradiction since ((h;’li > n), t*) extends ((hli > n), 1).
The proof of (b) is similar, using Lemma 3. O

We are now ready to define the algebra t* in y5*R: - Without loss of
generality we assume that the type of 7, namely the sequence of the cardinals
specifying for each #» < w how many n-ary operations are in 7, is in V.
(We can achieve it, for instance, by assuming that v has u n-ary operations
for each n < w.) The algebra t* will be generated by the ordinals < A, so
each member of it will be a term (in the language appropriate for the type of
1) to a finite sequence of members of A. 1° will be completely determined
if we specify for each two terms whether they denote the same member of the
algebra (thus the elements of t* are essentially equivalence classes of terms).
If p and 5 are terms and B, 7 sequences of ordinals < 4, then p( ﬁ) = n(y)
if some g € P** forces p(f) = n(7). (p(B) can be interpreted in 7 to be
some ordinal less than A, similarly for #(¥), so they are considered to be the
same element in 7 if some g € #** forces these two ordinals to be the same.)

Note that by Lemma 6 either there is ¢ € #** forcing p(f8) = n(7) or there is
g € ™" forcing p(B) # n(7), and these two possibilities are exclusive.
We shall also define a well ordering of the elements of 7*. Namely p(f) <

n(7) if, for some g € #**, q I+ p(B) < n(7) as ordinals.

Lemma 9. t* is well ordered by the relation just defined.

Proof. Transitivity, antisymmetry, and reflexivity follow easily from the defi-
nition and from the fact that if ¢,, g, € ™" then g, g, are compatible in
P** . Given p(f) and n(7), if there is g € ™, q - p(B) # n(7), then there

is re 2™, rir p(B) < n(F) or rik n(¥) < p(B) (we cannot have r forcing the
negation of these two statements since such r will be compatible with g). It is

a well ordering because if g; € P (i < w) forces pi+1(ﬁi+1) < pi(/_f,.) , then
there is g € P extending all ¢ and then q__ I Vi(p,,,(f,,,) < p,(B),
which is a contradiction. O "

We implicitly assumed that A is a subset of ", by having a trivial term
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which is identified with the ordinal . Our next lemma shows that they are
cofinal in 7*.
Lemma 10. For each term p(ﬁ) there is y < A such that, in ", p(ﬁ) <7.

Proof. Note that &” satisfies the A c.c. (Any two conditions in %" agreeing
on their lower part are compatible.) Hence the set {6|0 < A some g € P*

forces p(f) = &} is bounded in A. Let y < A be such a bound. If g € ##**
then we cannot have g IF p( E) > 7, because then by Lemma 6 there is ¢* < ¢,
g eP, gl p(ﬁ) = ¢ . By definition of y we must have § < y, hence a
contradiction. O

We shall now show that the order type of * under the well ordering we have
defined is A. In view of Lemma 10 it will be enough to show that if % is the
initial segment of t* determined by y < A, then lAyl <K,
Lemma 11. |4 |<k,.
Proof. In V 7y is an ordinal < A = x;; hence there is a function in V',
fiy 4 k, . Recall that x, = ,_,k,; hence if ¢ € ™, q IF p(B) < 7,
then g I f(p(B)) € U< ¥;- For each | < w consider the statement ®; =

“f(p(B)) € k,>. We have g, € #™"; ¢, decides the truth value ®,. We
cannot have, for all / < w, g, - -®, because then we can find g < g, g,

for [ < o but g - f(p(B)) € U, *, AVI(f(p(B)) & k,), which is clearly
a contradiction. Hence, for every term in 4, p( E) , we can find some / < @
and g € #** such that q I f(p(f)) < K. S0 A, =U, A4, where

4, ={p(B)p(B) € 4,, some g € P forces f(p(f)) < x,}.

It will be enough to show |4, /[ <k, . Assume otherwise. Let {ps( ﬁa)lé <
K;} be a list of x; different terms in A4, ,. For each § < k, let D; be

the dense subset of & of those members of & which force pé(ﬁa) = { for
some ordinal {. By Lemma 6 we can find g; € ™", g; asin Dj up to direct
extensions. (Note that then there is an n < m; < w such that any direct
extension of g; of length m; is in D;.) Without loss of generality we can
assume that

a5 = ps(Bs) < v A fp,(Bs)) <K,
Also without loss of generality we can assume that m; is some constant m

(otherwise pass to a subset of { P,;(B:;)lfs < x:;} of cardinality rc(:) .
Given J,, 6, <k, let g5 5 bein P

a5, 5, s (Bs) # ps (Bs)-

Without loss of generality we can assume that ds, .5, < a5, and 95,5, < 95, - Let
q;l 5, be any direct extension of 955, of length m. q;l 5, Clearly isin " .
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Note that any two conditions in #* having the same lower part are compat-
. 5,6 5,,6 x = 5,6 3 5,6
ible. Also, for some &;'"™ #&,'"?, 95,5, I+ pf’.(ﬂt’l) =& Ap«’z(ﬂﬁz) =&,
Now define in V5m#1*Rn 5 partition on [,1]2 : the two member subsets of 4. For
4, <9,,

g({8,, 6,}) = (lower part of q;laz).

Since q;l 5, is of fixed length m , we have at most x,, many possible lower parts
of q;‘ 5 So the range of g({J,, d,}) is at most of cardinality k, , which is
less than «x, . (Note that since R, is of cardinality < k, in VS x R,, x,

is still a strong limit cardinal.) By the Erdos-Rado theorem (see [E-R]) we can
find 4 C 4, |4| > k;, with the order type of A4 a limit ordinal such that g

is constant on [4])*. For 8,,0, €A, q;l 5, are in &*, and they all have the

same lower part; hence any two are compatible. So if J, < d, € 4, 66'52 does
not depend on 4, , so denote it by {‘5' . Also, clearly é‘s‘ <y and f (55‘) <K.
It is also clear that if J, < 6, then églal = é‘s'; therefore, for 4, # 4, in

A, & # &% but then f(E) # f(E®) (f is 1-1), and we get more than K,
different elements of «, , which is an obvious contradiction. So |4, || <k,. O

We now step back to S , where 7 will now be considered to be a R, term
for an algebra on A forced to be well ordered by < in order type A. Abusing the
notation we can also consider 7° to be a term in V> for the forcing R, . The

main reason for moving down to VS s that, in S , K, 1s still supercompact;

hence we can find a normal ultrafilter U™ on P_ (4). By the choice of U, we

can assume that U” projects to U,. In V5 consider the structure
-.@=(I/0,A, T*"@*’p,Rn,T*>

for @ large enough. A standard use of the supercompactness of «, (see for

instance [S-R-K] or [K-M]) will prove

Lemma 12. The set

E = { P € P, ()| for some elementary substructure of &, 8", P =% N4,

PI=|Z"|, Pe () 4
AeU n&B*
isin U*.
T" is a stationary subset of A, all of its points having cofinality less than

K, . Also, in ySa , A= x:w“ . Another standard supercompactness argument
shows that the set

E, ={P € P (A)|P Nk, is an inaccessible cardinal, the order type of P

+w+1

is (PNk,) , T" N P is stationary in sup(P)}

isin U".
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Lemma 13. Let Pe ENE, NA, (p). Let # * be an elementary substructure of

B witnessing the fact that P € E. Then there is a condition q € #* of length
n+1, such that a,(q) = PNk, and such that q extends every trivial extension

of p whichisin P*NB".
Proof. Let a, = PNk, . We define g as

(a()’ LR ’an’ (A;|n <J)’ gO, cee gn, g;_‘_laf;]a LR 7f;,_1)f:9
(Fln < j), (g]In+1<j)).
(We have used the superscript * for every component of g which is different

than the corresponding component of p.)

* . . . . . . .
Aj is the intersection nAerng‘A' It is in U; (for j > n) since the

cardinality of " is less than K, <K;. (Note that &~ is in V5 | but since
S, is x, closed, BNV isin V; hence we intersect a family of sets in V' .)
Similarly g; for j > n is defined to be the union of the jth components of
G(S,)NZ *. Again the fact that S, is k, closed guarantees that this union is
in ¥, anditisin Col(x;”,, <x,).

f,} is defined to be J{F(a,)|F € B~ [Fly €G,}. We have to show that

f) isin Col(oz;‘"+2 , < k,). We assumed that for every 4 € U, NZ" we have

P € 4; hence, since U, is the projection of U, , we get that, for 4 € U N%",
PNk, =a,€A.If F and F* arein B" and [F], ,[F'], € G,, we get

X={B<xk,|F(B), F'(B) e Col(B™°%?, < k,), F(B), F*(B) are compatible}

eU,. If F,Fre®" ,wehave X =U,N&",s0 o, € X. Therefore f, is
the union of |#*| mutually compatible conditions in Col(a}“*?, < k), and

as before this union is in V. |#*| = |P| = a]°""; hence this union is in
Col(a] ", < k,).
By the way, this is the point that blocked us from collapsing any cardinals

between @, and /"', and it is the reason that the proof of Theorem 1 does

not work for cardinals less than X W4
For j>n and B € 4] we define F(B) = U{F(B)|F € F", [Fly €G;}.

An argument exactly like the one for f, shows that Fj*( B) € Col( ﬂ“’+2 , <K j)

and that [F;]U_ eaqG ;- We have proved that ¢ is a condition. The fact that
J

g extends every trivial extension of p in #* N.%" follows immediately from
the definition of ¢. O

We are now ready to verify A, LR, isin V7. Let P€ En E,, and let
o’ w+l

Z" witness that P € E. Let o = PNk, =% Nk, . Let ¢ be as in Lemma 13.
We claim that g forces that the subalgebra of 7 generated by P has the same
order type as P and P is cofinal in it. Note that g forces that the order type

of P is a regular cardinal in yv? , since a,(q) = PNk, , the order type of P
is (Pnk,)"*", and no cardinals are collapsed between «, and atft? . Also
note that, for # € T* N P, some trivial extension of p in %" forces B € T,
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but by Z* being an elementary substructure of % , such an extension is in
F*, so q extends it; hence g forces that § € T. Since we have P € E,,
PNT" is stationary in sup(P), we get that g forces that 7N P is stationary
in sup(P). So if we verify the claim, we get that g forces that the subalgebra

generated by P is a witness to A, LR, Note that we use the fact that,

[} w”+1

while the argument takes place in S , P and g are in V so the witnesses
arein V.

Claim. g forces that the subalgebra of t generated by P has order type |P|
and P is cofinal in it.

Proof of the claim. Let &/ be the subalgebra of 7 generated by P. t* is an
algebra in (VS")R" of order type 4, so let 4 be an R, term in VS: forced
to be an order-preserving map from t* onto A. R, satisfies k, c.c. Hence
for every term p(#) there is a set of cardinality less than «,, X = X () >
such that every condition in R, forces that h(p(#)) € X. If # € P then
by PNA=%" we get that X C P. We have shown that the subalgebra of
7" generated by P has order type |P|. A similar argument shows that P is

cofinal in it. Also, using again the x, c.c. of R, , we get that the subalgebra

of * generated by P (we denote it by &%) is in (V)% , where R is

+w+2 +2 : :
X o<icn COl(e; K X Xogion(i )5 < a;) x Col(k < a). Since §, is

K, closed, & isin v Forcing with & (provided g € G(&)) introduces
a generic filter for R, . (We denote this generic filter by G(R;).) Hence we
can assume that &~ is in V7 . Our claim will be finished if we show that q
forces that ./ is isomorphic (including the order) to .%* by an isomorphism
which is the identity on P . The isomorphism is quite clear. A member of &
has the form p(#) where p is a term in the signature of 7 and # is a sequence
of members of P. We map p(7) to the equivalence class of this term in t*.
In order to show that this is a well-defined map which is an isomorphism we
have to show that if p,, p, are two terms in the signature of 7 applied to
some members of P (we do not mention these members of P explicitly) and
if p, =p, (p, < p,) in the sense of & then p, =p, (p, < p,) in the sense
of & . But p, = p, (in the sense of &/ *) means that for some r which is
a trivial extension of p and some ¢ € G(R;), if r* is the condition which is
like r except that its lower part is ¢, then r* forces p, = p,. By B~ being
an elementary substructure of % we know that we can assume that r € &~ ;
hence g extends r. Hence r € G(&). By definition of G(R}) in V" we
know that r* € G(2); hence p, = p, in the sense of 7. The argument in the
case p, < p, (in the sense of &/ *) is similar. O

n—1°

This completes the proof of Theorem 1. O

For future references in the next section we need to consider the problem
of modifying our forcing construction, so as to get A, » for all regular u >

p > x; for some u. Essentially the only facts specific to rc;') in the proof
of Theorem 1 were that U, (n < w) was forced by S, to be the projection
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of a normal ultrafilter on P, (KZ) , in the forcing extension v, F,, and that
{P|P € P_(x}), the order type of P = |[Pnk|**"'} € F,. (Note that {P|

order type (P) < |PNk|™*'} € F is enough for the proof of Theorem 1.)
So suppose that we are given a cardinal u >k, and a sequence of ultrafilters
(U,In < w) and a sequence of functions (A, |n < w), h,: k, — K, , such that
every condition in §, forces that U, is the projection of a normal ultrafilter
F,, on PKH(,u) , such that

{P|P € PK"(,u) , the order type of P < h (PNk,)} € F,.

(Note that U, is then forced to be the projection of a normal ultrafilter on
P_(p) forall p < u.) We can then define an analogue of our forcing no-
tion P , where the only difference in the definition is that we require f; €
Col(h,(a,)*, < k,) (in our previous argument 4,(a,) = o ®*"), and similarly
F,(d) € Col(hi((S)+ , < k;). The proofs of Lemmas 2-4 are as before; Lemma
5 should now read “All cardinals p < u, p >k, , are preserved”. The proof
for p > x; simply follows from the fact that, since we assume G.C.H. above

K, the cardinality of & is KZ; . (We cannot claim now that x, is R .. The
index of x, inthe N sequence depends of course on the functions (4,|i < w),
because they determine how many cardinals we leave uncollapsed.)

We claim that in V¥ we have A, p for all regular p < u. So again we are
given terms 7, S for an algebra 7 on p and a stationary subset of p, S. We

are also given a condition p of length n. We assume that if p = n*, where
n is singular of cofinality less than «  , then cf(n) < k,_, . The definitions of

T,T" in VS: and the proof that T™ is stationary in 5 go as before. (They
are actually simpler if p > K;; , because |#| = K; .) Also the definition of the
algebra * in V5% is as in the proof of Theorem 1. The only proof that
requires modification is the proof of Lemma 11, namely showing that

Lemma 14. In our modified situation |4,| < p (for y < p).

Proof. We distinguish two cases.
Case 1. p is inaccessible or it is the successor of a cardinal whose cofinality is
>k, . Note that by G.C.H. holding above «,, |y"»| < p. As in the proof of

Lemma 9 let {p‘;(ﬁ(,)lé < p} be a sequence of terms, such that, for J,, d, < p,
3,5 € P 4y - ps (Bs) <y NP5 (Bs) <y Aps (Bs) # ps (Bs)

For 6 < p let g5 € ZP** be in D, up to direct extensions (where D; are the

dense subsets of those members of % which force p;(8;) = { forsome { < p),

and without loss of generality assume g; I- p;( ﬁa) < 7. Every direct extension

of g; is determined by some «,,,,..., @, < k,. So define Hy: x;w -y
by Hy(a,,,,.--,a,) = the unique {+ 1 such that the direct extension of

g; determined by «,_,, ..., «, forces p a(ﬁa) = { if such a direct extension
exists, and 0 otherwise. Hj is essentially a function from x, into y; hence
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by our assumption we have less than p such functions. Therefore we can find
6,,9,<p, 6, #96,, such that H, 5, = H 5, - It immediately follows that every
condition extending g, and a5, forces Ps, (Bﬁl) = péz(ﬂﬁz) , which contradicts
the fact that 95, > 95, » and ds, 5, are compatible.

Case II: p = n* where cf(n) < x, - Hence cf(n) < k, for some /, and

we assume that we have / < n. As in the proof of Lemma 11 we pick a one-
to-one function f, f:y — n. Also let n = sup(n,|{ < cf(n)). Again let

(ps( ﬁ 5)|0 < p) be a counterexample to the fact we are trying to prove.

Claim. For each & < p, 3q; € P** and {(8) < cf(n) such that g5 - f(p;(B;))
€ Ne(s) -

Proof. Assume otherwise; let ((h;|i > n), t) € S, xR, force that the claim fails,
where we assume that (h;|i > n) extends the S-part of p and ¢ extends the
lower part of p. Let p* have ¢ as a lower part, (h,Ji > n) as its S-part, and
be otherwise like p. Let o, (¢ < cf(n)) be the statement “f(pa(/?:;)) en’,
By the remarks following Lemma 3 (using cf(n) < k,_,) we can get an n-
length-preserving extension of p*, ¢, such that ¢ decides <I>{ modulo n-direct
extension for all { < cf(n) and satisfies (c) of Lemma 3 with respect to each
CDC . Since we must have “f(pa(ﬁa)) €n” for some ¢ < cf(#), let ¢* be an

extension of g forcing “f (Pa(ﬁa)) € n,” for some { < cf(n) . By the properties

of g, ¢* can be assumed to be an n-direct extension of g of length n. Let
(h7]i > n) be the S-part of ¢* and ¢ its lower part. Clearly ((h;|i > n), t")
extends ((h,|i > n), t) and forces ¢* € #*, but ¢* can serve as g, in the
claim and { as C( 5@ contradiction. O

Without loss of generality we can assume that {(J) is the constant { for
0 < p. Now the proof is like the proof of Lemma 11; namely for § < p we
pick g; €
qs - pa(ﬂ,s) <7A f(p,s(ﬂg)) <M,
and g5 isin D; up to direct extensions (where D; is the dense set of members

of P forcing a specific value to P(s(ﬁa)) , and such that getting into D; we
have simply to take a direct extension of g; of length m; (which without loss
of generality we can assume is a constant m.) Again we pick for 6,,d, < p,
955, € P, g5 5, extending g, , g, and forcing p; (8;) # ps (Bs) -

Defining the partition g(d,, d,) = lower part of 45,5, and using the Erdos-
Rado theorem again (remember that 5 is strong limit) to get a homogeneous
set for g of cardinality > N yield a contradiction as in the proof of Lemma
11. O

From now on, the proof of A,
Thus we proved

p is exactly as in the proof of Theorem 1.

Theorem 15. Assume (k,|n < w) is a sequence of cardinals. k, = sup(k,|n <
), u> kK, . Assume that G.C.H. holds above k, and 2 = rc: . Assume also
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that x, is u supercompact if we force with S, . Let (f,|n < w) be a sequence of
functions f,: k, — k, and (U,|n < w) a sequence of ultrafilters such that every
condition in S, forces that there is a normal ultrafilter in P, (1), F,, such that

F, projects to U, , and
{P|P € PK"(,u) , order type of P < f,(PNk,)} € F,.

Then if we define & as in Theorem 1 (except that we use Col(f (ai)+ , < K;)
instead of Col(oz;“”2 <k;)), then e E A, , Jorall regular x,, < p < p.

The reason we were so particular to enumerate all our assumptions again is
that we are going to apply Theorem 15, not in V', but in some generic extension
of V, ye , and so we shall have to verify that all our assumptions are satisfied.
Note that if Q is rc; closed forcing and that we define & in V< as above
(using (U,|n < w) and (f,|n < w)), we get that & € V. (This does not mean

that V7 E A for k< p < u, because the assumptions about (U |n < w
Ky P [ n

and (f,|n < w) are satisfied only over V<, so we only get yo? = pfe g

A, for k,<p.)

Ky

4. THE FIRST CARDINAL FIXED POINT CAN BE FULLY COMPACT
In this section we prove

Theorem 1. Assume the consistency of infinitely many supercompacts;, then there
is a model of set theory in which the first cardinal fixed point (namely the first
a such that a =R ) is fully compact (i.e., for every notion of freeness satisfying
Axioms 1™, IL, 111, 1V, VI, VII, and A for a cardinal x < x, if (A, B) is k
free then it is free, where k is the first cardinal fixed point). Also G.C.H. holds
in the model. (Note that, in view of §1, we cannot have a smaller fully compact
cardinal.)

The main tool for the construction will be the principle A e where for
many cardinals, x4, we shall get also A, . 10 hold in our model, where « is the
first cardinal fixed point. We do not know how to get a model in which A _
holds for all regular z > k where x is the first cardinal fixed point (we actually
suspect that it is actually false). The first cardinal for which we can construct a
model in which A, holds for all regular u > x, where k is the first cardinal
fixed point of second order, namely the first k such that {ala =R , a <k}
has cardinality x . The last construction is a variation on the proof of Theorem
1, and we shall omit it in the present paper.

As in §3 we start with a sequence of @ many supercompact (x,|n < w),
where k, = sup, .k, G.C.H. holds above k, as well as k, . We also assume
that, for each n, k, directed closed forcing does not destroy the supercompact-
ness of x, .

Recall that Col(a, < B) is the partial ordering for collapsing all cardi-
nals strictly between a and S to a; namely it is the set of all partial func-
tions of cardinality less than o whose domain is a subset of {y|y a cardinal,

@ < y < B} x a. In particular, note that if 8 = §* then Col(a, < B) has
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cardinality J, and if f§ = o' then Col(a, < B) is the trivial forcing no-

tion. For regular a < B let Col*(a, < B) be the Easton support product
of Col(y, < B) for successor y, a < y < B, where if there are no cardi-
nals between o and B we assume that Col*(a, < #) and Col(a, < B) are
the trivial forcing. (In the presence of G.C.H.Col"(a, < ) is essentially the
same as Col(a, < B), if B is a successor cardinal.) The advantage of using
Col*(a, < B) is thatif a <y < < B then Col*(y, < d) is neatly embedded
in Col*(a, < B) (namely forcing with Col*(a, < f) introduces a generic object
for Col*(y, < 8)). Col*(a, < B) is a closed. If G.C.H. holds between «
and B, it has cardinality < #. If B is regular and G.C.H. holds between
a and B, then Col*(a, < B) satisfies the B chain condition, unless g is a
successor of a singular cardinal or if § is an inaccessible which is not Mahlo.

Let B be a set of cardinals. We shall try to define a forcing notion S(B) that
will collapse as many cardinals as possible in the open interval (inf(B), sup(B))
while trying to preserve the cardinals in B. We cannot always succeed in pre-
serving all the cardinals in B, the problematic cases being singular cardinals,
successors of singulars, and inaccessible cardinals which are not Mahlo, so in
order to have some concrete information about which cardinals are preserved
we shall assume that no member of B is singular, the successor of a singular,
or non-Mahlo inaccessible. We also assume that if # is a limit point of B
which is less than the sup of B (in the sequel n will always be singular) then
n*" isin B. B satisfying all the above properties shall be called a “good” set
of cardinals. If B is good, let B* be B without its last element (if B has a
last member). For J € B* let & be the first element of B > 6. S(B) will be

defined as the Easton product of Col*(d, < J) for § € B*. Formally

S(B) = {f|f is a partial function on B*, for a € Dom(f)
f(a) € Col"(a, < @) and all regular u, |f[(BNu)| < u}.

S(B) is clearly inf(B) directed closed. Also if B C C and C is good and
has the same inf and sup as B, then forcing with S(B) introduces a generic
object for S(C). (If € C* and § is the corresponding element of C, then
for some a € B, a <6 < < a (where @ is the corresponding element of
B and then Col*(a, < ) pick a generic object for Col*(d, < §)). Combining
these generic objects yields a generic object for S(C).) If u € B, then S(B) is
isomorphic to S(BN (u+ 1)) x S(B — u). Note that, in yS® every cardinal
between inf(B) and sup(B) is in the closure of B, so there are at most |B|
many cardinals between inf(B) and sup(B). If G.C.H. holds between inf(B)
and sup(B), a € B, then « is still a cardinal in yS® (Here of course we use
the fact that B is good; namely no member of B is successor of a singular or
a non-Mahlo inaccessible.)

Definition 1. A set of cardinals B is adequate if B is good, inf(B) =«_ ", and
|B| < IC; ;and if o issingular, o** € B, and cf(a) < K; , then BNa is cofinal
in a.

Note that if A is a regular cardinal which is not a successor to a singular or
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a non-Mahlo inaccessible, 4 > K, , there exists an adequate set B such that
A € B. Also the class of adequate sets is x; directed; namely for every subset

of it of cardinality < x; , there is an adequate B containing all the members
of it.

Definition 2. Let A be a regular cardinal 4 > k. A stationary subset of 4,

S, is called bad if, for all adequate sets B with sup(B) > A, VS® £ § is not
stationary in 4 and, forall a € §, cf(a) <k, .

Bad stationary sets cause us trouble in the construction below, so before we
start our forcing construction we would like to make sure that there will be no
bad stationary sets. So we shall start by iterating a forcing that destroys bad
stationary sets. Note that by our assumptions bad stationary sets can occur
only at the successor of a singular cardinal of cofinality less than x , because
if A, which is not the successor of a singular of cofinality less than x,, 4 >
K, satisfies, for p < 4, p e < A (we use here G.C.H. above K,), then an
argument of Baumgartner [Bal] shows that a stationary subset of A of points
of cofinality less than x, is not destroyed by a forcing notion which is <k,
closed. If B is an adequate set of cardinals, S(B) is KZ closed. Note also
that if 2 = 77" where 6 < k,, N > Kk, , then there are no bad stationary
subsets of A for the trivial reason that we can take B = {n™"**|p < 6}u{A*"}
and B is an adequate set such that S(B) is trivial, so it does not destroy any
stationary subsets of A.

It is easily seen that the definition of bad stationary subset of A can be
formulated as follows: For every adequate B C A~ , B cofinalin 4™, ySB e s
is not stationary. (By the previous remark we can consider only A’s which are
successors of singular cardinals of cofinality < k ; hence 4, the predecessor
of A, is defined.) The reason is that if S C A is not bad, then for some adequate
C with sup(C) >4, 1€ C, VSOES is stationary. Then for every adequate
D containing C and having the same sup, we have 5P ke S s stationary.
(Recall that S(C) neatly embeds S(D).) So we can assume, without loss of
generality, that A" isin C. Hence C N A~ is cofinal in A~ . (Recall that we
are assuming that the cofinality of A~ isless than k,.) S(C) is isomorphic to

S(CN (A" + 1)) x S(C = 2*). Hence V5@ +D) L § is stationary, but since
C iscofinal in A7, S((CNAT+1))=S(CNA7). CNA~ is clearly adequate,
so we have found an adequate B C 4™, cofinal in A~ , such that VSB e s s
stationary.

We are now ready to introduce a forcing notion that will kill all bad stationary
sets. (Killing a stationary set means shooting a closed unbounded subset through
its complement.) So let A >k, be a singular cardinal of cofinality < k. We
shall define P* to be a forcing notion that kills all the bad stationary subsets
of A*. P* will be defined by iteration of length A", (P;1 ly < A7*) (we shall
omit the superscript A because it will be fixed for a while). For limit y, P,
will be the limit of (Pﬂl B < y) with supports of size <1 (namely if cf(y) <4
we take the inverse limit; for cf(y) > A we take the direct limit). For successor
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A,say y=8+1, we pick a Py term 7, forced in V% to be a bad stationary
subset of A (if there are none, make Py = Py) and R, (in v 7} to be the
forcing notion for introducing a closed unbounded subset of A* disjoint from
T, namely a member of Ry is a closed bounded subset of A* disjoint from
T,. One such closed subset extends the other if it is an end extension of it. P
will be Py * Ry ; P* will be Pf++ . It will follow later that Py has a dense subset

of cardinality < A" ; hence P’ satisfies the A** chain condition, and therefore

any subset of A* in v s already in V" for some y < A**. Also we shall
prove later that P* is distributive enough so that if a subset of A" is bad in

yP , it is bad in some V% for some y < ™" . So as usual we shall “dovetail”
picking the terms 7, (y < A*") such that every bad subset of A7 in VP will

be picked at some point, y, and hence in vh+ it is not stationary. A forcing
notion P is called f+ 1 strategically closed if player II has a winning strategy
in the game of length B, where players I and II alternate picking a smaller and
smaller element of P, (p,ly < B), where at limit stage it is player II’s turn to
play. Player II wins the game if (p |y < B) has a lower bound. (See [Sh3] for
basic facts.)

Lemma2. P* is 1+1 strategically closed.

Proof. Since A+ 1 strategically closed, forcings are closed under iteration with
supports < 4. It is enough to show (for y < A**) ¥k R, is strategically
closed, where we also carry an induction assumption that Py is A+ 1 strategi-

cally closed. Hence V" has the same subsets of A as V ; therefore, in vh , A
is still a singular cardinal of cofinality < k. We now argue in vh.

Pick any adequate subset cofinal in A, B (we can have an adequate subset
cofinal in A since cf(d) <« ). 7, is a bad subset of At . Hence V5® g T, 1s

not stationary; hence let p be an S(B) term such that yS® p 1is a closed
unbounded subset of A" disjoint from 7,. For ue B*, peS(B),let p[u be
the restriction of the condition p to cardinals less than or equal to x. Recall
that p is a function defined on B* so p[u is actually p[B* N (u+ 1). Note
that if (ps|d < 1) is a decreasing sequence of members of S(B), such that, for
all ue B*, u<n, ps[u is eventually constant (below 7), then the sequence
(ps|1 <6 < n) has a lower bound in S(B), g, such that, for u < n, gfu is
eventually equal to p,[u. (Note we start indexing moves in the game by 1.)
We now describe a winning strategy for player II in the game witnessing
the strategic closure of Ry. Player II, besides playing the required elements
in R, (py|l <46 < 1), also plays (on the side) a decreasing sequence of

elements of S(B), (g,5/6 < 4), such that if J < 6’ then 4,51 B(3), where
B(6) is the minimal member of B* above J. He makes sure that always
4,5 I+ sup(p,;) € p. Suppose we are at successor stage, player II played as
his last move p,; (and g,; on the side), and player I responded by playing
P51 < Dys - We have to specify player II’s answer. Since p is a term for an
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unbounded subset of 1™, he can extend 4,5 10 4,5, such that, for some ordinal

1> sup(Pys, ), dps,, F 1 € p. He can even do it such that g,; ,[8" = g;[8”
where B* is B(20 + 2) (which is the same as B(J)). The reason he can
do it is that S(B) is isomorphic to S(BN (B + 1)) x S(B — B*), where the
first argument in the Cartesian product is of cardinality less than A ; hence by
standard arguments V5% k {a|a < A", some g € G(S(B - B")), qF o € p}
is closed unbounded in A" . (By G(S(B — 8*)) we mean the canonical generic
filter in S(B — B*) introduced by forcing with S(B).) Therefore it is enough
to extend ¢,; above B” to force an element of p above sup(p,; +1) - Player IT
now plays p,; , = D,s,, U{u}. It is an element of Ry because it is a closed
subset of A* and u ¢ 7. (If we had u € T we could not have a condition in
S(B) forcing u € p because p was forced to be disjoint from 7.)

For limit J let g; be a lower bound of (g, 5/|6' < 6). Such a lower bound
exists because if u € B*, u<J then, for u<d’, B(6') > u. Hence g5 [u is
constant for &' > u. If § = u € B*, then ¢ is a successor cardinal; hence, for
large enough &' < 8, B(6’) = &, and hence gy [0 is eventually constant. So
by the above remarks (g, a,lé' < J) has a lower bound g¢,; (actually 26 = J)
satisfying that g,;[u is eventually equal to g,; [u for 0' < ¢ if u<é. Player
Il plays g5 = Uy 5 Po5r U {sup(Uy o5 Po5')} 5 P; 1s clearly closed (each p,; end
extended the previous p,s). The only problem in showing p; € Ry is to show
that o = sup(Uy _sP,5) ¢ T, but, for each 6’ < &, g,z - sup(p,s) € p, and
hence g,; I+ sup(p,;) € p. Since p is forced to be closed,

dy5 IF o = sup({sup(p,;/)[d’ < 8)) € p.
Hence we must have o ¢ 7. A similar argument shows that if player II was

following this strategy through A many steps, then (ps|d < A) has a lower
bound. O

Note that in Lemma 2 we did not use any special properties of V' except the
G.C.H. above k. So it holds in appropriate forcing extensions of V.
Lemma 3. P’ satisfies At -c.c.

Proof. P is the direct limit of the P, for y < A" where, for y of cofinality
AT, P, is the direct limit of P; for J < y. By a standard argument it is enough
to show that P, satisfies 2** c.c. This will follow easily if we show that P, has

a dense subset of cardinality A*. A member of P, can be considered to be a
sequence (4|0 < y), where, for d <y, 5, is a term forced by every condition
in P; to be a member of R;. Also the set {J < y|n; # &} has cardinality < 41.
By Lemma 2, P; is A+ 1 strategically closed, P; introduces no new bounded

subsets of A*, and hence every member of R s isin V. (We are not claiming
that R; isin V'.) Let P; be the set of all members of P, (nsl6 <), such
that, for all 6 <y, n; =¢; for some ¢; € V. ¢; is a bounded subset of 1™,
so using G.C.H. we can show that the cardinality of Py* is A*. Using Lemma
2 again we can show that Py* is dense in P. O
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A
It follows from Lemma 3 that every subset of A in Y s already in vh

for some y < A** . Note also that in view of Lemma 2, forcing with P* does
not change the collection of adequate subsets of A or the definition of S(B) for

an adequate B C A. Hence if 7 is a bad subset in y? , we can find d < At
such that u is already bad in V% for every y > d. (Pick J large enough so
that 7 € V5 .) Also make sure that, for every adequate B C A, in vE we
can find an S(B) term, forced by S(B) to be a closed unbounded subset of A*
disjoint from 7. We can find such a § because there are at most A" adequate
B C  and an S(B) term for a subset of ¥, #(B), can be coded by a subset
of A*; hence it belongs to some V% for 6 <A™ large enough. (We can also
verify that once this term belongs to ¥/ ; we have that V% £ S(B) - “n(B) is
a closed unbounded subset of 4™ disjoint from 7.”) The above remarks show

A
that we can pick the terms 7, for y < At such that every 7 € ¥ which
is a bad subset of A* will be the realization of some 7, and hence it will be

A
nonstationary in " . We have proved
Lemma 4. Under appropriate choice of the terms <, for y <A™,

A
VP E there are no bad stationary subsets of A" .

Now we are going to iterate the forcing notions P through all the singular
cardinals 4 > k. So the steps of the iteration will be denoted by Q  («
an ordinal), where Q, is the trivial forcing notion, and if « is not a singular
cardinal bigger than x, or cf(a) > x,, Q, ., = O, * (the trivial forcing) .
The only case in which we do something interesting is when « is a singular
cardinal greater than k, but whose cofinality is less than x,. In this case
Q.1 =0, * P® (P“ is of course taken in the sense of VQG). At limit o we
take Q  to be the inverse limit of (Qﬂ| B < a), where for regular a we take
Q, to be the nonstationary limit; namely the support must be a nonstationary
subset of o. Note that this assumption is meaningful only for inaccessible «
since, for successor a, say a = 81, we iterate the trivial forcing between g
and a. The final forcing we shall use is Q = | Qﬂ , which is a class forcing.

Note that, for each singular 4, Q = Q, * Phx (the iteration of Pl/ for ' > 1).
This last iteration will be denoted by Qf". (The iteration between o and f
will be denoted by Q?.) P* for 2’ > 1 is by Lemma 4 (applied in V%)

a A strategically closed forcing, and hence QJ° is A*’ strategically closed.
(We use the fact that we were using inverse limits at singulars.) This can be

used, by the usual arguments, to show that 79 is a model of set theory (see
for instance Jech’s book [Je] where we replace the completeness argument by

strategic closure). We can use it to show that 2 E G.C.H. above K, - Also
all subsets of A* in V' are already in V% . So S C A" isbad in V¢ iff it

is bad in V% = (VQi)PI1 (P'{ is taken in the sense of VQ‘) . Using Lemma 4
in V% we get that in V< there are no bad stationary sets.
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From now on our ground model is going to be 72 . Our main problem now
is that the k, for n < w are probably not supercompact. The following lemma
will allow us to recover some of their supercompactness.

Lemma 5. Let A be a singular cardinal, B adequate such that A = sup(B) ; then
Q,.1*S(B) is essentially p = x; directed closed (where a forcing notion is said
to be essentially u-directed closed if it has a dense subset which is u-directed

closed).

Note that S(B) is taken in the sense of %+ | but it is the same as S(B) in
the sense of V< or of V% (since P* does not introduce new subsets of A).
The lemma is easy for the A which is the first cardinal such that A carries
a bad stationary set, because by forcing with S(B) first (it is the same in ¥V
and VQ“') we get that all the “stationary” sets we try to kill are already killed
by S(B),s0 Q,,, isa < At closed forcing, so the lemma follows in this case.
This is the main idea behind the proof of the lemma, except that in the general
case we need much more elaborate bookkeeping of portions of S(B)’s (taken
in different models of set theory).

Proof. Recall that in the definition of P’ (as an iteration of the length y*™)

we used a sequence of terms (7)|u < y*") (7}, was essentially a Q, * P, term

for a bad subset of y*). Since r!yl is bad it is destroyed by any S(C) where
C C y, C adequate, and C cofinal in y. For every y (limit singular cardinal
of cofinality < k), y < 4, we shall define Cy Cuy, Cy adequate and cofinal
in y, and a neat embedding of S(C,) into S(B) (namely a way of getting a

generic filter of S(C,) from one for S(B)). Since S(C,) in the sense of V%
is the same as in the sense of ¥'% , which is the same as S(C,) in the sense of

&t (u<yty,
7 . :
' Q*ExS(G) r:; is not stationary.

Therefore in V%% there is an S(C,) term p,yl such that it is forced by S(C,)
that pz is a closed unbounded subset of y* disjoint from ‘L’Z. Since we will
have an embedding of S(C,) into S(B), we can consider pz to be an S(B)

term (in VQ‘“) denoting, of course, a closed unbounded subset of 7™ .

Cy will be defined as follows. If BNy is cofinal in y, then Cy =(Bny);
otherwise, BNy is bounded in y and by B being good BNy has a maximal
element u. In this case we put C, = (BNny)u D,, where D, is an adequate
unbounded subset of y whose minimum is above x. (We use the fact that
cf(y) <k,.) Incase BNy is unbounded in y, there is a natural way to embed
§(C,) into S(B) (for f €SB, fI(BNy) isin §(C))). In case BNy is
bounded in y, we identify a condition f € S(C) with f* in S(B) as follows.
Let u be sup(BNy). The domain of f* will be (domain(f)N B)U {u}. If
0eC, d<yu,then 6 € B and we put f"(d) = f(6). (Note that f*(J)
belongs to the right set, namely Col*(d, < d), because & in the sense of B is

the same as J in the sense of C.) For 6 = u we want to define f*(u) as
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a partial function in X U< p<i Col(p, < ) where z is the next member of B
above u. f*(u)(p) will be defined only if p is a successor cardinal between
4 and y such that, for some 7 € Cy , N < p <7, where 77 is the minimal
member of C, above 7. In this case we put f *(w)(p) = f(n)(p). Note that
S (u)(p) belongs to the right set, since it belongs to Col(p, < 7) which can
be considered to be a subset of Col(p, < &), since # < &. It can be easily
checked that the map we defined is a neat embedding of S (C,) into S(B).

For f € S(B), y <A, y alimit cardinal, we define f[y as follows (we are
not assuming y € B). If BNy is unbounded in y, then f[y is f[(B*Ny). If
it is bounded and yx = sup(BNy), then f[y is fT(BNu)U{(u, f* (1))} where
ST (p) = f(w)(p) if p < 7, and is undefined otherwise. f[y is essentially
the information f gives about collapses where the target cardinals are below
7. Note that if (f |a < p) (p < y) is a decreasing sequence of elements of
S(B) such that, for all 4 <y, f [u is eventually constant, then this sequence
has a lower bound in S(B). Also a decreasing sequence of length < u (u limit
cardinal), with f [u constant, has a lower bound.

S(B)[y willbe {f[y|f € S(B)}. Of course, forcing with S(B), we introduce
a generic filter to S(B)[y. If C, is defined as above and S(Cy) embedded as

above into S(B), then actually yS&) c pySBI Also S(B)[y e Ve (because
Qj“ is y distributive and any element of S(B)[y can be coded as a sequence
of y ordinals).

The elements of Q, , *S(B) are of the form (g, t) where 7 isa Q, , term
for a member of S(B). We would like to use the fact that, for y < 4, 7[y is
in v , to get a simpler form of terms.

Definition 3. (a) A Q, , term, 7, forced to denote an element of S(B) is
called canonical if for every limit cardinal y, y < A, t[y is essentially a o,
term. Namely whether x € V% isin 7[y or not depends only on conditions in
Qy. More formally if g € Q,, x a Qy term, g I+ x € [y iff q[y I+ x € [y,
and similarly for the statement “x ¢ t[y”. (Recall that members of Q, are
functions, g, where g(y) is a Qy term for an element of P’ so g[y makes

sense.)
(b) A term as in (a) is called y canonical (y < 4) if (a) holds for y <y.

Note that if y is a limit cardinal and, for all 8 <y, 7[f is a Qﬂ term,
then 7|y isa Qy term.

Lemma 6. Let (q, 1) € Q, * S(B) ; then there exists a canonical v and q' < q
suchthat ¢ w17 =1.
Proof. Q,,, is obtained by iteration of forcings, which is either a trivial forcing

notion or is of the form P”. In either case at the yth stage we use a forcing
which is y + 1 strategically closed. So for each y < 1 =1 let F, bea Q,
term for a winning strategy for player II in the game of length y + 1 in P’
(where P’ can be the trivial forcing notion in case y is not a limit cardinal

> K, of cofinality < k, or there are no bad stationary subsets of 7). F,
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applies to decreasing sequences of elements of P’ of length < y and gives II’s
response in case that the previous play is the given sequence. We define Fy on
a sequence which is not a legitimate play of the game or a sequence in which
player II was not following his strategy arbitrarily. We can assume without loss
of generality that the strategy is such that as long as I plays the trivial condition,
II’s responses are trivial.

Given a decreasing sequence of conditions in Q, ,, (¢,|la < y), we define
our master strategy as follows: F((q,|0 <a <7)) = q" where, for p <y, q*(p)
is some term forced to be below (g (p)|0 < a < ) if such a lower bound exists
and the trivial condition otherwise. (In case ¢ (p) is eventually constant we
define g*(p) to be this constant.) For y < p, q"(p) is the Q , term denoting
F p((qa(p)|0 <a<7y)). g is not clearly in Q ) because it does not necessarily
have the right support, but we have the following:

Claim. Let (q,|0 < a < y) be a decreasing sequence of elements of Q,,, where,
for 6 <y, q,(d) is constant for a > 6. Also the set {d|q,(d) is nontrivial for
some a but for o < & it is trivial} is not stationary in any regular cardinal
u. For y <6 we assume q[d I “The sequence (q,(6)|0 < a < y) is an initial

segment of a play of the game for P’ in which the strategy Fy was followed”.
Then q" = F({(q,10 < a <)) isin Q,,,, it is below each q, (a <), and for
each y <6, q"[6 - (q,(0)|0 < a <) (q"(d)) is an initial segment of the play
of the game for P’ in which the strategy F; was followed.

Proof. The proof of the claim is rather obvious. The only point that should be
elaborated on is to show that, for all regular x, {56 < u, ¢*(d) is nontrivial}
is nonstationary in x. Assume that 4 = {6|0 < u, ¢*(6) is nontrivial} is
stationary in u. Note that if ¢*(d) is nontrivial there is a(d) < é such that
o a)(5 ) is nontrivial. By our assumption, except for nonstationarily many J <
U, we can assume a(d) < J but then «(d) is essentially a pressing down
function on A, hence it is constant on a stationary subset of A4, 4™, but if «
is this constant value it means that 4™ C {d|6 < u, ¢,(d) is nontrivial}, which
is a contradictionto ¢, € Q, ;. O

We resume the proof of Lemma 6. We define by induction a decreasing
sequence of elements of Q, , of length A+ 1, (¢,/0 <a <A+1),anda
sequence of terms 7, a < 4, o a limit cardinal such that 7, isa Q,  term
and g, Ik 7fa=1,. g, will be our given g . For even ordinal o define g, ,
tobe g_, unless o is a limit cardinal, in which case we know that t[a is forced
to be in V% . Hence there is an extension of d,s 9,4,-2nd a Q term T,
such that Qos1 fa.= q[a ‘and Qo1 I= r[a =T, If.possiple. we pigk 41 =4, -
(Note that if o 1s a limit cardinal which is a limit of limit cardinals, then we
can pick ¢, , =g, because we can find a Q, term 7, such that for f<a it
i§ ff)rced by q,, 7,[B = Tp .) Forodd o let ¢,,, = F((qﬂlo < f < a)). For
limit o, g, =F((gl0 < B < a)).

By induction it is easy to see that, for y < 4, (g, |a < y) satisfies all the
requirements of the claim and that, for a < o', q,[a=gq,[a. (We use the fact
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that « is a limit and qﬂ(a) is trivial for B < ; then g (a) is trivial. The only
way we can get g, (o) nontrivial while g, () is trivial is when « is a limit
cardinal which is not the limit of limit cardinals but the set {a|a < A, o alimit
cardinal but not limit of limit cardinals} is never stationary.) Thus using the
claim we show that (g,|y <) are really decreasing. Now we can easily define

aterm 7' such that t'[a =17, . Clearly 7’ is canonical and ¢, IF 7' =7. O

We resume the proof of Lemma 5, and at last we are ready to define the
dense set of elements of Q, , * S(B), which will be Kf;; closed.
This set, to be denoted by R, is the set of all elements of Q, , xS(B) of the

form (g, t) where 7 is canonical and for every limit cardinal y for which P’
is not trivial:
gy - “v8 8 <y If q(y)(d) is not trivial, then
a3 Iy 7[7 gy, SUPG(2)(S) € pj .

Explanation. q(y) is a Q, term denoting an element of P’ and q(y)(d) is
a Péy term denoting an initial segment of the closed unbounded subset of y*
we are trying to force in the complement of r; . Since 7 is canonical, 7[y is
essentially a Q, term for an element of S(B)[y. S(B)[y (via S(C,), which it
embeds) introduces a closed unbounded subset of y* , disjoint from r(ys , when

we force over (VQY)P"y . We denoted this set by pg . So our requirement is that
the information we have about the generic filters on Qy , Pg' ,and S(B)[y will
force the sup of the initial segment of the set avoiding 7 to be in p}.

The fact that R is the required subset of Q, , * S(B) naturally breaks into
two sublemmas.

Sublemma 7. R is K, -directed closed.

Proof. Let D C R be a directed set. |D| < K, - We want to show that D has
a lower bound in R. Let D* = {q|q € Q,,,, for some 7, (g, t) € D} and
D™ = {1| for some q € Q,,,, (¢, 7) € D}. Clearly D" is easily seen to be
directed; also if we manage to get a lower bound for D", g* (which we shall
do in a minute), then g* I+ D™ (as a subset of S(B)) is directed. We denote
by D** both the set of terms in ¥ and the set of their realizations in V'%+1 |

We now define g*, which is assumed to be a lower bound for D* . Of course
if y < A is such that P’ is trivial, then q(y) is trivial. If P’ is nontrivial,
then ¢"(y)(6) (6 <y"") is defined to be a Q, x P term denoting the union
of {q(y)(d)|g € D}, together with its sup. For any J for which g"(y)(d) is
nontrivial, ¢*(6) is the union of at most Kk, sets of cardinality < y; hence it
is of cardinality < y.

Now we prove by induction on y < A+ 1 that ¢*[y € Q,, and that

ayFq () eP

and
g’y F ¢ (») is a lower bound for {q(y)|g € D"} = D] .
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(D; is a set in V%, where we assume q'[y € G(Q,).) The only interesting

case of the induction is when P’ is nontrivial. (In particular y is a limit
cardinal > «,.) The fact that q'[y € 0, follows easily from the inductive

assumption, since for ' < 7, ¢'[Y I+ ¢* () € P, and if u is regular,
K, < i <y, then the support of q"[y isin g is the union of Kk, supports of
q € D; hence it is the union of less than u nonstationary subsets of u, and
therefore it is a nonstationary subset of u. (Note that if x4 <« then the forc-
ing up to u is trivial.) Also the inductive assumption gives that ¢*[y extends
{a[vlg € D"} . Since D is directed it follows that ¢"[y I D, is directed. By a
remark above, the support of ¢*(y) is of cardinality < y. In order to simplify
notation assume that we argue over V% | where ¢° [y € G(Q,). (It will then
follow that whatever we prove about % will be forced by ¢°[7.)

By induction on ¢ < y** we show that ¢*(y)[d € Pg’ . The crucial inductive
step is that

g ([ P 4" (7)(8) is a closed bounded subset disjoint from 7.

We also need by induction that g*(y)[é is below {q(y)[q € D*}. If we have
it for &, then D] ; = {q(y)(d)|g € D"} is forced by ¢*(»)[J to be a directed
subset of the forcing shooting a closed unbounded subset through the comple-
ment of ‘ré q"(y)(d) is clearly forced by g*(y)[é to be a closed bounded

subset of y* which extends each element in D . The only problem is to
show that it is forced to be disjoint from 7’ 5> and the only point which is prob-
lematic is the sup of g"(7)(d), which we denote by u. So we have to show that
I Ii—PAy T3
The fact that ¢"[y is below {q[y|g € D'} implies that {t[y|t € D**} is
forced by ¢*[y to be a directed subset of S(B)[y. (Each r € D** is canonical;
therefore 7[y isa O, term.) Since S(B)[y is forced to be x; directed closed,

there is a Q, term t, forced by ¢'[y to be the maximal lower bound to
{z[ylt € D™} . 1, extends each t[y for 7 € D™"; therefore by definition of R

a’[y o, 4 (1[0 Ik 7, by {5UP(4(2)(9))lg € D7} C pj..
Since p; is forced to be a closed unbounded subset of y*, we get in (VQP)

(%) q" (NI 1F 7, kg g, sup{sup(a(7)(8))lg € D"} € p3,

but this last sup is really . Now p’ 5 18 supposed to be disjoint from A s- If

in V% some condition is S(B)[y forces u to be in /’a , we must have that
i ¢ 15, which concludes the proof that ¢”(y) € P’ .

We have shown that ¢* is in Q,,,> and it is below all the conditions in
D*. So D" is directed in S(B), and hence it has a least upper bound, which
we denote by 7°. If one recalls the definition of T; above, one sees that
g =y = 7, so that 7% is canonical. Now (¢*, t") is in R because the
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statement (x) above exactly proves that
4 (7) kg 4" (IO Fpy [y ggyp, SUP( (7)(9)) € p5. O

We need a claim whose proof is a slight variation of the proof of Sublemma
7, but it is similar enough that we omit it.

Sublemma 8. Let ((q,, t,)|n < w) be a decreasing sequence of elements of
Q.1 *S(B) where, for each n < w, t,,., is canonical and for each y < A such
that P* is nontrivial

Donit 7 "_Qr Vo < y++(ifq2n(y)(6) is nontrivial
then y, (V)18 1 pr Ty 17 gy, SUP(4,,(7)(9)) € £3)
then there exists (¢°, ") in R below the sequence ((q,, t,)|n < w).

(The proof is like the proof of Sublemma 7. Define ¢" as there, and similarly
for t*.)

We now start the proof that R isdensein Q, ,*S(B). We need two technical
lemmas.

Sublemma 9. y < y are cardinals such that P’ is nontrivial. (Hence y is a
limit cardinal.) Suppose we are in Ve given p € P', and © € S(B)[y ; then we
can find (in V%) a p* <p, ©* <, such that t*[x = t[x and for 6 < y**, if
p*(6) is nontrivial, p*[é I gy T gy, SUP(R(9)) € pj -

Proof. P] is obtained by iteration of length y*" . We shall prove Sublemma 9
by proving by induction on 7 < y*" that P} satisfies the sublemma. (Of course

now we just have the claim for § < 5 rather than § < y**.) For successor 7,
say n = {+ 1, we argue as follows. Consider p({); if p({) is trivial, then p
is essentially in Pg , and we can use the induction assumption for {. If p({)

is nontrivial, then it is a Pg term denoting a bounded closed set forced to be
disjoint from ;. Let i = supp({). (i is actually a P/ term.) In yorr
S(B)[y forces that pZ is unbounded in y* . Hence we can find an extension of
7, 7 , which forces some member of i i, above g (i is also a term for
an ordinal), but #’ is clearly forced to be outside of ‘rz . We claim that we can

assume that 7’ [x = t[x. Recall that the term p’g was really an S(Cy) term,
and let ¥ be a member of C, above . S(Cy) =8(C,Nnv+1)x S(Cy -v),
but S(C, N (v + 1)) is of cardinality less than y. Therefore in S(C,) we can
extend any condition, without changing its projection, to S(Cy Nv+1) and
force an ordinal in pZ above u. If we consider the particular way in which we
embedded S(C,) into S(B)[y, this translates into: a condition in S(B)[y can
be extended to force a member of pz without changing its restriction to y .

* . 4 .
Our next problem is that we want 7~ to be in v , ot a V¥ term as 7’
is. Since it is forced by PZ that S(B)[y € % | we can find an extension of
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p[ such that, for some % € S(B)[y, p' I+ =1. (Clearly # < 17'.) We now
apply the induction assumption to ¢, p’, and 7' and get p” € P!, p” < p’ ,
7" < % such that the sublemma holds for 7", p”. Define t* = 1", p*[{ =p",
and p*({) = aterm denoting p({) U {i'} . It can be easily checked that all the
requirements are satisfied.

For limit 7, if cf(n) > y then p is actually in PC" for some { < 1, and we
can use the induction assumption for {. If cf(n) < y then of course cf(n) <
7. Then since P’ is nontrivial, we can find some y > x’ > x + cf(n). Let
n = sup(n,|a < cf(n)) where n_ are increasing and continuous. By induction
on a < cf(n) we define a decreasing sequence of conditions p, in P,;' and a
decreasing sequence of elements of S(B)(t |a < cf(n)) such that 7, [x is fixed,
and p, ,[n, and 7, satisfy the sublemma with respect to Py where, for
n,<d, p,(d) =pyd). p, and 7, are our given p and 7. For limit o, 7,
will be a lower bound of (7 |a < cf(n)), which exists since the ‘ca ’s satisfy that
the 7, [y’ are fixed and a < x'. p () for 6 > 7, is p,(d). (It still extends
pﬂ(é) for B < a since pﬂ(é) was constantly equal to p(d).) For 6 <, we
let p (J) be a term denoting the union of Py (8), B < a, together with its sup.
By induction on ¢ < 5 we should prove that p_ [J is in PJ where the only
nontrivial point is to show as usual that, for 6 <7, , sup(U f<a pﬂ(d ) =wuis
forced to be outside of ‘t(}; , but by our construction 7, extends t P for f < a
and, for § successor and & < 1,, 7, forces sup(pg(d)) to be in pL. p)isa
term for a closed set; hence 7, forces u to be in pg (we use the fact that the
D B((S ) are forced by p_[J to be increasing subsets of »%). As before we get that
u is forced by p_[J to be out of ‘t; . For a < cf(n) we define p T . tobe

an extension of p,, 7, such that p_  [n,, 7, satisfy the requlilljelmerti’:rs1 of the
sublemma with respect to 7, p,[1,, 7, and, for 6 > 1, p, ,(d) = py(9).
(We use the induction assumption.) This concludes the inductive definition,
and it is easily seen that Pestny > Tetin) witness the truth of the sublemma for

n. 0O .
Sublemma 10. For y, x limit cardinals let x <y <A. Let (q, 7) € Q,,,*S(B)

such that t is y canonical. Then there exist ¢* < q and a y canonical term
©* such that

(@ For y+1<y or ¥y <x. ¢()=4q().

) ¢t [x =1y At <1 (hence (", 7")<(q,1)).

(c) For y <n<y+1 if P" is not trivial, then

q’[yIkg ¥6 <0 (if g"(n)(8) is not trivial
then q"(n) I+ & I+ py T [1 Ik g5, suD(q” ()(3)) € p3).

(Note that we assume in (c) that ¢"[y forces the statement, not the natural
q"[n. The reason is that 7" is not assumed to be canonical, so while we know

that 7y € V% we do not have a Qﬂ term forced to be equal to t*[n. Hence
we need the information g*[y.)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:204

820 MENACHEM MAGIDOR AND SAHARON SHELAH

Proof. The proof is by induction on y where the inductive assumption is that
the statement of the sublemma holds for all y < y. Sublemma 9 clearly takes
care of the case where y is the minimal where P’ is nontrivial. (In this case
0, is trivial, so the whole argument is taking place in V'.) If y is a successor
limit cardinal, say y = 7, # limit, then P’ is trivial, and the truth of the
sublemma follows from the induction assumption for #. For y which is a limit
of limit cardinals we distinguish two cases:

Case 1. y is singular. Let y = sup(y_|a < cf(y)) (for simplicity we also
put Yetiy) = ?), where the y_’s are increasing and continuous where x < 7,
cf(y) < v,, and each y_ is a limit cardinal. Let (q,, 7,) < (¢, 7) satisfy the
sublemma with respect to x, and y,. We are going to define by induction on
a < cf(y) a decreasing sequence (g,, 7,) such that 7 is y canonical, and
q,(6) is modified only once (when y <6 <y, +1)- We shall have 7, 7o =
T,[7, - For successor a = g +1, (q,, t,) is defined as an extension of (qﬂ , T ﬂ)
satisfying the sublemma for y, , for 7, y, for x . (Note that the only changes
in ¢,4(d) when we pass to g4,,(d) are for y; < < yz,,.) For limit a, let
‘L'; be the term which is forced to be the minimal lower bound of 7,5, f <.
Note that it satisfies 7, [V = TolVy- It exists since a < cf(y) < y,. q.(d)
will be the limiting value of ¢4(d), B < a (qﬂ((i ) actually obtains only two
values, and one of them is eventually obtained). Also note that since each 7 P)
for § < a was y ) canonical, it was y_  canonical. We get that r; is 7y,
canonical, and ¢ () and 7, are almost what we need for n < y, . We still
have to handle y_ itself. So if P’ is trivial we put ¢, =g¢., 7, =17,. If
P’ is nontrivial, we consider p = q4.(n,) = gy(n,) as an element of V.
where we assume that g” [n, € G(Qﬂa) and apply Sublemma 9 to p and ‘t; [y
(replace x by y,). Note that ‘t: isa an term, so Lemma 9 is applicable. We
get p° and 7" which we can consider now (coming back to V) as Q, terms
forced to denote a pair satisfying the requirements of Sublemma 9. Define q,
by q,[7, =47 [7,, 4,(,) =P, 4,(9) = q,(9) = go(d) for 6 > y,. 7, is
the term denoting the member of S(B) whose restriction to y, is 7", and
above y_ it is like ‘t;. It is obvious that 7 is y  canonical. We can easily
show that, for a < cf(y), (q,, t,) satisfy the sublemma for y,. In particular
(qcf(y) , tcf(y)) , is the required pair for y.

Case II: y is regular. In this case we know that the support of g is non-
stationary in y, so let (y_|a < ) be a continuous increasing sequence of limit
cardinals, where Y, =7, X <7, and q(y,) is the trivial condition of Pa.
We define by induction for o < y a decreasing sequence (g, , 7, ) all below
(g, 1) such that (g , 7 ) satisfies the sublemma with respect to y,, and if
a < B then 74 [7, = T,l7,- (4> 7o) is any extension of (g, 7) satisfying the
sublemma with respect to x and y,. For successor a = f +1, (qﬂ 410 Tp 1)
is an extension of (qﬂ , T ﬁ) satisfying the lemma for g (instead of x) and
Vg4 - For limit o we let 7, be the maximal lower bound of (7,48 < a). It
exists since T 8 [y” is eventually constant for u < o. (Note that Col(y,, < {)
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never appears as a component in S(B) even if y_  is regular; hence for any
Col(u, < {) appearing in S(B) we have u <y, or y, < u, in which case we
have enough completeness because a <y, .) ¢,(d) is defined to be dp (d) for
B large enough below a. 7, can be easily picked to be y, canonical, using
the fact that for f <a, T P is Vg canonical. (Note that qﬁ(é) is changed only
once when y p < i<y Bl .) Note that ¢ (y,) is still the trivial condition (we
never changed it), and hence (g, 7,) clearly satisfies the sublemma for y and
7, - Considering (qy , Ty) establishes this inductive step. 0O

Sublemma 11. R is dense in Q, , *S(B).

Proof. By induction define a decreasing sequence of conditions in @, , *S(B)-
((g,, T,)In < w). Suppose we are given (g, T), where by Lemma 6 we can as-
sume that 7 is canonical. Let (g,, 7,) satisfy Sublemma 10 where y = 4,
x = 0 for (g, 7). In general, given (q,,, 7,,), let (4,,,,, 7,,,,;) be such
that ¢,,., < ¢y,, Topyy 18 canonical, and g,, a kT = T (Hence
we have (q,,.1> Ton1) < (@n> Top)-) (dpi2> Tonyn) Will be an extension of
(dyni1> Tonyy) satisfying Sublemma 10 with y = 4, x = 0 with respect to
(Gaps1> Tonsy) - We know that for # < 4, for 7 < y + 1 for which P" is
nontrivial

() Gy g, VO < n"*(if g,,(n)(3) is not trivial, then

*k +
qzn(ﬂ) [0 IF Ton ] "_S(B)I'I SuP(qzn(”)((s)) € P:;’) >

but ¢,, ,F7,,=7,,., and 7, ., is canonical. Hgnce Topti [n isa Q” term,
and once we know that 7, [, the truth of (+*) just depends on the value of
G(Q,,). Hence

Qypq [MIF V6 < n tGf 4,,(1m)(6) is nontrivial, then
B [((E) Fpr Tyy [ gy SUP(A5,(M)(D)) € ),

which exactly proves that the conditions of Sublemma 8 are satisfied. Hence
we get that there is (¢*, T°) € R below ((q,, 7,)|n < @) ; in particular, we get
an element of R below (¢, t). 0O

This completes at last the proof of Lemma 5. O

Recall from §3 that S, is the product X, _,_. Col(k:;r2 ,<Ky). S, isof

course x, directed closed; hence by Lemma 5 if B is adequate and sup(B) = A,
then Q, *S(B)xS, is k, directed closed. (Of course the last iteration is really

a product because S, of y%1*8 s the same as S, in the sense of V'.) S(B)
already belongs to ¥+ . Note that Q5, is 4*“*' distributive. (It does not
introduce any new sequences of ordinals of length < A*“.) Since the cardinality
of S(B)«S, islessthan A*”, P"(2*) in the sense of ¥"%+1*®*% is the same
as in V285 (for m, k < w), but Q,,, * B+ S, is essentially k, directed
closed. Hence by our assumptions about x,

L *SES, K, is supercompact.
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In particular,

O S®S e is 2% supercompact.

But the fact that «, is A+ supercompact is witnessed by a subset of P(P().Jr5 ),

namely the normal ultrafilter on P, (/1+5) , but this ultrafilter is also a normal

Q+S(B)*S,

ultrafilter in V' . Hence we have proved

Lemma 12. If Q was the forcing notion for killing all the bad stationary sets,
then in V2 the Jollowing facts hold:

(1) G.C.H. holds above K, and 2" =k} for n< .

(2) There are no bad stationary sets.

(3) If B is 1-adequate with sup(B) = A a limit cardinal, then if we force with
S(B)*S,, k, is Ats supercompact.

We shall never have to refer again to the particular way in which we defined

Q; the only facts we shall need about V< are summarized by (1), (2), (3) in
the statement of Lemma 12. Therefore from now on we assume that our ground
model V satisfies (1)-(3) of Lemma 12.

Definition 4. Given an adequate set of cardinals B with sup(B) = 4, a sequence
of normal ultrafilters (U,|n < w) such that U, is a normal ultrafilter on «,
and a sequence of functions (f |n < w) (f,: k, — k,) are called good for B
if for n < w every condition in S(B) xS, forces that “U, is the projection of

some normal ultrafilter on P, (/1+) , F,, such that

{P| the order type of P = f, (PNk,)} € F,”.

Lemma 13. There exist a sequence of normal ultrafilters (U,|n < w) and a
sequence of functions (f,|n < w) which are good for unboundedly many sets

of cardinality < x; namely for every set of cardinals B, |B| < k, (each
member of B above k), there exists an adequate B* with supA which is a
limit cardinal, B C B* such that (U, |n < w), (f,|n < w) are good for B".

Proof. Assume the lemma fails; then for every sequence of ultrafilters U =
(UJn < w) (U, on k,) and a sequence of functions f= (fuln < @) (f,:
K, — K,), there is B(l7 , f ) of cardinality < K:) such that for no adequate
B*, BCB*, U, f are good for B*. Let T be the union of all the B(U, f)
since there are at most x; sequences of the form U and f we consider, and

since |B(U, f)| < k!, the cardinality of 7 is at most k_ , but then we can
find an adequate B*, T C B*, with sup(B”™) a limit cardinal A.

In VSES, , K, 18 At supercompact. By a theorem of Solovay (see [S-R-
K, Men]; see also [La] for similar arguments) there is a normal ultrafilter on
P (A7), F,, and a function f,: k, — K, such that

{P|the order type of P = f,(PNk,)} € F,.
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Let U, be the projection of F, to x,. But S(B) xS, is K: 2 closed and
2k = x:; hence both U, and fn are in V. Therefore some condition in
S(B) * S, forces

(¥) “U, can be extended to a normal ultrafilter F, on f, (A*) and {P|order
typeof P=f (PNk,)} € F,”.

By the fact that S(B) xS, is a homogeneous forcing notion, every condition
in S(B)*S, forces (x) above. (Note that we can get the sequences (U, |n < w)
and (f,|n < w) in V.) We showed that U= (U,In < w) and f= (foIn < w)
are good for B*, but B(U, f ) € B*, a contradiction to the definition of
B, f). O

We are ready for the proof of Theorem 1. Fix the sequence (U,|n < w),
(f,In < w) satisfying Lemma 13. We use the forcing notion & described in §3

in terms of the sequences (U, |n < w) and (f,|n < w) (see the remarks after
the proof of Theorem 3.1).

So let & be as above (defined in terms of U, f ). We claim that in V" we
have that x, is the first cardinal fixed point that G.C.H. holds and that A

holds for all k, < 4 (u regular).

i

Lemma 14. Forall n < w,

H = {ala <k,, G.C.H. holds between (inclusive) o and f, ()}

ey,
and
L, ={ala<k,, there are exactly o™ ®*! cardinals between o and f(a@)}

ev,.
Proof. Pick any adequate B such that U, f is good for B (sup(B) = 1).
In V5&*S , K, 1is A% supercompact, and there is a normal ultrafilter on
Pxn(f), F,, such that F, projects to U, and {P|P € Pxn(f), order type
of P=f(PNnk,)} €F,. In V58S form the ultrapower of the universe
by F, and get a transitive class M . The ordinal A" is represented in the ul-
trapower by the function g(P) = order type of P (P € PK" (A*)); hence by
our assumption we can take g to be f (PNk,). k, is represented by the
function A(P) = PNk, (see [S-R-K]). Also P(4) (in the sense of VS(B)*S") is

in M. In V*®"5 G.C.H. holds between x, and A. (Note that above «,
G.C.H. holds in V; S§(B) xS, does not destroy it.) Between k, and k, we

forced with X ,_; Col(x;?, < k,,,), each «; satisfies the G.C.H., and when

we force with Col(k}”, < k,,,) all cardinals between k; and <k,,, satisfy
the G.C.H. Therefore

V
Since, for a < 4, P(a) e M,
MEVa(k,<a<i)2=a".

SB)S, Va[(k, <a < 2" =a'].
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By the Los theorem applied to our ultrapower

B +
{PVB PNk, <B<f(PNk,), 2" =B }€F,.
By definition of the projection of F, , we get (in ySBI*S, ")

{ala<k,,VBa< B < fla), 2’ =p*}eU,,

but U, €V and, for g <x,, 2 = g* in ¥S®* if and only if it is true in
V . (Forcing with S(B) xS, does not introduce any new subset of «, .) Hence
we proved

{ala < k,, G.C.H. holds between a and f, () inclusive} € U, .

For the second fact we again pick an adequate B such that (U,|n < w) and

(f,In < w) are good for B; hence in ySe) Kk, is A" supercompact by a

normal ultrafilter F, pro;ectmg to U, and satisfying
{PIPeP_(1"), order type of P = f,(PNk,)} € F,.

Again if M is the ultrapower of V5&*5 py F,, then P(4) € M, and hence,

for @ < 1, a isacardinal in M iffitis a cardinal in V5®*5  Butin ¥S®*5
K,=K, ", K5 = x:w“ and for k, < u if p < 2 is a cardinal in ySEB»S,
then it is either in the closure of B or successor of an element in the closure

of B. A" is represented in M by the function g(P) = f,(PNk,). Also every

limit point of B is still a cardinal in ySBI*S ; hence if B is of cardinality KI
(which we can assume without loss of generahty) then

VS(B

Therefore

1 .
" £ there are exactly x K:“” many cardinals between K: and 4.

M E there are exactly x: o+l many cardinals between x, and 4.

Using the Los theorem

+ +w+1
{P|P € PK” (47), there are exactly (P Nk,)

many cardinals between PNk, and f(PNk,)} € F,.

F, projects to U, so we get

1
L, = {ala< K, there are exactly et

eU,. O

many cardinals between « and f, (a)}

Let p be a condition in P whose a-part, f-part, and S-part are trivial and
whose A-part is (L, N H |n < w) (where L, and H, were defined by the
statements of Lemma 14).

Lemma 15. In V7 (if p € G(£)) kK, is the first cardinal fixed point and
G.C.H. holds.

Proof. By the analysis done in §3 we know that in ¥ each K, 1s a successor
cardinal, and the cardinals below k, are exactly w, w,, o, all cardinals in V/
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between « and f (), fo(ay), f (a0)+ ,and k. The cardinals between x, and
K,.. are k,,K,, K, ,a,,,,all cardinals ¥ between a,,, and f,, (a,,,),
SFrir(@uiy)s fn+1(an+1)+ ,and k, , (where (a,|n < w) is the sequence intro-
duced by the a-parts of conditions in G(#)). Since p € G(Z), we know
a, € L;N H;, so there are exactly oﬁ”““rl cardinals (in V') between o; and
f,( @), ‘and so none of them is a cardinal fixed point. It is now obvious that
there are no cardinal fixed points below k,. On the other hand, there are at

least sup({a”"“lz < w}) many cardinals below x_ , but the last sup is
$O K, isa cardinal fixed point.

Similarly the fact that G.C.H. was satisfied in V' by k, and between «,
and f,(a,) (recall o, € L, N H,) guarantees the G.C.H. below k,. Above

k, it holds because it holds in V. (Between w, and «, we forced with
Col(w,, < a,) which arranged G.C.H. below «; between ( fa0)+ and «,

we used Col( f(a0)+, k,) which arranged G.C.H. between f(a,) and x,,
etc.). O

Lemma 16. V7 £ Axw’ u holds for all regular pu > k, such that p is not a
successor of a singular cardinal of cofinality bigger than x(‘; and it is not non-
Mahlo inaccessible. )

Proof. Let u be as in the statement of the lemma, and let 7, .S be & terms,
g € # ,where q I T is an algebra on x4 with < x, many operations and S is
a stationary subset of u such thatif a € S then cf(a) <k,

The forcing notion £ of course is a forcing notion even in V5% where B is
any adequate set. (In fact (U, |n < w) is still a sequence of normal ultrafilters
in V5& .) And therefore the terms 7 and S are P terms also in V5
Clearly we still have

g I+ 7 is an algebra on x with <k, many operations

S) | We claim that we can pick B such that in

when the forcing is over V
V5®) we have
q" IF S is a stationary subset of x and u is regular

for appropriate choice of ¢* < g and such that (U, |n < @) and (f,|n < w) are
good for B. It is clear in case u = K';: for any B because in 5®) we do not
have a new subset of x;. (Recall that, for an adequate B, min(B) > K;J' J)
Hence, since || = xz , there are no new & terms for subsets of xz , so if
there is a term in V°® for a closed unbounded subset of x:; disjoint from
S , this term is in V', and it is a term for a closed unbounded subset disjoint
from S , which is a contradiction.

For u > x;, there is ¢* such that (over V) 4 = {a|g" IF a € .S"} is a
stationary subset of A. This is obvious since |#| =k, and u >k, . 4 isa
stationary subset of x4 in V ; hence by our assumptions it is not bad. Hence we
can find adequate C such that VSOk 4isa stationary subset of u. Without
loss of generality we can assume that 3O 4 is regular. The reason for it
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is that if u is not non-Mahlo inaccessible and not a successor of a singular
cardinal we can assume that u € C. (Note that if an adequate C works, any
bigger C works.) If u =", where cf(6) < k., then we can have that C is
cofinal in 4 ; hence S(C) does not collapse u. By definition of (U, |n < w),
(f,In < w) we can find adequate B, C C B, such that (U, |n < w), (f,|n < w)
are good for B. Hence a generic filter for S(C) picks a generic filter for S(B).
Therefore we must have V55 A is stationary. (A club disjoint from A in
yS®) jsin ¥5© .) Since |#| = K < u, we have V5 *P 4 s statlonary
But ¢ - A4CS (also over VS(B)) hence over S(B) we get ¢~ I+ S is a
stationary subset of 4 and that g is regular and hence u is regular in ySB)=S,
for every n.

Fix n < . We know that in V5®*5: there is a normal ultrafilter on

(/1*) , such that F, projects to U, and {P|P € P, (A*), order type of
P f”(Pnrc )} €F,. If F is the projection of F, to P, (,u) we clearly
pS(B)*S,

*

have the following: In " F there is a normal ultrafilter on P, (u)
whose projection to k, is J, and such that {P|P € P, (,u) order type of
P < f,(PNk,)} € F,' . We have shown thatin V> the sequences (x,|n < o),
(UJn < @), (f,In < w), and the cardinal x satisfy all the assumptions of

Theorem 3.15, where the forcing notion mentioned there, #, is exactly our
given &#. (£ defined from (U,|n < w) and (f,|n < w) is the same in V

and V5® , since forcing with S(B) does not introduce any new sequences of

length < x; .) Therefore by Theorem 3.15, applied in pS® , we know that
ySERZ A, - Therefore for some " <q", ¢ € 2, and some term &
(the term is in ySE )) we have

q' "V Cun|¥|<k,, isa subalgebra of 7,
and SN is stationary in sup(‘ﬁ? ).
But & isa % term for a set of ordinals of cardinality less than k. Again

using |#| = rc we can code & as a set of ordinals of cardinality < x+ Since

S(B) is x:' distributive, this coded set is in V', so we can assume A EV.
Now it is easily checked that also over V'

X Cun|F| < K, A&/ is a subalgebra of 7,
and SN is stationary in sup(.sa'f ).

Hence we proved that in V' we have A, u- 0

We shall now prove that in vF K, 1s fully compact. Actually we shall prove
that A _; holds in the model for every regular 4 > k , which by Theorem 2.3

is sufficient. So we are given in V" an algebra % on a regular cardinal 1 >k,
and a stationary subset S C A where, for € §, cf(d) < x,. We are also
given, for 6 € §, D; CJ where |Dy| <k, for some fixed n. If A, 2 holds,
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we get the conclusion of A_ ,; hence by Lemma 16 we can assume A = u

where u is singular and cf(u) > x; or that A is a non-Mahlo inaccessible. (In

the last case we put u = A.) Note that in the present case 6"; < A for every
d<A.
The set S, the algebra ./, and the assignment 6 — (D;) are defined in

¥?, but since x; <X and |#|= x:, there is a stationary set 7 C A such that
for some condition p € #, pl- T CS. For d € T let D; be {B|f <J some
g<p, qF B € D;}. Since Dy is forced to have cardinality less than x, and
since || =k, , we get |D;| <k, .

T and (D;l& € T) are now defined in V. We go back to arguing over V.
Pick an adequate set B such that {K;+ , A*} C B, and such that (U,|ln < w),
(f,In < w) are good for B. Since |B| < x; , B is not cofinal in u; hence if
n =sup(BNu) we have that n € B, n < u, n is not the successor of a singular
cardinal, and it is not a non-Mahlo inaccessible. Also we have 77 > A (where 77
is the minimal member of B above 7). Note that xz < 1. Hence Col(n, <7)
appears as one of the components in S{B) . In particular if we denote the Levy
collapse that collapses A to have cardinality n by Col(zn, 4), there is a natural

projection of S(B) onto Col(n, A), and this projection introduces a generic

function g: 7 °®° A, g one-to-one. (Note that in V5® 5 is still a regular

cardinal.) For f € S(B) let f™ beits projection to Col(n, ). f~ isa function
from a subset of # (of cardinality less than #) into A. Given E C A, |E| <1,
any condition f can be extended to f' such that E C range(f')*. (f~ is
partial information on the collapse map g.) Also every /' can be extended to
f so that domain(f*) is an ordinal less than 7.

Lemma 17. In V5®
T"={BlB<n, supg’B=cisinT, and D, C g"B}

is a stationary subset of 1.

Proof. Assume otherwise. Let t be a term forced by some condition in S(B),
f, to denote a closed unbounded subset of # disjoint from 7.

Consider the structure (in V) & = (H > €,S8(B), T, 1, A) where p is any
regular cardinal large enough so that S(B), 7 € H ,- By induction on A we
can easily define an increasing sequence of elementary substructures of %,
(N_la < A), where |N_ | <A, N, N4 is an ordinal (which is of course less than
A),aC N, , feN,, (Nﬂlﬂ <a)€N N, for limit « is Uﬂ<aNﬂ, and all

a+l?
subsets of N of cardinality < x; are in N, . (Namely P+ (N,)C N, .

We can satisfy this last condition because [N;‘;l < A by our assumptions about
A.)

Since {a|o limit N NA = a} form a closed unbounded subset of A and T is
stationary, we can find « € T such that N, NA =a. Let { = cf(a). (Recall that
{ <k, .) Fix a cofinal continuous sequence in a, (B(4)|0 < {). By induction
on { we define a decreasing sequence of conditions in S(B)NN_, (f;]|9 < (),
where, for y < {, (f;l0 < y) € N,, f5 € Nﬂ(6)+1' (Actually (fslo0 < y) €
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Nﬁy+| C N,.) B(d) < sup(range f;,,) < a, 15 = Dom(f;") is an ordinal less

than 7, and f; , forces some ordinal between 7; and 7, , to bein 7. Also
DN Nﬂ(é) C range(f, ).

Jo is f. Forlimit y pick a condition below (f;|6 < 7); such a condition ex-
ists because S(B) is k,, closed. We can pick this condition in N 8()+1 because
by the induction assumptlon fs € (6) 4 € Nﬂ(y) . Therefore (f5|l0 < y) C
Np()41 - By our definition of the sequence (N, |v < ) (noting that |y| <k,),
(fslo <) € Ng(y41> but Ny, is an elementary substructure of #, so we
can find the lower bound to (f;|d < y) in N, B+l - This lower bound will be
fy . Without loss of generality we can assume that Dom( fy) is an ordinal < 7
(which we denote by #,). For successor y = d + 1, we can find an extension
of f;, ", such that

(a) range(h”) 2 (D, N Nps)) U{B(0)}.

(b) h forces some ordmal above 7, in 7 and the domain of h* is above
this ordinal.

Such an 4" can be found in N, 5)+2 because |D| < k_ ; hence D NNy €

NW)Jrl and B(d) € N B(6)+1 > fs €N 85)+1 - Since Nﬁ(6)+1 C Np(a +» and since
they are elementary substructures of %, we can find A" to be in N 56)2 and
define f, to be this A"

Let f, be a lower bound of (f;|d < {) which exists since [{| < x,. Let
n, = sup(ns|6 < {). Clearly n, < n. f, forces that the range of g on 7, is
included in N, N4 = a (because each f; € N, and the range of j:; is also in
N,). &”n, is forced to be s, range(f;), and we get that a = sup;_, B(6) <
sup g7, ; hence S, IF sup g, =a. fc also forces that D;' C g7n, and that
between n; and 7., (for d <) there is an element of 7. Since 7 is forced
to be closed, f; IF 1, € 7. But all the previous remarks show that 5, € T" . We
get a contradiction to 7 being disjoint from 7°. O

Exactly as in the proof of Lemma 16, we can show that the sequences (k|n <

w), (U,|n < w), and (f,|n < w), and the cardinal 7 satisfy in 5® all the
assumptions of Theorem 3.15; hence

S(B)*#

V EA

Kol
We assume that the condition p € &, mentioned above when we defined T,
isin G(&). In ySErZ L T" (defined in Lemma 17) is still a stationary subset
of n becausc || = K < 1. Also the sequence (D;|d € T) and the algebra
& arein VSE*? (% isincluded in VSB*?).

In V5®*? consider an algebra %/ on A with kx, many operations (recall
that we assumed that, for 6 € T, |D;| < k,), such that, for any subalgebra of

o, B ,if 6€BNT then D; CH, x, CH, F isclosed under g and g~l

(g is the generic function g: 7’ 1), and if a <7, a € &, then supg”a is
in & .
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Apply Lemma 2.4 in ySE*Z and get a subalgebra % of & of cardinality

less than x,, such that the order type of % N7 is a regular cardinal y <k,
(clearly k, < y) and T* NZ is stationary in sup.%Z . The term denoting &
in V5® can be easily coded as a set of ordinals of cardinality < x;', , and since
S(B) is k" distributive, this term can be assumed to be in ¥ . Hence & is
in V¥ (aswellas T*NF, and g[F Nn). Now we argue in V7 . Let h be
the unique order-preserving map from y onto & Nn. Weget R={B|f <7,
h(B) € T" N A} is a stationary subset of y. By our assumption the function
g o h is a one-to-one mapping from y onto % . Note that the function on
y, k(p) = supg o h”p, is continuous and for p € R is mapped into % ;
hence T = goh"R C T is a stationary in sup(%#), and if we put, for 6 € T,
By=goh'"((go h)~'(8)), then |By| <y = |®| and B = ;7 B; . Also for
d € T, it can be easily shown that D; C %;. Let x € Dy; then x € D;N.Z,
and hence g_l(x) eBNn. Let 6 = g“(&). Since 6 € T, 6 € T*. Also
d =supg”d and D; C g"6. Therefore gl x)edn® =h'H'0) =
(goh)"((goh)"' () =B,). Wegetthat &, T, and (|6 € T) witness the
truth of A_ 10 SO We have proved Theorem 1. 0O
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ABSTRACT. We show that the construction of an almost free nonfree Abelian
group can be pushed from a regular cardinal k¥ to R, +1 - Hence there are
unboundedly many almost free nonfree Abelian groups below the first cardinal
fixed point.

We give a sufficient condition for “x free implies free”, and then we show,
assuming the consistency of infinitely many supercompacts, that one can have
a model of ZFC+G.C.H. in which Nw2+l free implies Nw2+2 free. Similar
construction yields a model in which R, free implies free for x the first cardi-
nal fixed point (namely, the first cardinal o satisfying o = R ). The absolute
results about the existence of almost free nonfree groups require only minimal
knowledge of set theory. Also, no knowledge of metamathematics is required
for reading the section on the combinatorial principle used to show that al-
most free implies free. The consistency of the combinatorial principle requires
acquaintance with forcing techniques.
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