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THE JOURNAL OF SyMBOLIC LoGIC
Volume 66, Number 2, June 2001

THE COVERING NUMBERS OF MYCIELSKI IDEALS ARE ALL EQUAL

SAHARON SHELAH AND JURIS STEPRANS

Abstract. The Mycielski ideal 91, is defined to consist of all sets 4 C M such that {f | X : f €
A} # Xk for all X € [N]®0. It will be shown that the covering numbers for these ideals are all equal.
However, the covering numbers of the closely associated Rostanowski ideals will be shown to be consistently
different.

§1. Introduction. In [6] J. Mycielski defined a class of ideals which have been
studied in various contexts by several authors [7, 11, 8, 10, 5, 1, 9, 2, 4, 3]. This
paper is devoted to examining the covering numbers of these ideals as well as those
of a closely related class of ideals. It will be shown that, while the covering number
of the Mycielski ideals is independent of their dimension, the covering numbers of
the related ideals are very closely connected to their dimension.

DErRINITION 1.1. The Mycielski ideal 9t is defined to consist of all sets 4 C N
such that for all X € [N]®

(1.1) {f1X:fed+

A function ® on [N]* will be said to witness that 4 € 90, if ®(X) € *k\{f | X :
f € A} for each X € [N]%,

Notice that if 4 € MM, and X is an infinite subset of N then not only is there some
g € *k such that for all £ € A there is some x € X such that f(x) # g(x) but,
by partitioning X into infinitely many infinite sets, one sees that there is actually
some g € *k such that for all f € A there are infinitely many x € X such that
f(x) # g(x). The next definition will generalize this version of the Mycielski ideals.

DEerINITION 1.2. Let S; denote the set of all functions f : X — k where X is
a co-infinite subset of N. This can be thought of as k dimensional Silver forcing.
The Rostonowski ideal 9y, is defined to consist of all sets 4 C N such that for all
g € Sy there is an extension g’ O g such that g’ € S; and g’ ¢* f forall f € 4.
A function ® on Sy will be said to witness that 4 € R, if g C ®(g) € S, for each
g €Sy and ®(g) ¢* f forall f € A.
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708 SAHARON SHELAH AND JURIS STEPRANS

It is worth noting that neither of these ideals has a simple definition. Indeed,
since the definition given is I1}, many of the usual arguments which apply to Borel
ideals must be applied with great care, if at all, in this context. For an alternate
approach to finding a nice base for the Mycielski ideals see [10].

The covering numbers of the ideals 9 have a connection to gaps in #(N)/[N]<™
since the assertion that cov(R;) = R; can be interpreted as saying there are many
Hausdorff gaps. To see this, suppose that {4¢}scq, is @ cover of 2N by sets in
R, witnessed by { D¢ }ecw, . If {fs}eew, is any C*-increasing sequence in S, such
that fey1 = ®e(f¢) then {(f(:"'{O]»,fé"]{l})}ée(,Jl is a Hausdorff gap'. Hence
a large tree all of whose branches are Hausdorff gaps can be constructed using
cov(M,) = Ny. It will be shown that similar assertions for cov(f,) = R; are not
equivalent to cov(Ry) = R for n > 2.

§2. Equality and inequality.
THEOREM 2.1. If' k and n are integers greater than 1 then cov(IMy) = cov(IM,,).
Proor. To begin, notice that if ® witnesses that 4 € 90t then

{feNk+1): (VX € [N])f | X # ®(X)}

belongs to M,;. It follows that cov(9;) > cov(My1). It therefore suffices to
show that cov(9,2) > cov(IMy) for each k > 2.

To thisend, let # : N — [N]? be a bijection and let S, (1) be the smallest member of
p(n) and fg(n) be the greatest member of f(n). Define a relation =5 on PFy x PF.
by f = g if and only if the following conditions (2.1) and (2.2) hold:

(2.1) (V{n,m} € [domain(g)I*)(n) N (m) = 0

(2.2) (Vn € domain(g))g(n) = kf (Bs(n)) + £ (Bg(n)).

Now suppose that & is a cover of N(k?) by sets in 901> and that @, witnesses that
A € My, foreach 4 € /. Now, for 4 € & define

(2.3) A*={f € % : (VX € [N*)(VZ € [N™)f | X #5 ®(Z)}.

It will be shown that {4* : 4 € &} is a cover of M by sets in the ideal 90t

To see that each 4* € My let A € M2 and X € [N, Let {{e;,d;}}icw be
disjoint pairs from X such that e; < d; for all i. Let Z = {7 ({ei,d;})}icw and
define /2 : {J;c,,{ei. di} — k suchthat ®,4(Z)(i) = kh(e;)+h(d;) for all i. It follows
that no member of 4* extends 4.

To see that {4* : 4 € &} is a cover of Yk let £ € M. Let g : N — k? be defined
such that g(n) = kf(Bs(n)) + f(B(n)). Then there is some 4 € & such that
g € A. Itiseasy to check that f € 4*. -

It is worth observing that cov(901;) = add(9;) for all values of j. It suffices to
note that cov(901;) < add(901;) since the covering number of any ideal is bounded

I'The term “Hausdorff gap” here is used to denote a pair of towers, increasing with respect to C* of
length w;, such that any proper initial segment can be separated but the towers themselves can not be
separated.
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by its additivity. If {As}eex C 9M; is such that (.., A; ¢ 9N, then there is some
infinite X C N such that

frXx:felJdep="i

tek

and, hence, s, {/f | X : f € A¢} = *jis a cover of *j by sets in 90t; under the
obvious bijection of ¥ j and Nj.
PROPOSITION 1. Ifi > j then cov(R;) < cov(fR;).

PrOOF. Let | J; ¢, 4¢ be a cover of Nj by sets in R;. Let @, : S; — S; witness
that 4, belongs to 9{ Define S : PF; — PF; by

rim) iffim)e
S(f)(m)—{j_1 if f(m) ¢ j

and then let ¥, : S; — S; be defined by

B O (S(f))(m) if m ¢ domain(f)
Fel)m) = {f(m) if m € domain(f)

Let By = {f € N : (Vg € Si)(¥(g) Z* f)} and note that if /' € N\ U,¢, B
then S(f) € %\ Uyer 4e- B

§3. Covering numbers of many Rostonowski ideals may be different. In this section
it will be shown that any combination of values for the cardinal invariants cov(Ry)
is consistent so long as it does not violate the basic monotonicity result of Proposi-
tion 1. Intervals of integers will be denoted by the usual notation; so, for example,
n \ m will be denoted by [m, n)

THEOREM 3.1. Let k be a nowhere increasing function from [1,00) to the uncount-
able regular cardinals. It is consistent, relative to the consistency of set theory itself,
that cov(R;) = k(i) for each i > 2 and 2% = k(1).

Denote (1) by k. The basic construction will be a finite support iteration of
length & of countable chain condition partial orders. Simultaneously with this
construction, a sequence of trees {T }¢°, will be constructed such that the height of
T; is k(i) and the width of each T; is x. The tree T; will be thought of as a subset
of S; and the tree ordering will agree with C*. The construction will guarantee that
each level of the tree T; corresponds to a subset of S; which belongs to 28;. The fact
that the tree has no cofinal branches will be used to show that the union of these
sets covers S; thus providing an upper bound on cov(R;). On the other hand, if
A < k(i) and J, ¢, Xa is a cover of S; by sets from R; then, at the typical limit stage
an approximation to a function ®,, witnessing that X,, € fR; will have been trapped.
A tower of partial functions {fa}aes With respect to C* will be constructed so
that fo1 D% ®4(f4) and a new function will be added to the top of this tower.
This new function will prevent the approximations from witnessing that cov(fR;)
is smaller than x(i). The countable chain condition of the forcing which adds a
top to this tower is not an obstacle since this will follow from the genericity of the
construction. However, more care will have to be taken to preserve the key property
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710 SAHARON SHELAH AND JURIS STEPRANS

of the trees which guarantees that there are no cofinal branches. The remainder of
this section will supply the details of this outline.
Let V be a model where 2% = R holds and the following version of ¢, holds:

HypoTtHESIS 1. There is a sequence {Dg }qex such that for each cardinal A < &
and each family {X¢ };c, of subsets of x and for each closed unbounded set C C «
and each u € k there is some y € k such that

o the cofinality of y is 4

e D, = (¢, {X; Ny}res, J) for some integer J

°c: A — yN(C\ u)is a continuous, increasing mapping whose range is cofinal
iny

o Dc(é) =(c ¢, {X{ N C(f)}{eé, J) for each limit & € A.

This is easily seen to be a consequence of ¢, but s, in fact, considerably weaker.

The first step is to define a finite support iteration of countable chain condition
partial orders {Qq }ack. The iteration of {Qq }ac, Will be denoted by P,. Before
proceeding, using the cardinal arithmetic implied by Hypothesis 1, let all sets of
hereditary cardinality less than x be enumerated by {F} },c..

If & = f + 2 then Q, is simply defined to be Cohen forcing for adding a generic
function ¢, : N — N. Defined simultaneously with IP, will be P,-names for subtrees
T CQj= <) and functions ©% with domain 7 such that, for each j > 2

o iffeathenT/ C T

if B € o then ® C 09

Llkp, “if & € T® then ©%(¢) € S;”

LiFp, “if & and &’ belong to T and & C &' then (&) C* @%(¢')”

1 lkp, “if & and &’ are distinct elements of T? of the

same height then [{n € N : @%(&)(n) # 0%(&")(n)}] = Ro”

o if o is a limit then T¢ = J,, T/ and ©% = (J;.,,

e ifa = f + i wherei € 3 and f is a limit then T = Tjﬁ and@j-’ :®f.

Notice that by the induction hypothesis, if F € PF; and Bf(F) is defined to be
{¢ € Ty : ©%(&) C* F}then B¢(F) forms a chain in 7. The following additional
induction hypothesis will play a crucial role in the construction:

INDUCTION HYPOTHESIS.
(3.1) (Vj > 2)(VF € PF;)(|BF(F)| < k()))

If there is some 8 such that o = f + 3 then let ¢(j, ) be the least ordinal such
that F,(; ) is a Pg,o-name for an element of S; which does not equal, modulo a
finite set, an element of the range of ®f *2_ (Such an ordinal must exist because o
is a successor and, hence, many new Cohen reals have been added at the previous
stage.) Given a generic G C P, let £ be a name for the lexicographically least
member of Q;[G]\ Tf +2[G] which extends each member of Bj/.; +2(F¢( ) and let

T be a name for Tf Gl U {&}. Note that by Hypothesis 3.1 the sequence &
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belongs to Q;[G]. Define 0% (&) by
)

(i) ifi € domain(F,;,))
0%( (i) = ca(z) ifi € N\ domain(F,(;,)) and c,(i) < j
undefined if i € N\ domain(F,(;,)) and c,(i) > j

and notice that this definition will satisfy the induction hypotheses because of the
genericity of ¢,. Observe also, that adding a Cohen real does no harm to the
Induction Hypothesis 3.1.

The next step is to define Q, when « is a limit or the successor of a limit ordinal.

DEFINITION 3.1. If # is an C*-increasing chain in S; then the partial order Q(#)
is defined to be the set of all functions f € Sy such that there is some 2 € # such
that f C* h, and the ordering on Q(#) is inclusion. If G is a filter on Q(#) then
define f¢ = UG and note that if G is a sufficiently generic filter then f¢ is a total
function from N to .

Observe that if  C # is a C*-cofinal set then Q(%) is equal to Q(#). This fact
will be used in the sequel without further mention. The function f¢ is intended
to be used to extend the given chain and obtain a new partial order extending the
given one. However, since f'¢ is a total function, it will be necessary to cut it down
to obtain a member of S;. The following partial order is designed to do this.

DEFINITION 3.2. If Q(#) is as in Definition 3.1 and G is a filter on Q(#) then
define A(G) to consist of all quadruples (a, p, &, v) ordered under coordinatewise
inclusion such that:

a € [N]<

peEG

a U domain(p) D [0, max(a)]

a N domain(p) =0

 is a finite set of nice Q(#)-names? for elements of NN

v:¥ —-N

foreach @ : v(f)Na — k,foreachi € an[v(f), o), foreachz : [v(f),i]N
a — k there is some integer my, r such that

puU Ut [FQ(%) “f(K) = I’}’I(),T,f”

where K = |a N [v(f),{]]
If H C A(G) is a filter then define Ay = Utap.s ven @ and define for = fo |
(N\ 4g).

Observe that A(G) has N; as a precalibre regardless of the cofinality of Z —
indeed, each regular uncountable cardinal is a precalibre of A(G). Ameoba forcing
is usually not this nice. Hence Q(#) * A(G) has the countable chain condition so
long as Q(#) does. Furthermore, Q(#) C Q({fs.#}). The main question to be
addressed is: Do dense sets in Q(#) remain dense in Q({ f 6.5 })? The next pair of
lemmas provide some information on this.

2Nice names are not crucial here. All that is required is that the rank of the elements of & is bounded
so that A(G) is a set rather than a class.
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LeMMA 1. If # is an increasing tower in S, p € Q(#), g : | — k, a €
[N\ domain(p)]<® and D is a dense subset of Q(#) then there is p' D p such
that a N domain(p’) = 0 and (p’' | [l,c0) UOUg € D foreach 0 : an|[l,c0) — k.

Proor. This is the standard argument which is used, among other things, to
prove that Silver forcing is proper. -

LeEmMMA 2. Let # be an increasing tower in Sy and let G be Q(# )-generic over the
model V. Suppose also that H is A(G) generic over V[G]. If D belongs to V[G]
and is predense in Q(F#) then it remains so in Q(F) for any increasing tower F C Sy,
suchthat fey € F .

ProoOF. Given f € Q(&) it may, without loss of generality, be assumed that
f 2* fe.m. Therefore, it is possible to choose / € N such that f [ [/,00) 2 fou |
[/,00). Also without loss of generality, it may be assumed that / C domain(f).
Now, let g = f | [. From Lemma 1 it follows that the set

Dy ={(a,p.F,v)€A(G): (V0 :an[l,oo) = k)(p [LLoo)UOBUg € D}
is dense in A(G). Now, choose (a, p, #,v) € D, N H. Let
0=flan[,oo)

and, using the definition of D,, conclude that p | [L,co) UO U g € D. Since
Pl [,oo) C fou | [l,00) C f it follows that p | [,oo) U Ug C f and hence, f
extends an element of D. -

Whenever « is a limit ordinal such that cof(a) < , the partial order Q, will be
defined to be of the form Q(#, ) where #, C Sy is an increasing tower with respect
to C* which has the same cofinality as o and J > 2 is such that x(J) > cof(a).
Moreover, in this case, Qq..; will always be of the form A(G) where G is the generic
filter on Q(#,). Keeping this in mind, let H be the generic filter on A(G) and define
H, = fepy €8S,. The only point which requires elaboration is how to choose #,,.

There are three cases to consider.

Cast ONE. There exist ¢, a limit ordinal p € &, {®;};¢, and integer J such that:
cof (o) < k(J)

Do = (c.{®¢}rep. /)

¢ : p — ais a continuous, increasing mapping whose range is cofinal in &

& and ¢(¢) have the same cofinality for each & € p

1lkp, “(V¢ € p)(®¢ : Sy — Sy is such that (V1) (f C @ (f)))”

D)= (c 1 &, {Xr N c(&)}ree, J) for each limit & € p

there is some p’ € p suchthat p = p' +

Case Two. The hypothesis is the same as in Case 1 except that the last require-
ment fails; in other words, there is no p’ € p such that p = p’ + w.

CaSe THREE. Both Case 1 and Case 2 fail.
As a further induction hypothesis it will be assumed that:

InpucTioN HyPOTHESIS. If #' € # and either Case 1 or Case 2 holds at # and
Dy = (¢,{®¢}eep, J) and ' = ¢(&) for some & € p such that cof (&) < cof(p) (note
that this implies that either Case 1 or Case 2 holds at # as well) then H,» C* H,.
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Now consider Case 1. Note that H,(, is already defined since c(p’) < a. ltis
therefore possible to choose inductively H,(, .,y to be a Po-name such that

1 ”_]Pa “Hc(p’+n+1) = (D/)'+n(Hc(p’+n))”

for each n € N. Let #, = {H,(s)}z¢, and note that this is increasing with respect
to C* since {Hp 4n }nco 18.

Observe that in Case 2 it follows from the construction and the induction hy-
pothesis that the set {H, () }s¢, is an increasing tower in S; for some J such that
the cofinality of « is less than x(J). To see this, proceed by induction on # and
note that if # < # then either n = »’ + k for some integer k or there is some {
of cofinality not exceeding that of #’ such that #’ < { < #. The first possibility
is handled using the construction in Case 1 and the second is dealt with using the
induction hypothesis. It is therefore possible to let #, = {H.(s)}zcp-

In Case 3 let #, be any increasing countable family; in other words, Q, will be
Cohen forcing. It will become apparent that Q, . is irrelevant in this case.

LemMa 3. The partial order P, has the countable chain condition.
Proor. Proceed by induction to show that

1 IFp, “Qq has the countable chain condition”

for each a.. The countable chain condition for Q(#) is problematic only when the
cofinality of o is uncountable. Indeed, if cof (a) = w or cof(a) = 1 then Q(#) is o~
centred. The same is also true if either Case 1 or Case 3 in the inductive construction
of P, holds. So assume that Case 2 holds and that D, = (¢, {®¢ }¢¢,, J) and, hence,
Qo = Q{H, (1) }cep). Now, if 4 C Q, is a maximal antichain then, using the fact
that ¢ is continuous and its range is cofinal in ¢, it is possible to find some & € p
such that 4 N Q({H,(;)}¢ee) is a maximal antichain. By the induction hypothesis,
it follows that 4 N Q({H, () }¢ee) is countable. By Lemma 2 and the definition of
H, ), it follows that 4 N Q({H, () }¢ee) is also maximal in Qq. 8

Notice that it is immediate that if G is P, generic over a model ¥ where 2% = X,
then 2% = k in V[G]. Before proceeding some notation will be introduced.

DEFINITION 3.3. Suppose that P C P’ and that X is P’-name. The P-name X | P
is defined by induction on the rank of the inductive definition of names. If X is of
the form X C P/ x Z where Z is a ground model setthen X [P=XN(P x Z). In
general, X [P ={(p,4 | P): (p,4) € X}.

LemMA 4. If G is P, generic over V then cov(R;) > k(j) in V[G] for j > 2.

PrOOF. If cov(R;) < k(j) then let ®; : S; — S; be such that {®;}¢c; witness
this fact for some 1 < (). Let ®¢ be a name for ®; and suppose that

p IFp, “{®¢}eeq witnesses that cov(R;) < 1”.

Using the regularity of «, the fact that |P,| < & for each a € k and that V is a
model of 2% = Xy, leNt C be a closed unbounded set in x such that for eacha € C
the restricted names @, [ IP, satisfy that

p ke, “{®¢ | Py }ees witnesses that cov(R;) < A”.
Find some # such that cof(n) = A,
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D, = (¢, {®¢ | P,}ecs, j) for some ¢ : A — C \ sup(domain(p)). It follows
directly from the construction of P, that {H, () }ec; is an increasing sequence in
S; and cof(7) = 2 < (j). Moreover, the constructlon at isolated limit ordinals
guarantees that H, () 2* ®¢(H, () for & € A. This yields that f = f 6N,
extends each @; (H, () for & € A. Hence f does not belong to any of the members
of the ideal R deﬁned by the witnesses . -

LemMA 5. If G is P, generic over V', j > 2 and g € Nj in V[G] then there is some
o € k(j) such that g ¢* ©%(a) for all o € T} of length greater than c.

PrOOF. Let g € Nj in V[G]. By Induction Hypothesis 3.1 it follows that the
branch B"‘( ) has length a for some « less than (). Hence, if o has length greater

than « then o ¢ Bf(g). By definition g * ®%(a). =
LEMMA 6. If G is P, generic over V then cov(R;) < k; in V[G].

ProoOF. In V[G], for each a € k(j), let E,, be the set of all g : N — j such that
0%(g) ¢* gforallg € T} of length greater than o.. To see that E, € R let f € S;.
Then f has a name of hereditary cardinality less than x and so, there is some [ € Kk
be such that F,; , is interpreted as f in V[G]. It follows from the construction
of @ that there is some sequence ¢ such that 1 I-p, “®§‘(£_) D Fy(m”- Now let
¢ € T} be an extension of & of length greater than « and note that f/ =* @'j(f)
has the property that g 2* f' for all g € E,. From Lemma 5 it follows that
Uaen() Ea =NJ. .

Hence, in order to finish the proof of Theorem 3.1, it suffices to show that
Hypothesis 3.1 holds. The basic idea here is that it suffices to show that the
induction hypothesis holds at a single stage for any particular name for a function;
at later stages Cohen genericity can be used. The next three lemmas provide the
details to this sketch.

LemMA 7. Let G be P, generic over V and J < j. Ifa € f € kand T is a

J-branching subtree of ﬁN which belongs to V|G N P,] then for any & € Tjﬂ \ T
there are infinitely many integers i such that there is some i’ > i so that

®)(&) Ii,i") Z b [ [i,i")
foranyb € T.
ProoF. Recall that a tree 7 is said to be J-branching of height n if ' C {J, <, L\

and no node has more than J successors. The following fact is easily proven
by induction on n: If {T;};c, is a family of K-branching trees of height » then

Uie, Ti 2 "(K +1). A direct corollary of this fact is that if 7 C “Nisa J-
branching tree and i € N then there is a function f : [i,i + J') — J + 1 such that
f#b|[i,i +J") forany b € T. Due to technical details, this simple fact can not
be used directly; but, a slight variation of it will be combined with Cohen genericity
to obtain the desired conclusion.

Before this can be done however, let T and G be given and let 1 € T be a
sequence whose domain is ;. Let A4 denote the domain of the interpretation of
F,(;p in V[G NPs]. Define a tree T'(¢) in V[G NPg] by

T(t)={seT:s[AN[i,00) C Fy;p}
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and let y; be the order preserving bijection from N to [i, c0) \ 4. Define T*(¢) =
{sow :s € T(¢)} and notice that T*(¢) is a J-branching tree. Using this and the
Cohen genericity of cp it is possible to apply the first observation of the previous
paragraph to conclude that there are infinitely many integers i such that czoy; (k) €
J\ {b(k)} foreach k € J', t € T of length i and for any » € T*(¢). Given any
suchileti’ =i+ J +|AN[iy;(J)]. It follows that cg | [i,i') € b | [i,i’") for
anyb e T. -

DEerinITION 3.4. If for some model of set theory V' and integer k&

o 7% C Sk

e fisaQ(#)-name such that 1 Ik “f € "N”

o Gisa Q(#) generic filter over V'

e H isan A(G) generic filter over V[G]

e (a,p,F,v)eH

o feF

o I>v(f)
then, for any g : [0,/] — k let ©(G, H, f,g) denote the k-branching tree de-
fined by ¢ € (G, H, f,g) if and only if there exists some (a, p,#,7) € H and
t:an|[l|a|) — k such that |z| = |z| and

(3.2) pUGUT g “f (i) =mg.p =1(i)”
for each i < |¢|. Note that this is well defined.

Lemma 8. If # C Sy, then:

1. If f is a nice name such that 1 l+gz) “f € NN then the set of all (a, p, F ,v) €
A(G) such that f € F is dense in A(G)

2. If j € N then the set of all (a, p, F ,v) € A(G) such that aN[j,o00) # ( is dense
in A(G).

ProoF. To prove (1), given g = (a, p, ¥ ,v) € A(G) define
g =(a,p,7 U{f},vU{(f,max(a)+ 1)}) € A(G)

and note that ¢’ is stronger than g.

For (2), let j and ¢ = (a, p,,v) € A(G) be given and choose an integer
u € [j,00) which does not belong to the domain of p. Using Lemma 1 it follows
that the set of p’ € Q(#) such that (a U {u}, p’, #,v) satisfies the conclusion of
(2) is dense. Hence, there is p’ € G such that (a U {u}, p’, #,v) is stronger than ¢
and satisfies the requirements of (2). -

LemMA 9. If'it is given that
e cof(a) = k()
o G isP,. generic over V
o € WNin 414
then there is J < j and a J-branching tree T C ‘NN in VIG NPy] such that f € T.

Proor. Using the same notation as in the construction of P, let Q, =
Q({H,(; }rep). Using the countable chain condition of Qq, the uncountable cofi-
nality of «, and hence c(a), it is possible to find a limit ordinal € p such that
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fisa Q({Hb(”)}”eﬂ)-name and the name f belongs to V'[G N Pg]. Notice that
cof (a) = () implies that {H,(,) },e, € Sy for some J < j.

Let H be A(G N Q,) generic over V[G N (P, * Q(#,))] and recall that H, =
fero.ma.- Ifh € S;and h O* H, let [ € N be such that & O H, [ [/, oo)
and let g = 4 | /. Now use Lemma 8 to conclude that 7(G, H,g, ) is a J-
branching tree whose closure contains f. The desired result now follows directly
from Lemma 2. -

The next task is to check that the Induction Hypothesis 3.1 holds at each stage of
the construction. The countable chain condition and Cohen genericity guarantee
this at limit stages of large cofinality but the argument at limit stages of countable
cofinality requires a bit more care. The next three lemmas provide the details and
finish the proof of Theorem 3.1.

LemMa 10. If the Induction Hypothesis 3.1 holds at all previous stages and cof ()
is uncountable then

(VF € PF;)(|Bf(F)| < (/).

Proor. Given F € PF;, it follows by the countable chain condition of the partial
order that there is some f € « such that F € V[G N Pg] for any generic G C P,.
By the induction hypothesis it follows that |Bﬂ (F)| < k(j) in V[G NPp]. However,
the genericity of ¢, over V'[G NPg] for y > B guarantees that @7( &) ¢* F for every
y€a\fand e T¥\ TF.. Hence |B¥(F)| < £(j) in V[G NPq] as well. -

LeMMA 11. Ifthe Induction Hypothesis 3.1 holds at all previous stages and cof () <
k(j) then

(VF € PF;)(|Bf(F)| < k(})).

ProOF. Letcof(a) = y < k(j) and suppose that G is P, genericover V. If F isa
function from N to j in V'[G] then notice that, if B#(F) has length £(;) then, by the
cofinality of «, there is some § € « such that there is a cofinal subset B C B]/.J (F).
This determines the branch through T'; $in V[G N Pg]. Hence, it suffices to show
thatif B C Tﬁ is a branch of length «(j) in ¥[G NPg] and F is in V[G NP, ] then
B ¢ BI(F).

To this end, let B be a Pg-name for a long branch through TJ'.B and F a P,-name.
Let {f:}z¢, be an increasing sequence of ordinals cofinal in « such that fo > B.

For any p € P, define F, = {(i, j) : p Irp, “F (i) = j”}. It will first be shown that
for each & € y the set

D(&) = {g € Py, : (30 € B)(vr < q)(F, 2" ©//(0))}
is dense in Pg,. To see that this is so, suppose that ¢ € Pp, is such that for each
o € B and § < q there is some » < g such that F, D* @f(a). Then let F to be the
PP, -name defined by p gy, “F(i) = j”ifand onlyif p IFp, “F (i) = j”. It follows
that g Il—[p/,é “F D @f (0)” for each ¢ € B contradicting the induction hypothesis.

Using the density of each D (&), let &/ C D (&) be a maximal antichain and, for
eachq € %, leto; € B witness thatq € D(£). Since B haslength x(;), itis possible
to find o € B be such that ¢ D a;f for each & € y and g € &:. Now suppose that
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p € P, issuchthat p IFp, “FU (G)’; (¢) | m) D G)f (0)” for some integer m. Let & be
such that p € P, and choose g € & such that there is some r € Py, such thatr <g¢
and r < p. Since g € D(¢) it follows that F, 2* @? (65) c* ®§ (). Hence, there is
some [ > m in the domain of G)f (o) such that either r IFp, “F (i) # ®f (g)(@)” orr
does not decide a value for F (i ). The first case directly contradicts that r < p and, in
the second case, it is possible to extend r to 7’ such that r’ IFp, “F (i) # (Df (@)(@)”.
This again yields a contradiction. -

It remains to consider successor ordinals. If @ = 4 1 and f itself is a successor
or has cofinality less than () then k() is a precalibre of Q,. Hence, a standard
argument shows that it preserves the induction hypothesis. So the only problem
may arise when f is a limit of large cofinality.

LeMMA 12. Suppose that o is a limit ordinal of cofinality greater than or equal
to k(j). Given that each preceding stage satisfies the Induction Hypothesis 3.1, the
partial order P,y will also satisfy the induction hypothesis.

ProoF. Let G be P, generic over V' and argue in V' [G]. There are two types of
branches which might provide difficulties. To begin, consider branches which occur
at some stage f8 before . Let B be a branch through Tf oflength (/) in V[G NPg]
and let F be a Q,-name for a function from N to j such that

1 lrg, “(Vo € B)(F 2* ©%(0))”

If Q. has a dense subset of size less than () then a simple pigeonhole argument
shows that there is some m € N and a single condition ¢ € Q, such that the set of

o € B such that q I-g, “F U (@f(a) [ 'm) D @f(a)” is cofinal in B. This means
that
U{@f(a) :q kg, “F U (@f(a) I m) 2D @f(a)”}

is cofinal in B contradicting the induction hypothesis. Use the notation of the
construction of Q. If Case 1 or Case 3 holds at o then QQ, has a countable dense
subset and so this possibility has already been considered. Hence, assume that
Case 2 holds at o. Using the countable chain condition of Q, = Q({%.() }4ep. let
¢ € p be such that F | Q({A.(;)}nee) is @ Q({Ae(;) }nep)-name. From the induction
hypothesis it follows that

1lFg,, “(30 € B)(F 2* 0(s))”

Using the uncountable cofinality of B and the countable chain condition of Q) it
follows that there is some fixed o € B such that

llg,, “F 2" ©/(0))”

so it is possible to use Lemma 2 to conclude that the dense subsets of Q. ;) witnessing
that F 2* G)f (o) remain dense in Q.

The second possibility is that a cofinal branch is added to 7';* which is not cofinal in
any previous Tf . To see that this can not happen, suppose that 1 I-g, “F : N — j”.
Then, by Lemma 9, there is some J-branching tree 7" such that J < j and

1 kg, “F is in the closure of 7.
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Since o has uncountable cofinality and the iterands all have the countable chain
condition, it follows that if G is a generic set for P, then there is some f € « such
that T belongs to V'[G NPy]. Choose o € Bf (F)\ Tf. Now use Lemma 7 to
conclude that there are infinitely many integers i for which there is some i’ > i so
that

®(o) I[0.i") £ b 1 [i,i")
for any b € T. In particular, there are infinitely many i such that there is some
i' > i so that ®f(0) ['[i,i") € F | [i,i’). In other words, Gf(o-) ¢* F. 4
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