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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66, Number 2, June 2001 

THE COVERING NUMBERS OF MYCIELSKI IDEALS ARE ALL EQUAL 

SAHARON SHELAH AND JURIS STEPRANS 

Abstract. The Mycielski ideal 9tk is defined to consist of all sets A C Nk such that {f [ X f C 

AI} = Xk for all X C [N]'O. It will be shown that the covering numbers for these ideals are all equal. 

However, the covering numbers of the closely associated Roslanowski ideals will be shown to be consistently 

different. 

?1. Introduction. In [6] J. Mycielski defined a class of ideals which have been 
studied in various contexts by several authors [7, 11, 8, 10, 5, 1, 9, 2, 4, 3]. This 
paper is devoted to examining the covering numbers of these ideals as well as those 
of a closely related class of ideals. It will be shown that, while the covering number 
of the Mycielski ideals is independent of their dimension, the covering numbers of 
the related ideals are very closely connected to their dimension. 

DEFINITION 1.1. The Mycielski ideal 9)lk is defined to consist of all sets A C Nk 
such that for all X E [N]'o 

(1.1) {f L X: f E A}l Xk. 

A function (D on [N]'o will be said to witness that A E 9Sk if FD(X) E Xk \ {f 
f E A} for each X E [N] o. 

Notice that if A E 9Nk and X is an infinite subset of N then not only is there some 
g E Xk such that for all f E A there is some x E X such that f (x) 4 g(x) but, 
by partitioning X into infinitely many infinite sets, one sees that there is actually 
some g E Xk such that for all f E A there are infinitely many x E X such that 
f (x) + g (x). The next definition will generalize this version of the Mycielski ideals. 

DEFINITION 1.2. Let Sk denote the set of all functions f: X -? k where X is 
a co-infinite subset of N. This can be thought of as k dimensional Silver forcing. 
The Roslonowski ideal 91k is defined to consist of all sets A C Nk such that for all 
g E Sk there is an extension g' D g such that g' E Sk and g' 7* f for all f E A. 
A function d) on Sk will be said to witness that A E 91k if g C 4>(g) E Sk for each 
g E Sk and 4D(g) 7* f for all f E A. 
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708 SAHARON SHELAH AND JURIS STEPRANS 

It is worth noting that neither of these ideals has a simple definition. Indeed, 
since the definition given is H2, many of the usual arguments which apply to Borel 
ideals must be applied with great care, if at all, in this context. For an alternate 
approach to finding a nice base for the Mycielski ideals see [10]. 

The covering numbers of the ideals 9lk have a connection to gaps in 9 (N)/[N]<? 
since the assertion that cov(912) = ti can be interpreted as saying there are many 
Hausdorff gaps. To see this, suppose that { is a cover of 2N by sets in 
912 witnessed by { If {ffhc}46 is any C*-increasing sequence in S2 such 
that f,+l = F(D (f ) then {(f -01{ f 1) {1 G),, is a Hausdorff gap1. Hence 
a large tree all of whose branches are Hausdorff gaps can be constructed using 
cov(9i2) = ti. It will be shown that similar assertions for cov(9i,) = ti are not 
equivalent to cov(912) = ti for n > 2. 

?2. Equality and inequality. 

THEOREM 2.1. If k and n are integers greater than 1 then COV(9k) = COV(n). 

PROOF. To begin, notice that if (D witnesses that A E 9Sk then 

{f E N(k + 1) : (VX E [N]O)f L X #F (X)} 

belongs to 9X1k+?1 It follows that cov(9)k) > cov(9)k+?1). It therefore suffices to 
show that cov(9)k2) > cov(9)1 for each k > 2. 

To this end, let ,B N -, [N]2 be a bijection and let /3, (n) be the smallest member of 
/3(n) and /Bg (n) be the greatest member of /3(n). Define a relation =p on PFk X PFk2 
by f =p g if and only if the following conditions (2.1) and (2.2) hold: 

(2.1) (V{n, m} E [domain(g)]2)/J(n) n /3(m) = 0 

(2.2) (Vn cz domain (g)) g(n) = kf (f,B (n)) + (fg (n)). 

Now suppose that sl is a cover of N(k2) by sets in 9)k2 and that (DA witnesses that 
A E 9)k2 for each A E sV. Now, for A E sl define 

(2.3) A* = {f E NI: (VX E [N]"0)(VZ E [N]"O)f [ X Ol 'D(Z)}. 

It will be shown that {A* : A E sV} is a cover of Nk by sets in the ideal 931k* 

To see that each A* E 90k let A E 9)k2 and X E [N] No. Let {{ei, di}} i be 
disjoint pairs from X such that ei < di for all i. Let Z = {/P-l ({ei, di})}ic,, and 
defineh: U i{ei,di} I- k suchthat A (Z)(i) = kh(ei)+h(di) foralli. Itfollows 
that no member of A* extends h. 

To see that {A*: A E 1} is a cover of Nk let f c Nk. Let g : N k2 be defined 
such that g(n) = kf (/,J(n)) + f (/Jg(n)). Then there is some A a ' such that 
g c A. It is easy to check that f E A*. d 

It is worth observing that cov(9)1) = add(9j) for all values of j. It suffices to 
note that cov(9)1) < add(91) since the covering number of any ideal is bounded 

'The term "Hausdorff gap" here is used to denote a pair of towers, increasing with respect to C* of 
length co,, such that any proper initial segment can be separated but the towers themselves can not be 
separated. 
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COVERING NUMBERS OF MYCIELSKI IDEALS 709 

by its additivity. If { C XjY is such that U,, AX V 9)1 then there is some 
infinite X C N such that 

{f X:f cUA4} Xj 

and, hence, Use {f [ X: f E AsJ = Xj is a coverof Xj by sets in 931 under the 

obvious bijection of Xj and Nj. 
PROPOSITION 1. If i > j then cov(91i) < cov(91j). 

PROOF. Let USE,< A( be a cover of Nj by sets in 9y. Let (DC: j- ?j witness 
that AS belongs to 91. Define S: PFj -- PFj by 

S(f)(m) {f(m) if f (m) ] 

and then let Ti: Si -- Si be defined by 

Tps(f)(m) C (S (f) )(m) if m V domain( ) 
f (m) if m e domain(f) 

Let B {f Ni: (Vg E ?i)(T( (g) f f)} and note that if f E Ni \ UgC, B( 
then S (f ) E Nj \ UCc,, AS. A 

?3. Covering numbers of many Roslonowski ideals may be different. In this section 
it will be shown that any combination of values for the cardinal invariants cov(91k) 
is consistent so long as it does not violate the basic monotonicity result of Proposi- 
tion 1. Intervals of integers will be denoted by the usual notation; so, for example, 
n \ m will be denoted by [m, n) 

THEOREM 3.1. Let K, be a nowhere increasing function from [1, oo) to the uncount- 
able regular cardinals. It is consistent, relative to the consistency of set theory itself, 
that cov(91i) = K(i) for each i > 2 and 2'0 = 4(1). 

Denote r (1) by a,. The basic construction will be a finite support iteration of 
length i, of countable chain condition partial orders. Simultaneously with this 
construction, a sequence of trees { T1 }-2 will be constructed such that the height of 
Ti is (i) and the width of each Ti is a,. The tree Tj will be thought of as a subset 
of Si and the tree ordering will agree with C*. The construction will guarantee that 
each level of the tree Ti corresponds to a subset of Si which belongs to 91 . The fact 
that the tree has no cofinal branches will be used to show that the union of these 
sets covers Si thus providing an upper bound on cov(91i). On the other hand, if 
A < 4 (i) and U., W X,, is a cover of Si by sets from 91i then, at the typical limit stage 
an approximation to a function uD, witnessing that X,, E 9i will have been trapped. 
A tower of partial functions {faff}j, with respect to C* will be constructed so 
that f?+l 2* (Da (fa) and a new function will be added to the top of this tower. 
This new function will prevent the approximations from witnessing that cov(91i) 
is smaller than (i). The countable chain condition of the forcing which adds a 
top to this tower is not an obstacle since this will follow from the genericity of the 
construction. However, more care will have to be taken to preserve the key property 
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710 SAHARON SHELAH AND JURIS STEPRANS 

of the trees which guarantees that there are no cofinal branches. The remainder of 
this section will supply the details of this outline. 

Let V be a model where 2O0 = ti holds and the following version of 0, holds: 

HYPOTHESIS 1. There is a sequence {Ds~ }s,. such that for each cardinal A < Ki 

and each family {X(}J(c of subsets of K and for each closed unbounded set C C i, 
and each u E , there is some y E , such that 

* the cofinality of y is A 
* Dy = (c, {X( n yl(,A, J) for some integer J 
* c: A y n (C \ u) is a continuous, increasing mapping whose range is cofinal 

in y 
* Dc(4) (c , {Xc n c ()} cX, J) for each limit 4 E A. 

This is easily seen to be a consequence of 0+, but is, in fact, considerably weaker. 
The first step is to define a finite support iteration of countable chain condition 

partial orders { The iteration of {Q.,},, will be denoted by IPX. Before 
proceeding, using the cardinal arithmetic implied by Hypothesis 1, let all sets of 
hereditary cardinality less than i, be enumerated by {F1,7 }. 

If a = /J + 2 then Q., is simply defined to be Cohen forcing for adding a generic 
function c,, : N -? N. Defined simultaneously with P,, will be P,, -names for subtrees 
Tja C Qj = <(i), and functions Oq with domain Tja such that, for each j > 2 

* iffl E a then Tfl C Tja 

* if E O then C O 
* 1 Ip"' "if c E Tja then Oq(4) E ?f' 
* 1 1F- "if c and A' belong to T77 and 4 C A' then OiG() C* OL(d)" 

* 1 Ip1F "if 4 and A' are distinct elements of Tj7 of the 
same height then {n E N: Oq (4)G(n) #8 Oq (G')(n)} t o" 

* if a is a limit then Tj=7 T and = 
* if a + i where i E 3 and fl is a limit then Tja = T3 and ?=? 

Notice that by the induction hypothesis, if F E PFj and Bj (F) is defined to be 
{ Tj 777: OG) C* F} then Bj (F) forms a chain in T77. The following additional 
induction hypothesis will play a crucial role in the construction: 

INDUCTION HYPOTHESIS. 

(3.1) (Vj > 2) (VF PFj) (I By (F) < S(j)) 

If there is some /J such that a =/ + 3 then let ~o (j, ac) be the least ordinal such 
that F,(j,,) is a Pfp+2-name for an element of Si which does not equal, modulo a 

finite set, an element of the range of ?i?+2. (Such an ordinal must exist because Oa 

is a successor and, hence, many new Cohen reals have been added at the previous 
stage.) Given a generic G C P] let 4 be a name for the lexicographically least 
member of Qj[G] \ 7jl32[G] which extends each member of Bf!+2(F ,(j1,) and let 

Tja be a name for Tjfl+2 [G] U {c}. Note that by Hypothesis 3.1 the sequence 4 
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COVERING NUMBERS OF MYCIELSKI IDEALS 711 

belongs to j [G]. Define OJ (4) by 

F,(j,,) (i ) if i E domain(F,(j,,, )) 
aJ (4)(i) = < Ca~i) if i E N \domain(F,(j,,)) and c. (i) < j 

undefined if i E N \ domain(F.((j,,)) and c],(i) > j 

and notice that this definition will satisfy the induction hypotheses because of the 
genericity of c,. Observe also, that adding a Cohen real does no harm to the 
Induction Hypothesis 3.1. 

The next step is to define Q. when a is a limit or the successor of a limit ordinal. 

DEFINITION 3.1. Ifa is an C*-increasing chain in ?k then the partial order QQ(X) 
is defined to be the set of all functions f E ?k such that there is some h E X such 
that f C* h, and the ordering on Q(a) is inclusion. If G is a filter on Q(F) then 
define fG UG and note that if G is a sufficiently generic filter then fG is a total 
function from N to k. 

Observe that if X C X is a C* -cofinal set then Q(X) is equal to QQ(X). This fact 
will be used in the sequel without further mention. The function fG is intended 
to be used to extend the given chain and obtain a new partial order extending the 
given one. However, since fG is a total function, it will be necessary to cut it down 
to obtain a member of Sk. The following partial order is designed to do this. 

DEFINITION 3.2. If Q(X) is as in Definition 3.1 and G is a filter on Q(a) then 
define A(G) to consist of all quadruples (a, p, A, v) ordered under coordinatewise 
inclusion such that: 

* a E [N]<NO 
* p G 
* a U domain(p) [0, max(a)] 
* a n domain(p) 0 
* 5 is a finite set of nice Q(a)-names2 for elements of mN 

* v : , -+ N 
* for each 0: v(f) n a -k, for each i E a n [v(f), oo), for each [v(f),i] n 

a -? k there is some integer mo,T,f such that 

p 0 U I F-Q( ) "f (K) moTf 

whereK= la[v(f),i]l. 
If H C A(G) is a filter then define AH U(ap, 9,V)CH a and define fG,H = fG 

(N\AH). 

Observe that A(G) has t1 as a precalibre regardless of the cofinality of X 
indeed, each regular uncountable cardinal is a precalibre of A(G). Ameoba forcing 
is usually not this nice. Hence Q(X) * A(G) has the countable chain condition so 
long as Q(Z) does. Furthermore, Q(X) C Q({fG,H}). The main question to be 
addressed is: Do dense sets in Q(F) remain dense in Q({fG,H})? The next pair of 
lemmas provide some information on this. 

2Nice names are not crucial here. All that is required is that the rank of the elements of - is bounded 
so that A(G) is a set rather than a class. 
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712 SAHARON SHELAH AND JURIS STEPRANS 

LEMMA 1. If X is an increasing tower in Sk, P E Q(?(), g: 1 3 k, a E 
[N \ domain(p)]<O and D is a dense subset of Q(Z) then there is p' D p such 
that a n domain(p') = 0 and (p' [ [1, oo) U 0 U g E D for each 0: a n [l, oo) - k. 

PROOF. This is the standard argument which is used, among other things, to 
prove that Silver forcing is proper. -d 

LEMMA 2. Let X be an increasing tower in Sk and let G be Q (X)-generic over the 
model V. Suppose also that H is A(G) generic over V[G]. If D belongs to V[G] 
and is predense in Q?(Z) then it remains so in Q?(S) for any increasing tower 5 C ?k 
such that f G,H E S3 

PROOF. Given f E Q(S) it may, without loss of generality, be assumed that 
f D* f GH. Therefore, it is possible to choose I E N such that f [ [1, o0) D fG,H [ 
[1, oo). Also without loss of generality, it may be assumed that I C domain(f). 
Now, let g = f [ 1. From Lemma 1 it follows that the set 

Dg = {(a, p, ,v) E A(G) : (VO : a n [loo) k)(p [loo) U 0 U g C D} 

is dense in A(G). Now, choose (a, p, A, v) E Dg n H. Let 

O=f Lan[l,oo) 

and, using the definition of Dg, conclude that p [ [1, oo) U 0 U g E D. Since 
p L [1,o) C fG,H [1,oo) C f itfollowsthatp [1,oo) U Ug C f andhence, f 
extends an element of D. -d 

Whenever a is a limit ordinal such that cof(al) < a, the partial order Q., will be 
defined to be of the form Q(,) where A,, C Sj is an increasing tower with respect 
to C* which has the same cofinality as a and J > 2 is such that (J) > cof(al). 
Moreover, in this case, Q,,,+? will always be of the form A(G) where G is the generic 
filter on Q(Z,, ). Keeping this in mind, let H be the generic filter on A(G) and define 
H,, = fG,H E Si. The only point which requires elaboration is how to choose Ad. 

There are three cases to consider. 

CASE ONE. There exist c, a limit ordinal p E X, {1kD}(cp and integer J such that: 

* cof(al) < i(J) 
* D- = (c, {'Ft }I(p, J) 
* c: p -? a is a continuous, increasing mapping whose range is cofinal in a 
* 4 and c(4) have the same cofinality for each 4 E p 
* 1 Ip, "(V; E p) (( : Si -? Sj is such that (Vf )(f C ('(f 
* Dc(4) (c X, {Xc n c(4)}Jc(, J) for each limit 4 C p 
* there is some p' E p such that p = p' + co 

CASE Two. The hypothesis is the same as in Case 1 except that the last require- 
ment fails; in other words, there is no p' E p such that p = p' + co. 

CASE THREE. Both Case 1 and Case 2 fail. 

As a further induction hypothesis it will be assumed that: 

INDUCTION HYPOTHESIS. If C' E ii and either Case 1 or Case 2 holds at C and 

D7 = (c, (} CEp, J) and a' =c(4) for some 4 E p such that cof(c) < cof(p) (note 
that this implies that either Case 1 or Case 2 holds at a' as well) then Hr. C* Hr. 
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COVERING NUMBERS OF MYCIELSKI IDEALS 713 

Now consider Case 1. Note that H,(P,) is already defined since c (p') < a. It is 
therefore possible to choose inductively Hc(p,+1??) to be a P,,-name such that 

1 IFp,, "Hc(p?+n+?l) = (p'+n(Hc(p'+n)) 

for each n E N. Let A,, {H=c(<)}<cp and note that this is increasing with respect 
to C* since {Hp?+nl}nco is. 

Observe that in Case 2 it follows from the construction and the induction hy- 
pothesis that the set {Hc(<)} cp is an increasing tower in ?j for some J such that 
the cofinality of a is less than (J). To see this, proceed by induction on q and 
note that if a' < q then either q = a' + k for some integer k or there is some C 
of cofinality not exceeding that of a' such that a' < ( < a. The first possibility 
is handled using the construction in Case 1 and the second is dealt with using the 
induction hypothesis. It is therefore possible to let A,, = {Hc (<)}Ep. 

In Case 3 let A,, be any increasing countable family; in other words, Q,, will be 
Cohen forcing. It will become apparent that Q,,,+ is irrelevant in this case. 

LEMMA 3. The partial order P,< has the countable chain condition. 

PROOF. Proceed by induction to show that 

1 IF "Q., has the countable chain condition" 

for each a. The countable chain condition for Q(X) is problematic only when the 
cofinality of af is uncountable. Indeed, if cof(al) = o or cof(al) = 1 then Q(Z) is a- 
centred. The same is also true if either Case 1 or Case 3 in the inductive construction 
of P,, holds. So assume that Case 2 holds and that D,, = (c, {aft }I(p, J) and, hence, 
(Q., = Q({Hc(C)IEp). Now, if A C Q. is a maximal antichain then, using the fact 
that c is continuous and its range is cofinal in a, it is possible to find some 4 E p 
such that A n Q({Hc(()}i(Ge) is a maximal antichain. By the induction hypothesis, 
it follows that A n Q({Hc(() }(G) is countable. By Lemma 2 and the definition of 
Hc(E), it follows that A n 0Q({Hc() J(G) is also maximal in Q.,. -d 

Notice that it is immediate that if G is P,< generic over a model V where 21O = - 

then 21o - i, in V[G]. Before proceeding some notation will be introduced. 

DEFINITION 3.3. Suppose that P C P' and that X is P'-name. The P-name X P 
is defined by induction on the rank of the inductive definition of names. If X is of 
the form X C ' x Z where Z is a ground model set then X LP = X n (P x Z). In 
general, X LP = {(p,A P): (pA) E X}. 

LEMMA 4. If G is IP, generic over V then cov(91j) > (j) in V[G]for j > 2. 

PROOF. If cov(9ij) < t,(j) then let ID,: ?y -? ? be such that ~(D4},GA witness 

this fact for some A < , (j). Let Ib: be a name for ID, and suppose that 

p I[F "{I,}D,:J witnesses that cov(9i1) < A". 

Using the regularity of X, the fact that I P,, I < i, for each af E K and that V is a 
model of 2'0 = ti, let C be a closed unbounded set in r, such that for each al E C 
the restricted names Pb, [ E,,, satisfy that 

p l[-(,, "{a>, [ PED witnesses that cov(9i1) < A". 

Find some q such that cof(q) = A, 
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714 SAHARON SHELAH AND JURIS STEPRANS 

D-t = (c, {f 4 P,} 2, j) for some c: A - C \ sup(domain(p)). It follows 
directly from the construction of P,< that {Hc(<) 4cA is an increasing sequence in 

?j and cof(q) = A < (j). Moreover, the construction at isolated limit ordinals 
guarantees that HC(E+?) D* FE(Hc(E)) for 4 E A. This yields that f = fGnQ(yr,) 
extends each ID, (Hc(<)) for 4 E A. Hence f does not belong to any of the members 
of the ideal 9fj defined by the witnesses @:. -d 

LEMMA 5. If G is iP,< generic over V, j > 2 and g E Nj in V[G] then there is some 
a E 4 (j) such that g i4* OW (a) for all a E Tj7 of length greater than a. 

PROOF. Let g E Nj in V[G]. By Induction Hypothesis 3.1 it follows that the 
branch Bj (g) has length a for some a less than K (j). Hence, if a has length greater 
than a then a Bj (g). By definition g d ?)F (a). - 

LEMMA 6. If G is iP,< generic over V then cov(9ij) < Kj in V[G]. 

PROOF. In V[G], for each a E 4(j), let Ea be the set of all g: N -? j such that 
(J (a) * g for all a E Tj7 of length greater than a. To see that E. E 9fl let f E Sj. 
Then f has a name of hereditary cardinality less than K and so, there is some yu E K 
be such that F,(j,,) is interpreted as f in V[G]. It follows from the construction 
of 0 that there is some sequence 4 such that 1 [-, ">c)J D Fw(j1,u)". Now let 

(E Tj7 be an extension of of length greater than a and note that f' _ 
has the property that g 2 f ' for all g E E,,,. From Lemma 5 it follows that 

UaC(j) Ea = Nj. 

Hence, in order to finish the proof of Theorem 3.1, it suffices to show that 
Hypothesis 3.1 holds. The basic idea here is that it suffices to show that the 
induction hypothesis holds at a single stage for any particular name for a function; 
at later stages Cohen genericity can be used. The next three lemmas provide the 
details to this sketch. 

LEMMA 7. Let G be id, generic over V and J < j. If C ,E C E K and T is a 

J-branching subtree of Ni which belongs to V[Gn 0a i] then for any 4 E TJ \ T77 
there are infinitely many integers i such that there is some i' > i so that 

l3 ) [i, i') 54= b F i, i' 

foranyb E T. 

PROOF. Recall that a tree T is said to be J-branching of height n if T C Uk<n 'I 

and no node has more than J successors. The following fact is easily proven 
by induction on n: If {T7}jin is a family of K-branching trees of height n then 

Uign T, 2 n(K + 1). A direct corollary of this fact is that if T C AN is a J- 
branching tree and i E N then there is a function f: [i, i + Ji) -? J + 1 such that 
f =# b [ [i, i + Ji) for any b E T. Due to technical details, this simple fact can not 
be used directly; but, a slight variation of it will be combined with Cohen genericity 
to obtain the desired conclusion. 

Before this can be done however, let T and G be given and let t E T be a 
sequence whose domain is i. Let A denote the domain of the interpretation of 

F,(j p) in V[G n Pa]. Define a tree T(t) in V[G n Pp] by 

T7(t) = {s E T7:s LAO[i,oo) C Fw(jp 
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and let Vii be the order preserving bijection from N to [i, oo) \ A. Define T* (t) = 
{s o yr: s E T(t)} and notice that T*(t) is a J-branching tree. Using this and the 
Cohen genericity of cp it is possible to apply the first observation of the previous 
paragraph to conclude that there are infinitely many integers i such that c1 o hi (k) E 
J \ {b(k)} for each k E Ji, t E T of length i and for any b E T*(t). Given any 
such i let i' = i + Ji + IA n [i, V/i (Ji))I. It follows that cp [ [i, i') 7 b [ [i, i') for 
anyb E T. 

DEFINITION 3.4. If for some model of set theory V and integer k 

* ay C Sk 
* f is a Q(a)-name such that 1 IF Q('Y) "f E c 

* G is a Q(X) generic filter over V 
* H is an A(G) generic filter over V[G] 
* (a,p,S,v) H 
* f E 

* l>v(f) 

then, for any g: [0,1] -? k let -c(G, H, f, g) denote the k-branching tree de- 
fined by t E - (G, H, f, g) if and only if there exists some (a, j, S, T) c H and 
z: a n [l, II) -k such that ItI = IzI and 

(3.2) P U g U z I1FQ(,) "f(i) = mgTf t(i) 

for each i < It 1. Note that this is well defined. 

LEMMA 8. If 7 C_ Sk, then: 

1. If f is a nice name such that l I FQ(') "f E N" then the set of all (a, p, A, v) E 

A(G) such that f E Sr is dense in A(G) 
2. If j E N then the set of all (a, p, A, v) E A(G) such that a n [j, oo) 7 0 is dense 

in A(G). 

PROOF. To prove (1), given q = (a, p, A, v) E A(G) define 

q' = (a, p, 5 U ff }, v U {(f, max(a) + 1)}) E A(G) 

and note that q' is stronger than q. 
For (2), let j and q = (a, p, Y, v) E A(G) be given and choose an integer 

u E [j, oo) which does not belong to the domain of p. Using Lemma 1 it follows 
that the set of p' E QQ(X) such that (a U {u}, p', S, v) satisfies the conclusion of 
(2) is dense. Hence, there is p' E G such that (a U {u}, p', i, v) is stronger than q 
and satisfies the requirements of (2). - 

LEMMA 9. If it is given that 

* cof(a) = (j) 
* G is PaF+1 generic over V 
* f E NINin V[G] 

then there is J < j and a J-branching tree T C aN in V[G n 1Pa] such that f E T. 

PROOF. Using the same notation as in the construction of 1P?i, let Qa = 

Q({Hc(17)}?7Ep). Using the countable chain condition of Qa, the uncountable cofi- 

nality of a, and hence c(a), it is possible to find a limit ordinal /3 E p such that 
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f is a Q({He(,)}zp)-name and the name f belongs to V[G n P2]. Notice that 
cof (a) = (j) implies that {Hc(q)}p1zp C SJ for some J < j. 

Let H be A(G n Qg) generic over V[G n (1P * Q(Xa))] and recall that Ha 

fGrnaQ,H. If h E ?J and h D* Ha let / E N be such that h D Ha [1,oo) 
and let g = h [ 1. Now use Lemma 8 to conclude that -r(G, H, g, f) is a J- 
branching tree whose closure contains f. The desired result now follows directly 
from Lemma 2. -1 

The next task is to check that the Induction Hypothesis 3.1 holds at each stage of 
the construction. The countable chain condition and Cohen genericity guarantee 
this at limit stages of large cofinality but the argument at limit stages of countable 
cofinality requires a bit more care. The next three lemmas provide the details and 
finish the proof of Theorem 3.1. 

LEMMA 10. If the Induction Hypothesis 3.1 holds at allprevious stages and cof(a) 
is uncountable then 

(yF E ePFj))(I B7(F) < (j)). 

PROOF. Given F E PFX, it follows by the countable chain condition of the partial 
order that there is some 3 E oa such that F E V[G n 1P'o] for any generic G C Pag. 

By the induction hypothesis it follows that IBj (F) I < (j) in V[G n PA]. However, 

the genericity of cy over V[G n P2] for y > /5 guarantees that Oq (4) * F for every 

y E a\ and 4 E Tja \ T. Hence Bj7(F)I < K(j) in V[G n Pa] as well. -1 

LEMMA 1 1. If the Induction Hypothesis 3.1 holds at allprevious stages andcof (a) < 
K(j) then 

(VF E PFj))(I B(F) < K(j)). 

PROOF. Let cof (a) = y < i,(j) and suppose that G is 1Pa generic over V. If F is a 
function from N to j in V[G] then notice that, if Bja (F) has length K, (j) then, by the 

cofinality of a, there is some 3 E oa such that there is a cofinal subset B C Bk (F). 

This determines the branch through T< in V[G n P2]. Hence, it suffices to show 

that if B C T< is a branch of length K (j) in V[G n Pg] and F is in V[G n Pa] then 

B Bjf(F). 

To this end, let B be a lPp-name for a long branch through T< and F a Pa-name. 

Let { /~}& My be an increasing sequence of ordinals cofinal in a such that PJo > /P. 
For any p E Pa define Fp {(i, I) p I 1 "F(i) j"}. It will first be shown that 
for each 4 E y the set 

D(4) {q E' (ao E B)(Vr< ?q)(Fr W 

is dense in PAl. To see that this is so, suppose that q E PAc is such that for each 

a E B and 4 < q there is some r < # such that Fr 2* (4a). Then let F to be the 

Pf -name defined by p IFI "F(i) =j"n if and only if p I1ki, "F (i) j". It follows 

that q Ikip F D* &3(a) " for each a E B contradicting the induction hypothesis. 

Using the density of each D (4), let a?, C D (4) be a maximal antichain and, for 

each q. E .g, let ac E B witness that q E D (4). Since B has length 4,1(j), it is possible 

to find a E B be such that a D ad for each 4 E y and q E .o. Now suppose that 
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p E P, is such that p I kip, "F U (& (a) L m) D (a) " for some integer m. Let 4 be 
such that p E 1Pfl and choose q E .e such that there is some r E Pfl, such that r < q 

and r < p. Since q E D(4) it follows that Fr W (a1(c4) C * (9(a). Hence, there is 

some i > m in the domain of (a) such that either r I 1kp "F(i) + ?5) (a)(i)" or r 
does not decide a value for F (i). The first case directly contradicts that r < p and, in 
the second case, it is possible to extend r to r' such that r' IF-1 F "F(i) W (a) (i) 

This again yields a contradiction. - 

It remains to consider successor ordinals. If a /5 + 1 and /5 itself is a successor 
or has cofinality less than in(j) then Ki(j) is a precalibre of Qa. Hence, a standard 
argument shows that it preserves the induction hypothesis. So the only problem 
may arise when /3 is a limit of large cofinality. 

LEMMA 12. Suppose that a is a limit ordinal of cofinality greater than or equal 
to K> (j). Given that each preceding stage satisfies the Induction Hypothesis 3.1, the 
partial order Pa+1 will also satisfy the induction hypothesis. 

PROOF. Let G be Pa generic over V and argue in V[G]. There are two types of 
branches which might provide difficulties. To begin, consider branches which occur 
at some stage /3 before a. Let B be a branch through T< of length K(j) in V[G nOPp] 
and let F be a QaQ-name for a function from N to j such that 

1 IF-Q, "(Vu E B)(F 2* ?I3(a))" 

If QQa has a dense subset of size less than K (j) then a simple pigeonhole argument 
shows that there is some m E N and a single condition q E Qa such that the set of 

a E B such that q IF-Qc "F U (? (a) [ m) 2 O4(a)" is cofinal in B. This means 
that 

UT-eJ (a)q IF-Q, "F U (W (a) m) D (a) 

is cofinal in B contradicting the induction hypothesis. Use the notation of the 
construction of Qab. If Case 1 or Case 3 holds at a then Qa has a countable dense 
subset and so this possibility has already been considered. Hence, assume that 
Case 2 holds at a. Using the countable chain condition of Qa = Q({hc(,)} lcp, let 
4 E p be such that F [ Q({hc( )},z) is a Q({hc(q)} 7zp)-name. From the induction 
hypothesis it follows that 

1 IF-QQ~) "(so E B)(F 01 (a))" 

Using the uncountable cofinality of B and the countable chain condition of Qc(.) it 
follows that there is some fixed a E B such that 

1 IF'Qc(, "F "F (c)) 

so it is possible to use Lemma 2 to conclude that the dense subsets of Qc(,) witnessing 

that F * ci(a) remain dense in Qa. 
The second possibility is that a cofinal branch is added to Tj7 which is not cofinal in 

any previous T4. To see that this can not happen, suppose that 1 IFkQ, "F: N ) j". 
Then, by Lemma 9, there is some J-branching tree T such that J < j and 

1 IFkQ "F is in the closure of T". 
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718 SAHARON SHELAH AND JURIS STEPRANS 

Since a has uncountable cofinality and the iterands all have the countable chain 
condition, it follows that if G is a generic set for 1P, then there is some /5 E a such 
that T belongs to V[G n PA]. Choose a E B a(F) \ TJf. Now use Lemma 7 to 
conclude that there are infinitely many integers i for which there is some i' > i so 
that 

for any b E T. In particular, there are infinitely many i such that there is some 
i' > i so that (9(a) [ [i, i') g F [i, i'). In other words, (9(a) * F. 
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