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ABSTRACT 

In this paper it is proved that if T is a countable complete o~-stable theory in 
ordinary logic, then T has either continuum many, or at most countably many, 
non-isomorphic countable models. 

Introduction 

Vaught's conjecture is the statement that for any countable theory T in L ... .  T 

has either 2% or at most countably many isomorphism types of countable 

models. Vaught's conjecture is not known to hold even for theories in finitary 

logic. In this paper, a proof is given for Vaught's conjecture for T a countable 

co-stable (totally transcendental) theory. 

The results of this paper are due to Shelah. Makkai has written down the proof 

in the way Harrington patiently explained it to him. Makkai has no part in the 
work other than checking it and writing it up. 

Related earlier results can be found in [1], [2], [3], [5], [6]. 

The expository paper [M] is used as preliminaries to the present paper. 

References such as A.2, B.3, etc., refer to [M]. Besides [M], Section 2 of the 

paper [H-M] is also essential for the present paper; however, if the reader is 

willing to accept two (crucial) propositions without proof, he can read the 

present paper without reference to [H-M]. 
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Makkai would like to express his thanks to Bradd Hart,  Anand Pillay, Gabriel 

Srour and the referee for their careful reading of the paper and for their valuable 

remarks. 

§1. ENI types, dimension, ENI-NDOP 

Throughout  the paper, T is a countable complete ~o-stable theory. 

DEFINITION 1.1. A type (or ideal type) p is an eventually non-isolated, 
strongly regular type (briefly: p is an ENI type) if it is strongly regular (SR; see 

D.13), and for some finite set B, p I B is defined (see Section B) and is 

non-isolated, p is NENI if it is SR, and it is not ENI. 

Note that by the "open mapping theorem" (A.8), if p does not fork over B, 

and p I B is non-isolated, then p is non-isolated. Hence, in the above definition, 

with B, any finite superset of B will work as well. 

To emphasize the elementary character of the following proposition, let us 

temporarily call a type p ~ S ( A )  eni if A is finite, and there is a finite B ~ A 

such that all nf extensions of p to B are non-isolated, in other words, p is ENI iff 

it is eni and SR. Note that in the following proposition, if, in addition, p is SR, 

then I I I = dim (p, M). 

PROPOSITION 1.2. Let A be a finite set, p E S ( A  ), A CM, I a maximal 

A-independent set of realizations of p in M. 

(i) I f  I is finite, then p is eni. 
(ii) I f  M is prime over some finite set, and p is eni, then I is finite. 
(iii) I f  p is eni, then there is finite B D A such that all nf extensions of p to B are 

non-isolated, and in addition, t ( B / A  ) is isolated. 

PROOF ad(i). By the defining property of I, no nf extension of p to A U I is 

realized in M; thus, all nf extensions of p to A O I are non-isolated. Thus, if I is 

finite, then (with B = A 13 I)  p is eni. 

ad(ii). Suppose M is prime over the finite set A '  D A, and that I is infinite. 

Let  B be any finite set containing A' .  We will show that p has an isolated nf 

extension to B ; by the open mapping theorem, this will imply that p is not eni as 

desired. Let N be a model prime over B. Since M is prime over A ', there is an 

elementary A'-isomorphism f : N 2_> N' such that M C N' ;  let B '  = f (B) .  Let-I  ° 

be a finite subset of I such that B' +n/0 I; let c E I - io; it follows that c ~A B' ,  

in other words t (c/B')  is a nf extension of p. Since c E M CN' ,  and N '  is prime 

over B' ,  t (c /B')  is isolated. We have found an isolated nf extension of p to B ' ;  

since ~] -=/3'(A), there is one for B as well. 
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ad(iii). Suppose that p is eni. Let M be a model prime over A, and let I be a 

maximal independen t /A set of realizations of p in M. By (ii), I is finite. Since no 

nf extension of p to A U I is realized in M, all such extensions must be 

non-isolated. Of course, for B = A U I, /~ has an isolated type over A since 

B C M .  [] 

PROPOSITION 1.3. For SR types, the property of being ENI  is invariant under 

the equivalence relation J.  If p,, p2 are SR, p~ f_ p2, and p, is ENI, then p2 is ENI. 

PROOF. Equivalently, we show that if p~ is ENI, p2 is NENI, then pE ± p> Let 

A be a large enough finite set such that p~ I A is non-isolated, and p21 A is 

defined. Without loss of generality, p~ = p~ J A and p2 = P2t A. Let M be a model 

prime over A. By 1.2(i), dim (p2, M ) =  w, and of course, dim (p~, M ) =  0. The 

latter fact and D.21(ii) give us p7 ~_ M / A  (now I = Q). Since dim (p2, M) = to, p~ 

is realized in M; therefore p7~_p~. By C.7(i), we conclude that p, Lpz, as 
promised. [] 

The following proposition is due to Bouscaren and Lascar [2]. For the sake of 

completeness, we include the proof of it. 

PROPOSITION |.4. Suppose that p E S(B ) is SR, A C B, B .finite, and p J A. 
Then for any B' with B' =- B (A  ), and any M containing A, B and B', 
dim (pa,, M) = dim (p, M). 

PROOF. We start by two easy remarks. If p, q are SR types over a model N, 

M D N, and p f q, then dim (p, M) = dim (q, M). Namely, if (ai),~ is a p-basis 

for M, for each i E I we can find bi E M realizing q such that a, ~,,~ b, (see 

D.18); since the a,, b, have weight 1 over N, it is easy to see that (b,),E, is 

independent over N;  this shows dim (p, M) =< dim (q, M), and the other inequal- 

ity is symmetric. Secondly, if p C S(M)  is of weight 1, and N = M(a)  with a 

finite tuple a, then dim(p, N) is finite; if we had an infinite p-basis I for N, there 

would be b E I such that b ~M a (any b E I -  Io with a finite I o C l  such that 

a dJ Ma, I), contradicting b E M ( a ) -  M and the open mapping theorem A.8 (the 

last two facts imply that b k~ M a). 

Turning to the proof of the proposition, let us note that without loss of 

generality, A = •  (pass to a new theory T'=Th((8 ,  a),~a). First assume in 

addition to all the hypotheses of the proposition, that B '  t~ B. Let M,, C M be a 

model prime over B U B'. Notice that /3^/~ ' -=/3 '  ^/~; this follows from the 

finite equivalence relation theorem (B.3), B '  t~ B, and /3' Z /~. It follows that 
there is an automorphism of M0 that maps B into B'  and B'  into B. This clearly 

shows that, for p '  = p~,, dim (p, Mo) = dim (p', Mo). Since p Z O and B'  & B, we 
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have p ,Lp '  by C.6(i). It follows by the first of the above two remarks that 

dim (p I Mo, M) = dim (p'lMo, M). Hence, by the addition formula, D.21(iii), 

dim (p, M) = dim (p, Mo) + dim (p I Mo, M) = dim (p', Mo) + dim (P'I Mo, M) 
= dim (p', M), as required. 

Finally, we turn to the general case. Let B" be such that /~" ~ /3' ~ B, and 
BB'  t~ B"; let p"=pa,,, and let N =  M(B"). By the case handled above, 

dim (p, N) = dim (p", N) = dim (p', N). Also, since p Z p", p'  Z p" (and thus 

p X-p'), we have dim (pFM, N ) =  dim (p'IM, N) by our first remark; moreover, 

this dimension is finite by our second remark. Since d i m ( p , N ) =  

dim (p, M) + dim (p t M, N) = dim (p', M) + dim (P'I M, N) ( = dim (p', N)), it 

follows that dim (p, M) = dim (p', M), as desired. [] 

LEMMA 1.5. Suppose p is stationary and has weight 1, p f_ B, p ± A and 
B ~AC.  r l h e n p ± C .  

PROOF. Find an a-model M containing B such that M ~ A C. Since p Z M, 

there is a weight 1 type q E S(M) such that p Z q (see D.11(v)). Since p ± A, we 

have q ± A (see D.5'). By C.8, q ± C; by D.5' again, p ± C. [] 

LEMMA 1.6. Suppose B finite, q E S(B) a stationary type of weight 1, and 
q _1_ A. Then there are: an a-model M containing A, an element c, and an 
a-model M[c] a-prime over Mc, such that c /M is SR, B CM[c], and q ± M. 

PROOF, Choose an a-model Mo containing A, such that B ~A Mo. By C.8, 
q ± Mo. Let N = Mo[B]. Let t? = (c~)i<, be a SR basis for N over Mo, i.e., ~ is a 

maximal Mo-independent system of elements in N, each having a SR type over 

Mo; among others N = Mo[t?] (see especially D.15). If we put Mk+~ = M~[ck] 
(k < n), then it is easily seen that M, is a-prime over Mot?, and more generally, 

over ME(Ci)k-~<,. Therefore, without loss of generality, Mo C M1 C ' ' "  C M, = N. 

Since q ± Mo, and q Z M,, there is k < n such that, for M'  = Mk, M" = Mk+l, 

(1) q ± M ' ,  q;{_M". 

Let c = ck. We claim that there is an a-model M a-prime over M'(c~)~<,<, 
contained in N such that N = M[c]. In fact, let M be an a-model a-prime over 
D = M'(c,)k<~<,. Then J~/[c] is a-prime over Ac. Note that also, N is a-prime 

at 
over Dc. Hence, there is an elementary isomorphism over Dc mapping/~/[c] 

onto N;  this maps .~/onto the desired model M. With M', M", M so defined, we 

have M " ~ M . M.  Since w ( q ) = l ,  (1) implies that q L M  (see 1.5). Since 

B C N = M[c], the lemma is proved. [] 
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We consider a-models M,, M~, M2 and M satisfying the following conditions 

M, C MI, M, C M_- 

(2) M, + M: 

Ma-pr ime over M~ U M~ 

DZnNmON 1.7. T has ENI-NDOP if for all a-models Mo, M1, M2 and M 

satisfying (2), whenever p E S (M)  is an ENI type, then either p Z M,, or p Z M2. 

REMARK Compare Section 1 in [H-M]. 

PROPOSmON 1.8. (i) T having E N I - N D O P  is equivalent to saying that 

whenever we have (2), and p is an ENI  type, then p if- M iff p Z M~ or p Z M~.. 

(ii) If T has ENI-NDOP,  then whenever M,,, M~,. •., M, are a-models such 

that 

M,,CM, (1 ~ i <- n), 

(3) (M,)~ ..... is independent over M,, 

M is a-prime over U M,, 

and p is an ENI  type, then p Z M implies p j_ M, for some i, 1 <= i ~ n. 

(iii) If T has ENI -DOP (the negation of ENI -NDOP) ,  then there are : a finite 

tuple a, finite tuples d~, d2 extending a, a finite tuple b extending d~ and d:, and an 

ENI  type p over b such that d~/a, d2/a are of weight I, d~ t~ , d2, b is dominated by 

d~d2/a, by d2/d ,  and by d~/d~, moreover, p ± d~ and p J_ d2. Furthermore, we can 

arrange that d, ~- d2(a), or d~/a ± d2/a. 

PROOF. The proofs are identical to corresponding proofs in [H-M], with the 

important addition of Proposition 1.3. In particular, (i) is proved like 1.2 in 

[H-M], by using 1.3 (and also D.19). The proof of (ii) is done by arguments used 
in the proof of 1.4 in [H-M], and (iii) is proved just as 1.5 in [H-M]. [] 

q-he last two propositions in this section are somewhat of an afterthought to 
[M]. 

PROPOSITION 1.9. Let M~ be a countable model, ~ a set of SR types over Mo. 

Then there is a countable model M extending M,, such that dim (p, M) = 0 for all 

p ~ ~, and dim (q, M) is infinite ]:or all stationary q with dora (q) a .finite subset of 

M such that q ± p  for all p ~ ~. 

PROOF. q-he proof is identical to that of D.12'. [] 
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Let us call p E S(A ) nearly SR via q, if p is stationary, q E S(A ) is SR, and for 

some a" realizing p, and some b" realizing q, we have that a is dominated by 

b"/A, b is dominated by a°/A, and the types t(a°/Ab '') and t(b"/Aa") are 

isolated. Clearly, in this case p has weight 1 in particular. 

Suppose p E S(A)  is nearly SR via q, and J is a q-basis for M. Then, since 

t(a°/Ab °) (with a ° and b" as above) is isolated, we can find, for each b E J, an a 

in M with ab =- a"b°(a). Taking one such a for each b in J, we form a set I ;  by 

C.11(iv), I is an independent set over A. Moreover,  given any independent set I '  

of realizations of p in M, the reverse process always gives rise to an independent  

set J '  of realizations of q. It follows that, for I obtained from J as described, if J 

is a q-basis for M, then I is a p-basis for M, and conversely. Now we can easily 

prove the following versions of D.21(ii). 

PROPOSITION 1.10. 

for M. Then 
Suppose p E S(A  ) is nearly SR, A C M  and I is a p-basis 

p [ A I F - p l M .  

PROOF. L e t p b e n e a r l y S R v i a q .  L e t a r e a l i z e p ! A I ; i n o t h e r w o r d s ,  I U { a }  
is an independent set of realizations of p. Let us form J, a q-basis for M, out of I 

as described above, and in fact, let b be a realization of q such that ab-= 
a"b"(A) (with a", b" as above). Thus b realizes q [AJ. Since, by D.21(i), 

q J a J  t- q I M, b realizes q [M. Since a is dominated by b/A, a realizes p I M, 

completing the proof. [] 

§2. Consequences of having few countable models 

From now on, for the rest of the paper  we assume that T has less than 2 ~,' 

isomorphism types of countable models. 

At the referee 's  suggestion, we give a few introductory words trying to 

illuminate the rather technical contents of this section. Since at some critical 

points (notably, the proofs of 2.2 and 2.3), we will inevitably have to rely on the 

paper  [H-M], we feel free to make that paper  the point of departure for the 

purposes of this introduction as well. 

The analysis of the models of the theory T in [H-M] relies on the concept of a 

concrete chain : a finite sequence N, C. • • C IV, of models such that No is a -p r ime  

over  Q, and Nk+~ = Nk[ak] for some ak SR over  Nk such that ak/Nk ± Nk ~ for 

0 < k < n. (We deliberately use here the a-var iant  of the notion described in 

detail at the beginning of section 5 of [H-M];  this variant is the more basic one, 

and it is the one that goes into the proof of theorem 5.4 there.) The isomorphism 
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types, called simply chains, of concrete chains, in an appropriate  sense, form a 

tree in a natural way; the (foundation-)rank of this tree is an important invariant, 

called the depth, of the theory. 

Now, the first main point is that here we are interested, essentially, only in 

chains for which, using the above notation for chains, the top type, t(a,_~/N, _~), 

is ENI.  The reason ultimately is that the dimensions of NENI  types over finite 

sets in a countable model cannot matter,  since they must necessarily be equal to 

~,,. Call such a chain an ENI  chain (being ENI is invariant under isomorphism of 

concrete chains). 

It is a crucial fact that, under the standing hypothesis of this section of T 

having less than 2 "  non-isomorphic countable models, we can show that all ENI  

chains are of length at most 2 (i.e., n, in the above notation, is at most 2). This is 

an equivalent way of stating what Proposition 2.4 below says. 

We may define a notion of ENI-depth of any t.t. T (or, even a more general 

T), although it is unclear how useful this notion is. We take the subset of the tree 

of chains consisting of all ENI chains; closing this set down under taking initial 

segments results in a subtree; the rank of this subtree might be called the 

ENI-depth.  Of course, the above statement is equivalent to saying that, under 

the hypothesis of this section, the ENI depth is at most 2. 

Another  fact is that, for an ENI  chain, a,,/No is necessarily trivial, analogously 

to a stronger fact shown in [H-M] under a different hypothesis; this fact is 

equivalent to 2.2 below. This fact is used among others to prove 2.3, E N I - N D O P  

(defined in Section 1); but also, the triviality of such types goes in a direct way 

into the "final analysis" of models given in Section 3 in a crucial manner.  

The reader will notice that the terminology used here does not appear  in the 

body of this section. Rather,  we have to make a finer analysis of types over sets, 

mostly finite sets. In particular, we have to make a more general s tatement  of the 

kind of relationship that the type t(a~+~/Mk+,) bears to the element ak and the 

set Mk (here again, we used the above notation for chains; M~+t = Mk[ak]). The 

resulting notion is that of type p needing an element c over a set A (p needs 
c/A); in particular, it will be true that p = t(ak,t/Mk,,) needs at over Mk in the 

above situation. The notion is such that it is invariant under replacing p by a 

parallel, in fact, by a non-orthogonal,  SR type. The most reasonable general 

formulation of this notion seems to be this: p, a stationary weight 1 type, needs 

c/A iff p ± A, and for some B dominated by c/A, we have p t B. It turns out 

that, under the hypothesis of few countable models, and for p an ENI  type, 

'needing'  can be formulated in a simpler way; this simpler formulation will be 

adopted after Proposition 2.7. In fact, we feel that talking about needing does 
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not really help much in understanding the technicalities of the first (larger) half 

of this section; that is why we do not use the terminology up to 2.8. 

The last two results of this section are finiteness results whose significance for 

a structural description will likely be accepted easily. It should, however, be born 

in mind that in the "final analysis" not only these results, but others in this 

section as well, play important roles. 

We first repeat a definition from [H-M]. 

DEFINITION 2.1. A stationary type q is called trivial if every nf extension q' 

of q satisfies the following: whenever I is a set of elements realizing q'  such that 

any two-element subset of I is independent over dora q',  then I is independent 

over dom q'. 

PROPOSITION 2.2. Let A be a set, c a tuple o[ weight 1 over A,  c / A  stationary, p 

an ENI  type such that p ± A and dom (p) is dominated by c/A.  Then c / A  is 

trivial. 

PROOF. The proof is essentially identical to that of 2.2 in [H-M]. The proof 

remains valid upon replacing A by Mo, and changing all references to a-models to 

ordinary models, in particular, a-prime models to prime models. The reason is 

that p, the type 'supported by' c/A,  is not only of weight 1, but it is ENI. This 

latter fact is used to show at the appropriate place that dim (pa, Mo) < ~o. In fact, 

for M~, the prime model over D, we have dim (pd, M~) < no by 1.2(ii), since p is 

ENI. The equality dim (p, Mo) = dim (p, M~) follows by the same (easy) argument 

as the one used in the proof of D.12"(iii), since we have pd 3- D' .  [] 

PROPOSITION 2.3. T has ENI-NDOP.  

PROOF. Again, the proof is essentially the same as that of 2.3 in [H-M]; the 

changes to be made are the same ones as in the case of 2.2. Of course, the 

"reduct ion" 1.5 in [H-M] is replaced by 1.8(iii). [] 

PROPOSITION 2.4. Suppose p is an ENI  type, C / A  is stationary, and has weight 

1, p f_ C and p ± A. Then C / A Z Q. 

PROOF. Without loss of generality, C is finite, C = c,~. Suppose, on the 

contrary, that there are po, co and A such that po is ENI, co/A has weight 1, 

poZco, p o ± A  and co/A 3-~. We first claim that then there are finite tuples 

a C b C c and an ENI type p with dom (p) = c such that c/b, b/a are stationary, 

and of weight 1, p ± b, and c/b 3_ a. By applying 1.6 to q = t (co/A),  we can find 
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an a-model  M, b,, SR over M, such that A CM[bo], C,+A M[bo], and 

c,,/M[bo] ± M. By 1.5, p0± M[bo]. Since poZ Co, by D.19 and 1.3 there is an ENI 

type p over (M[bo])[co] such that p Z po. Let c, be a finite tuple in M[bo][c.] 
containing co such that p is based on cl, let bl be a finite tuple in M[b~] 
containing bo such that c~/M[bo] is based on bl, and let a be a finite tuple in M 

such that ctbl /M is based on a. Let b = abl, c = ab~c~. Then c/M[bo] is based on 

b; by C.12(ii), c is dominated by co/M[b,,], hence by D.2(ix), c/M[b.] is of 

weight 1, and so by D.2(iv), c/b is of weight 1. Similarly, b/a is of weight 1. Since 

po± M[bo], and p Zpo, we have p ± b; since c/M[bo] ± M, we have c/b ± a. We 

have proved the claim. 
Now, using the data of the claim, we proceed to construct 2"" pairwise 

non-isomorphic countable models, in contradiction to our assumption on T. 

Without loss of generality, a is the empty tuple (namely, having proved the 

existence of many models under the above conditions with a = Q, we can apply 

the result to T' = Th ((S, a);  but the conclusion for T' implies that for the original 

T). 

Let X be an arbitrary subset of w - {0}. For n ~ X, let b" be a tuple such that 

b n ~ b, and (cn),<° be a system independent over b ° of elements c7 such that 

c?b"=-cb. Let C , = { c T : i < n } .  We furthermore make sure that (C,),Ex is 

independent.  Let pT=p,.7. We claim that there is a model Mx such that 

dim(p,  ~, M~-) is finite for all n E X, i <  n and dim(q, Mx) is infinite for all 

stationary q with a finite dom (q) included in Mx such that q ±p7  for all n E X, 

i < n .  
Let n E X and i < n be fixed, and let M be a model prime over C, such that 

M ~b,, C~ /,r. Since p,"± b". we have p:'[ MLC.~ ,,,I/M, from which it follows 

that in M(C~-I,O, pTIM is not realized (any element d of M(C~c_I.O-M 
satisfies d ~ C~ /,r)- On the other hand, by 1.2(ii), dim (p,,"M) is finite. It 

follows (by D.21(iii)) that dim (p',' M(Cx ~,r)) is finite, hence for M., the prime 

model over Cx. dim (p,~, Mo) is finite (since Mo is embedded in M(Cx-/,/)). Since 

this is true for all n E X and i < n, the existence of a suitable Mx follows from 

1.9 applied to ) = { p T ] M o : n ~ X , i < n } .  

By a class we now mean an equivalence class of elements /~ in Mx such that 

b - - b ,  under the equivalence relation ( ) ~ ( ). The class containing /~ is 

denoted [b]. Given a class ~,  and /~ ~ ~,  let m(/)) be the supremum of all 

cardinals m =< 00 such that there is a system (~) . . . .  independent over /~, of 

elements ~, in Mx such that ~,/~ - cb and such that for all i < m, dim (pc, M~) is 

finite, and let m ( ~ )  --- sup{m(/~) :/~ @ ~}.  We claim that m([b"])  = n, and that 

m ( ~ )  = 0 for a class ~ distinct from any [b"], n E X. This claim will clearly 
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imply that for distinct X, X'  C ~o - {0}, Mx ~ Mx,, since X is recovered from Mx 
as the set {m(~) :  ~ a class in M,,, m ( ~ ) ~ 0 } .  

To show the first assertion of the claim, we note that m( [b" ] )=  > n holds 

directly by the construction. On the other hand, let b C [b" ], (~,)~<,, independent 

over/~, ~ f  -=- cb, let/~ = pe,, and assume that dim (/~i, M) is finite for all i < m. 

Note that/~ ±p~' for all n ' ~  X -{n} ,  j < n';  this follows from 3.3 in [H-M], 

since the " t ree"  

d 
\ 

\ 
t; 

d 
/ 

c~' 
/ 

b " '  

\ / 

with d realizing/~,, d realizing p~" is a normal tree; also, the assertion can be 

shown by an elementary computation using given (non-)orthogonalities and 

/~ ~ b~". Therefore, it follows by the defining property of Mx, and the fact that 

dim (/~i, M) is finite, that for every i < m there is/" < n such that/~ Z pT. Now, we 

notice that /~, _L/~. for i ~  i', i, i ' <  m; this is because ~, t ~  ~,,, and /~, _1_ b. 

Therefore, iF  i' implies f ~  7; this proves that m - n, as promised. 

If ~ = [/~] ~ [b"] for all n E X, i.e.,/~ ~ b" for all n E X, then if 6/~ =- cb, and 

/~ = pe, we have/~ ± p~' for all n E X, j < n, just as in the previous paragraph. By 

the defining property of Mx, we conclude that m(~d)= 0, as required for the 

second assertion of the claim. 

The proof is complete. [] 

PROVOSIT1ON 2.5. Suppose p is an ENI type, p if-B, and B is dominated by 
C/A.  Then p X- AC. 

PROOV. Without loss of generality, B is a finite set. Assume, contrary to the 

assertion, that p ±AC.  Choose an a-model M D A such that BC ~ a M ,  and an 

a-model M'  D M such that B + Mc M'. It follows that we have b ~ A M',  hence 

by 1.5 and the assumptions, p .L M'. Let 6 = (hi),<, be a sequence of elements 

realizing SR types over M' such that M'[B] = M'[/~]. By a suitable choice of the 

models M'[b~], we have that M'[B] is a-prime over U,<,M'[b~]. Hence, by 

ENI-NDOP (1.8(ii)), and p Z B, there is i < n such that p Z N for N = M'[b~]. 
Since p ± M',  by 2.4 it follows that b~/M'ZQ. Hence, there is q E S(M), an SR 

type, such that b,/M'f_q. By D.18, there is b @N realizing q [M' such that 
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N = M'[b]. We claim that there is a copy of M[b] such that N is a-prime over 

M' U M[b]. Indeed, let M[b] be any copy of the model a-prime over Mb, and 

let N'  be the model a-pr ime over M' U M[b]. Then, N'  is a-pr ime over M'b; to 

see this, we use M' ~ u  b, and M' +M M[b] as a consequence. Therefore,  there 

is an isomorphism mapping N'  onto N over the set M'b. The image of M[b] 
under this isomorphism is the desired copy of M[b]. Having M[b] in the desired 

way, by ENI-NDOP again, and by p ± M',  we conclude that p Z M[b]. Now, 

note again that c ~Mb; since B is dominated by c/M, B +Mb, and hence 

B dJ M M[b]. Since p l B, and p Z M[b], by 1.5 we obtain p Z M, a contradiction 

to p ± M'. [] 

PROPOSmON 2.6. Let p be an ENI type, suppose c / A, c'/ A are stationary and 
weight 1, c ~ A c', p Z Ac, and p ± A. Then p f Ac'. 

PROOF. With B a finite set such that p is based on B, let M be an a-model  

containing A such that Bcc' ~J A M. Then p ± M. Note that we have c ~ M c'. Let 

= (c,)i~, be a sequence independent over M of elements c, of weight 1 over M 
such that N = M[Bcc']=M[(] and such that co = c. Since c ~MC', ~'= 

df  

c '^ (ci)j~<, also is a maximal independent system of elements having weight 1 

over M, hence N = M [ U ] .  Now, since p Z m [ c ] ,  p ± M ,  and m[c]~Mc~ 
(1 ~ i _--< n), by 1.5 we have p ±Mc~ for 1 ~ i < n. Since N = M[( ' ] ,  there are 

copies M[c'], M[c,] (1 =<i< n) of the models a-prime over Mc' and Mc~, 
respectively, such that N is a-prime over M[c'] U [,.J~=i<,M[c,]. Since p ± Mc,, 

and M[c~] is dominated by c,/M, by 2.5, p L M[c~]. Therefore,  by ENI-NDOP 

(1.8(ii)), necessarily p,g_M[c'], and by 2.5 again, p Z Mc'. Since we have 

B ~ Ac, Mc', and p f B, we have p Z Ac' as required. [] 

PROPOSITION 2.7. Suppose p is an EN1 type, A CA' ,  c +a A', p 7/-A'c, 
p ± A ' .  T h e n p f A c .  

PROOF. Without loss of generality, A is an a-model  M. (To see this, choose 

an a-model  M such that A C M and M + A A ' c  ; in particular, c ~/M A '  and 

c tl/A' M. From p Z A 'c and p ± A' ,  it follows that p 3_ MA'  by 1.5. Thus, we 

have the hypotheses with M for A and MA' for A '. From p Z Mc, p 7{_ A 'c and 

Mc ~AcA'c, p Z A c  follows by 1.5.) Let N=[M[A'],M[c]],  the a-prime 

model over the union of M[A'] and M[c]. Since p Z N, and M[A'] +M M[C], 
by ENI-NDOP we have either p ~ M[A'] or p Z M[c]. But the first possibility is 

ruled out, since by 2.5 it would imply p J_ MA',  contrary to p ± A '  (M C A').  

Thus, p Z M[c], and by 2.5 again, p Z Mc as desired. [] 

We now introduce some terminology. We say that the ENI type p needs c/A if 
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c/A is stationary and of weight 1, p ~ Ac and p L A. Notice that 1.6 together 

with 2.5 says that p L A implies that p needs c/A'  with some A '  ~ A and some 

c, with c /A '  SR. Also, 2.6 says that if p needs c/A, and c ~A ct, ct/a is 

stationary and of weight 1, then p needs c'/A. 2.7 says that if c/A is stationary, 
A C A ' ,  c +A At, and p needs c/A' ,  then c needs c/A. In all the above, p is 

assumed to be ENI. We call a type q @ S(A)  supportive if for some (any) c 

realizing q, there is an ENI type p needing c/A. Note that 2.4 says that every 
supportive type is ,Z O. Also, it is clear that every supportive type is Z to a SR 

supportive type (exercise). 

PROPOSITION 2.8. Suppose p, p' are ENI types, p needs c/b, p' needs c'/b'. 
Suppose furthermore that c/b 3_ c'/b'. Then p ± p'. 

PROOF. Start by choosing tuples /~ and /~' such that /~ ~- b, /~' & b', and 

(3) bcb'c', t~, t~' are independent (over 0) .  

Since q = t ( c /b )ZO (q is a supportive type), we have q~ Z q (see C.6(i)). Let M 

be an a-model  containing b/~/~' such that c ~ b~b' M;  then c W] b M by (3). Let 

realizing qb I M be such that c ~,., ~. Since p needs c/b, we have (by c ~b M)  

that p needs c/M. Hence, by c ~M~, p needs ?./M. Since d ~6 M (~ realizes 

q~ I M), p needs d'/b. Note also that we have ~ tbg b' (since/~' belongs to M). 

By a symmetric argument, we can find ~' realizing q'~, (for q' = t(c'/b')) such 
that p '  needs ~'/b', and ~' t~ g, b. Now, we apply the fact that q ± q'. Since qa Z q, 
q'b.Z q', and all the types involved are stationary and of weight 1, it follows that 
qb 3_ q'b,, hence q~ I bb' ± q'6, I bt~'. Since 6 realizes the first, ~' the second, of the 

last two types, we conclude that we have 

(4) c + c'. 
66' 

Since p needs ~//~, and ~ [b~/~', p needs ~./[~[~'. Similarly, p' needs ~'//~/~'. By (4) 
and 1.5, we have p ± b/~'~'. Since p'  Z/~b'~', it follows that p L p'. []  

PROPOSITION 2.9. There are only finitely many equivalence classes of suppor- 
tive types under the equivalence relation I .  

PROOF. Suppose, on the contrary, that there are infinitely many pairwise ± 
supportive types. We'll construct 2 "0 non-isomorphic countable models. 

Suppose q E S(b) is a supportive type. Notice that there are finitely many 
strong types over O extending r -- t(b), and for any b', b" realizing r, if b' ~ b", 
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then qb, Z q~,, (since q Z Q). Hence there are altogether finitely many J-classes 

that contain an isomorphic copy qb, of q (b '~-b).  

Suppose further that q' is another supportive type. If q'3~ q, and ~ is an 

isomorphic copy of q, then for ~)', the isomorphic copy of q' under the 

automorphism of (S that maps q into q, we clearly have c)' 3~ ~). In other words, if 

q, q' are two supportive types (in fact, if q, q' are stationary weight-1 types), then 

the set of equivalence classes under ~ of isomorphic copies of q is either 

identical to, or disjoint from, the set of equivalence classes under 3~ of 

isomorphic copies of q'. 

It now follows that there is a sequence (q.).<~ of supportive types such that 

for n, n' < ~o, n ~ n', every isomorphic copy of q. is _L to every isomorphic copy 

of q°,. 

Let b. =dom(q . ) ,  let c. be a realization of q.; we may assume that b. is a 

subtuple of c. ; let p. be an ENI type needing c . / b .  ; let d. - -dom (p.); we may 

assume that c. is a subtuple of d., and also that p. is not isolated. 

Let X be an arbitrary subset of o2. For n E X, let/;o, ~., d. be such that/~. =-- b., 

f).~,,d. =- b.c.d., and let us ensure that the system pictured by 

• . .  d ,  . . .  & ,  . . .  

I 1 
"'" ~. " '" c., "'" ( n , n ' < w )  

I I 
. . .  6 ,  . . .  6 ° ,  . . .  

is independent relative to the obvious "heig_ht-3" partial ordering (see A.11, 

A.12). Let /5. =(po)ao. With Mo the prime model over dx ( = { d .  :n  cX}) ,  

dim (/5., M~,) = 0. The reason is that since /5. ±Q3, and d. + d x . ,  we have 

/5. t-/5. I dx, hence dim (/5,,, Mo) = dim (/5. I dx, Mo); the latter is 0 since /~. I dx is 
non-isolated (since/5. is non-isolated), and M,, is prime over dx. By 1.9, there is a 

countable model M = M,~ extending Mo such that dim (p., M) = 0 for all n E X, 

and dim (p, M) is infinite for any SR type p with dom (p) a finite subset of M, and 
pL/5 .  for all n E X .  

We claim that n ~ X iff there are /~, c, d in M such that b6d =- b.c.d,, and 

dim ((p.)d, M) is finite. Indeed, the 'only if' direction is true by construction (take 

/~ = b., ~ = ~., d = d.). Conversely, assume n E o~,/~6d is in M, and has the same 

type as b.c.d.. For n ' ~  n, c//~ ± ~.,//~.,, by the choice of the types q.. Since 

/5 = (p.)a needs ~//~, and/5., needs ~.,//~.,, by 2.8 we have that/5 ±/5.,. Thus, if 

n ~  X, then t5 is ± to all/~., for n ' E  X, hence by the defining property of M, 

dim (,6, M) is infinite; this shows the claim. 
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The claim clearly shows that X ~  X'  implies M x ~ M x , ,  which proves the 

proposition. [] 

PROPOSITION 2.10. Let A be any finite set. There are only finitely many 

equivalence classes of ENI  types Z- to A under the equivalence relation Z. 

PROOF. Without loss of generality, A = Q. Let Mo be a fixed copy of the 

prime model of T. By D.19, and 1.3, every ENI type Z to • is Z to one over Mo, 

hence one over a finite tuple in Mo. Suppose the assertion of the proposition 

fails. Using also an argument used in the proof of 2.9, we find that there is a 
sequence (p,).~_~ of ENI types such that b, = dom(p , )  is in Mo, and every 

df 

isomorphic copy of p, is ± to every isomorphic copy of p,,, for n ~ n'. Let X be 

an arbitrary subset of to. Since dim (p,, Mo) is finite (see 1.2(ii)), for all n < to, by 

1.9 there is a model Mx extending Mo such that dim (p,, Mx) is finite for all 

n E X, and d im(p,M~)  is infinite for every stationary weight-1 type p with 

dora(p)  a finite subset of M× such that p ± p ,  for all n E X. 

X can be recovered from Mx as follows: n E X iff there is an isomorphic copy 

p of p,, with dora (p) in Mx, such that dim (p, Mx) is finite. Certainly, the 'only if' 

direction is clear. Supposing that p is an isomorphic copy of p~, we have that 

p ± p,, for all n '  ~ n. Hence, if n E X, then dim (p, Mx) is infinite, by the defining 

property of M,~. This shows what we want. [] 

§3. The final analysis 

In this section, we state and prove a theorem that amounts to a characterisa- 

tion up to isomorphism of an arbitrary countable model in terms of certain 

invariants. The statement of the characterisation takes some preparation. Once 

the characterisation is stated, however, the Vaught conjecture for T is seen to be 

an essentially trivial consequence of it. Namely, using the characterisation, one 

can write down a Scott sentence ~M of any countable model of T (o-M is a 

sentence of Lo,~ such that the countable models of ~rM are exactly those 

isomorphic to M), and one sees that the quantifier rank of o'~ is low, in 

particular, qr (~rM)< to • to. It is well-known that from this the Vaught conjecture 

f o r  T follows(see [4]). The writing out of ~ will be left to the reader as a trivial 

but tedious exercise. 

First, we set up the "reference-points" of the invariants. 

Let M be a fixed copy of the prime model. 

Let  Q be a finite set of pairwise £ SR supportive types over M such that every 

supportive type is Z to a member of Q. Since every supportive type q is Z to the 
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empty set (2,4), and since q is supportive, q' SR and q Z q' imply that q' is 

supportive (2.6), every supportive type is Z to a supportive type over M (by 

using D.19). Also, there are only finitely many Z-classes of supportive types 

(2.9). It follows that Q with the stated properties exists. 

Choose and fix a realization Cq of each q E Q;  put C = {Cq : q E Q}. 
Let A be a finite subset of M such that every q C Q is based on A. 

For each q E Q, let Mq D M be a fixed copy of M(cq); we write Mc for Mq if 

C =Cq. 

For each q E Q, let Pq be a finite set of pairwise ± ENI types over Mq such 

that every ENI type which is Z to Acq is Z to a member of Pq. Pq exists by 2.10. 

We also write P~ for Pq with c = % 
For each c E C, let Bc be a finite subset of Mc such that Ac C Bc, every p @ P~ 

is based on Be, and p I Bc is non-isolated (since p is ENI, by 1.2(iii) such B~ can 

be chosen). 

Let  A '  be a finite subset of M such that A C A' ,  each t(BcM) (c ~ C) is based 

on A' ,  and each t(Bc/A'c) is isolated. 

For each q E Q, let Pq ( = P'~q) be the subset of Pq consisting of those members 

of Pq that are ± to A' .  Thus, every member of P" needs c/A'. Moreover,  if p is 

any ENI type that needs c/A', we have that p needs c/A by 2.7, since c ~J a A' ,  

hence p is Z to some member p' of Pc, and p' must belong to P'c. 

Let P be a finite set of pairwise 2 ENI types, each Z to A' ,  each over M, each 

± to every member of Q, such that every ENI type which is f to A, is ,t~ to either 

a member of O, or a member of P. P exists by 2.10. 

Let  B be a finite subset of M such that A '  C B, every member of P is based on 

B, and such that for p E P, p I B is non-isolated. 

Let A"  be a finite set such that A ' C  A " C  acl(A') (with the algebraic closure 

meant in ~eq) such that B/A" is stationary, and /3c/A" is stationary for every 

c E C. By B.4 and by the fact that the theory is t.t., it is easy to see that such A" 
exists. 

Let us put: 

Q'={q IA":q E Q}, 

B'~=B~ U A " ,  } 

P~={p IB'~:pEP'~}, 

B ' =  B U A " ,  

c E C  

P ' = { p l B " p E P } .  
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Primed (or double-primed) items are updated versions of the corresponding 

previous items; these latter can be discarded. Also, let B ° be the set of all the 

finite tuples /~'~ for c E C, B ° = {/~'c : c E C}. We can discard the c's in C, and 

work with the b's in B °. Also, let R ° be the set of all types t (b /A")  for b E B°; 

thus, B ° = {br : r ~ R °} for a unique assignment r ~ br such that b, realizes r. Let 
us write a ° for A'", d o for " '  pO , ,, o o B ,  for P ,  and pO for P~ if b " = Be; also, Pr = Pb, for 

r ~ R  °. 
Besides the items marked with superscript O, we do not need the others above, 

and we may use the notation used for them for other things. Here is the list of the 

properties of the items we'll need. 

a ° is a subtuple of d °, t(d°/O) is isolated, and t(d°/a °) is stationary. 

R ° is a set of pairwise ±, stationary weight-1 types over a ° such that every 

supportive type is Z to a member of R °. 

(The fact that t (bc/a) is of weight 1 follows from the fact that B'c is dominated 

by c over A",  and that c / A "  is of weight 1, see D.2(ix). The same reasons, 

together with the fact that the elements of Q are pairwise 3_, are sufficient for the 

elements of R ° to be pairwise J_, as is easily seen.) 

If r E R  °, M is any model containing a °, I is an r-basis in M, then 

r l a°I  F r [M. (This follows from 1.10 since clearly r is nearly SR.) 

Every type in R ° is trivial (this follows from 2.2). 

B ° is a set of representative realizations of the types in R°; B ° = {br : r E R°}, 

b, realizes r. a ° is a subtuple of each b in B °. 

For each b E B °, pO is a finite set of pairwise 3- non-isolated SR types over b, 

each ± to a °, such that any ENI type that needs b/a ° is Z to a member of pO 

(Indeed, if P is an ENI type that needs b/a °, then, for c, the 'c-part '  of b, p needs 

c/a  ° (this follows from 2.5, and the fact that b is dominated by c/a°); hence, by 

the above, p is Z to a member of pO.) 

pO is a finite set of pairwise 3- non-isolated SR types over d °, each Z to a °, 

each 3- to every member of R o, such that every ENI type Z to a o is Z either to a 

member  of R °, or to a member of pO. (Note that passing from A '  to A"  ( = a °) 

did not affect the essential properties of A ' ,  since A ' C  A" C acl (A').)  

This completes the list of "reference-points" for the invariants. 

Now, let M be an arbitrary countable model. We choose a in M such that 

a --- a °, and d in M such that ad - a°d °. We consider the types pd for all p E pO; 

pd is the copy of p under the change of d o to d. Let  rfi = (dim (pd, M)  : p E pO) be 

the vector of dimensions of the types pn in M. Note that by 1.4, and by the fact 

that t (d /a )  is stationary, d =- d'(a)  implies that tfi computed with d and that 

computed with d '  are equal; in other words, rfi depends only on (M and) a. 
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Next, we consider the types ra for r E R°; in other words, if b realizes ra, we 

have ba =-b,a". For r ~ R " ,  we let X, be the family of all ~a-classes  of 

realizations of ra ; X, is the set of all classes of the form {b' E M : b '  ~ a b, b ' ~  ra} 

for all b in M realizing r,. Put X = U r~R',X,. 

Now let N be a class in X, (r E R°). Pick b E N ; in particular, b realizes r. 

Consider the types pb for p E p0 and let ~i = (np)p~p,~ be the vector of dimensions 
np ~ dim ((p)b, M). Of course, ri depends on b, ri -- ti(b). With a fixed N in X,, 

we consider the set of all possible dimension-vectors D ( N )  = {ri(b) : b E N}. For 

r E R °, let us denote by @~ the set of all countable sets of vectors ~i = (np)p~o, 

with arbitrary np =<ca; 9~ is a set defined independently of M. Clearly, 

D ( ~ )  E 9 ° for N E X,. We count how many times each D E 9 ° occurs as D ( ~ )  

in M for ~ E X , ;  this number  is denoted by st,. In other words, st, is the 

cardinality of the set of all ~ E X, such that D ( N )  -- D. We have that so <= no, 

and st, = 0 except for countably many D E 9~. 

The system of invariants for (M, a )  consists, by definition, of the vector rfi, and 

the vectors 

for all r E R °. (Again, notice that once the copy a of a ° has been chosen in M, 

the above data are all uniquely defined.) 

THEOREM 3.1. Suppose T is a countable ca-stable theory with less than 2",' 

many non-isomorphic countable models. Let a =- a' =- a °, a E M, a' E M',  M and 

M'  are countable models. Then, if (M, a) and (M' ,  a ' )  have the same invariants, 

they are isomorphic. 

The rest of the section is devoted to the proof of the theorem. As we indicated 

above, the Vaught conjecture for T is an essentially trivial consequence of the 

theorem. 

Let M be a countable model. Let us make all the specifications and choices as 

above relative to M. Let R be the set of all types (r),, for r E R °. For r E R, let 

B, be a maximal independent set of elements of M each realizing r, and let 

B = U,~R B,. Note that B is a maximal independent set of elements of M each 

realizing a type in R. 

Let  N be a maximal atomic model over  aB in M:  aB C N C M ,  N atomic 

over aB, and if N C D C M, D atomic over  aB, then N = D. Since the union of 

an increasing chain of sets atomic over  aB is again atomic over  aB, and for every 

D C M atomic over  aB there is N' ,  D C N '  CM, N '  atomic over aB, such N 

clearly exists 
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For b E B,, r E R, let Pb be the set of all the types pb I N, for p E p0. Let P1 be 

the set of all the types pd I N for p E pO. Put P = Ub~BPb U P~. Finally, let I be a 

P-basis for M, i.e. a maximal independent set of realizations of types in the set P. 

CLAIM 3.2. M is atomic over N U I. 

PROOF. Let M'  be maximal atomic over N U I in M. We are going to show 

that M ' =  M. 

First we show (Subclaim 1) that no NENI type p E S(N) is realized in M. 

Indeed, suppose p E S(N) is NENI, and p is realized in M by c, say. ] 'hen p ± r 

for every r E R ; otherwise r ] N is realized in M, contradicting the maximality of 

B. We now show that for arbitrarily large finite subsets D of N (for every finite 

subset Do of N there is a finite D, DoCD C N )  such that t(c/aBD) is isolated; 

this will show that the set N U{c} is atomic over aB, contradicting the 

maximality of N. 

Let D be any finite subset of N such that c ~D N ,  a CD. Find finite B ' C B  
such that D ~B,B.  Since B is an independent set over a, and we have 

B - B' dJa DB', we have that B - B'  is an independent set over DB', and for 

each b E B - B ' ,  t(b/DB') is parallel to t(b/a), an element of R. Since p is 

orthogonal to every member of R, t(c/DB') (a type parallel to p) is orthogonal 

to B -  B'/DB'.  It follows that 

(1) p IOB'F p I D B ' U ( B - B ' ) = p  lOB. 

Since p is NENI, and D U B'  is finite, p I DB' is isolated. By (1), p ]DB is 

isolated as well. Since this holds for arbitrarily large finite D C N, we obtain a 

contradiction as said. Subclaim 1 is established. 

Next, we show that (Subclaim 2), in fact, no NENI type over M'  is realized in 

M. The proof is similar to that of Subclaim 1. Suppose p E S(M') is NENI,  and is 

realized by c in M. Let D C M'  be any finite set such that p is based on D, let I '  

be a finite subset of I such that D dJ Nr I, and let D '  be a finite subset of N such 

that a E D '  and DI' t~ o, N. By the maximality of I, p is orthogonal to every type 

in the set P. Therefore,  it follows as (1) does above that 

(2) p I NDI'F p [ NDI. 

We have that p ± N;  otherwise there is a SR type p' G S(N) such that p Z p'.(see 

D.19); by 1.3, p '  is NENI, and by D.18, p '  (in fact, even P'I M') is realized in M, 

contradicting Subclaim 1. Hence, we have p ± D' .  It follows that p ± N/D' ,  and 

by DI' ~D. N that p ± N/D'DI ' ,  hence 

(3) p I D'DI 'F p I NDI'. 
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(2) and (3) give p lD 'DI 'FpINDI .  Since p is NENI, p lD'DI'  is isolated; 

therefore, so is p I NDI, and we obtain a contradiction to the maximality of M'  as 

above, completing the proof of Subclaim 2. 

Subclaim 3 is the statement that every ENI type over M is Z to an element of 

P U R .  
Let p C S(M) be an ENI type. If p Z a, then, by choice of the set PI CP, p is Z 

to a member of P1 t_J R. So, we may assume that p 2 a. 

By 1.6, there is a set A containing a, and an element a~ such that ellA has 

weight 1, and p needs cl/A. Also, A can be chosen "sufficiently large", e.g. we 

may assume A is an a-model .  The type ellA thus shown to be a supportive type, 

we have that cl/A is ~ to a member r of R (this is because of the choice of R °, 
and the fact that the property of R ° in question is invariant under automorph- 

isms of ~, hence it is shared by R). Find /~ realizing r I A such that /~ ~A 

(recall that A is sufficiently large). By 2.6, and since p is ENI, we have that p 

needs t~/A. By 2.7, it follows that p needs t~/a. We have p Z a/~ and p L a, hence 

necessarily, M ~,,/~. We claim that Br k~a/~. Indeed, if we had Br ~. b, then/~ 

would realize r l aBr; hence, by the version of D.21(ii) for r, stated above¢/~ 

realizes r j M, i.e. M k~,/~, which is false, showing the claim. Since r is trivial (see 

above), and B, ~ o/~, there is b E Br such that b ~ o/~. Since p needs t~/a, it 

follows that p needs b/a. By choice of the set Pb C P, we have that p ,~ to some 

member of Pb, completing the proof of Subclaim 3. 

To complete the proof of 3.2, let us assume that M - M'  # •. Then there is 

c C M - M '  such that c/M' is SR. By Subclaim 2, p = t(c/M') is ENI. By 

Subclaim 3, p t M, hence p itself, is Z either to a member of R, or to a member of 

P. The first possibility contradicts the maximality of B, the second the maximal- 

ity of I. [ ]  

Let /3 = (p°)b fo: some r E R °, b E Br, p " E  P~. 

CLAIM 3.3. dim (/3, N) = 0. 

PROOF. b=dom(1O) is an element of B. W e h a v e b  ~ , B - { b } . B y C . 8 ,  and 

since / 3 2 a ,  we have that / 3±a(B-{b} ) ,  hence /3 F- /31ab(B -{b})= /3 l aB. 
laB is non-isolated (since/3 is), and since N is atomic over aB,/3 laB is not 

realized in N. It follows that/3 is not realized in N either. [] 

Next, consider a type/3 = (p°)d, p°E pO. 

CLAIM 3.4. dim (8, N) is finite. 

PROOF. Choose a finite subset B '  of B such that B +,~, d. Let N'  be a model 
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contained in N, and prime over dB'. Since p is a non-isolated SR type, 

dim (/5, N') is finite (see 1.2(ii)). On the other hand, 

dim (/5, N)  = dim (/5, N') + dim (/5 [ N', N)  ; 

we'll show that the second term of the sum is 0, which will complete the proof. 

Recall that /5 is ± to every member of R. We have B t~as, d and B -  

B '  ~ a B' ,  hence B - B'  d3 o dB'. It follows that q af = t(B - B ' /dB')  is a product 

of types that are nf extensions of members of R. Hence, q is orthogonal to/5, and 

to /5[dB' as well. It follows that 

(4) /5 [ dB' F t5 [ dB' U (B - B') =/5 I dB. 

N is atomic over aB, hence over dB as well. Since /sJdB is non-isolated, 

dim (t5 ] dB, N) = 0. From the relation (4), it follows that dim (/5 ] dB', N )  = O. A 

fortiori, dim (t5 I N', N)  = 0, as desired. [] 

Now, we can prove Theorem 3.1. 

Let M and M'  be two countable models, a ~ M, a ' E  M', a =-a'=-a", and 

assume that (M, a)  and (M', a ' )  have the same invariants. Introduce the items 

referred to in 3.2-3.4 in the model M (but not yet in M'). Next, consider a fixed 

r E R °, and the set X',of all the equivalence classes ~ '  of realizations of ra, in M'  

(just as X, was defined in M). Since s ~  ) = s ~  ') for every D E @~, clearly, there 

is a 1-1 correspondence between the classes I~ in X,, and the classes ~ '  in X'r 

such that if ~ '  corresponds to ~ under this correspondence, then DtM)(~)=  

D~M'~(~'). Consider any b E B, and ~,  the class in X, containing b. Let ti = ri(b) 

be the vector of the p~-dimensions of M, for p E p0. The equality D~M)(~) = 

D~M')(~') (for ~ and ~ '  corresponding classes) implies that there is b' E ~ '  such 

that ~M')(b') = tl (b). Let us choose one such b' ~ ~ ' ,  and let us define a map, 

bw, b' 

defined for b E B = U,~ ,o  B,, with b'  determined as described for each b E B. 

Since the b' are pairwise in distinct classes, they are pairwise independent over 

a ' .  Since the types in R ° are trivial, it follows that the family of all b"s (for 

b E B)  is independent over a'. Since B was an R-basis for M (for R = {(r)~ : r @ 

R°}), and hence B has (exactly) one element in each class ~ E X, moreover 

since the correspondence ~ ~ ~ '  is bijective on classes, it follows that B '  = 

{b': b E B} is an R'-basis for M'  (R '  = {(r)~, : r E R°}). We also have that the 

map that assigns a '  to a, and b' to b for each b E B is an elementary 

isomorphism between the sets {a} tO B and {a'} U B'. 
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Now, let N'  be an (elementary) submodel of M'  maximal atomic over a 'B ' .  

The above elementary isomorphism can be extended to one from N onto N'. Let 

d '  be the tuple in N'  which is the image of d under the said isomorphism. The 

types pb IN in Pb (p E ~..JrcROP °) correspond to pb, [N'  under the isomorphism; 

let P~, = {(P)b, IN';  p E 1,3,~,o P~}. The types pd 1N in P1 (p E p0) correspond to 

Pd't N';  let P'~ = {(P)~' t N' :p E pO}. Put P ' =  1,3b,~, P~, to P'I. 

Notice that each type in Pbl is l to every type in P~, for b~ # b2, both in B, as 

well as to every type in P1. This follows easily from the facts that every type in Pb, 

is ± to a, and that every type in P, is 2f to a'. It follows that if we decompose I 

into the union of the Ib (b ~ B) and 1~, with Ib = {c E I : c realizes some type in 

Pb}, I~ = {c @ I : c realizes some type in P,}, then Ib is a Pb-basis for M, and I~ is a 

Prbasis for M. Furthermore, the types in a fixed Pb, or in P~, are pairwise ± by 
choice, hence 

Ip = { c E I : c realizes p} (p ~ Pb) 

is a p-basis for M. Let p C Pb, ,6 = p [ b ;/5 = (p°)b. Then, since dim (/5, N) = 0, by 

the addition formula D.21(iii) it follows that dim (p, M) = dim (/~, M). Of course, 

the latter is what we denoted by npo(b), and it is the same as the cardinality of lp. 

If b' corresponds to b under the specific isomorphism, then n~y)(b ') = n~)(b) ,  
by the choice of the correspondence b ~ b'. Thus, if we let /5'= (p°)e,, and 

P' =/5 '1N' ,  the type in P'  corresponding to p, and Ip, any p'-basis for M',  then 

(because of dim (/5', M')  = dim (p', M')) we have that [ I'p, I = lip I. 
For any p E P,,/5 = p I d, k = dim (/5, N) is finite by 3.4. If p'  corresponds to p, 

/ 5 ' = p [ d ' ,  then of course dim (/5', N ' ) =  dim(/5, N ) =  k. Also, by assumption, 
dim (/5, M) = dim (/~', M')  (since tfi ~M~ = tfi(M')). Since 

dim (/5, M) = dim ~ ,  N) + dim (p, M) = k + dim (p, M), 

and similarly for M',  it follows that dim (p, M ) =  dim (p', M'). So, if Ip, is a 

p'-basis for M',  then [I~, [= lip I. 

Let I' = [,3p,Ep, I'p,. Then, clearly, I' is a P'-basis for M'.  If we let c ~ c' be any 

bijection of Ip and I'p,, for each p E P and the corresponding p' in P', then these 

bijections together with the given isomorphism of N onto N'  is an isomorphism 

from N U I onto N'  tO I'. Applying 3.2 to M'  now, M '  is prime over N'  t3 I', as 

well as M was prime over N U I. It follows that the isomorphism of N U I onto 
N'LJ I' can be extended to an isomorphism of M onto M'. 

This completes the proof of the theorem. 
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