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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 60, Number 1, March 1995 

ABSTRACT CLASSES WITH FEW MODELS HAVE 
'HOMOGENEOUS-UNIVERSAL' MODELS 

J. BALDWIN AND S. SHELAH 

This paper is concerned with a class K of models and an abstract notion of 
submodel <. Experience in first order model theory has shown the desirability 
of finding a 'monster model' to serve as a universal domain for K. In the orig- 
inal constructions of Jonsson and Fraisse, K was a universal class and ordinary 
substructure played the role of <. Working with a cardinal A satisfying %<2 = A 
guarantees appropriate downward Lbwenheim-Skolem theorems; the existence and 
uniqueness of a homogeneous-universal model appears to depend centrally on the 
amalgamation property. We make this apparent dependence more precise in this 
paper. 

The major innovation of this paper is the introduction of a weaker notion (chain 
homogeneous-universal) to replace the natural notion of (K, <)-homogeneous- 
universal model. Modulo a weak extension of ZFC (provable if V = L), we 
show (Corollary 5.24) that a class K obeying certain minimal restrictions satisfies a 
fundamental dichotomy. For arbitrarily large A, either K has the maximal number 
of models in power A or K has a unique chain homogeneous-universal model of 
power A. We show (5.25) in a class with amalgamation this dichotomy holds for the 
notion of K-homogeneous-universal model in the more normal sense. 

The methods here allow us to improve our earlier results [5] in two other ways: 
certain requirements on all chains of a given length are replaced by requiring winning 
strategies in certain games; the notion of a canonically prime model is avoided. A 
full understanding of these extensions requires consideration of the earlier papers 
but we summarize them quickly here. 

Shelah emphasized in [13] that Tarski's union theorem has two components: 
closure under unions; each union is an amalgamation base (smoothness). The first 
is used to show the existence of a homogeneous universal model; the second is 
needed for uniqueness. In this paper we show that closure can be replaced by the 
existence of a bound for each chain and even stronger that we need the boundedness 
only for a 'dense' (in a sense made precise by a game defined below) set of chains. 

In [5] we established a dichotomy between the smoothness of a class and a 
nonstructure theorem. There was a weakness in our result; although the definition 
of smooth (there is a unique compatibility class over each chain) does not involve the 
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concept of a canonically prime model; we only established the theorem for classes 
equipped with a notion of a canonically prime model. We remedy that difficulty in 
this paper at some cost. First we require some additional set theoretic hypotheses 
(all provable if V = L). Second we must weaken the conclusion. Instead of coding 
stationary sets we can only guarantee that there are 22 models of power A. 

The results here generalize an earlier result proved in [12]. That paper dealt 
with a class K satisfying the axioms discussed here but also closed under unions of 
K-chains and that was smooth. Theorem 3.5 and Claim 3.4 of [12] imply that if K is 
categorical in A, and has few models of power A+, then the unique model of power 
A is an amalgamation base. 

We rely on many notations and definitions from [4] and [5] but only on rudimen- 
tary results from those papers. 

Section 1 contains the background notation. In Section 2 of this paper we 
introduce several games; we are able to express questions about the smoothness or 
boundedness of a class K in terms of winning strategies for these games. Section 3 
describes the set theoretic hypotheses necessary for our construction. We show 
in Section 4 that a winning strategy for Player NAM in Game 2 (R, a,) implies the 
existence of many models. Section 5 translates the existence of a winning strategy for 
a player (B) trying to show chains are bounded and the failure of the player trying 
to force nonamalgamation (NAM) to have a winning strategy into the existence 
and, if there are few models, the uniqueness of 'chain homogeneous-universal' 
models. For a class with amalgamation this yields uniqueness and existence of the 
(K, <) homogeneous-universal models. In Section 6 we summarize our results and 
suggest some open problems. Section 7 contains proofs of the combinatorial results 
summarized in Section 3. 

We thank Chris Laskowski and Bradd Hart for their valuable advice in preparing 
this paper. 

?1. Setting the scene. Most of the notions used in this paper are defined in [4] or 
[5]. They or minor variants occur in earlier papers of Shelah, specifically [13]. 

(K, <) is an abstract class satisfying Axiom group A of [4]: 

AO: If M E K then M < M. 
Al: If M < N then M is a substructure of N. 
A2: < is transitive. 
A3: If Mo C M1 C N,Mo < NandM, < NthenMo < M,. 

We review here some of the less common concepts. All notions defined with cardinal 
parameters have the obvious variants obtained by, e.g., replacing A by <i. K2 is the 
class of members of K with cardinality A. A (<R, K,) chain is a K-increasing chain 
of cofinality K, members of K (i < j implies Mi < Mj), each of cardinality < A. A 
chain M is K-bounded if there is an M E K and a compatible family of maps fi 
mapping Mi into M. K is (<R, i,)-bounded if each (<R, ir)-chain is bounded. K 
is (<R, <X)-closed if the union of each such chain is in K. Sections 2 and 4 of [5] 
contain a number of examples that illustrate these concepts. 

1.1. ASSUMPTIONS. We fix for this paper a cardinal A with the following proper- 
ties. 

(1) A is a regular cardinal greater than the size of the vocabulary of K. 
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248 J. BALDWIN AND S. SHELAH 

(2) There are no maximal models in K<A. 
(3) K is (<R, A)-closed. 
(4) The <A-L6wenheim-Skolem property holds. 
(5) For some regular K < A, some S C A, and cardinal R < A, A,,I,R (S) 

holds. 

We briefly justify this group of assumptions. Property K1 is explained in Section 3. 
If for some X and A, 1 A,,,,R(S) holds then in particular 0 (A) holds and so %<2 = A. 
Thus, there will be no cardinality obstruction to obtaining homogeneous-universal 
models of power A. Assuming K is (<. A, ) closed is virtually a convention. If 
we dropped that hypothesis we would reach the conclusion that 22 structures of 
power A were increasing unions of members of K<A. We say K has few models if 
there are < 2A isomorphism types of models of power A. We will need to assume a 
boundedness hypothesis on K; but it varies with particular theorems in this paper. 
We fix the proper a, R and A in clause (5) at the appropriate time. 

?2. Two games. This paper is crucially concerned with the question of exactly 
how one bounds an increasing K-chain of models. We have learned that it is not 
essential to posit that all chains are bounded; only a sufficient number of them. This 
sufficiency can be described in terms of winning strategies for certain games. Game 1 
(R., ,) is played between player B who wants to establish that K is (<R, <?X)-bounded 
and player NB who is trying to show the opposite. 

DEFINITION 2.1. (1) For an ordinal a, a play of Game 1 (R, a) lasts at most a 
moves. During the play Player B chooses models (L1: i < s < a); Player NB 
chooses models (Pi: i <5 < a). At move fi, 

(a) Player B chooses a model LfA in K<> that is a proper K-extension of all the 
structures Py for y < f. 

(b) Player NB chooses a model PfA in K<> that is a proper K-extension of Lfl. 
Either player loses the game if at some stage he does not have a legal move. Player 

B wins if P is bounded; otherwise Player NB wins. Player B has the advantage of 
playing first at limit ordinals; the price is that he must guarantee the existence of a 
bound at each limit stage. 

(2) We say Player B has a winning strategy for Game 1 (R, < R) if he has a 
uniform strategy to win all plays of Game 1 (R, y) for each ordinal ,u < R. 

PROPOSITION 2.2. If K is (<R, <?X)-bounded then Player B has a winning strategy 
for Game ] (R, a). 

We continue to use the notations for properties of embeddings of chains estab- 
lished in [5] and briefly reviewed in Section 1. 

DEFINITION 2.3. (1) The K-increasing chain N of members of K<> extends N' if 
N' is an initial segment of N. 

(2) Two extensions N' and N" of a chain N can be amalgamated over N if there 
is an N E K and embeddings of N' and N" into N which agree on N. 
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(3) The K-increasing chain N of members of K<> is a A-amalgamation base if N 
is bounded and every pair of K-extensions of N, each in K<>, can be amalgamated 
over N in K<A. 

To say N is an amalgamation base is to say K is smooth at the chain N; if K 
satisfies the <A-L6wenheim-Skolem property the increasing chain N of members of 
K<> is a A-amalgamation base if and only if all extensions of N are compatible over 
N. 

A canonically prime model over a chain M can be viewed as a 'strategy', choosing, 
at each limit stage, one among a number of possible compatibility classes over an 
initial segment of the chain. At stage (5, the strategy depends not on the actual 
ordinal (s but on the isomorphism type of M 1k. Game 2 concerns the construction 
of chains that are amalgamation bases. We rename Player B as Player NAM (he 
wants to prevent amalgamation) and Player NB as Player AM (he wants to build 
an amalgamation base). 

DEFINITION 2.4. (1) A play of Game 2 (R, a) lasts < a moves. The play of the 
game is exactly as in Game 1 (with NAM replacing B, AM replacing NB). A player 
who has no legal move loses; however, Player NAM wins instantly if for some limit 
ordinal fl < a, P/l3 is bounded but is not a A-amalgamation base. 

(2) Game 2 (R, < fl) is defined similarly, but Player NAM wins only if for some 
a < /, P a is bounded but is not a A-amalgamation base. 

Note that if player NAM wins instantly at some stage then the length of the game 
is less than a. 

In both games the decision about a completed game is based only on the second 
player's moves (NB or AM); apparently to win the first player must force the second 
to make mistakes. The following lemma shows this intuition is misleading. 

LEMMA 2.5. Player B (NAM) wins Game ] (Game 2) (R, K,) if and only if the 
sequence L constructed during the play is bounded (and is not an amalgamation base). 

PROOF. A chain is bounded (an amalgamation base) if and only if each cofinal 
subsequence is. -1 

The preceding remark is quite straightforward; contrast it with the difficulties 
involved in considering canonically prime models over subsequences [5]. 

Note that if player NAM plays a winning strategy for Game 2, he also plays a 
winning strategy for Game 1. 

?3. D1. We discuss in this section the principle KI from [3]. It is a combination of 
Jensen's combinatorial principles El and K that will be used in our main construction. 
Some justification is necessary for the use of such strong set theory. On the one 
hand, arguments with a strong set theoretic hypothesis that conclude the existence of 
many nonisomorphic models show it is impossible to prove, in ZFC, that K has few 
models. Thus any 'structure theory' that could be established for K in ZFC would 
have to allow the maximal number of models in a class with 'structure'. On the 
other hand, while for ease of statement we assert that these combinatorial principles 
follow from V = L, in fact they only depend on the structure of the subsets of A. 
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Thus 22 can be as large as desired while keeping K1 2,,,R for each X < A and some 
R < A. Moreover, the consistency of KI can be obtained by a forcing extension 
as well as by an inner model. Some instances of K2 depend only on appropriate 
instances of GCH. We begin by establishing some notation. 

NOTATION 3.1. (1) For any set of ordinals C, acc[C] denotes the set of accumu- 
lation points of C, i.e., the (s G C with 6 = supC n0a; nacc[C] denotes C - acc[C]. 

(2) Fix regular cardinals A > ia; let C ' (S) denote the set of (s G S which have 
cofinality a. In the following (s always denotes a limit ordinal. 

(3) Suppose there is S C A and a collection (Cl : G S). Then for any Si C S5 
S1 denotes S, U U{QC (s G Si}. 

DEFINITION 3.2. [ K2 A,,,,R(S)]. We say that (C, : a E S) and the sequence 
v = ~(A, : a < A) witness that A, a, R satisfy [I K A,<,R (S)] if for some subset Si of 
S the following conditions hold. 

(1) X is a regular cardinal < A, R is an ordinal < A. 
(2) S is stationary in A and contains all limits (5 A i with cf((5) < R; S contains 

only even ordinals. 
(3) Si C CK(S). 
(4) Each C6 C S. 
(5) If a E S 

(a) C, is a closed subset of a, 
(b) if /EE C. then CA = C, n, 
(c) otp (C,) < max(R, ao), more precisely, 

(i) otp(C,) = if a E S, and 
(ii) C,, n 1 0 and otp(C,) < R if a E S - S1 is a limit ordinal, 

(d) all nonaccumulation points of C, are even successor ordinals. 
(6) If (5 G S is a limit ordinal then CQ is a club in (5. 

(7) Each A, C a and 
(a) iffl E S, and a E acc[Cf] then A, = Af n a, 
(b) for A C A and any closed unbounded subset E of A, XE = {: E S,: 

s c: E&acc[C] C E & A6 = A n a} is stationary in A. 

DEFINITION 3.3. Ki A,<,R holds if for some subset S C A, K2,,R (S) holds. 

We discuss the truth of this proposition for various choices of A and a. We begin 
with a case proved in ZFC; some cases of the GCH are needed to find cardinals 
satisfying the hypotheses. Combining the methods of [3], [11], and [8] yields the 
following result; we include a full proof in an appendix at the suggestion of the 
referee. 

LEMMA 3.4. Su pose /'U = /1 and 2- = +=. If S* C S' (A) is stationary then 
there is an S C A such that K2 ,,<,w (S) holds and S n C K (A) c S* 

This combinatorial result is sufficient for our model theoretic constructions if the 
problematical model theoretic situation concerns chains of length co (K = co). To 
deal with chains of longer length (this is essential; see [5]), the following stronger 
combinatorial principal is needed. 

LEMMA 3.5 (V = L). If A = au+andK < yu, thenforsomestationaryS, C>,,<,>(S). 
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?4. Players B and NAM construct many models. We show in this section that if 
for some X < A and an ordinal R < A Player B has a winning strategy for Game 1 
(R, a,) and Game 1 (R, < R), K is (R, > R)-bounded, and Player NAM has a winning 
strategy for Game 2 (<R, a,) then K has the maximal number of models in power A. 
This is of course a technically weaker conclusion than in [5] where we showed that if 
K is not smooth then K codes stationary sets. But we have weaker hypotheses here 
and this conclusion expresses a somewhat weaker intuition of nonstructure. This 
weakening of the result is reflected in a complication of the main argument. In the 
earlier paper we constructed for each stationary set W a model M w coding W. 
Here, we construct 22 models simultaneously and destroy putative isomorphisms 
between them en route. The second author has in mind a more elaborate version 
of our construction, which we don't expand on here, that recovers the coding of 
stationary sets in this context. The stronger conclusion in [5] assumed the class K 
was equipped with notions of free amalgamation and canonically prime models; 
here we have no such assumption. 

The many-models proof given here illustrates the role of canonically prime model 
notion. When cpr is in the formal metalanguage, a particular choice of limit model 
is specified so one can construct a sequence of models and code a stationary set by 
asking the question, 'Is the limit model at (s the canonically prime model?' When 
we remove this notion from the formal language we have to destroy isomorphisms 
between the possible choices of a limit model. Diamond allows us to do this. 

We thank Bradd Hart for suggesting a simplification in the proof of the main 
result. 

THEOREM 4. 1. Fix regular cardinals K < A and an ordinal R < A satisfying K2 A,,,R* 
Suppose 

(1) K is (< A, > R)-bounded; Player B has a winning strategy for Game 1 

(R. < R). 
(2) Player NAM has a winning strategyfor Game 2 (R, K,). 
(3) Player B has a winning strategy for Game ] (A) K). 

Then there are 22 members of K with cardinality A. Moreover, these models are 
mutually ?K-non-embeddable. 

REMARK 4.2. The connection between hypotheses (1) and (3) deserves some com- 
ment. If K, > R then (3) implies the second clause of (1). It is tempting to think that 
(1) implies (3). However, if K, > R a game of length > K, might still have cofinality 
< R. Neither clause of (1) guarantees a winning strategy for that game. 

PROOF. Fix S, (Ci i E S) and (A,,: a < A) and SI to witness K2 ,A,R. 
Using a pairing function and condition (7) of Definition 3.2 we can find (v,, C,,, fa 

a < A) with v,, C, in 2a and fa a function from a to a such that for any v, C E A, any 
function f i A { A, and any closed unbounded subset E of A, for some a E SI n E, 
acc[C,] C E, and for every /? E {a } U acc[C,] we have vfl = v n ,f, Ad n ,f, f 
restricted to / is fi. 

By induction, for each a < A and each v E 2a, we define a structure Nv whose 

universe is an ordinal < A so that if a < y, v E 2a, q E 2Y and v C j, Nv is a proper 

K-submodel of N,7. Then we finish the construction by defining for each q E 22, N,7 
as Ua<& Nila, 
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252 J. BALDWIN AND S. SHELAH 

When C E 2', we write N,, for the sequence (Nabfs: / <a). 
We now define a winning strategy against the restriction of a play of a game to a 

club that is appropriate for the arguments here. 

DEFINITION 4.3. Fix a E S. Suppose N = (Ni: i < a) is a K-increasing chain 
and C is a club in a such that nacc[C] is a set of even successor ordinals. Consider 
an initial segment of a play of Game 1 (Game 2) where Li = Ny, Pi = Ny,+,-I 
and (yi: i < ao) is an enumeration of C. If a is a successor and a - 1 E C, 
say C = { s: i < ago} then P,, is not defined by the preceding; let P,, = N - . 
(Otherwise, Pi is well defined since by Definition 3.2 (5d) Yi+1 is a successor ordinal. 
Note Yi+? - 1 + yi because C contains only even ordinals.) 

Suppose that each Li has been chosen by Player B (NAM)'s winning strategy for 
this game and suppose Na is now chosen according to Player B (NAM)'s winning 
strategy in this play of the game. We say Na has been chosen by playing Player B 
(NAM)'s winning strategy for Game 1 (Game 2) on NJ C. 

The notation NJ C is slightly inaccurate since when a is a successor the choice 
depends on Not_ 1. Nevertheless we adopt the notation because of its suggestiveness 
in the limit ordinal case. 

Note that if /? E C, then playing according to the winning strategy on NJ CA is 
by condition of (5b) of Definition 3.2, the same as playing a winning strategy on an 
initial segment of NJ C,. 

We use the following ad hoc notation. We need to introduce this notation because 
we are using winning strategies in both games 1 and 2 as the hypothesis for the 
construction. If we simply assumed K is (., A))-bounded then we wouldn't need this 
curlicue. 

NoTATION4.4. For a < f E S, CA,,, denotes { : E E CA &E > al}. 

CONSTRUCTION 4.5. We split the construction into several cases. Let 

s1 =Si UUfC :5 E SI} 

Most cases in the construction are defined by playing the winning strategy of 
Player B or Player NAM on a closed unbounded subset of fi. Condition (5) of 

1 ,,A,R (S) guarantees that the various cases cohere. Certain inductive properties 
of the construction are incorporated in the description of the cases. 

At stage /., we have fixed v, q E 2fi and a map ff from /? to /?. For each z E 2f we 
construct a model NT. In many cases NT is chosen by playing the winning strategy 
for Player B or player NAM on NT I CA. To see that these strategies do not conflict 
note first that if every play on NT I CA has been played by the winning strategy in 
either game then it has been played according to a winning strategy for Game 1 (as 
the winning strategy for Game 2 also wins Game 1) and so inductively NT can be 
chosen by Player B's winning strategy in Game 1. Moreover, since Player B has 
a uniform winning strategy for all games of length less than A his play does not 
depend on the particular game of length less than A that is being considered. The 
inductive hypothesis in the cases where Player NAM's winning strategy in Game 2 
is used are verified below. The key step in the proof is subcase (b) of Case IV The 
other stages are preserving the induction hypothesis. 
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Case I: ,1 is a successor ordinal y + 1. We will choose NT as a proper K-extension 
of NTI/i This is possible since we have assumed that there are no maximal 
models in K<,. In certain subcases however we must be more specific. 

Subcase a: ? E S - S1. Choose NT by playing Player B's winning 
strategy for Game 1 on NT ICAI. 

Subcase b: /f E S1. If Player NAM has already won Game 2 played 
on NT I CA at some stage y < ,fl, play the winning strategy for Player 
B on City. If not, NT I CA has been played by the winning strategy 
of Player NAM. Choose NT by playing the winning strategy for 
Player NAM for Game 2 on NT I CAi. 

Case II: fi is a limit ordinal and /3 , S. By (2) of Definition 3.2, /3 has cofinality 
at least R. Choose NT to bound N r (by (<R, > R) boundedness) and with 
INT I < A (by the <X-Lowenheim-Skolem property). 

Case III: /3 is a limit ordinal and /3 e (S - S1). Since cf(C/) < R, we can 
choose NT to bound NT /f, by playing Player B's winning strategy for Game 
1 on NT I C/. (Note Ci is unbounded in /3 by Definition 3.2 (6).) 

Case IV: /3 E S1; /3 a limit ordinal. The situation is interesting only if / - 

UNV = UNFII f/INv I is a K-embedding for each y < / and z = v. Unless 
all of these conditions hold, choose NT as in Case I(b) by playing NAM's 
strategy on NT I C/i or B's winning strategy on NT I C#,y. If they do hold there 
are two subcases. 

Subcase a: NT is an amalgamation base. If y E C: then by Subcase 
I(b), or Subcase IV(b) at stage y, NTIy was chosen by Player NAM's 
winning strategy on NT I CY. So, we are able to apply Player NAM's 
winning strategy for Game 2 (R. K) on NT I C/i to choose NT 

Subcase b: NT is not an amalgamation base. N,7 has been defined. 
Thus there are incompatible bounds A 1, A2 E K<A for N... If there 
is an extension f/i of f/ such that ff (A l) is compatible with NZ,7 
NT = A2; otherwise NT = Al. 

This completes the construction. The various cases are clearly disjoint. We finish 
the proof by proving the following claim. 

Claim. If a z r e 2A then there is no K-embedding of N, into NT. 
Suppose for contradiction that f is such an embedding. For a in a closed 

unbounded subset C of A, 

a= U NGi# U N-rIf 
/i<a /i<a 

and for each / < a, f N~f/ is an K-embedding into NTI/i for some /' < a. Thus, 
there is an a E C n Si with fa f la, va = ala, A, = ,1za and acc[C,] C C. 
Moreover, for /3 E acc[Ca], f /l3 fr. Since a E Si, cf(a) = a. Since Player 
NAM has a winning strategy in Game 2 (R, ,z), either Player NAM wins Game 2 
at stage a or Player NAM won at some earlier stage (s. In the first event, subcase 
IV(b) of the construction applied at stage a, guarantees there is no embedding of 
N, = Na, into any extension of NC = NTa. In the second event, ( E acc[Ca] so by 
condition (7) a of Definition 3.2 A6 = Aa, na. That is, f6 ( |-*b and since fa is a 
(sequence of) K-embedding(s) so is fr. Since f6 = fl1, subcase IV(b) applied at 
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stage (s guarantees there is no extension of f 16 mapping Nq16 into any extension of 
N, 1; and thus no extension of f a mapping Na,, into any extension of Nzia Thus 
there is no K-embedding of Nq into NT and we finish. H 

?5. Classes with few models have 'homogeneous-universal' models. We consider 
here several variants on the notion of homogeneous-universal model and establish 
the existence and uniqueness of models satisfying one of these notions for a class 
that has few models. 

5.1. ASSUMPTION. In this section we assume that the class K has a notion of 
strong submodel satisfying the axioms of group A in [4] (listed in Section 1), the 
properties of A enumerated in Section 1 and 

(1) K has fewer than 22 models of power A, 
(2) K is (<R, <i)-bounded. 

All the results of this section go through under these assumptions. Since some of 
them require slightly less, many of the statements repeat these overriding hypotheses 
or stipulate more technical conditions that suffice. 

The following obvious consequence of Theorem 4.1 is a key to this section. 

LEMMA 5.2. For a regular cardinal K < A such that some regular R < A, A satisfies 
0 A,,,R, Assumption 5.1 implies that Player NAM does not have a winning strategy 

for Game 2 (R. K,). 

REFINEMENT 5.3. Checking the hypotheses for Theorem 4.1, we see that instead 
of assuming K is (<R, <A)-bounded it suffices to assume K is (<., > R)-bounded 
and Player B has a winning strategy for Game 1 (R, < R). 

Our key idea is to redo the Fraisse-Jonsson construction in a category where 
models have been replaced by chains that are amalgamation bases. While we can 
not derive the amalgamation property directly from a 'few models' hypothesis, we 
are able to derive the existence of a sufficient number of amalgamation bases to 
carry out the construction. 

DEFINITION 5.4. Let K< be the class of (< A, < A)-chains that are amalgama- 
tion bases and such that every initial segment of the chain with limit length is an 
amalgamation base. 

We define a partial order on these chains. 

DEFINITION 5.5. Let M and N be (<R, <A)-chains. 
(1) M N if U M = U N and each Mi is K-embedded in some Nj by the 

identity and vice versa. 
(2) M -< N if M - N or there is an Ni in the sequence N such that for each 

j with My E M, My < ?N. (In the latter case, we say N properly extends 
M.) 

LEMMA 5.6. (1) K< is not empty. Indeed, for each N E K<>, there is an N E K< 
with No = N. 

(2) For each (<R, <{)-chain M there is an N E K*2 that properly extends M. 
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PROOF. Consider any play of Game 2 (R, K,) where Player NAM chooses N as 
L1. If Player NAM wins each such play then he has a winning strategy for Game 
2 (R, s) played in the class of K-extensions of N. By Lemma 5.2, this contradicts 
Assumption 5.1 (1). If not, N = (N, Po, P1,...) is the required member of K*2. 
For the second claim, apply this argument to a bound for N. H 

Now we can regard this collection of chains under this partial order, (K*, -), 
analogously to our basic notion of an abstract class. This class is easily seen to have 
the amalgamation property. 

LEMMA 5.7. If MO -< M1 and MO -< M2 and each M' is in K* then there is a 
model N E K such that both M1 and M2 can be embedded in N over Mo. 

PROOF. Let M1 be a bound of M1 and M2 a bound for M2. Since Mo is 
a A-amalgamation base these two models and, a fortiori, the sequences can be 
amalgamated over Mo. H 

Note that if M is K-embedded in both N and N, then N and N can be amal- 
gamated over M. Since each element of K*2 is an amalgamation base the joint 
embedding property for members of K<*, is an equivalence relation. Formally 

DEFINITION 5.8. Let M, N E K<*. Then g2 (M, N) if there exists an N such that 
both M and N can be K-embedded in N. 

To avoid the notational inconvenience of dealing with compatibility classes we 
posit: 

ASSUMPTION 5.9. K<* has the joint embedding property. i.e., for any M, N E 

K< A, there exists an N such that both M and N can be K-embedded in N. 

We consider four variants on the notion of homogeneous universal. First we list 
two variants on the normal notion; then we describe the analogous versions for 
K<*i. First we fix the meanings of universal. 

DEFINITION 5.10. (1) For any class K, M is K<A-universal if all members of K 
with cardinality less than A can be K-embedded in M. 

(2) M is K< -universal if each member of K< A can be K-embedded in M. 
(3) M is K<> chain-universal if each (<R, <i) chain can be K-embedded in M. 

Applying Theorem 5.6 and Assumption 5.1 (2) ((<R, <{)-boundedness) it is easy 
to see: 

LEMMA 5.1 1. If M is K A-universal then M is K<> chain-universal. 

DEFINITION 5.12. (1)M is (KA, <)-homogeneous-universal if M is K<A-universal 
and for each No < N1 E K<> any K-embedding of No into M can be extended to a 
K-embedding of N1 into M. 

(2) M is strongly (K>, ?)-homogeneous-universal if M is K<A-universal and each 
isomorphism between K-substructures of M with power < A can be extended to an 
automorphism of M. 
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(3) M is chain homogeneous-universal (for K<,) if M is K<,-universal and for any 
pair M -< N of members of K< , any K-embedding of M into M can be extended 
to an embedding of N into M. 

(4) M is strongly chain homogeneous-universal (for K*A) if M is K%2-universal 
and whenever the (<R, <i)-chains M, N E K* are isomorphic and K-embedded in 
M, the isomorphism can be extended to an automorphism of M. 

We quickly summarize the relations among these notions and then proceed to sup- 
porting examples. It is immediate from the definition that a (KA, <)-homogeneous- 
universal model is K<A+ -universal. If, the empty structure is a K-submodel of 
every structure, the requirement of K<A-universality in the definition of a (KA, <)- 
homogeneous-universal model is redundant. Clearly, Definition 5.12(2) implies 
Definition 5.12(1). But in general Definition 5.12(2) is stronger than Defini- 
tion 5.12(1). If we do not require the counterexample to have cardinality A this 
is true even in the first order case. For there are A-saturated structures (thus sat- 
isfying (1)) that are rigid. (E.g., rigid real closed fields [10].) These notions are 
however equivalent if K is smooth (and with the A-L6wenheim-Skolem property). 

Similarly (4) is stronger than (3). We now show notion (1) is stronger than notion 
(3). 

LEMMA 5.13. If K is (<R, <i)-bounded and M is a (K2, <)-homogeneous-universal 
model then M is chain homogeneous-universal. 

PROOF. Let M be in K< and K-embedded in M. Suppose M -< N. By the <{- 
Lowenheim-Skolem property there is an M1 with IM1 I < A and M is K-embedded 
in M, < M. By the boundedness there exists a model M2 that is a K-extension of 
N. Since M is an amalgamation base, M, and M2 can be amalgamated over M 
into some M3 (with cardinality < A by the <A-L6wenheim-Skolem property.) Since 
M is (K>, <)-homogeneous-universal, there is an embedding of M3 into M and the 
image of N verifies that M is chain homogeneous-universal. H 

NOTATION 5.14. For some examples the A is not an important parameter. In these 
cases, we simply omit mentioning any parameter. This means any reasonable choice 
of A works. 

EXAMPLE5.15. We define several classes K such that at each A, K has chain 
homogeneous-universal models but has no K<A-homogeneous-universal models. 

(1) Let K be the class of all structures of the form Lu = (L, <, Ru) that are 
described below with < being the usual notion of substructure. (L, <) is a linear 
order with a last element. For an arbitrary but fixed subset U of L, let Ru (x, y) 
hold if x E U & x < y. K is the class of structures (L, <,Ru). Each member of K 
satisfies the following two sentences. 

(Vx)(Vy)[R(x,y) -* x < y] 

(Vx)[(Ay)R(x,y) -* (Vz)[z > x -* R(x,z)]] 

Now the key point is that if M E K and x is not the last element of M, x E U is a 
AO property of x so U is preserved by extension except that the last element e of M 
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may be in U in some extensions but not others. To see M is not an amalgamation 
base choose an extension with e E U and another where it is not. 

Now let N = (N N i < co) be an increasing chain of members of K such that Ni+I 
contains an element above all those in Ni. Then U N , K since it doesn't have a 
last element. But N is in K* since whether a is in U has been determined for each 
a UN. 

Thus K does not have any K-homogeneous-universal models (as this implies the 
amalgamation property for models of smaller size). But K* is nonempty and we 
obtain K*-homogeneous-universal models as in Theorem 5.17. This example has 
many models in each cardinality. 

(2) Let L have a single binary relation R. Again let < be the usual notion of 
substructure. Let T assert that R is asymmetric (xRy -> -yRx) and irreflexive, 
that each point is related to at most one other, and that every point but one, which 
is related to no one, is related to exactly one other. Then xRy V yRx V x = y 
defines an equivalence relation such that all classes but one (with a single element) 
have two elements. Now there is a Al-definition of the predicate "x is the 'lower' 
of two related elements" (provided x is related to some element). No model in K is 
an amalgamation base (the element in the 1-element class can be 'upper' or 'lower' 
in an extension). K is (<oo, <oo)-bounded but is not (<R, <i)-closed for any A. 
For any A, Player AM has a winning strategy for Game 2 (R, <i) so by the proof of 
Theorem 5.17 there are chain homogeneous-universal models but as in the previous 
example they cannot be K<,A-homogeneous-universal. K is categorical in all infinite 
powers. 

(3) If we vary this example by allowing K to contain the structures where all 
classes have two elements then K is (oo, oo) closed but the main point of the example 
continues to hold. There are now two models in each cardinality. 

The last two examples show there is little hope of finding K2 -homogeneous- 
universal models in the abstract setting solely from hypotheses about the number 
of models. We show that such models exist and are unique under an amalgamation 
hypothesis in Theorem 5.25. 

EXAMPLE 5.16. Here is a class (K, <) and a model that is K<A-homogeneous- 
universal and chain homogeneous-universal but K is not smooth. M c K if M is 
isomorphic to a substructure which is closed under subsequence of (A<C+1, <, Li) 
where < is the natural order by subsequence and the Li are predicates for levels. 
M C N is a K-substructure of N if any infinite chain in M that is bounded in 
N is also bounded in M. Now if M has no finite branches and for each finite 
initial segment of a branch through M there are A branches with an upper bound 
and A branches with no upper bound, M is K<A-homogeneous-universal and so 
chain homogeneous universal. But any model (or chain of models) that contains 
an infinite branch without an upper bound is not an amalgamation base. 

For the remainder of this section we explore the properties of notions (3) and 
(4). We first prove the existence of a K<, chain homogeneous-universal model. 
Then we will show using the assumption that K has few models any such K*2 chain 
homogeneous-universal model is strongly K* chain homogeneous and thus there 
is a unique K<, chain homogeneous-universal model of power A. 
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THEOREM 5.17. Suppose A satisfies the assumptions enumerated in Section ] and 
that Player B has a winning strategy for Game ] (A, A). There is a K* chain homo- 
geneous-universal model with cardinality A. 

PROOF. We construct a sequence of models (Mi: i < A) of cardinality < A with 
the universe of Mi contained in A; the required M is U Mi. Since A<2 = A (as 
U A,,,R (S) holds), we can let (N : i < A) enumerate a set of representatives (say 

with universe contained in A) of all isomorphism types of members of K< . 
Having constructed Mi we define Mi+1 with cardinality < A by a play of Game 

1 (<A, A). We construct a sequence (Mij: j < a) of structures with universe 
contained in A where a = IiI + IMiIImiI < A. The Mij will be the plays of 
Player B in the game. The plays of his opponent, denoted Mi'/, will guarantee the 
homogeneity. Let Gj = (Aj, BA, fj) for j < a be a list of all triples such that 
A ,B1C K~ U A C A, UB C A, Ai 

- Bj, Bj Np forsome3 < i, and fj maps 
Ai into Mi. Now Mo,0 = Mi and Mi," = M for a limit ordinal. j+1 is an 
amalgam of MiX with B j over A 3 with the universe of Mij+1 contained in A. Ms. is 
an extension of Mi' with universe a proper subset of A chosen by Player B's winning 
strategy. If (s is a limit ordinal < a, Mi,5 is chosen as a bound for (Mij : j < () 
with cardinality < A by Player B's winning strategy. Mini of the proper cardinality 
can be chosen by the regularity of A and the <A-Ldwenheim-Skolem property. Let 

Mi'+, be Mi,, and to guarantee universality let Mi+, be a common K-extension of 
Mi/+? and Ni+. H 

The last result may be vacuous (e.g., nothing in the hypotheses guarantees that 
K< is not empty.) Adding Assumption 5.1 and applying Lemma 5.11 we deduce: 

COROLLARY 5.18. Suppose A and K satisfy the assumptions enumerated in Para- 
graphs 1.1, 5.1, 5.9 and A<2 = A. There is a K< chain homogeneous-universal model 
with cardinality A that is KA universal. 

We will now show that if K has few models of power A then any chain homo- 
geneous-universal model is actually strongly chain homogeneous-universal and thus 
the uniqueness of the chain homogeneous-universal model. The keys to showing 
this lemma are the following invariants. 

Expand the language L of our class K to L* by adding for each a < A an a-ary 
predicate Pa. Expand each L-structure M to an L*-structure M* by letting P., 
hold of an a-sequence -a just if a enumerates a K-submodel of M. Without loss 
of generality the universe of M is A. As in [9], for each /3 < A, Ad* describes the 
ooA-type of /3 (i.e., of (y y < /3)). We denote by x; the sequence of variables 

(xi: i < j). 

DEFINITION 5.19. For any representation M of a model M, 

S(M, M) = {i:1 <A is a limit ordinal and M N -(<i) A xi* (xj) - xi* (Xi))} 
j<i 

S(M, M) = {: i < A is a limit ordinal and (M/: ] < i) 0 K*A}. 

It is easy to see that S (M, M) is an invariant of M modulo the cub filter; thus 
we abbreviate S(M, M) to SM. The same holds for S. Thus, SM is exactly the 
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invariant defined in [9]. (It appears to be the complement but this is a typo in the 
earlier paper.) For X c A, we write Xc for A - X. 

CLAIM 5.20. If M is chain homogeneous-universal SM and SM are equivalent 
modulo the cub filter on A. 

PROOF. We say that an L,,2, formula q5 (-x) is complete if it implies the quantifier 
free diagram of x; denote this formula by q* (Y). Now we will show that for 
each complete formula 0 (x) c LO,2 such that q0 (x) implies that x enumerates an 
K-increasing chain, and for any sequence a C M that enumerates a member of K*, 

M q0(a) if and only if M F=q*(-a)). 

We prove this assertion by induction on quantifier rank; for quantifier free for- 
mulas it is tautologous. Suppose 0(x) is (3-0)0(`U, X) and by induction that we 
have the proposition for 0. Fix any b c M that enumerates a member of K* and 
M F q*(b). We must show M F q(b). Suppose 0 (a) is witnessed by 0 (a, a). By 
Lemma 5.6 there is an a2 C M such that a enumerates a member of K< A. Let 
3 (v, UT, x) be the conjunction of the quantifier-free diagram of a-1, a2 and q' (iv, wu, -x) 

denote 0 x -) A 3 (v, wu, x). Since M is chain homogeneous-universal, there exist 
bl, b2 C M such that b1b2b enumerates a member of K< isomorphic to a- la . By 
induction, we have F q'(bl, b2, b) and thus P +(b) as required. 

Now suppose i C SM. Then M i is an amalgamation base and we have just 
observed that the ooA type of i is equivalent to a quantifier free formula. So i is 
certainly not in SM. Thus SM C SM 

The set C = {3s < A: 3 = sup(36 n SI) &3 is the universe of M1;} is a cub. To 
complete the proof, it suffices to show SM n C c SM. (This yields SM = SM 
modulo the cub filter.) But if i c SM, M i f K <. So there exist (<R. <i) chains 
M' and M" whose restriction to i are isomorphic to M but which are incompatible 
over Ml i. Since M is <A chain-universal there are copies of both M' and M" 
K-embedded in M. Note that if i c C, the oc. type of i is equivalent to a quantifier 
free formula. Thus M'1i and M" Ii have the same ooA-type and so witness that 
i C SM. H 

ASSUMPTION 5.21. We assume for the next theorem the combination of C and 0 
described on page 7 of [9]. 

THEOREM 5.22. If there is an M C K such that SM is stationary then there are 22 
models of K with power A. 

PROOF. Since SM = SM we can just quote the main result of [9]. It is shown 
in that paper, that for A satisfying the set theoretic principle described there, each 
model M of power A is categorical in the language Lo,,2 if SM is not stationary or 
has 22 models of power A that are LO,2-equivalent to it if SM is stationary. The 
22 models defined in the proof are all unions of members of K<, so since K is 
(<., A))-closed we have the result. H 
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THEOREM 5.23. If M has cardinality A, Sm is not stationary, and M is chain 
homogeneous-universal then M is strongly chain homogeneous-universal. More gen- 
erally, if M and N are any two chain homogeneous-universal models and neither SM 
nor SN is stationary then M and N are isomorphic. 

PROOF. This is the other half of the dichotomy proved in [9]. The argument is 
presented in detail there. To summarize, suppose M and N are each KA chain 
homogeneous-universal. Construct by induction a back and forth between M and 
N. The successor stages are easy by the definition of Kr<-homogeneous. The 
tricky point is the limit stage. But since SM and SN are not stationary we can (by 
restricting to a cub) assume they are empty. Thus at limit stages the sequences 
already constructed in M and N are in K*. So we can apply the definition of 
K< -homogeneity and continue the construction. H 

COROLLARY 5.24. Suppose A and K satisfy the assumptions enumerated in Para- 
graphs 1. 1, 5.1, 5.9. There is a unique K< chain homogeneous-universal model with 
cardinality A and it is K* strongly chain homogeneous-universal. 

THEOREM 5.25. Suppose for each K < A and some R < A, K and A satisfy the 
assumptions enumerated in Paragraphs 1.] and 5.1. Suppose further that K satisfies 
the amalgamation and joint embedding properties and <'2 = A. There is a unique 
(K;, <) homogeneous-universal model with cardinality A 

PROOF. With amalgamation it is straightforward to construct an (K<,, <) homo- 
geneous-universal model. It is chain homogeneous-universal and thus unique. H 

While we assumed F A,,,R for each K < A, this is excessive. We only need 
this assumption for those X where there is a possible failure of smoothness. The 
following result does not use the hypothesis that K has few models. 

THEOREM 5.26. The following are equivalent. 
(1) SM is not stationary for some KA chain homogeneous-universal model M of 

power A; 
(2) Player AM has a winning strategy in Game 2 (., <i). 

PROOF. First we show (1) implies (2). Let M be a representation of M such that 
SM is not stationary; fix a closed unbounded set C that is disjoint from SM. To win, 
player AM chooses Pi as a K-extension of Li and an isomorphism f i (extending 
the fj for j < i) of Pi with an M, whose universe is an ordinal in C. Thus, each 
limit stage in the chain constructed by the play of the game is in C and so is an 
amalgamation base as required. 

To see (2) implies (1) modify the proof of Theorem 5.17. Construct a sequence 
M j as follows. Play Game 2 (R, <A). Let player NAM's moves be Lj = 

where Mij is chosen just as in the proof of Theorem 5.17. Let P1 = Mi' be 
chosen according to Player AM's winning strategy. This guarantees that letting 
M= Ui 1 Mi/1j, S(M', M') is not stationary (indeed empty). H 

EXrENSION 5.27. If A = K+ and DA holds (w,, in Jensen's notation) then Condition 
(2) in the last lemma can be replaced by Game 2 (R, K). 
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?6. Conclusions and problems. Much of this paper can be viewed as answer- 
ing the question: What is the role of closure under union in the construction of 
homogeneous-universal models? We have the following symbolic equation: 

closure under unions = boundedness + smoothness. 

We have shown that the boundedness hypothesis can be weakened to the existence 
of a winning strategy for Player B in Game 1; this suffices to show the existence of 
Ki chain homogeneous-universal models. Similarly, we have weakened smoothness 
to the nonexistence of a winning strategy for Player NAM in Game 2; this suffices 
to prove the chain homogeneous-universal model is K< chain-universal. We are 
then able to apply the argument from [9] to show that if K has few models the chain 
homogeneous-universal model is unique. The most obvious question is: 

QUESTION 1. Can the results of this paper be obtained in ZFC? 

Rami Grossberg has made progress on this question and several related ones. In 
particular he has shown that there is a model of ZFC + CH + 28' = 282 in which 
there is a class K that satisfies the model theoretic conditions of Theorem 4.1 (with 
A = N2) but has only one model of power N2. In the case where A is a successor 
cardinal Grossberg has weakened our set theoretic assumptions. These results are 
still being written up. 

But there is another use of closure under unions. Separating one of the com- 
ponents of the notions of limit model defined in [7, 12] and generalizing [2], call a 
structure M K-rich if it is K-isomorphic to a proper substructure. Now it is easy 
to see that if a structure of power A is rich and K<A universal and if K is closed 
under union then there is a member of K with power A+. There are examples 
[12, page 431] of classes K that are A-categorical such that the model of power A is 
universal, maximal, and homogeneous (since rigid). 

QUESTION 2. Suppose K has few models in power A. What are minimal model 
theoretic conditions on a class K so that the homogeneous-universal model is not 
maximal? Can the homogeneous-universal model be a Jonsson model? 

QUESTION 3. What sort of transfer theorems can be proved for the existence of 
K*-homogeneous-universal models (in various A)? 

Much of our efforts have been dedicated to showing the uniqueness of the 
homogeneous-universal model. This raises a metatheoretical question. 

QUESTION 4. How much of stability theory can be carried through in abstract 
class K that has homogeneous-universal models (in many cardinalities) but where 
they may not be unique? 

?7. Appendix: Set theoretic lemmas. In this section we include the proofs of the 
two combinatorial arguments used in the main arguments and some comments on 
how they can be extended. 

LEMMA 7.1. [Proof of Lemma 3.4]. Suppose AK = u and 2"= = = A. If S* C 
C' (A) is stationary then there is an S C A such that 0 ,, holds and S n Ck (A) C s*. 
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PROOF. Let S* C C"' (i) be stationary. Let (A,: a < A) be a list of all bounded 
subsets (indeed A, C a) of A each appearing A times. (Such a list exists since 
2/1 = Y+ = A.) Let {(AE'8, C'8): E < ju} list all pairs (A, C) where A has the form 

U i c XAi with X a subset of a of cardinality at most X and C is a closed subset of 
a with otp(C) < a. Moreover, we require that if otp(C) = X then a C S*. There 
are only 41 such pairs since uK = u. 

By Engelking and Karlowicz [1], there exists a sequence of functions F : A |-? 411 

for 4 < u such that any partial function h taking A to 4u with Idom h < X extends 
to some F4. 

Let (, ), pro, prl, denote pairing and projection functions on ,u and on A such 
that a and /3 are always less than or equal to (a, /3). 

For each 4 < 4u, we will define two sequences of sets C = (AS: a < A) and 
FC = (C : a < A) and a set SC. We will show that for some W, C and FC satisfy 
the definition of I ,,,(SC). 

For any function F, let FO and F1 denote the result of applying the first and 
second projection functions respectively after F. 

If C',F (a) is closed and for each 3 cE CQFir(a), CC= n 0 CaF; (a) and, if a is a 

limit ordinal, a = supC"'Fc (a) while each nonaccumulation point of C' F( (a) is an 

even successor ordinal, let C; = CeF? (a). Otherwise, let C; = 0. 

As a first approximation to AC, let B; = {C < a ( z, A) E F (a) }. Now define 

A; by induction on a. At stage a, if for each 3 cE acc[Cg], AC = BC n f, then 

AC = BC; otherwise A; = U/3 c acc[Cg]AC. 

Let S { = :3 - S*: supC}. Finally, let SC = S% U Ub E SC C 

Now we claim that for some W, C and FC satisfy the definition of I ,,,(St). 

It is easy to check that for each s, , SC and FC satisfy all the conditions except 

possibly (2) and (7). (This would be possible even if all the C; were empty.) 

Moreover, A; C a and if /3 c acc[Ci], AC = A; n 0/. So the nontrivial point 

is to check (7b) of 3.2. If for some 4 WC, SC, and FC work, we are finished; if 

not for each 4 there is a counterexample (A*, EC). That is, there is some cub DC 
with D; n XE, = 0. Interpreting the definition of XE (from (7)) of Definition 3.2), 

XE, = {3 C S :3 cE EC & acc[Q] C EC & A; = A,* nO}. Since SC C XE, showing 

XE, stationary also satisfies condition (2). Let A* = {(a, &) < 4u & a C A*}. 

(Note that by the definition of (, ), this is a set of ordinals.) Let D = nC<, DC. 
Let E be the set of 3 z nC<, EC such that 3 is closed under the pairing and 

projection functions and for each a < 3, A* n a C {Ai: i < 3;}. 
Define a function g: A F - A by g(i) is the least j such that A* n i = Aj. Since 

the Ai enumerate all bounded subsets of A this function is well defined. Note that 

i < a is in E implies g (i) < a. 
Then E is a cub in A. To demonstrate a contradiction, fix 3 cz S* n C K (A) n 

acc[E] n D (3 exists as S* C C"K (A) is stationary) and then choose a subset CQ of 
3 such that acc[Q] C E, each nonaccumulation point of CQ is an even successor 

ordinal, and 3 = supQ. 
Let Y6 denote acc[Q] U {3}. 
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For each a Ec Y6, X, = {g(i): i E CQ n a&} is a subset of a with cardinality less 
than X and so for some v, Aav = UjEx BA. But, 

U Aj= U Cg(j) U (A* ni) = (A* no) 
jEX, iECQOc i EC6nce 

(as a C Y6); so A* n a = Alv. By the choice of (C'r: E < 4u), for some V', 
cn =Cav. 

Based on these two observations we can now define a function h with domain 
{3,} U CQ as follows. For each y c Y6, let h (y) be the minimal E < j with A* n y = 
AYprl(8) and C n y = CYpro(8). For c E nacc[CQ], we only care about ho(y); let 
h(y) be the minimal E < j with Q n y = Cypro(8). 

Now for some 4, the choice of the FC guarantees that h C FC. For this 4, we show 
by induction on a cE C6 U {3,} that C; = Cah0(a) (and thus 3 cz S4) and A; = A;* n, 
(so 3 c XE,). This contradicts the choice of DC and completes the proof. 

We first show C;j = Cabh(a) by induction on a cE C6 U {3}. For each such a, 

C6 n a = ce,h0(a). If a is least in C6, this implies C; - Cabh(a). Suppose the result 
holds for 3 cE C6 that are less than a. Then by induction for /3 < a, 

CC= Cflh(fl) =- Cnfl= (CQ n a)onI = Ca*h(o)I n 3l 

The requirements of the definition of C; are met so C; = Cabh(a) as required. 
A similar induction shows A; = An . Suppose first that a is minimal in CQ. 

Then by definition, A; = z(I, ) c A',F"(')}. But h C Fc so A* n a = A-,F; 
I 

Therefore, 
A;= B= f (l) A* n a} = A n a. 

Now suppose that for / cE C6 with /l < a, 

AC = A* nof = BC 

To see this equality holds for a note that by definition of AC, this yields A; = Ba. 
But B, = A* n a since h CF4. H 

We have established Lemma 3.4 in ZFC. The specific requirements on X and A can 
be weakened if V = L. We would like to remove the restriction that R = co and that 
yK = ,u. The principle SD, is established for all uncountable successor cardinals 
A = ,u+ in [3] assuming V = L. This principle differs from K2 A2,,,R (S) in three ways: 
the cubs C, are defined only for limit ordinals a, the cardinal X is identified with 
,u, there is no explicit treatment of R. In fact, SD, describes the default case where 
R = A. Since we assume u = u, our proof of Lemma 3.4 definitely misses the case 

We outline technical modifications of a system F satisfying SD2 to show: 

LEMMA 7.2 (V = L). [Proof of Lemma 3.5] If A - A+ and K < u, then for some 
stationary S, K21 2 (S). 

PROOF. We show how to use C, from SD, to construct first a sequence F1 such 
that 2 A,,u,, (S) holds with S = A. Let E be the set of ordinals > 0 in A divisible by 
yu and let E* denote the accumulation points of E. 
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We define by induction on a cE E a sequence, increasing with a, C1 I (a + 1) = 

(C' , < ae). 

(1) a = minE: Thus, a = ju. If /3 is even C 1 is the set of even ordinals less 

than ,6; if /3 is odd, C 1 is empty. 

(2) a is a successor in E: Thus a = a* + X where ae* C E and C (a* + 1) 
has been defined. Fix a map ho from yu onto a*. 

(a) ae < < a and 41,B: C consists of those ordinals in (a*,/3) that 
are divisible by 4. 

(b) a* </, < a and ,B is odd: CI is empty. 

(c) a* < < a and 4 TIl but 213: Thus ,B has the form a* + 4i + 2 for 
some i. 

* otpC,() < u and h(i) is even: C= C1l(i) U {h(i)} 

* otherwise: C is empty 

(3) a =3 cz E*, i.e a limit in E: we only have to define C1. 
(a) acc[C] n E* = 0: Necessarily cf(b) = No. Choose an increasing 

sequence {c a: n < co} from E with limit a. Then choose by 
induction on n successor even ordinals /3n with an < /n < an + U 

such that C = {/3n n < m}. (The third clause of the previous 

case is the key to this induction.) Finally, let C.' be the set of /hn. 
(b) acc[CQ]nE* #& 0 but acc[C,5]nE* is bounded in36 by some 3'. Choose 

an with limit 3'and /3n as before but so that C,3= C3Q U {f} U {13m 

m < n}. Then let C.' = C&' U {3 '}U {/3m m < m ) 

(c) 3 = sup(acc[C,] n E*): Let CI = WEQOE 7. 

Now one shows by induction on a that if /B c Cc', then Cc, n - c . (The other 

requirements on the C' are easily verified.) 
If K < , we modify the C. defined in the first stage of the proof as follows. If 

otpCo' < K then C2 = Co'. If otpCQ1 > K then C2 - {/B c C. : otpC > i,}. Let 

Si ={ < A: cf(a) = K & otpC. = }. And S1 = {o < A: otpCl < i}. H 

7.3. CONCLUDING REMARKS. 
(1) Examination of our proof of Lemma 3.4 shows that in fact given a square 

sequence, it is possible to add on a diamond sequence to satisfy 1 A,,,R (S). 

We state this explicitly in Lemma 7.4 below. 

(2) The proof of Lemma 3.5 can be extended to allow for R < A. 
(3) In fact, the derivation of 2R ,xR for R < A from the assumption that 

,=1 = 9 
KI = 2'u and there is a square on {f < A: cf(b) < R} but without 

assuming V = L will be published elsewhere by the second author. 

(4) Similar results hold assuming V = L for A inaccessible and A > K with 

R < A should follow by the methods of Beller and Litman [6] but we have 

not checked this in detail. 

LEMMA 7.4. Suppose 2'u = u+ = A, ,u' = ,u, and S, R, (C3 3 cz S) have been 
chosen to satisfy all conditions of 1 A,,,,R (S) except (2) and (7). Suppose further that 

for each cub E of A, {3b: acc[C3] C E}is stationary in A. Then 2 A,,,,R(S) holds. 
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