Sh:199

REMARKS IN ABSTRACT MODEL THEORY

Saharon SHELAH

]
n
wn

Institute of Mathematics and Institute of Advanced Studies, The Hebrew University of Jerusalem,

Jerusalem, Israel

LUIIllIlulllLdlCU Uy 1'\ l‘lCIUUC

Received 1 December 1983

Contents
Part I: On the Beth Property

§1. On Beth closures . .

[This is a soft section. We deﬁne some variants of the Beth closure of a loglc and
prove sufficient conditions for compactness, among them an abstract theorem related to:
““it is consistent that L(Q) satisfies weak Beth” from Mekler-Shelah [16].]

§2. Bethand PPP . . . . . . . . . . ..o Lo

[The PPP for & says that the 35 theory of M +M is determmed by the $ theories of
M,, and M,. We show (in 2.2) that under suitable compactness it is equivalent to URP,
(and that URP, is preserved by one-step Beth closure under suitable conditions (2.3-2.7
are variants of this and see 3.7).]

§3. Automorphisms and definable logics .

[We introduce some variants of “every theory has a model w1th automorphlsms and
show that any logic satisfying PPP+FROB satisfies one of them. We then prove the
consistency of “no logic which extend L(Q) is definable and satisfies PPP+INT".]

§4. Interpolation for confinality logic in stationary logic
[We prove that the pair (L(Ox”) L.(aa)) satisfies the 1nterp01atlon theorem ]

§5. Higher cardinals and strongly nomogeneous modeis . .
[We deal with logics like L(aa), L(QZ) when we change the cardlnahty parameters
and see what occurs to the ‘majority’ of submodels for suitable logics. Our main result is

the existence of somewhat X, -stronely homogeneous models.]
the existence of somewhat N,-strongly homoge 10gels. |

§6. A compact logic with the Beth property e e

[We prove that for x = 2%, the Beth closure of L(O ) has several nice properties: it
is compact, the pair (L{QZ)***", L(aa,)) has the interpolation property and the super
Ry-homogeneity property and trivially it has the Beth property and PPP, but INT fails. So
in the theorem that “for compact logics satisfying a preservation theorem for tree sum,
INT is equivalent to Beth” the second hypothesis is necessary, and even cannot be

weakened to a more usual form. We rely heavily on §4, §5.)
Part II: Compactness versus Occurrence

§1. Compactness revisited

[We show more restriction on the compactness spectrum of a loglc in the case 2 is
[A]-compact but not [cf A J-compact. Really this is a pure set-theoretic lemma on
ultrafilters. ]

§2. Amalgamation implies [A ]-compactness for A an occurrence cardinal
[We strengthen the main theorem of Makowsky-Shelah [14], by weakenmg the
demand on the occurrence number.]
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§3. A strange logicwith the JEP . . . . . . . . . . . . . . ..o 284
[We show that the compactness spectrum of a logic may be quite bizarre though it hag

um
the amalgamation property and even JEP.]!

PAKT 1. ON THE BETH PROPERTY

Usually the Beth property lives in the shadow of the interpolation property. The
main results of {12] indicate their affinity (assuming compactness, they are
equivalent if a preservation theorem holds for trees). It was asserted that the
original problem was Beth, and in fact weak Beth, (deducing from this their
importance) (see Feferman [7], [8], [9], Friedman [10]).

Our reasons for dealing with the Beth property are:

{A) Every logic has a Beth ciosure, so we have an interesting operation on
logics.

(B) the question ‘“‘is the Beth closure of £ compact” is more explicit then “is
there a compact extension of £ satisfying interpolation”, and gives information
concerning it.

(C) We have more to say on it.

We have been interested for a long time whether there is a compact logic
satisfying interpolation (#L, ). Our main result here is that there is a compact
logic satisfying Beth, even an easily definable one — the Beth closure of L(Q%,,).
It does not satisfy INT, so those properties are distinct even for compact logic. In

PPP hence the condition need in (121 for nroving their eguivalence
LI, Bence tne conaition usea 1n § 1 45 I0r proving (neir equivaience

for compact logic (preservation for tree sum) is reasonable.
We use notation from Makowsky [5].

1. On Beth closures

In this section we define some variants of the Beth closure of a logic £— %"
(one time), £®" (which satisfies Beth). We then gain some sufficient conditions
for the compactness of the logic £ and for the Weak Beth property of £ (see

Mekler and Shelah [16] for the proof for L(Q) (consistency with ZFC)).

1.1. Notation. ¥ will be a logic. If the occurrence number is k=X, we demand
closure under (Vxg, ..., X;, . . .)i<o fOr a <k, and the relations and functions have

arity <« (as well as the pred:categ and function symbols). An $-formula is
defined naturally (with <« free variables), The(M) ={ € L(75s) : ME s} where 1y,
is the vocabulary of M. We denote predicates (and relations) by P, Q, R; but
when treating predicates as variables we write P, Q, R. A bar denotes this is a

sequence.

1.2. Definition. (1) A(¥) = (£)* is the A-closure.

1 Meanwhile we have shown that this logic satisfies e.g. INT (the interpolation theorem) and ROB,
PPP.
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(2) 4(P;R) is a Beth sentence if YRI'P (P, R). ®ypi(R) means
(YR)@='P) ¢(P, R) and (IP) ¢(P, R).

(3) £® is the closure of £*® = £ U{®p(R): ¢(P, R) a Beth sentence} under
first-order operation and (Vxg, ..., X, .. .i<a When a<x (see 1.1) and, more
generally, substitution.

(4) £PB* is the Beth closure of &, i.e., define

Beth __ Beth _ Beth\B
goe _‘g’ fgail'_(gae ) s

g?ethz U $(}3eth’ and °(£Beth= U gfeth'

a8 «

(5) L2 B is the closure of £ under A and Beth, i.e., | J £2B™,

A-Beth __ A-Beth _ A-BethyA
550 © —$5 °(£2a+el _(gla < ) ’

A -Beth __ A-Beth\B A-Beth __ A -Beth
$2a+e2t - ( 20t+1t > g& = U $a e .
a<d

(6) For a model M, M is the expansion of M by a relation for every
Y-formula. Such a model is called £-Morleyized; similarly for the theory.

1.3. Claim. (1) If ¢(P, R)e ¥ is a Beth sentence, then for some (X, R)e £® (P
an 1(X)-place predicate)

MEY(P, R) — (Vx)[P(X)= 6(%, R],
ME—3P) y(P, R) = —(3%) (%, R).

(2) If w is the first regular cardinal =oc(¥), then £®"=F5™ (in 1.2(4)'s
notation) and L*PM=F4B" (in 1.2(5)’s notation); in both cases £, =
Lr> (VB> a) Lo =%,

Note that for compact £, u = Xy; and

ggeth < Igeth, $2~Beth c <>%8—Beth for a< B

Proof. (1) Let o, = ¢,(P; & R) =[¢(P, R)AP(¢)]. Put 6(¢, R) = @, por)(G R).
(2) Immediate.

1.4. Definition. (1) An #-Bethless model M is a model such that: for every
relation P on M, not definable by any £-formula with parameters in M, the
theory Th((M, P)) has two models (M’, P,), (M', P,) with P, # P,.

(2) We define by induction on a, when M is an (%, a)-Bethless model: for
every B <a and relation P on M, not definable by any &¥-formula with parame-
ters from M, THg((M, P)gs-s) has two (&, B)-Bethless models (M’, P,..),
(M', P,,...), P;# P, (M' is the common 7,,-reduct).

1.4A. Remark. Note that any model is an (&, 0)-Bethless model and £-Bethless
is equivalent to (%, 1)-Bethless.
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1.5. Lemma. Suppose A =A~°® and |r|<\ > |L(1)|=A.
(1) Suppose £ satisfies, for every £<{:

Beth

(®)re If T is a complete theory in £(1) which has an £7°"-Morleyized model,
|T|<A, then T has an (%, £)-Bethless model.

Then also £5°™ (and even £57°™) satisfies (¥), 5 when a+B<{.

(2) f &£ is (A, w)-compact and satisfies (%), then L2 (and LEB™) is

(A, w)-compact.
Proof. (1) Clearly we can concentrate on the £B°" case, the proof of ¥4 is
similar. We now prove by induction on i=<a, for all complete T < £P™(7'),
|T|<A, which has an £P*"-Morleyized model, j=1i, that every (%, i)-Bethless
model of TNZ is a model of T, TN¥P™ and then prove by induction on
j < B, that any (¥, a +j)-Bethless model of TN L5 is a (¥, j)-Bethless model of
T when T is a complete theory in some £5°"("), |[T|<\ which has an LE¢-
Morleyized model.

For i =0 this is trivial. For i = 8 a limit ordinal a (%, 6)-Bethless model of T, is
for any y<$8 an (&, v)-Bethless model of T, hence M is a model of T,, but
Ts =U,<s T, hence we finish. So suppose i=+y+1. First suppose (P, ¢, R)e
B (Rgrt, € a finite sequence of individual constants): (Vx)
[6(X)=D,peg) (X, R)] belongs to T and ¢ is an atomic formula. We shall show
that: for ce M: ME6[E] iff ME(AP) (P, ¢, R). The implication = follows by
1.3(1) and the choice of T. So suppose that the implication < fails for some ¢. So
for some P, (M, P)EY[P, & R]. Let T'=Thepo((M, P)gee), s0 as M was (£, v+
1)-Bethless, there are models (M, P,...) (I=1,2) of T'NE which are
(&£, v)-Bethless, P, # P,. By the induction hypothesis (M', P,...) is a model of
T’, and we get a contradiction to “y(P, ¢, R) is a Beth sentence”. As £7°" =the
closure of (£, )*® by substitution, we have carried the induction on i. The induction
on j is similar.

(2) Easy.

1.6. Definition. (1) A Sk.f. like (Skolem function like) £-function F is a pair of
functions F,, F, such that: for every vocabulary 7, Fy(7) is a vocabulary extending
7, maybe with new sorts; F;(71) is a theory in £(Fy(7)) such that:

(*) Any 7-model can be expanded to an Fy(t)-model of F,(7), and F;(r) is
F-Morleyized.

(2) An %-theory T has Sk.f. (F,, Fy) if for some 7, Fi(7) = T< £(Fy(7)); T is
(A, Fy, F))-Skolemized if T has Sk.f. (F,, Fy), |£(Fo(7)| <A and every finite subset
of T has a model. We call (F,, F;) A-bounded if |v|<<A Implies |Z(Fo(T)|<A.

Hypothesis. Finite occurrence numbers are assumed for the rest of the section.



Sh:199

Remarks in abstract model theory 259

1.7. Lemma. Suppose £ satisfies:

(xx) If T is a complete (A, F,, F,)-Skolemized theory in ¥(7), then T has an
(¥, w)-Bethless model (where (F,, F,) is A-bounded, of course).

Then £®™ and even ¥*Bh satisfies (+*) (hence is A-compact) for suitable
F}, F (where |7| <X = L(F\(7)) has power <\.)

Proof. Like the proof of Lemma 1.5.

Remark. Instead of Skolemization we can use devices like 3.1(4).

1.8. Definition. (1) A model M is (¥ XR.)- ctrnnol\; hnmnopnpnuc if for every

2«0 RUCIRINSRAAL: 1) 4 OGO VD s <L . N T ONR R EOLS,

finite sequences a, b from M, if they reallze the same £-formulas in M, then some
automorphism of M maps d@ to b. We can replace X, by any A, and then
(@), l(b)<A.

(2) A model M is (D, Ry)-homogeneous (D a set of types p(x), usually complete
in some logic), if: (a) every ac M realizes some pe@, and (b) if a realizes
p(x, V)1 % p(%, ¥) €D then for some be M, a’b realizes p(%, y).

(3) A model M is (&£, Ry)-saturated if every £L-type with finitely many parame-
ters from M, finitely satisfiable in M, is realized in M (such a model is (&, 8,)-
homogeneous for some @).

1.9. Claim. A sufficient condition for £® to be (<A*, Ro)-compact is that for some
logic £*, ¥ < £*, and A*-bounded Skolem function like £*-functions (F,, F,) the
following holds:

(*¥) For every complete (A*, F,, F,)-Skolemized T < £* we have a model My such
that:
(a) My is a model of TNZ and is £-Morleyized,
(b) each My is (£, R,)-saturated,
(c) My is (&, Ry)-strongly homogeneous,
(d) if T, T,, 7r,= Fo(7r,+ P), Fy(vr,+P)< T, (P finite), then M, M, | 7,
are £, ,-equivaleni.

Remark. ., is defined naturally.

Proof. Clearly by (*)(b) £ is A*-compact, and (by the A*-boundedness) || <

A* D |F(r)|<A*. We shall prove for n=0,1 (letting T be the family of T<
(£*)B" T a complete (A, F,, F)-Skolemized theory, My Myqgx)

(A), For TeT, My is a model of T Sff
For n =0 there are no problems: (A), is one of the demands
) S TN JEP. < SR -L at L A —E 1 (WD X W\ — (D A D Lo
rC£orn= 1: 1t SUumices 1o PIOvVe tlat 101 1 € &, dllU YAr, €, K)c.Z, a4t N\ 11011 T,
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if (VX)[0(%)=Dyper) (% R)] belongs to T, § atomic, then for ¢eMy: Mgk
(3P) (P, ¢, R) iff MEG[¢]. The implication < is easy by 1.3(1).

As for the implication =, suppose it fails. So for some P, (My, P)Ey/(P, ¢, R)
but ME—6(¢]. Hence P is not definable by any £-formula with parameter in M.
On the other hand, as (P, &, R) is a Beth sentence, P is preserved by automorph-
isms of Mr. As My is (&, Ry)-strongly homogeneous, if a, b realize the same
%-type in My, then there is an automorphism of My taking & to b, hence P is
definable by some £, ,-formula. Now (Mg, P, ¢) can be expanded to an Fy(rr+
P+ ¢)-model of F,(rr+P+¢) which we call M*, and let T, =Thg+(M¥). Now we
know that My and Mg, | 71 are . -equivalent, hence also (Mg, €), (Mg, 7, €)
are %, ,-equivalent, So for (Mg 7, ¢) there is an Z.,-formula defining a
relation P’ such that Mr Fy[P’, c, R] (use the definition we have found for My,
and (*)(d) which says that My, My | 71 are (£)..,, equivalent).

However, also My Fy[P", ¢, R] where P” is the interpretation of P in My, By
¢(P, &, R) being a Beth sentence, P’ = P”. However, we shall now prove that P” is
not definable by an £.. (7 +¢)-formula. For this it is enough to find sequences
b,ae My, realizing the same Z-type over ¢ in M} 71 such that —P"(b)=P"(a).
If we restrict ourselves to A, .. 6,(b, )= 6,(a, ¢) for finitely many £(r;)-formulas,
we can find such @, b in M; as P is not definable there. As T is the £*-theory of
an expansion of M, and M;, is (£, Xy)-saturated, the existence of b, € is clear.

We get a contradiction, hence prove (A),.

1.10. Fact. From the hypothesis of 1.9 we can conclude that £ has the weak Beth
property.

Remark. Compare with Mekler~Shelah [16]; essentially this is an abstract version
of the result in §2 there; this is clearer in 1.11, 1.12, 1.13.

Proof. As we know |7| <A*|L(7)|<A* and £ is (<A*, Ro)-compact, it suffices
to prove that: if T is complete, ¢(P; R) a weak-Berth sentence for R € 7, then for
some formula ¢ (X, R), ¢({X:d(%, R)}, R)e T. Suppose not; let P< M, be such
that (Mg, P)Ey[P, R]; P is not definable (even with parameters) in My (if we use
some parameter to define P, we can eliminate it by P’s uniqueness). Now we
continue as in the proof of 1.9,

1.11. Claim. We can weaken the hypothesis of 1.10 as follows:

(*) For every complete (A\*, F,, F,)-Skolemized T < %* we have a class of models
K such that:
(a) Each Me K is a model of TNZ.
(b) For some pw<\* if Te€T, r<7r is such that |tl<p, TONL*(7) is
Morleyized, then My | v is (£, Ro)-strongly homogeneous.
(©) If Ty T, 7, = Fo(7r,+ P), Fy(t,+ P) S T,, (P finite), 7\ = 7, is as in (b),
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p a set of formulas of ¥(v,) with the free variables X ={(xq, ..., X,_1),
Ix {Aple TNZ(ry) for finiie p' = p, then there are M, €Ky, My, M, [ 11

are £, ,-equivalent, M, realizing p.

Remark. We can usually replace (&, No)-strongly homogeneous by:
1.13. Definition. M is (&, Ry)-ps-stiongly homogeneous if for every a,beB
realizing the same £-type, there is a class V* eV, which is an inner model, V a
generic extension of V*, L(1,)e V*; so we can look at V and hence M, as a
Boolean-valued model M, ME“a, b reahze the same £-type” (i.e., this is forced)
and Thy(M, @, b) € V*, and M has an automorphism which takes a to b (and may

move truth va]nPQ\ (wp can assume for lenhmﬂv that the universe of the model is

an ordinal).
1.14. Remark. In the applications, we can ask more things to be in V*,

1.15. Observations. Suppose the vocabulary of & is recursive, the same is true
for 3" provided we make the following minor change. @, z)(R) is defined for
every ; the demand on Bethness of ¢ is delayed to the satisfaction (or & should
contain a proof of ¢ being Beth). Aiso we have a compieteness theorem for £*®:

if e.g., 1.7(x*) holds then Fy(r), F;(7) are recursive.

2. Beth and PPP

Our main interest here is to give sufficient conditions for the one step Beth
closure of a logic to satisfy the “‘pair preservation property” and ‘“‘uniform reduct
property for pairs”, i.e., that we can compute the truth values of Mg+ M;F ¢ (for
¢ € F) from the truth values of Mk} (k <k;) (where the . do not depend on
the M,).

2.1. Definition. (1) &% has the PPP if for every models M, N, Th(M+N) is
determined I-\v Th (M) Th ”\T\ (M + N—we have more SvrtS).

determined Th, (M), Th(N) (M have mo

(2) & has the URP,-property if for every vocabularies 1, 7, (disjoint w.l.0.g.)
and sentence ¢ € L(r,+ 1,) there are sentences ¢ic £(1;) (i=1,...,n) such that
the truth value of (M; + M,)F ¢ is determined by the truth values of M, k¢! (M, a
7,-model, M, + M, a (7, + 7,)-model).

Remark. We can reformulate (2) as: ¢ is equivalent to a Boolean combination of
the ¢Ps.

2.2. Claim. (1) PPP+|¥%|*-compact implies URP, (where |¥£|=sup{Z(t):7 a
finite vocabulary}|).

N TTRD nmlioc DDD
\£) URI o l'llytl S P L.
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Proof. (1) Suppose € £(7,+ 7,) is a counterexample to URP,. This means that
for no finite ¥, < L(1,), ¥, < £(7,) we can compute the truth value of M;+ M,F
¢ from the truth values of M,F ¢, (¢ ¥,). Note M, is a 7,-model, and that for
notational simplicity the sets of sorts of 7, and 7, are disjoint. So £(7,), £(7,) are
disjoint.

So for every finite sets ¥, < £(7) (I =1, 2) there is a function h = hy, v, from
¥, UW, to {t,f} (=the set of truth values) such that some models of I',=
{d=h(d): ¢ W¥,UW,} satisfies ¢ and some satisfy "1 (Note that ¢ =h(e) is
equivalent to ¢ if h(d) =t, and is equivalent to ¢ if h(¢d)=£). W.lo.g. 7,, 7, are
finite, and it is well known that for some h: £(1) U ZL(1,) — {t, f}, for every finite
TicP(r) (1=1,2), for some finite ¥, ¥'c¥,cP(n) (1=1,2) and h!
(VU ¥?) S hy, Ly, So every finite subset of I', U{¢} has a model and also every
finite subset of I', U{—4} has a model. By the |£|"-compactness, I, U{¢} has a
model, and let it be M+ Mj; similarly I, U{—¢} has a model and let it be
M7+M5. So M7 +Miky, M{+M;Ey, but M, M; are £-equivalent (for
1 =1, 2) by the definition of I',. This contradicts the PPP.

(2) Easy.

2.3. Lemma. Suppose (for some Sk.f.)

(i) &£ satisfies URP,.

(i) Every T as? in 1.7 for £®, has a (£®, Ro)-strongly homogeneous (£7, Ro)-
saturated model.

Then £® satisfies URP, too.

2.4. Remark. We can apply this to £2'" by proving by induction for £;.

Proof. Let ¢ = D, pi(R) where ¥(P, R)e ¥, RS 1+, is a Beth sentence. It
suffices to prove URP, for such sentences (then prove that the set of sentences
satisfying the URP, is closed under substitution). Note R may contain individual
constants. W.lo.g. R lists all members of 7;+7,. W.lo.g., P is a (2n)-place
relation, the first n places for elements of sorts of 74, the rest for elements of the
sorts of 7, (which are disjoint). We write P(X, §); now clearly:

Assertion. If there are 0%, Z}; R)e £%(1)) (1=1,2, i<iy<w) such that for every
M, (r-models, 1=1,2), and P:

if My+M,Ey(P,R), then for some EieM, P(X §) is equivalent to
a Boolean combination of the formulas 8(%, ¢}, R), 87(¥, ¢, R),

then the desired conclusion holds.

So we shall suppose there are no &, 0! as above. Then there is a complete
consistent T < £B(r*), 7* = Fy(1,+75): T2 Fy(7,+ 1) such that

(a) Pupr(RET, ie., THAP)Y(P, R).

(b) T “says” that for every 6}, z| as above, P(%, y) is not defined as a Boolean
combination of 6}(%, z!, R), 0%(%, z2, R).

21e. for some (F,, F,) Sk.tlike A-bounded, T is a complete (A, F, Fy)-skolemized theory in
LB(7p).
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Let M be a 7*-model, M | (1, + 7,) = M, + M, such that M is a (¥, X,)-strongly
homogencous, (£®, Ry)-saturated model of T. Now the P satisfying ¢(—, R) is
definable by an £B-formula (see Claim 1.3). Also if b, ¢ € M, realize the same
£B(r*)-type in M, then there is an automorphism of M which takes b to ¢, hence
there is an automorphism of M, which takes b to ¢. [Note that realizing the same
¥B-type in M, is not necessarily sufficient.] So there is an automorphism f of
M} (1, + 1), f(b)=¢, f| M,=identity. Remember (P, R) is a Beth sentence. So
for any d e M,, if 1(b)=1(¢) = I(d) = n, then P(b, d)=P(, d). Similarly this holds
interchanging M, and M,. We can conclude

ME(V9) [P(%, §)=\ A (0{(% R)A 023, R)]

(remember R contains everybody from ,+7,), where 6! .e%®(r* (not
Z(7,+1,)) but x varies on M,, y varies on M,. But P(%, y) is also definable by an
FB(r, + 1,)-formula.
As M is (¥£®, Ry)-saturated, usual compactness arguments give
i<ig j<<J;
were Iy, j; are finite, 0}, £(v*). Now we can forget 7, and look only at M, + M,.
Define a relation E; between n-tuples from M;:

aE.,b iff (Vée ML)P(a, é)=P(b,¢)]

Similarly E, on M,.

The 6;; above show that E,, E, have finitely many equivalence classes. They
are definable in M;+ M, by an ¥®(r,+ 1,)-formula (we have just defined them).
If each E, is definable in M, by an ¥®(n)-formula, we get a contradiction to the
choice of T.

Let 7/ =7, +{E}. So M/ =(M, E) is a v/ -model. Let ¢, € £(;') be such that
M{Ey (1=1,2) and if NJEy¢y (I=1,2), then N7+ N7 satisfies all the (finitely)
many relevant information from The (M7 + M3) (possible by URP, for £).

Question. If 4 = 4y(E, 7;) a Beth sentence (i.e., defining implicitly E;)?

If the answer for [=1,2 is yes, the E, are explicitly defined in M; by an
£®(1,)-formula, contradiction.

If for at least one ! the answer is no, say for [ =1 we can find (N, E{)F,,
(N1, EYFyy; but E$#ES Now (N, E)+M; (x=a,b), satisfies enough £-
sentences which M+ M3 satisfies, to have a P solving (-, R). But for x=aq,
x = b, we get distinct P (look at E,’s definition). Contradiction to (P, R) being a
Beth sentence.

2.5. Lemma. In 2.3(ii) we can omit “(¥£, Ro)-saturated” if “T is a 7¥-theory with
sk.f.” is preserved by adding finitely many individual constants to the signature and
by completing, demanding the (£, R,)-strongly homogeneous for the reduct to v*.
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Proof. The only need for R-saturation is to replace \/; A, (81(%) A 67(F)) by a
finite formuia. Let
T' = TU{6(c") =0(c:6(x) e L(*), X of first sort}
U{6(dY)=0(d>: 0(y)e £L(+™), ¥ of second sort}
U{P(?, d*) # P(&2, d?)}.

If T' is consistent, we work as before and get a contradiction in the point where
we use ‘(& Kg)-saturated” (remember we demand in 1.4 the (&, Ry)-strongly
nonug for the % ...,,1..,.+\

NAmmAaoa
HULLIVEWIIVUUD 1Vl v i TAN

If T' is inconsistent, we k as there for T, having the 6}, ; by the above.

2.6. Remark. Another way to phrase the hypothesis is:
(1) For every T and £(v*)-type p(X) consistent with T, T has an (%, Xy)-
strongly homogeneous £-Bethless model realizing p.

The proof of 2.3 really says (see Definition 3.1):

2.7. Lemma. (1) Suppose (i) & has the URP,, (ii) £ has the weak homogeneity
property. Then £® has the URP2.3

(N Quimennas D fa anzasan and bk
\&) SUPPOSE o m (,uruyu anc

weak homogeneity property.

3. Automorphisms and definable logics

We define here homogeneity properties of a logic £ (saying The(M) has
models with automorphisms we require). We then prove some varlant of it

INT { = intarnalatiaon) Bro av tv an nd DDD {and nthar «
1IN 1 = 1INerpoiaiion) P10 1y andG rror @anG ouncr v

the assumptions and conclusion). At last we deﬁne ‘a definable logic” (i.e., by a
set-theoretic formula with no parameters) and prove the consistency of
definable logic extending L(Q) has PPP and INT”. (Note that when V=L
“definable” is an extremely weak restriction.)

We do no ctemaﬁoallv deal with the ‘pair of I_Qgics”

versions or the trivial
implications 1nvolv1ng those definitions. The definitions seem to us interesting
though the results here are easy.

3.1. Definition. (1) & has the super [strong] A -homogeneity property if for every
7-model M [there is an expansion M*] such that Th,(M) [Th,(M*)] has a model
N [whose 7-reduct is a] (&, A)-strongly homogeneous model (see Definition
1.8(1)).

(2) £ has the homogeneity property if for every 7-model M, and ¢y, c,e M

3 First show that if (M, + M, P)r¢(P, R), then E, has finitely many equivalences classes (otherwise
use the weak homogeneity property). Second, using the same property find a uniform bound n(1) on

als cmian LAl ds £ N nr ~nntings as in tha neanf Af 2 2
the number of nl-cqmvmcm,c lebbcb, i€ Same noias Ior 2 INOW COMtNnue as i ine prodl O 4.0,
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realizing the same £-type in M, The(M, ¢, ¢,) has a model (N, c;, ¢,) such that
some automorphism of N maps c; to ¢,. (We can use n-tuples ¢, instead; this is
equivalent.)

(3) & has the weak homogeneity property if for every r-model M and infinite
P c M, Thy(M, P) has some model (N, P’) such that some automorphism of N is
not the identity on P’.

{(4) We add ““local” if just for every sentence of the relevant theor
model N as required. We can add also “for finite vocabulary”,

(5) (%, ¥*) has the super X-homogeneity property if for every t-model M,
whose Z*-theory is Morleyized, The(M) has an (£, A)-homogeneous model.

Similarly for the other properties.

there is a

<

3.2. Remarks. (1) By [18] any Xy-compact logic L(Q,),. .., the Q, are cardinal-
ity quantifiers, has the weak homogeneity property.

(N Dy 921 1241 241 i wea agerim o (YO thanm aome oomng
\&) DY |[&T]y | &) | &V) I WC assumcd 11, Uit SOmc CO lll.}a.

have even the weak homogeneity property (e.g. L(Q), where Q the quantifier
says two atomic Boolean algebras are isomorphic).

For the definition of FROB see notation of [5].

3.3. Claim. (1) If & satisfies the PPP and FROB, then it has the homogeneity

property.
(2) If &£ satisfies the PPP and INT, then it has the local homogeneity property.

Proof. We prove only (1) (the other is similar). Suppose M, ¢;, ¢, form a
counterexample to the homogeneity property with finite occurrence. Let M’, cf,
¢4 be a disjoint copy. Let N=[M, M'], T=Thg(N, ¢4, c;, ¢;) =Thg(N, ¢, ¢5, ¢5)
(the equality is by the PPP, and ¢’ denotes the name of ¢} or ¢4 in 7). Let

Y, = “f is an isomorphism from the first sort to the second
(ignoring the ¢’s) mapping ¢’ to ¢”.

Clearly TU{yr, ¢»,} does not have a model, hence FROB fails.

3.4. Definition. (1) A logic £ is called definable if the relations “¢ e £(1)”,
“ME > are definable (in set theory, without parameters). So ¢ € £(1), MFy are

e e TG A ot

lllCdlllIlglUl lIl d.ily ulllVCIbC Ul S€1 mcury
(2) A logic & is called A-definable if for some A < A, the relations “¢r € £(1)”,
“ME” are definable using A as the only parameter.

Remark. Most reasonable logics are definable: the exception is fragments of such
mainlv I \ So restriction hv deﬁnahlhtv is reasonable

113 11y ‘@1, TEHSUICLIO GCINIADIIITY I TCAXIADIC,

£ T (M Lo 2l DDD .1 TAT
7 L AZ) has the PPP and INT.
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Proof. Let

K={(A,P,Q,;<c[): A an uncountable set, P a countable subset,
< a linear order on Q=A —P—{c}, f a function from QX Q to P
such that f~'({p}) is a chain for every p € P}.

Clearly K is definable in L(Q) by some ¢, and by [22] it is not empty, and such
linear order is not isomorphic to its inverse. For M € K let M* be the same except
inverting the order. Let us define a forcing notion which forces a member M of K.
The universe of M will be w,, PM=0—{0}, c™=0, Q™ =w,—w. A condition p
consists of a finite subset w, of w;—w, a linear order <" on w,, and a function
fo:w,Xw, = »—{0} so that f (e, B))=f,(a’, B")) implies a <?a’'AB <B’ or
o' <PanB <?B. Wesay psq if w,cw, <P=<w, f,=f,w,xw, We can
prove (essentially as in [22]) that the forcing notion satisfies the c.c.c., and for a
generic set G, M[G]e K. Now there is a natural automorphism F of order 2 of
the forcing notion: P— P* where in p* we just invert the order. Clearly
M[F(G)]=(M*[G)*. Hence in V[G], My=M[G], M,=(M[G])* are %-
equivalent (as & is definable, P is homogeneous). By the PPP, [ M, M,], [ M,, M,]
are Z-equivalent. Let ¢, [{,] say that the linear order in the two sorts are
isomorphic [anti-isomorphic]. As explained in [22], ¢, A ¢, has no model in which
each sort satisfies ¢. So we have obtained a contradiction.

3.5A. Remark. In 3.5 we can replace INT by FROB.

3.6. Claim. Suppose & satisfies PPP, WB and for countable t, |¥(v)|<2,. Then
the well order number of £ (for one sentence) is <w + a.

Proof. Should be clear.

By 3.2(2) and easy manipulation:

3.6. Lemma. Suppose £ satisfies the URP,.

(1) Then the following are equivalent (i) ROB, (ii) FROB, (iii) the homogeneity
property for PC (see below).

(2) Also the following are equivalent: (i) WFROB (see {5]), (ii) the local
homogeneity properly for PC.

3.7. Definition. (1) & has the homogeneity property for PC when:
if for 1= 75, €1 and ¢, € M realize the same ¥-type in M | 1, then The(M, cq, ¢,)
has a model (N, c}, c5) such that N | = has an automorphism taking ¢} to c5.

3.8. Remark. I thank Makowsky for discussions concerning this lemma. He also
showed that the weak homogeneity property implies [w ]-compactness.
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4. Interpolation for cofinality logic in stationary logic

4.1. Definition. L(aa) is defined as follows: defining the formulas we allow as
variables monadic predicates; however we do not allow existential or universal
quantification over them, but the quantifier aaP: (aaP) ¢(P) is allowed, it bounds
the variable P, and

Mk (aaP) ¢(P) iff {P<=S_(IM|): ME[P]}
contains a closed unbounded subset of S (M)

(closed means under countable increasing union, unbounded means every
member of S_x (|M]) is contained in some member of the subset and S_,(A)=
{B:Bc A, |B|<A}).

The dual quantifier is (stP):(stP) ¢ = ~(aaP) .

4.2. Definition. L(Qy) is first-order logic expanded by the quantifier QF, which
acts syntacticly as “if ¢(x,y,Z) is a formula (with x,y,Z free) then so is
(Qx,y) d(x, y; Z) (with Z free)”.

Semanticly ME(Qx, y) d(x,y,a) iff on Dom[¢(x,y,a)] &ef {be M: ME
(3y)(b, y, a)} the relation ¢(x, y; a) defines a linear order with no last element
Ge., x<y % &(x, y, a)) with cofinality R,.

4.3. Discussion. The confinality logic L(Qg) was introduced by Shelah [19], [20]
as a solution to a problem of Friedman and Keisler: is there a logic, stronger than
first-order, which is compact (and not just A-compact for some A). It also has
reasonble axiomatization and it seemed weak.

In search for stronger logics, in Shelah [20] L(aa) was introduced. Like second-
order logic, in it formula free monadic predicates are allowed but the quantifier
is different. We cannot say ‘“for some P’ but “‘for almost all P”. This logic draws
much attention. Barwise, Kaufman and Makkai [1] investigate it thoroughly;
showing it has all the good properties known for L(Q) and, of course, it seems
considerably stronger, so Eklof and Mekler use it to investigate X,-abelian groups
(see [2], [3]). Kaufman suggests and investigates determined structures. Kaufman
and Kakuda investigate ZF(aa).

However only lately properties of the logic L(aa) were found indicating it really
inherits something from second-order logic. Here we show that the interpolation
theorem holds for the pair of logics (L(Qg), L(aa)). Considering that there has
been much research efforts on interpolation (and related notions) for Xy-compact
logics, without having any example (even ‘“pathological’”’ one), and that the logics
involved are reasonable and not invented for the example, this is nice though the
proof is easy. (A drawback is our having a pair of logics, not one.)

This is the main result here. A subsequent result is the biggness of the Hanf
number of L(aa) (see Kaufman and Shelah [4]) which really shows that on models
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of power >K,, L(aa) is really very strong, stronger than quantification on
countable sets.

4.4. Claim. L(Qg)=<L(aa).

Proof. This is because in L(aa) we can express “¢(x,y; Z) is a linear order of
cofinality N,” by l{fd,(f)déf[lll(x, y; Z) defines a linear order with no last
element]A (aaP)(Vx)[(Ay) ¢(x,y; 2)—> @y e P) (¢(x,y; 2)].

4.5. Convention. From now on we consider every sentence of L(Q;fo)(f) as a
sentence of L(aa).

4.6. Theorem. The pair (L(foo), L(aa)) has the interpolation property; i.e., if
&, Y L(QR), Fd — ¢ (i.e., it is valid), then for some 0 € L(aa), 7o < 7, N7, and
Fgy— 0 and FO — .

As L(aa) is Ry-compact and |1|<R,=> |L(aa)(1)|<R, (and the occurrence
number is X,) the following lemma suffices:

4.7. Lemma. Suppose that to= 1,7, are countable vocabularies, T, a complete
theory in L(aa)(n) (for 1=1,2,3) and T,NT,=T,.
Then (T, NL(QE) (1)) U(T,NL(QE)(72)) has a model.

Proof. We start with the following notation.

4.8. Notation. I ={¢(P,, ..., P,):ip<'- - <i,<w,, ¢ € L(aa)[n;] and (aaS), . . .,
(aa8,) ¥(Sq, ..., S,)eT}. Clearly T, < I

Given any model M; and any ¢, which is a finite conjunction of members of I
it is easy to choose by induction (P, < M;:i<n) such that MEy(P,, ..., P,_4).
That is (as T, has a model):

4.9. Fact. I, is consistent.

Moreover, if we let I'j be any completion (in L(aa)[7o]) of I'y:
4.10. Fact. For 1=1,2, I'§UI is consistent.
Proof. Let (P,,...,P,_) be a conjunction of finitely many members of I'g.
Then (—(aaS) - - - (aaS) ) € T,,. (Otherwise e I'yc I'§, but I'§ is consistent.)
Let MET; and suppose 6y(P,, ..., P, ) is a finite conjunction of formulas in I’.

Now choose by induction sets P; (i <n) such that
(1) Ml Fj(aasi+1) e (aasn) ——“’f(Po, L) Pi, Si+15 IR ] Sn)
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(ii) For any formula 6¢ L(aa)[n;] if M,k(aaS)0(P,,...,P,_;,S) then M,k
8(Py, ..., P._4, P,) (note that there are only countably many such 0’s).

Let y'=7+{P;:i <w,}. Solet I'; be a complete consistent extension of 'y U T,
in L(aa)[7;]. Let I'} be the extension of I'l” by giving name to every formula (R,,
to ) with individual free variables only, so I'{ is complete in L(aa)[r}], 75=11 N
5. Clearly rF<rinc,,(+) is a complete theory in L, [7{], and I'h=I{NT%,
75 =74 N 75. So by Robinson’s lemma (for first-order logic) I'f U I'} is consistent.

4.11. Fact. For any i<w,, 1<3, Iy (and also I'{,I'f) “says” that P; is an
L(aa)-elementary submodel of the universe (restricting ourselves to the vocabulary
7 +{P;:j<i}). Also it “says” P,< P; for i<j.

Let M be an R,-saturated model of 'Y UT'5 and let N be the substructure with
universe J;x, P}". Note that by Fact 4.11 and unions of chains NEI'f UT'% (do it
for each I'f separately).

4.12. Lemma. Suppose Yz (Qfx, y)(R(x,y, Z) < S(Z))eIt (R, S are predi-
cates). Fix ce N, and suppose R(x,u, Z} is a linear order with no last element.
(i) If NETS(©), then NE(OS x, y)R(x, y, ¢).
(ii) If NES(E), then N|=(Q>N2x VIR(x, v, ).

Proof. Choose i so that Ce P, and if R is R, and P; occurs in ¢, then j<i.

(i) In this case, for every j<{i there is a b; € P,,; — P; such that if a € P, and a is
in the field of R(x, y, ¢), then NER(a, b;, ¢). This follows immediately from the
assertion:

[(VZ)Pyo)(VX)(FYNR(x, y, Z2)) A Pi(x) = P1(yo) AR(x, yo, Z]l€ T

But this is clear, since if M{ET, and deM, R(x,y,d) is a linear ordering of
cofinality >R, and P, is countable, then the intersection of PM and the field of
R(x, vy, d) is bounded. But PM, is an elementary submodel of M, so there is a
bound in PM,.

Now the sequence of {b, : j <R} witnesses that the cofinality of R(x, y, ¢) is X;.

(i) Note first that since M is R,-saturated, the cofinality of R(x, y, ¢) in PM is
=¥,. But,

NEVW)[(I7T)R(x, 7, ) = FY)R(x, y. &) AP,(y))]
V2(QE x, y) R(x, y, 2) > (aaS}Vx)[(Ay)R(x, y, )
— (3yeS)R(x, v, 2)D e T,

So the intersection of the field of R(x, y, ¢) and PM is unbounded in M, hence in
N. Thus the linear order defined in N by R(x, y, ¢) has cofinality at least N,.
Now we reverse the cofinalities to get the required model.
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4.13. Lemma. There is an elementary submodel N* of N such that N* is a model
of ITNL(QY) for1=1,2.

Proof. We define by induction N; for i < such that

(@) INi|=R,.

(ii) N, <N.

(iii) For any linear order without endpoints, <, definable with parameters in
N;:
(a) If the cofinality of < in N is =R,, then N, contains a subset of the field of
< which is unbounded in N.
(b) If the cofinality of < in N is >N;, then there is an element of N;,,; which
bounds the intersection of N; with the field of <.

But, the choice of the required N; is easy, and from it the result is clear (the

union J; -, N; is as required).

Remark. (1) Looking at the proof of Theorem 4.6 we can see that:

(a) We can make the P,’s indescernible (using Ramsey theorem).

(b) We can find an interpolant of the form (aaP,)-- - (aaP,) ¢(Py,...,P,),
yeL(Qg).

5. Higher cardinals and strongly homogeneous models

We deal with cofinality quantifiers and stationary logic for uncountable cardi-
nals. Our result is that the pair (L(Q%,), L(aa,)) satisfies the super Xo-
homogeneity property (see Definition 3.1(1)).

5.1. Definition. (1) For cardinals « <A, and set A we define a filter €5(A) on
S, (A). It is generated by sets of the following form: {{J; -, A;: for i<k, A;C A,
|A;|=A, and F({A;:i<j)) < A,,,} for some F.

(2) Suppose A,<A;, k')A, k?<A,, then €5x.(A) is the following filter on
San(A): SeBrK(A) iff {dB< A:|Bl=1,, and SNS., (B)e ¥5,(B)} belong to
EX(A).

(3) the meaning of “the &-majority of A (€ S.,(A)) satisfies...” is “{A:A
satisfies . . .} &".

Remark. (1) In these filters we can replace k by cf «.
(2) On such filters see [21], §3].

5.2. Definition. (1) For a class C of regular cardinals, L(Qg) is defined just like
L(Qg), but ME(QZx,y) d(x,y,d) iff &(x,y,a) defines on {beM:MF
(3y) ¢(b, y, a)} a linear order with no last element whose cofinality is in C. If
C={un:p regular, u <A} we write QZ, instead.
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(2) For a cardinal A we define L(aa,} just like L(aa), but MFE(aa,P) ¢{P) iff
{PeS_ ((M|): ME®[P]} belongs to €} (i.e., to €X|M]|). The dual quantifier to
(aa, P) is (st,P).

(3) All the languages L(Q%) have the same syntax, so for a sentence €
L(QZ) (or theory) it is clear what we mean by “M is a model of ¢ in the
C,-interpretation, M k. . We identify A and {A} in this content.

Similarly for ¢ € L(aa, ), “M is a model of ¢ in the \-interpretation, M k, ¢ is
defined.

(4) Dealing with L(Qg) we ignore the trivial cases C=§ or C={u : n a regular
cardinal}. We know (see Mekler-Shelah [17] for (2) and (3), [20] for (1) and 4.4
for (4)):

5.3. Theorem. (1) For any C,, C, (non-trivial), a theory T in L(QZ ) has a model
iff it has a model in the C,-interpretation (so all those logics are compact). In fact if
AeC,, A Cy, A, w regular, then T has a Min{A, u}-saturated model in which each
definable linear order with no last element has cofinality A or p.

(2) For any A and e L(aa,), if ¢ has a model, then  has a model in the
Ro-interpretation.

(3) If A=A* TcL(aa,), |T|<A, then T is consistent iff T is consistent in the
Ro-interpretation iff T has a A*-compact model of power A ™.

(4) L(Q%,) = L(aa,) (and we adopt the convention L(Q%,) < L(aa,)).

5.4. Claim. Let M be a model, |ty |+ k<A, « is regular.
(1) Then for a set of A € S.,(|M|) which belongs to &} the following holds:

(¥) For any relation R(x,y,Z)e 7y and ¢ A, if R(x, vy, ¢) defines in M a linear
order with domain Dom R(x, y,C) (and no last element) of cofinality u, then
R(x,y; ¢) defines in M| A a linear order of cofinality u' where:

w>A > u' =k LEAD u =pu.

(2) Suppose further that C is a class of regular cardinals, k € C, and every regular
n>A, w<||M| belongs to C. Then for a set of A € S, (IM|) which belongs to &,
M1 A is a L(Q%)-elementary submodel of M.

Proof. Easy.

5.5. Lemma. The pair (L(QZ,), L(aa,)) has the super R,-homogeneity property
(getting even an (L(QZ), R,)-saturated model).

Remark. (1) The proof gives a little more; the 2™~ is needed for the saturation
only (otherwise |74 suffices).
(2) We can get super w-homogeneity if u <A,

Proof. So let M be a model, Morleyized for L(aa,). Let p, be regular such that
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Me H(ug), A <po, 2™ < and let A be (H(io); €) expanded by M (i.e., its
relation and a predicate for its universe) and Morleyized for L(aa,).

We shall build a model of Thyos,(M) of power wEA*+2"! so wlo.g.
there is a cardinal x = x> (by working inside the inner model L{A] where
A cx, x regular for suitable A).

By 5.3(2), (3) Thy (,,() has a model B in the x-interpretation. Of course in B
we can interpret a model of Thy e ,(M) in the x-interpretation which is
(L(aa,), x)-saturated. Let C={x regular, k <A or « = x} so by saturation, as
At <x, no L(aa,)-formula with parameters defines in 8 a linear order (with no
last element and) with cofinality <yx. So the C-interpretation and x-interpretation
coincide. By applying twice Claim 5.4(2) for an &} -majority of the Ae
S-.(B)), Bl A is an L(QF)-elementary submodel of B (remember u < x).

Clearly it suffices to prove the following fact (the x which interests us is A™).

5.6. Fact. Suppose N,, N, are models definable in B (i.e., their universe and
relations are first-order definable with parameter in B), have the same vocabulary,
and are L(aa,)-equivalent and let k <x. Then for an €-majority of A € S, (1B]),
Nol A=N;1 A (i.e, NT(N|NA)).

5.6A. Remark. So surely this holds for a &35 -majority of A €S, (|%B]), when
X1<x k'=x.

Proof. As in the proof of 4.11 there is a complete theory I' in L(aa,)
[r+{P;:i<k}] such that ¢(P,,..., P )el, i,<---<i, <k implies N F(st,P;)
(st P) - (st, P ) W(P;,, ..., P,) (note I is closed by finite conjunction).

Let I, be I' when we replace the predicates from =y, by their defining
L(aa,)[7p]-formulas with parameters and restrict everything by the formula
defining |N||. Clearly, for every ¢=¢(P,, ..., P,) (i;<---<i,<k).

%F(Stxph) A (StxPi") l’l(Pk‘, c ey PL,‘)

Clearly %Ak(aa,P)@Ax)[(Vy)(P(y)=yex)] (because every subset of H(uo) of
power =X belongs to H(u)). Hence also B satisfies this (in the x-interpretation).
So we can find a; € B(i < x ™) such that:

(%) A;={b:BE“beq”} has power Y, it is increasing, for 8 of cofinality X,
As= Ui<5 A;, and {A;:i <X+}€ £§(l%‘)

Hence we can define by induction on y <, for every n € ¥(x™) an ordinal i(n, I)
such that: .

(@) i(n! B, D<i(n,N<x™ and i(n, )=Sup{n():j<l(n)} for B <I(n).

(b) For every y=y(P,,..., P, P;,..., P )el, i< - -<i,sy<j,<---<],

SB t:(StXP]-‘) < v (StX'P]m) d’(Ai('nri‘,l)v cees Ai(nri..,l)’ le, ey me)'

There is no problem in this. It is also clear that for every =, ve*(x™),
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(Ny, Aieatvy "Ny and (N3, Aipyy MV N2), <, are L(aa,)-equivalent, L(aa,)-
saturated, and as in 5.4, (N\fU,«, Aimtvy: Aimtvn M NDy<e and (N}
Uy<e Aittrny Aictyy NV Na)y<. are isomorphic.

However, S={i<x™: if j<i, neYj, y<k, 1=1,2 then i(n, )<i} is a closed
unbounded subset of x*. Now if 88, ¢f 8§ =«, we can easily find  which is
increasing and converge to 9, then clearly (i(nlv,1):y<«) is increasing and
converge to 8. It is also clear that |, . A1+, 1y = Ui<s Ai. Hence by the previous
paragraph NoMUJ,<s A; = N; ! Ui<s Ai. But

{U Ai:‘o‘eS,cf6=K}e£;(liBl)

i<8

so we finish proving the fact, hence the theorem.

6. A compact logic with the Beth property

We prove here (in ZFC) the existence of a compact logic satisfying the Beth
property (and which is stronger than first-order logic). Moreover this logic has a
reasonable description: it is the Beth closure of L(Qiasﬂ)), and it has the URP,
but not the Craig property, thus it shows that in the main theorem of Makowsky-
Shelah [11] the preservation theorem for trees cannot be replaced by the
preservation theorem for the sum of two models.

Really we deal mainly with &%, a sublogic of L(aa,) and deduce the properties
of L(QZ,)®*™ from it. We rely heavily on Sections 2, 4 and 5.

6.1. Definition. CF 2 (A) is the family of regular cardinals u, such that for some
p*-saturated model M, 7,, of power <A, some L. ,-formula ¢(x, y) defines on
{be M:(dy) &(x, y)} a linear order of cofinality u. (We can allow quasi-linear
order and replace x, y be sequences of length n <w.)

6.2. Claim. (1) If M, N are p*-saturated elementary equivalent, t\,= 1y has
power <A, ¢(x, y)e L., defines a linear order of cofinality u on {x:(3y) ¢(x, y)}
in M, then the same holds in N.

(2) If A, M, ¢(x, y), n are as in Definition 6.1, then u <2*.

(3) Moreover in (2), there is no cofinal sequence in Dom ¢(x,y) (in M) of
elements realizing the same strong type (over @). (See [25, Ch. III].)

Proof. (1) It is well known that M, N are L. ,-.-equivalent.

(2) Let M, be an elementary submodel of M of power A, {(g;:i<<p) a cofinal
sequence in the linear order ¢(x,y) (in M). Suppose u>2*; then w.l.o.g.
p =tp(a;, My) is constant. By [25, VII 4.1, p. 406] there is an elementary mapping
f (whose domain and range are =M) such that f| M,=the identity, and
tpx(a; ti<p}, MoU{f(a;):i<u}) is finitely satisfiable in M,



Sh:199

274 S. Shelah

Clearly each f(a;) realizes p, hence is in the domain of ¢(x, y). By the choice of
a; (i<up) for some i<p, MEG(f(ay), a;). As tpla, MoU{f(a;):j<p} is finitely
satisfiable in M, it does not split over M, (see [25, 1.2.6, p. 11]); hence as all f(a;)
realize the same type over M, they realize also the same type over M,U{a;}.
Hence for every j, ME&[f(q;), a;]. Let g be an elementary mapping such that
gl M, =the identity, g(f(a;))=a; and whose domain includes a;, Then ME
dla;, g(a;)] for every j. Contradiction to the cofinality of (a;:j<pu).

(3) Suppose {a;:i<p) is cofinal, all g;’s realizing the same strong type over @.
W.lo.g. M is (u+A) -saturated (by (1)), and My< M has power A. Let

F={é(x,....x )iy, ..., . <p,Fdla,...,a ]}
U{d(x;, )= (x;, C): e M,, ¢ a formula}.

If I' is consistent, let the assignment x; — a/ realize it; as in the proof of (1) also
{a}:i<p) is cofinal, and tp(a{, M,) does not depend on i (by the choice of I'). So
we can continue as in (2).

I' is consistent by the hypothesis.

6.3. Definition. We define a logic £%. £*[+] is the set of sentences e
L(aa,)[7] s.t.: for any A >k, expansion U of (H(u,), €) (for u, regular >« ™), 7y
countable and any (&(aa,), x)-saturated model B of Thgq, (%) in the x-
interpretation, for y = x=* and any N interpretable in 8B, by an L., (aa,)-formula
with finitely many parameters |7y|<Ro:NFE, ¢ iff for a €5 “-majority of Ae
S\ (B)), N} Ak, ¢; where we make the hypothesis:

6.4. Hypothesis. For arbitrarily large cardinals x, x = x~*.

6.5. Discussion. (1) The hypothesis is just for convenience. Other wise we should
say: for any set A of ordinals s.t. H(ugo+A)e L[A] the requirement of the
definition holds in L[ A}, for every large enough regular cardinal (for L{A]).

(2) We can also wave the role of . Instead we should demand that B is a
model of ZFC (aa,) (Zermelo-Fraenkel set theory with choice but without the
power set axiom, and any image of a set by an L(aa,)-definable function is a
set and BE(aa, P)3Ax)(Vy)[P(y)=yex]. we can also make 7g={e} without
changing anything and/or BE“|N| is included in some set”).

6.6. Claim. If k =2%, then L(Q%)<%%.
Proof. The point is that by 6.1(2) any L(aa,)-definable linear order in N, has
cofinality <<2™ or =x. Hence by 5.4(2) any ¢ € L(Q¢,) satisfies the requirement

in Definition 6.3.

6.7. Claim. &% is a regular logic.
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Proof. Easy (for the universal quantifier use normality of the filter £, i.e., if
S.€€5,(A) for a€ A, then

{BeS.,(A): for every ach, BeS,}e €5

which follows from the normality of every €43)(A)).

6.8. Claim. %% is a compact logic.

Proof. Let I' be = £¥[7], any finite T< I has a model My and A =|I'|+ k™. So
for some regular wo, {My:T<I, T finite} and 7 belongs to H(uy). Let A be
(H(po), €, ), and let x=x"*>|Al, B an (L(aa,), x)-saturated model of
Thy (2 y(2) in the x-interpretation. Clearly for any finite T<I, BF “there is a
model of T in the y-interpretation.” As B is (L(aa, ), x)-saturated, we can find an
L(aa,)-formula with parameters from %, defining a model (N, RY)g..._s.t., for any
weT, r,={R,,..., R}

%}:“(N’ Rllvy ceey RnN) ’:)\ (Il”
By Definition 6.3, for every such ¢, for an &}y“-majority of A €S, (N),
(N,RY,...,R) A E 4. By the A-completeness of €5~ there is a model of T.

6.9. Claim. (1) The pair (£%, L(aa,)) has the interpolation property.

(2) If M=[N,, N,, N5; R], N; N, are L(aa,)-equivalent, then for some £*-
equivalent model M'=[N4, N5, N4: R'], N} is isomorphic to Nb.

(3) The pair (¥%, L(aa,)) has the super R,-homogeneity property.

Proof. (1) By the compactness it suffices to prove that if the complete L(aa,)-
theories T,, satisfy _
Tl N T2 = Tl N L(aaK)[’TT] M TT2] =T n L(aaK )[’TT] N TT2]7

then (T, U To) N L[, U 7y,] has a model. This follows by (2).
(2) The proof is like 5.6 {see 5.6(A)).
(3) The proof is like 5.5.

Up to now, all we have proved on £¥ is satisfied by L(QZ,).

6.10. Theorem. ¥ has the Beth property.

Proof. Suppose ¢(P, Q) is a Beth sentence, P a monadic predicate for simplicity

(i.e., for every model (A, Q) for at most one P< A, (A, P, Q)Fy¢[P, Q)). So
$(P°, Q)N P°(c) = ((P', Q) — P(c)).

So by 6.9(2) there is 0(x, Q)€ L(aa)(Q) which is an interpolant hence defines P
(when it _exist_s). (This _repeats the proof INT — Beth). W.lo.g.,
o {Ex :(x, Q)}, Q) — 1 6(y, O). Clearly it suffices to prove that 8(c, Q) F*.
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Let A, B, x, N=(N|,Q), A be as in Definition 6.3, A=21,. Then for &%“-
majority of A €S, (B)), (B, Q)} A is Ry-strongly homogeneous.

Let ¢* e be a finite sequence in which all parameters used in defining |N| and
QY (by L. (aa,)-formulas, in 8B) appear.

Our problem is that maybe (P, Q) in (N, Q) A has a solution, whereas in
(N, Q) it does not have (the other direction is easy). Now every automorphism of
(B} A, ¢*) maps the |N|, Q, to themselves (as they are definable in B by an
L., -formula with parameters <¢*) hence maps P to itself (otherwise (P, Q) is
not a Beth sentence). As (B A, ¢%) is Ry-strongly homogeneous, P is necessarily
also defined in 8B by an L, -formula with ¢* as parameter. The same formula
defines a monadic relation P’ on N. Now the number of such formulas is <2%%
(the number of complete n-types, n<w, for Thy, (N) is <2%). As A =2%° and
¥(P, Q)e £*, for &;y“-majority of AeS_,(N) for every L -definable P,
(N, P, Q)E, (P, Q) iff (N, P, Q)} A F, ¥(P, Q), contradiction.

6.11. Conclusion. Let k =2,

(1) L(QZ,)Be (the Beth closure of L(QZ,) is <%F.

(2) L(QZ )Bew s compact, (L(QZ,)Bet, L(aa,)) has the interpolation property
and the super R,-homogeneity property (getting, in fact, an Rg-saturated model)
and trivially it has the Beth property.

(3) L(Q%, )™ has the PPP, and

(4) L(QZL B does not have the interpolation property nor even the A-INT
property.

Proof. (1) By 6.6, L(Q%,) =< %%, hence our conclusion follows by 6.10.

(2) Follows by (1) and corresponding claims on (£%, L(aa,)) in 6.7, 6.9(2),
6.9(3).

(3) We prove it by induction on n for L(Q%Z)ne™"

(4) It is enough to find N,, N, such that

(@) N, =Lz N2

(b) For every n, only finitely many complete n-types (in L(QZ)[7y,]) are
realized in N,

(c) Each N, is Ry-strongly homogeneous.

(d) N,, N, belong to disjoint PC(L(Q%,)) class.

By (b), (c) every L(Q%Z, )B*™-formula is equivalent in N; to an L(Q%,)-formula
(prove by induction on n for formula of L(QY )P,

As those equivalence are the same for N; and N,, N;, N, are L(Q%
equivalent. Now (d) finishes the proof of the conclusion (we can omit (b) if we
strengthen (a), by adding: even if we expand the N, by all L. (QZ,)-definable
relations). Let T, be the model completion of the theory of partial order. Now T,
exists, has eliminations of quantifiers, and all its models are directed.

We can find a A-strongly homogeneous, A-saturated model M of T,. Let

; using 2.3.

K) Beth_
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{a; 11 <A) be an increasing sequence of membership of M, and for every u <A let
M,=MMb:Qi<up)b<a}

Clearly each M,, is R,-strongly homogeneous (even cf u-strongly homogeneous)
and R,-saturated and all M, are L(Q%Z,)-equivalent and Thy g (M, ) has elimi-
nations of quantifiers. As for (d):

Fact. K, ={(A, <):(A, <) is a directed partial order, and there is an increasing
sequence (a;:i<<8), [cfé=k iff |=0] and (NacA)Ti<8)a=a} is a
PC(L(QZ,))-class and they are disjoint.

This is enough to contradict INT. To contradict A-INT use partial orders with
no three pairwise incomparable elements.

6.12. Claim. (1) ¥* has the A-INT property.
(2) 6.11 holds for L(QZ, )28 (except on INT.)

Proof. (1) Like the proof of 6.10 but easier.

PART II. COMPACTNESS VERSUS OCCURRENCE

In the first section we give more restrictions on the compactness spectrum of a
logic.

In the second section we introduce some solutions to ?/[A]-compact=A =<
occurrence no./A-compact. We then prove that if a logic & has the amalgamation
property, then £ is [A J-compact iff A is an occurrence cardinal of £ (for regular
A).

In the third section we prove that if 0<xy,<k, are compact cardinals, then
there is an [w]-compact, non-compact logic having the amalgamation property.

1. Compactness revisited

1.1. Observation. The following are equivalent:
(1) £ is [A]-compact for every regular A = A, (i.e., is eventually compact).
(2) £ is [A]-compact for every A = A,,.
(3) L is [®, Ag]-compact.
(4) L is (o, Ag)-compact.

Remark. See 4.3.6(ii) of [5]. For original references to the facts we shall use, see

[5].
Proof. (2)= (3) by [5, 1.1.7(1)], 3)& (@) by [5, 1.1.7GD], (3)=> (1) by [S,
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1.1.6(i)(ii)]. Assume (1) and let us prove (2). If A = A, is regular this is clear by (1);
if A is singular, by (1), L is [A*])-compact, hence by [5, 1.4.9(ii)] there is a uniform
ultrafilter F on A" which belongs to UF(&£), so by 1.4.11(1) of [S] Fis (A", A)-
regular, hence by [5, 1.4.9()] L is [A*, A ]-compact hence is [A]-compact.

1.2. Conclusion. (1) In [S, 4.3.8] we can conclude ¥ is («, w,)-compact.
(2) In [5, 3.3.1] we can conclude L is (%, A)-compact.

The following lemma, by [5, 2.1], can be rephrased as a pure set-theoretic
lemma on ultrafilters.

1.3. Lemma. Suppose A is singular, k =cf A, £ is [A ]-compact but not {k J-compact
and A =Y, A\, A\, <A, each A; regular.

Suppose w is a regular cardinal >A.

(1) Suppose there are f, €[];<. A; (for a < p.) such that for every o <B, f, <g__fs

(see below) and for every fe[li<. A; for some a, f <g__f,. Then & is [ ]-compact.

(2) If there are f,ellic & (@ <p) such that f, <g_fs for a<B<p and for
every fe[li<. A; for some a < p, f <g_f, and x is a regular cardinal <k (so k >R,),
then £ is [u]-compact or [x]-compact where

1.4. Notation (1) @ . ={Ack:lk—~A|l<k}. 9. is the filter of closed un-
bounded subsets of A.

2) For f,gellico A, g <a g if {i<k:f(i) < g(i)}e D (more formally we should
write f(A;)<g(A)).

1.5. Remark. (1) So really the hypothesis of 1.3(1),(2) above speaks about the
cofinality of [];-. A/D. See [27]; [28, Ch. XIII, §5, §6]. We can get cases where
the hypothesis of 1.3(1) or (2) holds for some A; (given A, w). E.g.

1.6. Lemma. (1) Suppose A is singular, k =cf A, (Vx <A) x* <A, k is uncountable,
p=A". Then we can find \; (i<k), f, (a<p) as in 1.3(2). [Let (A?:i<<k) be
increasing continuous, Y A?=XA; ;= (A", f, ellica Ass fo <g_fs for a <p.]

(2) Suppose A is singular, k =cf A, w=A", (VA;<A)AE<A). Then we can find
A (i<k) and f, (a <A™) as required in 1.3(1). [See [28, Ch. XIII, §51.]

1.7. Remark. In 1.3 we can use other filters (instead @, ); we can use a filter @
on k if

(*) (k, D,{A :k— A¢ D) is L-characterizable (see 2.3) (and @ extends P_,).

By [28] in case (2) of 1.6, for every regular g, A <u=<A* [k>R,] for some
[normal] uitrafilter @ on «, there are f, (@ <p) as required. So if e.g. 2“ =« ™, (¥)
will hold.
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Proof of 1.3. Let A’ be a large enough regular cardinal, and N an expansion
of (H(A'), €) which ¥-cofinably characterizes any cardinal >y which can be
Z-cofinally characterized. In particular we shall assume the conclusion fails, i.e., u
is £-cofinally characterizable.

So N has an elementary extension N*, and there is a* < N* such that

N*E“a* is a subset of A of power <A”.

but for every i <A, N*k“ica*”.
As £ is not [k]-compact, N* %-cofinally characterized «, hence {i:i <<k} is
unbounded in «N", hence for some i(¥) <k

N*E“a* has power <A;.,”.
Now there is f*e N* s.t.

N*E“f*¢c H A and for i(¥)<si<k, f*(i)=sup(a®*NA,)”
(clearly f* exists — the sentence asserting it is satisfied by N).
Hence N*E“for some a < p, f* <g f,” (where & =P _,_ or D = D, according to
the case). As N £-cofinally characterizes u, and

N*E{f, :a<u) is <g-increasing, <4 a partial order

and for every fe l_[ A; for some a, f <gf,”
i<k
there is o <p s.t.
N¥p“f* < frie, {i<k:f*O)<f,(D)}eD”.
As f, €N, and by the choice of a*, as we may increase i(*) w.l.o.g., for every i
i#)<i<k, N*E“f()ea™ hence N¥*E“f*(i)>f (i)

We can conclude that for some be N*, N*E“be % and i¢ D for every i<k
(remember N*F*“‘every cobounded subset of k belong to @”).

So really the requirement from 1.7 suffices. Why it holds: For @ = 9@_,, this is
very easy: {i:i<«} is an unbounded subset of k (k™',<™") (as £ is not
[x]-compact). For @ =9, we use the failure of [k]-compactness and of [x]-
compactness of £. '

2. Amalgamation implies [A]-compactness for A an occurrence cardinal

We generalize here the main result of Makowsky-Shelah [14]. For this we
analyze more closely the occurrence cardinal; just as previously compactness was
sliced to [A ]-compactness we suggest here some interpretation to ““[A ]-occurrence
cardinals”.
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We can generalize this to the context of abstract elementary submodel rela-
tions, as in Makowsky-Mundici [6]). For this [\, « ]-compactness will be reinter-
preted as “(A, S.,.(A),{A = A : A# A}-characterization” (see Definition 2.3) and
[AJ-occurrence can be interpreted by “if M= N, {J;, A; <|M| and for every
S<A, |S|<A the models M, N are isomorphic over J;.s A, then M, N are
isomorphic over |J;-, A;” (it is more reasonable to define [A J-occurrence by “if
T=Uicx 7 M, N 7-models, M| J;cs ;=N U;cs 7 for every ScA, [S|<A, then
M= N" where = is either a basic relation (which we axiomatize or interpret as
having a common elementary extension).

2.1. Definition. (1) A cardinal A is an occurrence number (or cardinal) of (the
logic) < if for every sentence ¢ =¢(..., R, .. )5, J = A X1 for any model M and
relations R, R} (teJ) over it (with the right arity, etc.) for some S <A, |S| <A, if
ScTcA, |T|<A then
() MEY(...,RY, .. )er=0(...,RY, ...,RL .. Dicsrrxr
seJNA-T)xI

(2) We call A a strong occurrence number of &, if § above depends on
(..., R,...) (and not on M and the relation R!interpreting the predicates R,).

(3) We call A a weak occurrence number of L, if for every ¢, J, I, M, R!
(I=0,1,teJ) as in (1), for every ScA, |S|<A, there is T,ScT<A, |T|<A,
satisfying (*) of (1).

Note

2.2. Fact. (1) The following implication holds: “%¥ is [A]-compact” => “A is a
strong occurrence number of £ = “A is an occurrence number of £” > “Ais a
weak occurrence number of £7.

(2) oc(&£)y=Min{A :every w =X is a strong occurrence number of £}.

2.3. Definition. (1) For families P, cP(A) we say A, P, P,) is L-
characterizable if: for some model M expanding some (H(w), €) (> 2*) for every
Z-elementary extension N of M, and a s.t. NF“ae P,” theset {a <A :NkFa e A}
belongs to @,.

(2) Under such circumstances we say N ¥-characterizes (A, P, P»).

(3) If P=P,=P, (the case which interests us) we write (A, P) instead of
(A, Py, Po).

2.4. Definition. We say (A, P) (where P <= P(A)) is L-oc-characterizable if for
some i, I, S, M, R! the following hold, where J€ A X I, ¢ = y(R,),.; and R! are
relations on M. For every A = A we define R, by: RG.,, is Ry, if € A and
Rl if a¢ A. Then

P={Acr:(M, szeu=1,2|= YR est-
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2.5. Claim. If (A, ?) is L-oc-characterizable, then (A, P) is £-characterizable.

2.6. Fact. (1) Suppose (A, P) is £-characterizable, F a compact ultrafilter of £ on
w. Then P(A) and P(A)~ R are F-closed, i.e., if A,= A (for a <), then:

Limg(A, :a<p)={i<i{a<p:icA,}eF}
belongs to @ iff {a e u: A, € P} belongs to F.
Q) If (A, P,, P,) is L-characterizable, F a compact ultrafilter of £ on u, then
{a<p:A,eP}eF > (Limg(A, :a<p))eP,.

(3) The converses of (1), (2) holds; (A, P, P,) is L-characterizable iff
P, includes cly (P, ={Lim(A, :a<p):A, P FeUF(¥)}.
4) L is [A]-compact iff (A,{A <\ :|A|<A}) is not £-characterizable.

Proof. (4) If & is not [A [-compact, there are sets of sentences I'; (i <A) (from &)
such that |J;., I; has no model, but | J;. . I'; has a model for every A< A of
cardinality <A; let M, be a model of |J;ca I'.. Suppose M expands (H(u), €),

p large enough, N is an Z-elementary extension of M, NF“acA” and
def

A={i<X:NE“iea”} has power A.

In H(i) we can find I'} (i A), a set of £-sentences such that | ;.. I'f has no
model, and we can find Mg, a model of | J;.g '} for B < A, |B|<A. The function
Mj (ie. B—> Mp) is in H(w), and s0 M} ;.nrica) is Well defined and is a model
of J;ca T’} (check for each sentence). Contradiction.

If & is [A]-compact, the proof is easy too.

2.7. Claim. For any ultrafilter F on p and a logic £ (1) = (2) where:

(1) For every f-oc-characterizable (A, P), and A,cAr (a<p),
{A A €P, a<uleFiff (LimgA, :a<w))eP.

(2) Min{|A|: A € F} is an occurrence cardinal of £.

Proof. W.lo.g. p =Min{lA|:AcF} as if BeF, (VA € F)(|B|<|A|) then for our
purposes F and F| B =FN%(B) are equivalent.

Let us check (1) = (2). Suppose ¢ = ¢(R,), te u XI, M, R! (teJ,1=0, 1) are as
in Definition 2.1(1). Suppose (2) fails this instance. Then for every S<A, |S|<u
there is T, Sc Tcu, |T|<u and

(#)r MEY(... R}, ) ="w(..,R{,..., R .. Jesna=n

seJN({(A—T)xI

Hence we can find A, = u, |A,|<p for a <cf p, such that A, < A for @ < and
(#) 4, holds. Now (letting p be regular for notational simplicity) and by (1)

MEy[... R ...] iffi {a:MFEW(...,R%...,RD\csna y L)eF.

teJ N((L£~A,)<I)

But the last set is empty.
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2.8. Main Theorem. Suppose £ has the amalgamation property. Then for every
weak occurrence cardinal A of &£, &£ is [A]-compact provided that A is regular.

Remark. So we have considered various compactness demands. (We consider
occurrence restriction as very weak compactness demands.) By the theorem they
coincide for logics with the amalgamation property.

Proof. We assume the conclusion fails.

Part A. There is a model M, expanding some (H(\'),€), 2* <A’, which
P-characterize (A, {A A :|A|<A}). Let A be an individual constant of M.

Part B. We now define a class K(M). A model of K(M) has the form
A=(Ay Ay, Ay; QR F) sit.

(K1) (A,, Q) is M.

(K2) R< A, is a one-place relation.

(K3) F is a partial two-place function, with F(x, y) is defined iff xe A, y€ A,,
ME“y<A”, and F(x,y)e A, when defined.

(K4) For every x e A, A>i#j=> F(x, i) # F(x, j).

(K5) For every x,y€ A,

x=y iff {F(x,i):i<A}N{F(y,i):i<A} has power =A
iff {i<A:F(x,i)#F(y, i)} has power <A.

We use U, B to denote members of K(M).

Part C. We say that A c B if A<=B (i.e., A is a submodel of B) and for every
xe AP-AY {i<A:F(x, i)e AY} has power <A.

For ce AY, We K(M)), then let A'“! be a model equal to A except for the
relation R which satisfies:

if Aex#cAxeAY, then xe R¥ & xe R¥,

if Arx =c, then xe R¥ & x¢ RY.

Part D. We say that (2, B, ¢, Gi); -, is a special sequence if:

(@) A<B, ce AP~ AT and (C,:i<\) is a partition of AYUAY, F(x, i)e G, for
i <<A,

(b) for every Sc A, |S|<A, there is an isomorphism g$ [gi] from B [B!!] onto
A, which is the identity on AYUJ;.s G

For a while, we shall investigate special sequences, and draw the conclusion.
Later we shall build such a sequence.

Part E. 9 is an ¥-elementary submodel of B. So let ¢ be a sentence in the
vocabulary 7o+ |¥|; and we should prove Uk = BEy. For clarity we explicate
the dependence of ¢ on the elements of AYU AT and suppress the rest (in the
notation). Let C; ={d?,: a <} (with not repetition); di, = dJ,, and for S< A let

dS ={dga’ iGS,
“ Wdl., i¢s.
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Now we let ¢ =¢(. .., d0, . . Jicra<a FOr SSA, |S| <A, applying gg (see (b) in
Part D):
AeY(...,d3,, .. ) BEY(...,dY,,...)

We now want to find S A, [S|<A, s.t.

AEP(...,d3. .. )=y .., d0 .. ),
BEY(...,d5n, . )= ., di, .. ).
At first glance the definition of the weak occurrence number guarantees the

existence of an S satisfying each one of those demands, but why both? As we can
use conjunction: let ¢, ¢, € {¥, ¢}, suppose

AEdol- - s dPes - - -1 BEDL...,dY%, -]

so (with changes of names) apply the definitions to the model [, 8], to the
conjunction of those sentences.
Part F. % is an $-elementary submodel of Bl Use g} instead of g2 above.
Part G. The following diagram cannot be completed by ¥-embedding, i.e., we
cannot find A*, hy, h; like that.

A —4 B
id ko
|
%c____‘_; ;2/(*

W.lo.g., ho! || =h,}|U| is the identity. Now we shall prove ho(c) and h,(c) are
equal. If not, then

W*E“fi <A :F(holc), i) = F(hy(c), i)} has power <A”.

By the definition of K(M) this implies {i <A : A*k F(hy(c), i) = F(hy(c), i)} has
power <A; but we know (by (a) of Part D), F(h;(c), i)e C; ||, hence F(h(c),
i) = F(c, i), hence that this set is A itself. So a contradiction, hence A*k hy= h,(c),
hence

ho(c)e R* & hy(c)e R

but ho(c)e R & cc R®& c¢ R?'& hi(c)¢ RY, a contradiction.

We finish the proof of the theorem (as we have assumed analgamation) modulo
the construction of the special sequence.

We shall have AYUA¥ =\, C, ={i}. So clearly it is enough for (b) of Part D to
have:

(b') for every Sc A, [S|<A, U, B, Bl are isomorphic over S.
For regular A it is enough to have

(b") for every a <A, A, B, B! are isomorphic over «.

Part 1. Construction (alternatively see Part J). We shall define by induction on
a <A, models A*, B> K with ce AP — A}", functions g, s (8 <a) such that
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(1) A*, B, ¢ satisfy (a) and (b) of Part D, except that F(x, i) is defined for i <«
only.

(2) AZUAT has power <A.

(3) (A®:B < a) is increasing continuous (by < not Sg).

4) If B<i<a, bac AT"; then BPEF(a,i)# F(b, i) (if a#b).

(5) g2 is a partial isomorphism from B> into A%, hence if i<a,x€ AT"N
dom g3 5 then (F(x, i) = F(g0 s(x, i))).

(6) gtp is a partial isomorphism from (B*)! into %A%, hence if i<a.
xe A?"NDom g’ 5 then (F(x, i)) = F(gls(x), i).

(7) gl is the identity over |A?|.

(8) For B<a(0)<a(l), g4.s< 8 e

(9) For every [=0,1,B<a <A\ for some y=a, |B*|<Dom g’ 4.

(10) For every 1=0, 1, B<a <A, for some y=a, |A*|cRang g’ ;.
There is no problem in the proof.

3. A strange logic with the JEP

In this section we give an [w]-compact logic satisfying the JEP, and which is
stronger than first-order logic. This contradicts previous hopes. Really if A is a
compact cardinal, @ a family of ultrafilters on cardinals <A we can define L, ,/ 9@
as we defined £’ (in 3.1’s proof) allowing AF-, for any E€®(u) s.t. E and
P(w)—E are P-closed [i.e., E is D-closed if A;€E, i<xy<A, DD an ultrafil-
ter on x implies limg A; € E]. By 3.4, if some non-uniform ultrafilter on o
belongs to @, then we can w.L.o.g. restrict ourselves to E which are ultrafilters on
some u < A. In any case for L, ,/% to satisfy JEP (hence AM) it suffices to prove
the parallel of subclaim 3.2: if w <A, EC P () is P-closed, ¢ E, then for some
E,.cP(u)—E, weE,, and E,, P(u)— E; are %-closed.

By Claim 3.4 if £ is [w]-compact, the dependency of the sentence
(..., R, ...) on the choice of the R,’s is a finite sum of X,-complete ultrafilters
and singletons.

3.1. Theorem. Suppose R,<k <A and k, A are compact cardinals. Let the logic £
be the following sublogic of L, ,: the formulas are the closure of the atomic formulas
by:

@D

Wy, YA, (@Xe, ... Xy .. i, When n <A, and /<\ W,

1<
where @ is a k-complete ultrafilter on u, u <A, and N2, ¥ means {i: y; holds}e @
(i-e., VaecaNica ). Then £ is [A, <x}-compact, satisfies Kos theorem for any
ultrafilter @ on any p <k (hence is [w]-compact), has the JEP (hence the
amalgamation property) but is stronger than first-order logic.
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Proof. For a cardinal g and family E < #(u) define

A=V (Awn A w).

i< icA ieA—A

We call E (<«)-closed if for every x <« and ultrafilter @ on y and A, c u (i <y)

&)

{i:AieE}e
implies

lierznAi={a<p,:{i<x:a€Ai}e@}€E.

Wa ~all I Alacad 6T N B oen Alacad Vanelyy £ T o o
Y¥YCo CLall o \\K} Ul Cludteu 11 L2, J\M} L) dic \\K} Ciuscu, \.JCdll_y il £ 18 a

x-complete ultrafilter, then E is (<k)-bi-closed. Define a logic £’ like £ but we
allow AE., 4 for every (<«)-bi-closed E (for i <A). We shall prove that £’ is as
required, and then it follows by Claim 3.4 that £, ¥’ are (essentially) equal.

A. Fact. &' is [A, <o]-compact. This is so because £'c %, ,.
B. Fact. &' satisfies V.os theorem for any ultrafilter % on X<k, This follows by

direct checking (the definition of (<k)- closed is tailor-made for this).

C. Fact. £’ has the JEP.

Let M,, M, be ¥’-equivalent. It is enough to show that C@4(M;) U CP . (M,)
has a model (where C%4(M) is the complete &£’-theory of (M, ¢).cjn). By Fact A
it is enough to show that if I € CP(M,), |I|<A for I=1,2, then I'; U, has a
model. W.l.o.g. |M,|, |M,| are disjoint. Let I';={¢,(@):i<u} and

If n e E, we finish, so assume u¢ E,, and it is also clear that @€ E, (as M, is a
smnAAl ~F if xxrn AvesneA Ly criitalda fadividiial Anmotanta)
THOUUC] Ul 1 1 ll_ woe C© le i oae U_y sultavic 111u1v1uua1 CUILD Ldlllb}.

By Fact B, E is (<«k)-closed. We shall later prove

3.2. Subclaim. If E< P(n) (n<A) is (<«)-closed, u¢ E, then there is an E, <
P(u)—E,, p € E; such that E; is (<k)-bi-closed.

Now M,EA,; -, ¢:(a) (note that A;, ¢;(X) is in L, , but not necessarily in £’).
As ne E;, MLEAE ¢.(a), hence MLETX)[AE, ¢,(X)] (as |l <A w.lo.g. ¥ has

length <A) But (3x)[ l<ud)(x)] belongs to &', hence also M, satisfies this
sentence, hence for some b from M,, M, EAE. &,[b], hence for some A cE?,
MiEAcq &i(B), so T'yU{d(a):ic A} has a model, hence A € E, contradicting
“ElcP(u)-E”.

Proof of Subclaim 3.2. E! exists iff the following set of sentences in the
L, .-propositional calculus has a model, (let ps (A €P(u)) stand for the truth
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value of A€ EY):

_]pA (AGE)a
pp,’
pc=V A pa, when C=liglAi,Aieg’(u) for i<y, x <k.

Beg ieB

As k is compact, we can look at any subset of power <k, so it involves <k A’s
and there is an equivalence relation E on u with <« equivalence classes, such
that we may consider only A =|J,.A a/E. So we reduce the problem to the case
< k. Now there is a finite w< p s.t. (VA € E) w& A [because otherwise for any
finite we u, A, e Est. we A, let I={w< u:w finite}, & an ultrafilter on I s.t.
{uel:wculel for every w, then limg A, = u¢ E, but A,, € E, a contradiction].
Let

E,={Acu:wc A}l

It is easy to check all the demands.

3.3. Claim. Suppose @ is a filter on A (i.e.,, a dual to an ideal of the Boolean
algebra P (A)) and suppose

(*) if A, A, A, 9D for n< w and Lim A,, exists, then it is not in 9.

Then there is a partition of A to finitely many sets, (A;:l1<n) for I>n, and
an R,-complete ultrafilter @, on A; (A, may be a singleton and then D;={A,}) s.t.
@={BcAr:(VI<n)(BNA D)}

Proof. Let I={A—A:AcP}, so I is an ideal. We shall prove that P(A)/I is
finite. Otherwise the Boolean algebra %(A)/I has infinitely many pairwise disjoint
non-zero elements A/I (I<w), i.e., Ai¢l, AANA, el for [#m. As
a-(a-U Am)g N (ANAel
m<<l m<l
w.lo.g. A;NA,, =0 for [#m. Now A — A ¢ P, hence by (%), lim; (A~ A;) ¢ D but
lim; (A — A;)=A (as every i belongs to at most one A,,), contradiction.

So P(A)/I is finite; let A/I (I <n) be its atoms, w.l.o.g. (A;:]1<n) is a partition
of A. So =INP(A)) is a maximal ideal of P(A,), D, = P(A))— I is an ultrafilter
on A,. Now %, is R,-complete, otherwise there are By € I, (k < @) with U, <, B« =
A, W.lo.g. B, <B4 So

B, € B,UU A
l*k
l<<n

is not in 9, but lim, _,, B,,= A again a contradiction to (*).

3.4. Claim. If ¥ is an [w]-compact logic, and Y=4(. . ., R, .. .)i<\ is a sentence
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of &, then for some partition A,, . . ., A, of A, and R;-complete ultrafilters D, on
A, (maybe A, ={i}, D,={A;}), the following holds:

(+) If R, R! (for i>\) are sequences of relations of the right arity on B, and
{ie A;:Ri=R}e®, for 1=0,n—1, then

(B,...,R,.. )¢ iff (B,...,R,..)E4

Proof. Let & be the family of A < such that for any R, R}, B as in (+), if
A c{i<A:R; =R, then

(B,...,R,..)e¢ iff (B,...,R[..)E¢

Now if Ag, A, €D, then A=A, NA, €D (for any B, R, R} as above define R as
R, if i€ A, and as R} if ie A — A, and apply @’s definition). Also if A,, € P(A) - D,
A =lim, A, (and its exists) we let B,, R, ;, R, ; exemplify A, ¢%, i.e.,

(Brn L Rn,is .. .)}:d;(_ L] Rn,iy . -)a
(Buy ..., Risy JEW( .., Ry )

By the [w]-compactness of ¥ we get easily a counterexample showing A ¢ %. So
we can apply Claim 3.3.
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