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The Bulletin of Symbolic Logic 
Volume 7, Number 2, June 2001 

RELATIONS BETWEEN SOME CARDINALS IN THE ABSENCE OF 

THE AXIOM OF CHOICE 

LORENZ HALBEISEN AND SAHARON SHELAH 

Dedicated to the memory of Professor Hans Lauchli. 

Abstract. If we assume the axiom of choice, then every two cardinal numbers are com- 

parable. In the absence of the axiom of choice, this is no longer so. For a few cardinalities 
related to an arbitrary infinite set, we will give all the possible relationships between them, 
where possible means that the relationship is consistent with the axioms of set theory. Further 
we investigate the relationships between some other cardinal numbers in specific permutation 
models and give some results provable without using the axiom of choice. 

?1. Introduction. Using the axiom of choice, Felix Hausdorff proved in 

1914 that there exists a partition ofthe sphere into four parts, S = AO B 0 

C U E, such that E has Lebesgue measure 0, the sets A, B, C are pairwise 

congruent and A is congruent to5UC (cf. [9] or [10]). This theorem later 

became known as HausdorfFs paradox. If we want to avoid this paradox, 
we only have to reject the axiom of choice. But if we do so, we will run into 

other paradoxical situations. For example, without the aid of any form of 

infinite choice we cannot prove that a partition of a given set m has at most 

as many parts as m has elements. Moreover, it is consistent with set theory 
that the real line can be partitioned into a family of cardinality strictly bigger 
than the cardinality ofthe real numbers (see Fact 8.6). 

Set theory without the axiom of choice has a long tradition and a lot of 

work was done by the Warsaw School between 1918 and 1940. Although, 
in 1938, Kurt Godel proved in [5] the consistency of the axiom of choice 

with the other axioms of set theory, it is still interesting to investigate which 

results remain unprovable without using the axiom of choice (cf. [18]). 
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238 LORENZ HALBEISEN AND SAHARON SHELAH 

In 1963, Paul Cohen proved with his famous and sophisticated forcing 

technique, that it is also consistent with the other axioms of set theory 
that the axiom of choice fails (cf. [3]). Also with a forcing construction, 
Thomas Jech and Antonin Sochor could show in [15] that one can embed 

the permutation models (these are models of set theory with atoms) into 

well-founded models of set theory. So, to prove consistency results in set 

theory, it is enough to build a suitable permutation model. 

We will investigate the relationships between some infinite cardinal num? 

bers. For four cardinal numbers?which are related to an arbitrary given 
one?we will give all the possible relationships between two of them; where 

possible means that there exists a model of set theory in which the relation? 

ship holds. For example it is possible that there exists an infinite set m such 

that the cardinality of the set of all finite sequences of m is strictly smaller 

than the cardinality ofthe set of all finite subsets of m. On the other hand, 
it is also possible that there exists an infinite set m' such that the cardinality 
of the set of all finite sequences of m' is strictly bigger than the cardinality 
ofthe power-set of m!. In a few specific permutation models, like the basic 

Fraenkel model and the ordered Mostowski model, we will investigate also 

the relationships between some other cardinal numbers. Further we give 
some results provable without using the axiom of choice and show that some 

relations imply the axiom of choice. 

?2. Definitions, notations and basic facts. First we want to define the 

notion of a cardinal number and for this we have to give first the definition 

of ordinal numbers. 

Definition. A set a is an ordinal if and only if every element of a is a 

subset ofa and a is well-ordered by G. 

Now let V be a model for ZF (this is Zermelo-Fraenkel's set theory without 

the axiom of choice) and let On := { a G V : a is an ordinal}; then On is 

a proper class in V. It is easy to see that if a G On, then also a + 1 := 

a U {a} G On. An ordinal a is called a successor ordinal if there exists an 

ordinal /? such that a = fi + 1 and it is called a limit ordinal if it is neither a 

successor ordinal nor the empty-set. 

By transfinite recursion on a G On we can define Va as follows: V$ := 0, 

Va+\ =V(Va) and Va := [jpea vp when a is a limit ordinal. Note that by 
the axiom of power-set and the axiom of replacement, for each a G On, Va 
is a set in V. By the axiom of foundation we further get V := [JaeOn V<* (?f- 

[16, Theorem 4.1]). 
Let m be a set in V, where V is a model of ZF, and let ?(m) denote the 

class of all sets x, such that there exists a one-to-one mappingfrom x onto m. 

We define the cardinality of m as follows. 
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RELATIONS BETWEEN CARDINALS IN THE ABSENCE OF AC 239 

Definition. For a set m, let m := <?(m) n Va, where a is the smallest 

ordinal such that VQ n ?(m) ^ 0. The set m is called the cardinality of m and 

a set n is called a cardinal number (or simply a cardinal) if it is the cardinality 
of some set. 

Note that a cardinal number is defined as a set. 

A cardinal number m is an aleph if it contains a well-ordered set. So, the 

cardinality of each ordinal is an aleph. Remember that the axiom of choice 

is equivalent to the statement that each set can be well-ordered. Hence, in 

ZFC (this is Zermelo-Fraenkel's set theory with the axiom of choice), every 
cardinal is an aleph; and vice versa, if every cardinal is an aleph, then the 

axiom of choice holds. 

If we have a model V of ZF in which the axiom of choice fails, then we 

have more cardinals in V than in a model M of ZFC. This is because all the 

ordinals are in V and, hence, the alephs as well. 

Notation. We will use fraktur-letters to denote cardinals and N's to denote 

the alephs. For finite sets m, we also use \m\ to denote the cardinality of m. 

Let N := {0,1,2,... } be the set of all natural numbers and let No denote 

its cardinality. We can consider N also as the set of finite ordinal numbers, 
where n = {0,1,...,?- 1} and 0 = 0. For a natural number n e N, we 

will not distinguish between n as an ordinal number and the cardinality of 

n. Further, the ordinal number co denotes the order-type (with respect to <) 
ofthe set N. 

Now we define the order-relation between cardinals. 

Definition. We say that the cardinal number p is less than or equal to the 

cardinal number q ifand only if for any x ep and y e q there is a one-to-one 

mapping from x into y. 

Notation. If p is less than or equal to the cardinal number q, we write 

p < q. We write p < q for p < q and p ^ q. If neither p < q nor q < p 
holds, then we say that p and q are incomparable and write p || q. For x ep 
and y e q we write: x ^ y if p < q and x ^ y if p ^ q (cf. also [16, p. 27]). 
Notice that x ^4 y if and only if there exists a one-to-one function from x 

into y. 

Another order-relation which we will use at a few places and which was 

first introduced by Alfred Tarski (cf. [20]) is the following. 

Definition. For two cardinal numbers p and q we write p <* q if there 

are non-empty sets x ep and y e q and a function from y onto x. 

Notice, that for infinite cardinals p and q, we must use the axiom of choice 

to prove that p <* q implies p < q (see, e.g., [7]). In general, if we work in ZF, 
there are many relations between cardinals which do not exist if we assume 
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240 LORENZ HALBEISEN AND SAHARON SHELAH 

the axiom of choice (cf. [7]); and non-trivial relations between cardinals 

become trivial with the axiom of choice (see also [17] or [23]). 
The main tool in ZF to show that two cardinals are equal is the 

Cantor-Bernstein Theorem. If p and q are cardinals with p < q and 

q < p, then p = q. 

(For a proof see [14] or [1].) 
Notice that for x G p and y G q we have x ^ y ^ x is equivalent to p < q, 

and ifx^y^x, then there exists a one-to-one mapping from x onto y. 
A result which gives the connection between the cardinal numbers and the 

N'sis 

Hartogs Theorem. For every cardinal number m, there exists a least aleph, 

denotedby N(m), such that N(m) ^ m. 

(This was proved by Friedrich Hartogs in [8], but a proof can also be found 

in[14]orin[l].) 
Now we will define "infinity". 

Definition. A cardinal number is called finite if it is the cardinality of a 

natural number, and it is called infinite if it is not finite. 

There are some other degrees of infinity (cf., e.g., [6] or [26]), but we will 

use only "infinite" for "not finite" and as we will see, most of the infinite 

sets we will consider in the sequel will be Dedekind finite, where a cardinal 

number m is called Dedekind finite if No ^ tn. 

There are also many weaker forms of the axiom of choice (we refer the 

reader to [ 12]). Concerning the notion of Dedekind finite we wish to mention 

five related statements. 

AC : "The Axiom of Choice"; 

2m = m : "For every infinite cardinal m we have 2tn = m"; 

C(No, oo) : "Every countable family of non-empty sets has a 

choice function"; 

C(Nq, < No) ? "Every countable family of non-empty finite sets 

has a choice function"; 

Wx0 : "Every Dedekind finite set is finite". 

We have the following relations (for the references see [12]): 

AC=>im = m=>Wx0=> C(N0,< N0) 

and 

AC=>C(X09oq)=>Wx0, 

but on the other hand have 

AC^zm^^^^ C(N0,< N0) 
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RELATIONS BETWEEN CARDINALS IN THE ABSENCE OF AC 241 

and 

AC ^C(N0,oo) *? W*0, 

and further 2m = m =fr C(No, 00) =fr 2m = m. 

?3. Cardinals related to a given one. Let m be an arbitrary set and let m 

denote the cardinality of m. In the following we will define some cardinalities 

which are related to the cardinal number m. 

Let [m]2 be the set of all 2-element subsets of m and let [m]2 denote the 

cardinality ofthe set [m]2. 
Let fin(m) denote the set of all finite subsets of m and let fin(m) denote 

the cardinality ofthe set fin(m). 
For a natural number n, fin(m)n denotes the set 

{(e0>... ,en-i) :Vi<n(et e fin(m)) } 

and fin(m)w denotes its cardinality. 
For a natural number n, finw+1(m) denotes the set fin(finw(m)), where 

fin?(m) := m, and finw+1(tn) denotes its cardinality. 
Let m2 := m x m = { (x\, X2) : Vi < 2 (*/ e m)} and let m2 = m ? m 

denote the cardinality ofthe set m2. 

Let seq1"1 (m) denote the set of all finite one-to-one sequences of m, which is 

the set of all finite sequences of elements of m in which every element appears 
at most once, and let seqM(m) denote the cardinality ofthe set seqM(m). 

Let seq(m) denote the set of all finite sequences of m and let seq(m) denote 

the cardinality ofthe set seq(m). 

Finally, let V(m) denote the power-set of m, which is the set of all subsets 

of m, and let im denote the cardinality of V(m). 
In the sequel, we will investigate the relationships between these cardinal 

numbers. 

?4. Cardinal relations which imply the axiom of choice. First we give some 

cardinal relations which are well-known to be equivalent to the axiom of 

choice. Then we show that also a weakening of one of these relations implies 
the axiom of choice. 

The following equivalences are proved by Tarski in 1924. For the historical 

background we refer the reader to [21, 4.3]. 

Proposition 4.1. The following conditions are equivalent to the axiom of 
choice: 

(1) m ? n = m + nfor every infinite cardinal m and n. 

(2) m = m2 for every infinite cardinal m. 

(3) Ifm2 = n2, then m = n. 

(4) If m < n and p < q, then m + p < n + q. 
(5) If m < n and p < q, then m ? p < n ? q. 
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242 LORENZ HALBEISEN AND SAHARON SHELAH 

(6) Ifm + p<n + p, then m< n. 

(7) If m ? p < n ? p, then m < n. 

(The proofs can be found in [27], in [1] or in [23].) 
As a matter of fact we wish to mention that Tarski observed that the 

statement 

If 2m < m + n, then m < n 

is equivalent to the axiom of choice, while the proposition: 

If 2m > m + n, then m > n 

can be proved without the aid ofthe axiom of choice (cf. [23, p. 421]). 
To these cardinal equivalences mentioned above, we will now add two 

more: 

Proposition 4.2. The following conditions are equivalent to the axiom of 
choice: 

(1) For every infinite cardinal m we have [m]2 = m. 

(2) For every infinite cardinal m we have [m]2 = morm2 = m. 

Proof. The proof is essentially the same as Tarski's proof that the axiom 

of choice follows if m2 = m for all infinite cardinals m (cf. [27]). 
Tarski proved in [27] (cf. also [23]) the following relation for infinite car? 

dinals m: 

m + N(m) = m ? N(m) implies m < N(m). 

Notice that m < N(m) implies that every set m G m can be well-ordered. 

Therefore it is sufficient to show that (2), which is weaker than (1), implies 
that for every infinite cardinal number m we have m < N(m). 

First we show that for two infinite cardinal numbers m and n we have 

m + n < m ? n. For this, let mi and xi\ be such that m = mi + 1 and 

n = ni + 1. Now we get 

m ? n = (mi + 1) ? (ni + 1) = mi ? ni + mi + ni + 1 

> 1 + mi + ni + 1 = m + n. 

It is easy to compute, that 

[m + N(m)]2 = [m]2 + mN(m) + [N(m)]2, 

and 

(m + N(m))2 = m2 + 2mN(m) + N(m)2. 

Now we apply the assumption (2) to the cardinal m+N(m). If [m+N(m)]2 = 

m + N(m), we get mN(m) < m + N(m) which implies (by the above, according 
to the Cantor-Bernstein Theorem) mN(m) = m + N(m). By the result of 

Tarski mentioned above we get m < N(m). The case when (m + N(m))2 = 

m + N(m) is similar. So, if the assumption (2) holds, then we get m < N(m) 
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RELATIONS BETWEEN CARDINALS IN THE ABSENCE OF AC 243 

for every cardinal number m and therefore, each set m can be well-ordered, 
which is equivalent to the axiom of choice. H 

?5. A few relations provable in ZF. In this section we give some relation? 

ships between the cardinal numbers defined in section 3 which are provable 
without using the axiom of choice. 

The most famous one is the 

Cantor Theorem. For any cardinal number m we have m < zm. 

(This is proved by Georg Cantor in [2], but a proof can also be found in 

[14]or[l].) 

Concerning the relationship between "<*" and "<", it is obvious that 

p < q implies p <* q. The following fact gives a slightly more interesting 

relationship. 

Fact 5.1. For two arbitrary cardinals n andm we have n <* m ?? 2n < 2m. 

(For a proof see, e.g., [23] or [1].) 
The following two facts give a list of a few obvious relationships. 

Fact 5.2. For every cardinal m we have: 

(1) m2<fin2(m). 

(2) seqM(m)<fin2(m). 
(3) seqM(m) < seq(m). 

(4) If m is infinite, then z*? < 2fin(m). 

Proof. First take an arbitrary set m e m. For (1) note that a set (x\, xi) e 

m2 corresponds to the set {{x\}, {x\,X2}} e fin2(m). For (2) note that a 

finite one-to-one sequence (ao, a\,... ,an) of m can always be written as 

{{ao}, {ao, ai},... ,0{ao,... , an}}, which is an element of fin2(m). The 

relation (3) is trivial. For (4) let En := { e C m : \e\ = n }, where n e N. 

Because m is assumed to be infinite, every x C N corresponds to a set 

Fx e V(fin(m)) defined by Fx := \J{En:nex}. H 

Fact 5.3. N0 = ^ = fin(N0) = fin2(N0) = seqw(N0) = seq(N0) < 2*<>. 

Proof. The only non-trivial part is Hq < zH?, which follows by the Cantor 

Theorem. H 

Three non-trivial relationships are given in the following 

Proposition 5.4. For any infinite cardinal m we have: 

(1) fin(m)<2m. 

(2) seqM(m)^2m. 
(3) seq(m) + 1?. 

(These three relationships are proved in [7].) 

?6. Permutation models. In this section we give the definition of permuta? 
tion models (cf. also [13]). We will use permutation models to derive relative 

consistency results. But first we have to introduce models of ZFA, which is 
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244 LORENZ HALBEISEN AND SAHARON SHELAH 

set theory with atoms (cf. [13]). Set theory with atoms is characterized by 
the fact that it admits objects other than sets, namely atoms, (also called ure- 

lements). Atoms are objects which do not have any elements but which are 

distinct from the empty-set. The development ofthe theory ZFA is very much 

the same as that of ZF (except for the definition of ordinals, where we have to 

require that an ordinal does not have atoms among its elements). Let S be a 

set; then by transfinite recursion on a G On we can define Va(S) as follows: 

V*(S) := S, Va+l(S) := Va(S)uV(Va(S)) and Va(S) := \JpeaVa(S) 
when a is a limit ordinal. Further let P??(S) := UaeOn^C5)- If M is a 

model of ZFA and A is the set of atoms of M, then we have M := V??(A). 
The class Mo := V??(?) is a model of ZF and is called the kernel. Note that 

all the ordinals are in the kernel. 

The underlying idea of permutation models, which are models of ZFA, is 

the fact that the axioms of ZFA do not distinguish between the atoms, and so 

a permutation ofthe set of atoms induces an automorphism ofthe universe. 

The method of permutation models was introduced by Adolf Fraenkel and, 
in a precise version (with supports), by Andrzej Mostowski. The version 

with filters is due to Ernst Specker in [25]. 
In the permutation models we have a set of atoms A and a group Q of 

permutations (or automorphisms) of A (where a permutation of A is a one- 

to-one mapping from A onto A). We say that a set T of subgroups of Q is a 

normalfilter on Q if for all subgroups H, K of Q we have: 

(A) Q^T\ 

(B) if H g T and H C K, then K e T\ 

(C) if H G Tand K G T, then HnK eJ7; 

(D) if ri G Q and H G T, then nHn-x G T\ 

(E) for each a e A, {n G Q : na = a} G T. 

Let J7 be a normal filter on Q. We say that x is symmetric if the group 

sym^(x) := {n G Q : nx = x} 

belongs to T. By (E) we have that every a G A is symmetric. 
Let V be the class of all hereditarily symmetric objects; then V is a transitive 

model of ZFA. We call V a permutation model. Because every a G A is 

symmetric, we get that the set of atoms A belongs to V. 

Now every n G Q induces an G-automorphism of the universe V, which 

we denote by it or just n. 

Because 0 is hereditarily symmetric and for all ordinals a the set Pa(0) 
is hereditarily symmetric too, the class V := V??(?) is a class in V which is 

equal to the kernel Mo. 

Fact 6.1. For any ordinal a and any n G Q we have na = a. 

(This one can see by induction on a, where 7C0 = 0 is obvious.) 
Since the atoms x G A do not contain any elements, but are distinct from 

the empty-set, the permutation models are not models of ZF. However, with 
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RELATIONS BETWEEN CARDINALS IN THE ABSENCE OF AC 245 

the Jech-Sochor Embedding Theorem (cf. [15], [13] or [14]) one can embed 

arbitrarily large fragments of a permutation model in a well-founded model 

ofZF: 

Jech-Sochor Embedding Theorem. Let Mbea model of ZEA + AC, let 

A be the set of all atoms of M, let Mo be the kernel of M and let a be an 

ordinal in M. For every permutation model V C M (a model of ZFA) there 

exists a symmetric extension V D Mo (a model of ZF) and an embedding 
x t-> x ofV in V such that 

(Va(A))v is e-isomorphic to (Va(A))v. 

Most of the well-known permutation models are of the following simple 

type: Let Q be a group of permutations of A. A family / of subsets of A is a 

normal ideal if for all subsets E, F of A we have: 

(a) 0 e /; 

(b) if E G/andFC?, then F e /; 

(c) if ? e I and F e I, then EUF el; 

(d) if 7i e Q and E e I, then nE e /; 

(e) for each a e A, {a} e I. 

For each set S C A, let 

fixG(S) := { n e Q : ns = s for all s e S }; 

and let T be the filter on Q generated by the subgroups { fixg(E) : E e I}. 
Then J7 is a normal filter. Further, x is symmetric if and only if there exists 

a set of atoms Ex e I such that 

fixg(Ex) C sym^Cx). 

We say that Ex is a support of x. 

?7. Consistency results derived from a few permutation models. In this 

section we will give some relationships between the cardinals defined in 

section 3 which are consistent with ZF. We will do this by investigating the 

relations between certain sets in a few permutation models. Let V be a 

permutation model with the set of atoms A and let mbea set in V. Let 

?(m) := {x e V : V \= x ^ m ^ x}', then C(m) is a class in V. The 

cardinality of m in the model V (denoted by m) is defined by m := C(m) n 

Va (A) n V, where a is the smallest ordinal such that ?(m) n Va (A) n V ^ 0. 

Note that if m and n are two arbitrary sets in a permutation model V and 

we have for example V (= m =4 n ^ m (and therefore V f= m < n), then 

by the Jech-Sochor Embedding Theorem there exists a well-founded model 

V of ZF such that V \= m 4 n ^ m and therefore V (= m < n, where m 

and n are the cardinalities of the sets m and h. Hence, since every relation 

between sets in a permutation model can be translated to a well-founded 

model, to prove that a relation between some cardinals is consistent with ZF, 
it is enough to find a permutation model in which the desired relation holds 
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246 LORENZ HALBEISEN AND SAHARON SHELAH 

between the corresponding sets. In the sequel we will frequently make use 

of this method without always mention it. 

7.1. The basic Fraenkel model. First we present the basic Fraenkel model 

(cf. [13]). 
Let A be a countable infinite set (the atoms), let Q be the group of all 

permutations of A and let 7fin be the set of all finite subsets of A. Obviously, 
/fin is a normal ideal. 

Let Vf (F for Fraenkel) be the corresponding permutation model, the so 

called basic Fraenkel model. Note that a set x is in Vf if and only if x is 

symmetric and each y e x belongs to Vf, too. 

Now we will give two basic facts involving subsets of A. 

Lemma 7.1.1. Let E G 7fin; then each S C A with support E is either finite 
or co-finite (which means A \ S is finite). Further, ifS is finite, then S C E\ 

andifS is co-finite, then A^S C E. 

Proof. Let S C A with support E. Because E is a support of S, for all 

n G fix(?') and every a G A we have na G S if and only if a G S. If S is 

neither finite nor co-finite, the sets (A \ E) \ S and (A \ E) n 5 are both 

infinite and hence we find a 7r G fix(?) such that for some s e S, ns ? S. 

Now, if 5 is finite, then S must be a subset of is because otherwise we have 

S \ E 7- 0 and we find again a rc G fix(is) such that for some s ? S,ns ? S. 

The case when S is co-finite is similar. H 

Lemma 7.1.2. Let A be the set of atoms ofthe basic Fraenkel model and let 

m denote its cardinality, then Vf f= No ^ 2m. 

Proof. Assume there exists a one-to-one function /: N ?? V(A) which 

belongs to V/r. Then, because / is symmetric, there exists a finite set Ef C A 

(a support of /) such that fixg(Ef) C symg(f). Now let n G N be such that 

fixg(f(n)) <? fixg(Ef) and let n G fixg(Ef) be such that nf(n) ^ f(n). 
With the fact 6.1 we get that nn = n and therefore f(nn) = f(n). So, Ef 
cannot be a support of/, which implies that the function / does not belong 
toVF. H 

The following proposition gives the relationships in the basic Fraenkel 

model between some ofthe cardinals defined in section 3, where m denotes 

the cardinality ofthe set of atoms of Vjr. 

Proposition 7.1.3. Let m denote the cardinality of the set of atoms A of 
Vf- Then the in the model Vf we have the following: 

(1) fin(m) || seqM(m). 

(2) fin(m) || seq(m). 
(3) seqM(m) || zm. 

(4) seq(m) || 2m. 

Proof. (1) Assume first that there exists a function / G Vf from fin(/_) 
into seqM(/_) and let Ef G /fin be a support of/. Choose two arbitrary 
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distinct elements ao and a\ of A \ Ef such that 

U := { x e A : x occurs in /({ao, ai} U Ef) } ? Ef 

and put Ef := {ao, a\} U Ef. Choose a y e U \ Ef and a permutation 

7i e fixg(Ef) such that ny ^ y and nai = a\-i (for / e {0,1}). Now, 

nEl = 
EJ- but nf(Ey) ^ f(Ef), which implies either that / is not a 

function or that Ef is not a support of /. In both cases we get a contradiction 

to our assumption. 
The fact that seqM(m) ^ fin(m) we get by fin(m) < im (see Proposition 

5.4 (1)) and by seqM(m) ^ 2m (which will be shown in (3)). 

(2) Because seq1_1(m) < seq(m), by (1) it remains to show that fin(^) 4 

seq(^). Assume there exists a function g e V from fin(^) into seq(^) and 

let Eg e 7fin be a support of it. 

If for each p e [A \ Eg]2 we have fixg(Eg) C symg(g(p)), then we 

find {ao,ai} and {bo,b\} in [A \ Eg]2 with {ao,ai} n {bo,b\} = 0, and a 

permutation n e fixg(Eg) such that nai = b\ and nb\ = a\ (for / e {0,1}). 
Now we get 7tg({a0,ai}) = g({a0,ai}) and 7c{a0,ai} = {b0,b\}, which 

contradicts our assumption. 
Otherwise, there exists a set {ao, ai} G [A \ Eg]2 with 

fixg(Eg) <? sym^(g({a0,ai})), 

hence we find in the sequence g({ao, ai}) an element y e A which does not 

belong to Eg. Now let n e fixg(Eg) be such that na\ = a\-\ (for / e {0,1}) 
and ny ^ y; then 7tg({a0,ai}) ^ g({ao,a\}) and 7r{a0,ai} = {a0,ai}, 
which contradicts again our assumption. 

(3) Because m is infinite we have (by Proposition 5.4 (1)) fin(m) < 2m, 
which implies (by (1)) that 2m ^ seq1_1(m) and it remains to show that 

seq1"1 (.4) ^ V(A). Assume there exists a function h e Vf from seq1"1 (A) into 

V(A) and let Eh e 4n be a support of h with \E^\ > 4. Consider seqM(is/,), 

then, because \E^\ > 4, it is easy to compute that | seq11 (Eh )\ > 2 ? 2^Eh I, which 

implies (by Lemma 7.1.1) that there exists an sq e seq1_1(^) such that E^ 
is not a support of/j(so)- Let Eo -= D{ E ? hn - E is a support ofh(so) }; 
then Eo is a support of h(so), too. Choose a y e Eo \ ?/, and a permutation 
7c G fix^(?/,) such that ny ^ y. Now, because rc G fix^is/J and so G 

SGql~l(Eh) we have 7c^o = so, and by construction we get nh(so) ^ A(^o)- 
This implies either that h is not a function or that E^ is not a support of h 

and in both cases we get a contradiction to our assumption. 
(4) By fin(m) < 2m and fin(m) ^ seq(m) we get zm ^ seq(m), and 

the inequality seq(m) ^ 2m follows from seqM(m) ^ 2m and seqM(m) < 

seq(m). H 

7.2. The ordered Mostowski model. Now we shall construct the ordered 

Mostowski model (cf. also [13]). 
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Let the infinite set of atoms A be countable, and let <M be a linear order 

on A such that A is densely ordered and does not have a smallest or greatest 
element (thus A is isomorphic to the rational numbers). Let Q be the group 
of all order-preserving permutations of A, and let again 7fin be the ideal of 

the finite subsets of A. 

Let Vm (M for Mostowski) be the corresponding permutation model 

(given by Q and /fin), the so called ordered Mostowski model. 

Because all the sets in the ordered Mostowski model are symmetric, each 

subset of A has a finite support. By similar arguments as in the proof of 

Lemma 7.1.2 one can show 

Lemma 7.2.1. Let A be the set of atoms of the ordered Mostowski model 

and let m denote its cardinality, then Vm N No ^ 2m. 

For a finite set E C A, one can give a complete description ofthe subsets 

of A with support E and one gets the following 

Fact 7.2.2. If E C A is a finite set of cardinality n, then there are 22"+1 

sets S C A (in Vm) such that E is a support ofS. 

(For a proof see [7, p. 32].) 
In the following we investigate the relationships between some of the 

cardinals defined in section 3 in the ordered Mostowski model, where m will 

be cardinality ofthe set of atoms of Va/. 
Let m denote the cardinality of the set of atoms A (of the ordered 

Mostowski model). In Theorem 1 of [7] it is shown that im <* fin(m). Now, 

by Fact 5.1, we get i1? < z^M which implies (by the Cantor-Bernstein The? 

orem, as fin(m) < 2m) that the equation 22"1 = 2fin^ holds in the ordered 

Mostowski model. 

Unlike in the basic Fraenkel model, all the simple cardinalities defined in 

section 3 are comparable in the ordered Mostowski model: 

Proposition 7.2.3. Let m denote the cardinality ofthe set of atoms ofVM- 
Then the following holds in Vm'- 

m < fin(m) < 2m < seqM(m) < seq(m). 

Proof. Let A be the set of atoms A of the ordered Mostowski model. 

m < fin(m): It is obvious that the function /': A ?? fin(y_), defined by 

f(a) := {a}, is a one-to-one function from A into fin(^4). Now assume 

that there exists also a one-to-one function g from fin (A) into A. Let 

tfo ?= _f(0) and an+\ := g({ao,... ,an}) (for n G N). The co-sequence 

(ao, a\,... , an,...) is a one-to-one sequence of A, which implies that No < m, 
but this is a contradiction to Lemma 7.2.1. 

fin(m) < 2m: Because A is infinite, by Proposition 5.4(1 )we have fin(m) < 

2m. 

2m < seqH(rn): For a set S C A, let 

supp(S) := P|{ E G /fin : E is a support of S }; 

This content downloaded from 128.235.251.160 on Sun, 7 Dec 2014 21:43:15 PM
All use subject to JSTOR Terms and Conditions

Sh:699

http://www.jstor.org/page/info/about/policies/terms.jsp


RELATIONS BETWEEN CARDINALS IN THE ABSENCE OF AC 249 

then supp(S') is a support of S, too; in fact, it is the smallest support of S. Us? 

ing the order-relation "<M" on the set of atoms A, we can define an ordering 
on the set of finite subsets of A as follows. For two finite sets {ao,... ,an} and 

{bo,... ,bm}ofA,v/hereaj <M tf/+i and6/ <M bj+\ (for/ < wandy < m), 
let {ao,... , an}<fin{bo,... , bm} if and only if either ?<morfor?=wwe 

have 3/ < n\/j < i (aj = bj A a\ <M bj)). The ordering "<fin" on the finite 

subsets of A induces an ordering on the power-set of A (because every subset 

of A has a well-defined smallest finite support). Further, the order-relation 

"<A/" induces in a natural way an ordering on the set of all permutations of 

a given finite subset of A and we identify a permutation t of a finite subset 

{c0<M ... <M cw_i}with(T(c0),T(ci),... ,t(c?_i)) eseqMU). Nowwe 

choose 20 distinct atoms co <M c\ <M ... <M c^ of A and define a func? 

tion / from V(A) into seq11 (A) as follows. For S C A with | supp(S)| > 11, 
let f(S) be the kth permutation of supp(S), where S is the kth subset of A 

with smallest support supp(S) (this we can do because for | supp(5)| > 11 

wehave |supp(5)|! > 22Isupp(s)I+1). If supp(S) = {oq9... ,*/} for / < 9 

(where a\ < tf/+i), then we choose the first 10 elements (with respect to 

<M) of {co,... , c\v} which are not in supp(S), say {do,... , d$} and put 

f(S) = (ao,... ,ai,di0,... , dl9), where dtQ... dl9 is the (10! - k)ih permuta? 
tion ofdo-.-dg and S is the &th subset of A with smallest support supp(S). 

By Lemma 7.2.2, the function / is a well-defined one-to-one function from 

V(A) into seqlA(A). If there exists a one-to-one function from seqM(y_) into 

V(A), then, because n\ > 22w+1 + 2 for n > 10, we can build an one-to-one 

co-sequence of A, which is a contradiction to Lemma 7.2.1. 

seqM(m) < seq(m): Because each one-to-one sequence of A is a sequence 
ofA, wehave seq11 (A) =^ seq(A). Now assume that there exists also a one-to- 

one function g from seq(y_) into seq1-1 (A). Choose an arbitrary atom a G A 

and let sn := g((a, a,... , a)n), where (a,a,... , a)n denotes the sequence of 

{a} of length n. Because for every n G N, the sequence sn is a one-to-one 

sequence of A, for every n eN there exists a k > n and a b G A such that b 

occurs in s^ but for i < n, b does not occur in $,-. Because a sequence is an 

ordered set, with the function g we can build an one-to-one co-sequence of 

A, which contradicts Lemma 7.2.1. H 

Let again m denote the cardinality of the set of atoms of the ordered 

Mostowski model. Using some former facts and some arithmetical calcula- 

tions, by similar arguments as is the proof of Proposition 7.2.3 one can show 

that the following sequence of inequalities holds in the ordered Mostowski 

model: 

m < [m]2 < m2 < fin(m) < 2m < seqM(m) < fin2(m) 

< seqw(fin(m)) < fin(2m) < fin3(m) < fin4(m) 

< ? ? ? < fin"(m) < seq(m) < 2fin(m) = 22"\ 
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7.3. A custom-built permutation model. In the proof of Theorem 2 of [7], 
a permutation model Vs (s for sequences) is constructed in which there 

exists a cardinal number m such that Vs f= seq(m) < fin(m) and hence, 

Vs f= seqM(m) < fin(m). Specifically, m is the cardinality ofthe set of atoms 

ofV,. 
The set of atoms of Vs is built by induction, where every atom contains 

a finite sequence of atoms on a lower level. We will follow this idea, but 

instead of finite sequences we will put ordered pairs in the atoms. The model 

we finally get will be a model in which there exists a cardinal m, such that 

m2 < [m]2 (this is in fact a finite version of Theorem 2 of [7]). 
We construct by induction on n G N the following: 
(a) Ao is an arbitrary countable infinite set. 

(/?) Qo is the group of all permutations of Ao. 

(y) An+\ :=An0{(n + \,p,e) :peAnxAnAe G{0,1}}. 
(d) Qn+\ is the subgroup ofthe group of permutations of An+\ containing 

all permutations h such that for some gh e Qn and ?/, G {0,1} we have 

t(x) ifx G An, = (gh( 
^X) y . 

+ l,gh{ph?h +2?x) if x = (n + \,p,ex), 

where gh(p) = (gh(p\),gh(pi)) for p = (pupi) and +2 is the addition 

modulo 2. 

Let A := (J{ An : n e N } and let Aut(A) be the group of all permutations 
of A\ then 

G:={H e Aut(A) : Vn G N (H\An e Qn } 

is a group of permutations of A. Let T be the normal filter on Q generated 

by { fixg(E) : E C A is finite }, and let Vp (p for pairs) be the class of all 

hereditarily symmetric objects. 
Now we get the following 

Proposition 7.3.1. Let m denote the cardinality of the set of atoms A of 

Vp. Then we have Vp |= m2 < [m]2. 

Proof. First we show that Vp (= m2 < [m]2. For this it is sufficient to find 

a one-to-one function f eVp from A2 into [A]2. We define such a function 

as follows. For x, y e A let 

/?*. J>? := {(n + m + 1, (x,y),0), (n+m + l, (x,y), 1)}, 

where n and m are the smallest numbers with x e An and y G Am, respec? 

tively. For any n e Q and x, y e A we have nf((x,y)) = f((nx,ny)) and 

therefore, the function / is as desired and belongs to Vp. 
Now assume that there exists a one-to-one function g e Vp from [A]2 

into A2 and let Eg be a finite support of g. Without loss of generality 
we may assume that if (n + 1, (x,y),e) G Eg, then also x,y G Eg. Let 

k := \Eg\ and for x, y e A let g({x,y}) = 
(t?{xy}, t\xy}). 

Let r := k + 4 
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and let N := Ramsey(2, r2,3), where Ramsey(2, r2,3) is the least natural 

number such that for every coloring t : [Ramsey(2, r2,3)]2 ?? r2 we find a 

3-element subset H C Ramsey(2, r2,3) such that t|[#]2 is constant. (If p, 
r, m are natural numbers such that p < m and r > 0, then by the Ramsey 
Theorem (cf. [22, Theorem B]), Ramsey(Jp, r,m) is well-defined.) Choose 

N distinct elements xo, ..., x^-i G Ao \ ?g, let X = {xo,... , xat-i} and 

let Ch (h < k) be an enumeration of Eg. We define a coloring t : [X]2 ?? 

rxras follows. For {x/,*/} G [X]2 such that / < j let t({jc,-,jc/}) = 

(To({x/,A:7}),Ti({jc/,A:y})) where for / G {0,1} we define 

By the definition of N we find 3 elements xlQ, xn ,xneX with io <i\ < 12 
such that for / e {0,1}, t/ is constant on [{x^, xn, xl2}]2. So, for {x7/, xtj} e 

[{xiv xn, x,2}]2 with i < j and for / G {0,1}, we are at least in one of the 

following cases: 

(1) 
/U^} 

= 
^md/{^} 

= c*i. 

(2) 
/UAy}=c*md/fe/Uy}=^ 

(3) 
/U^}=c*md/K%} 

= 
^ 

(4) 
/U.M 

= 
x''md/{iv} 

= 
x^ 

(5) 
^j^on^uK,^}), 

(6) 
^^^N^U^o). 

If we are in case (1) or (2), then g({xlQ, xlx}) = g({xlQ, x,2}), and therefore 

g is not a one-to-one function. If we are in case (3), then g is also not a 

one-to-one function because g({xlQ, xl2}) = g({xn, xl2}). 
If we are in case (4), let n e fix(Eg) be such that nxlQ = xn and nxn = xlQ. 

Assume g({xlQ,xtl}) = (xlQ,xn) (the case when g({xlQ,xn}) = (x7,,x/0) 
is symmetric). Then we have n{xlQ,xlx) = {xlQ,xtl}, but ng({xlQ,xn}) = 

(x,{, xl2) ^ (xlQ, xn), and therefore g is not a function in Vp. 
If we are in case (5), let / G {0,1} be such that /( x , G Ao \ (?# U 

{x,0,xZl}) and let a := f( X/ ,. Take an arbitrary a' e Ao \ (?g U 

{a, x,0, xM }) and let 7c G fix(?gU{x/0, x7l}) be such that na = a1 and na' = a. 

Then we get n{xlQ,xn} = {x7o,x7,} but ng({xlQ,xn}) ^ g({xl0,xn}), and 

therefore g is not a function in V^. 
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Ifweareincase(6),let/ G {0,1} be such that/( v ^ G A\(EgUAo),thus 

ti Xi , 
= (/i + l, p,e) for some (/i-f-1, p,e) G y_. Letrc G fix(EgU{xl0,xn}) 

be such that 7c(? + \,p,e) = (n + \,p, 1 - e). Then we have 7c{x/0,x;i} = 

{x,0, xn } but 7cg({x,0, jcfl}) 7- g({x70, jc,! }), and therefore g is not a function 

in Vp. 
So, in all the cases, g is either not a function or it is not one-to-one, which 

contradicts our assumption and completes the proof. H 

7.4. On sequences and the power-set. The Theorem 2 of [7] states that the 

relation seq(m) < fin(m) is consistent with ZF. If we consider the permuta? 
tion model Vs (s for sequences) constructed in the proof of this theorem, we 

see that even more is consistent with ZF, namely 

Proposition 7.4.1. // is consistent with ZF that there exists a cardinal 

number m, such that seqw(m) < seq(m) < fin(m) < 2m. 

Proof. Let m denote the cardinality ofthe set of atoms ofthe permutation 
model V5 constructed in the proof of Theorem 2 of [7]. Then in V5 we have 

seqw(m) < seq(m) < fin(m) < 2m: 

The inequality seq(m) < fin(m) is Theorem 2 of [7] and because m is 

infinite, by Proposition 5.4 (1), we also get fin(m) < 2m. 

To see that also seqM(m) < seq(m) holds in V5, assume that there exists 

(in V) a one-to-one function from seq(m) into seqM(m). Such a one-to-one 

function would generate a function / G V from No into m, but because 

/?as an element of V?has a finite support, this is impossible. H 

In the remainder of this section we show that it is consistent with ZF that 

there exists a cardinal number m such that seqM(m) < 2m < seq(m). For 

this we construct a permutation model Vc (c for categorical) where m will 

be the cardinality ofthe set of atoms of Vc. 
Let L be the signature containing the binary relation symbol "<" and for 

each n G N an (n + l)-ary relation symbol Rn. Let To be the following 

theory: 

(a) < is a linear order, 

(P) for each n e N,: Rn(z0,... , z?) -? 
A/?-m(z/ ^ *m). 

Let K = { N : N is a finitely generated structure of To }; then K ^ 0 and 

further we have the following fact (cf. also [11, p. 325]). 

Fact 7.4.2. K has the amalgamation property. 

Proof. If N0 C Nx e K, N0 C N2 e K and N{ n N2 = N0, then we 

can define slxiN e K such that dom(iV) = dom(iVi) U dom(iV2), N\ C N, 

N2 C N, <Ni U <^c<* and for any n G N we have Z?^1 U /?^2 = R%. H 

As a consequence of Fact 7.4.2 we get the 

Lemma 7.4.3. There exists (up to isomorphism) a unique structure M of 

To such that the cardinality of dom(M) is No, each structure N G K can be 
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embeddedin M and every isomorphism between finitely generated substructures 

ofM (between two structures ofK) extends to an automorphism of M. 

Proof. For a proof see, e.g., Theorem 7.1.2 of [11]. H 

Therefore, Th(M) is No-categorical and, because every isomorphism be? 

tween finitely generated substructures of M extends to an automorphism of 

M, the structure M has non-trivial automorphisms. 
Now we construct the permutation model Vc as follows. The set dom(M) 

constitutes the set of atoms A of Vc and Q is the group of all permutations n 

of A such that: M |= x <M y if and only if M \= nx <M ny and for each 

n eN, M \= Rn(zo,... ,zn) ifand only if M |= Rn(nzo,... , nzn). In fact, 
the group Q is the group of all automorphisms of M. Further, let T be the 

normal filter on Q generated by { fix(E)g : E C A is finite } and let Vc be the 

class of all hereditarily symmetric objects. 

Notation. If i + k = n and y = (yo,... , yn-\), then we write Rj,k(x, y) 

insteadofi?w(^0..- ,yi-\,x,yi,.. .^7+^-i). If* = 0>we write just Rn(x,y). 

The following lemma follows from the fact that every isomorphism be? 

tween two structures of K extends to an automorphism of M and from the 

fact that Th(M) is No-categorical (cf. also [11, Theorem 7.3.1]). 

Lemma 7.4.4. For every set S C A in Vc there exists a unique smallest 

support supp(S) and for each finite set E C A, the set 

{S CA:S eVcA supp(S) = E } 

isfinite. 

Proof. For n e N let E = {eo,... , en-\) C A be a finite set of atoms. 

Further, let ?e the set of all atomic L-formulas <pt(x) such that we have 

ipi(x) is either the formula x = ej (for some j < n) or x <M ej (for some 

j < n) or Rt,k(x, e) (for i+k < n and e e seq11 (E)). For an atom a e A let 

*e{o) := {ipi(x) e?E:M[= tp,(a) }; 

thus, #?(#) is the set of all atomic formulas in ?e such that ipi(a) holds in 

M. 

Take an arbitrary S C A in Vc and let E be a support of S. If s, t e A 

are such that ^eU) = &e(s), then we find (by construction of M and Q) a 

permutation n e fix?(2s) such that ns = t and therefore we have s e S if 

and only ifteS. Hence, the set S is determined by {#?(.?) : s e S}, which 

is a finite set of finite sets of atomic formulas. 

Now we show that if E\ and E2 are two distinct supports of a set S C A, 
then E\ (IE2 is also a support of S. UE\ C 2s2 or E2Q E\, then it is obvious 

that E\ n E2 is a support of S. So, assume that E\ \ E2 and E2 \ ?1 are 

both non-empty and let Eo := E\ n ?2. Take an arbitrary so G 5 and let 

#0 := #?<)(5o)- Let t e Abe any atom such that 0?o(f) = i?o- We have to 

show that also t e S. If x = ej belongs to i?o (and thus ej e Eq), then 

This content downloaded from 128.235.251.160 on Sun, 7 Dec 2014 21:43:15 PM
All use subject to JSTOR Terms and Conditions

Sh:699

http://www.jstor.org/page/info/about/policies/terms.jsp


254 LORENZ HALBEISEN AND SAHARON SHELAH 

so = t = ej and we have t e S. So, assume that x = ej does not belong to i?o 

(for any ej G Eo). Ifx = e\ does not belong to i?^ (/), let t' := t. Otherwise, 
if x = et belongs to i?^ (/), because tf_?0(0 = ^o and Eo = E\ n E2 we have 

et G E\ \ E2. By construction of M we find a /' G A such that /' ^ E\ and 

tf?2(/') = tfjj2(0, hence, t' e S ?=? / G S. Now let 

S2 := {#e2(s) : s G 5A^2Wn^0W = tf0}. 

Because /' ^ E\ we find (again by construction of M) a, t" E A such 

that tiEx{t") = $Ex{t') and tiE2(t") G S2. Now, by tiE2(t") e S2 we have 

t" G 5, by ^(f") = tiE{(tf) we have /" G 5 <^=)> /' G S, and because 

/' e S <=> t G 5 we finally get / G S. 

Hence, supp(S) := C\{E : E isa support of S } is a support of S and by 
construction it is unique. H 

Now we are ready to prove the 

Proposition 7.4.5. Let m denote the cardinality ofthe set of atoms ofVc\ 
then we have Vc \= seqM(m) < 2m < seq(m). 

Proof. First we show Vc \= seqM(m) < 2m. For y = 0>o>-.- >yn-\) ? 

seq WU) let 

0>(y):{xeA:M[=Rn(x,y)}. 

By the construction of Vc, the function <_> belongs to Vc and is a one-to- 

one mapping from seq1"1 (A) to V(A). Hence, Vc \= seqM(m) < 2m and 

because (by Proposition 5.4 (2)) seqM(m) ^ 2m is provable in ZF, we get 
Vc hseqM(m)<2m. 

To see that Vc \= 2m < seq(m), notice first that by Proposition 5.4 (3), 
the inequality seq(m) ^ 2m is provable in ZF, and therefore it is enough to 

find a one-to-one function from V(A) into seq(A) which lies in Vc. For each 

finite set E C A, let t/e be an enumeration of the set 0?. (The function 

E i?> rjE exists as <M is a linear order on the finite set E.) Then by the 

Lemma 7.4.4 and its proof, for each finite set E C A, y\e induces a mapping 
from {S C A : supp(S) = E} into k, for some k G N. Now fix two distinct 

atoms a, b G A and let 

V:V(A) ?>seqU) 

S '?? (^o, ??? ,en-\,a,b,... ,b) 

be defined as follows: E = {eo,... ,en-\} := supp(S) such that eo <M 
? ? ? <M en-\ and the length ofthe sequence *F(S) is equal to n + 1 + /, where 

rjE maps S to /. The function *F is as desired, because it is a one-to-one 

function from V(A) into seq(y_) which lies in Vc. H 

Remark. Because the relation <M is a dense linear order on the set of 

atoms of Vc, with similar arguments as in the proof ofthe Proposition 7.2.3 

one can show that Vc \= fin(m) < seq11 (m) (where m denotes the cardinality 
of the atoms of Vc). 
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?8. Cardinals related to the power-set. In this section we compare the 

cardinalities of some sets which are related to the power-set. First we consider 

the power-set itself and afterwards we give some results involving the set of 

partitions. 
The following fact can be found also in [20] or [23, VIII2 Ex. 9], However, 

we want to give here a combinatorial proof of this fact. 

Fact 8.1. If N0 < zm, then i*? < 2m. 

Proof. Take an arbitrary m G m. Because No < 2m, we find an one-to-one 

cw-sequence (po, p\,... ,pn,...) ofV(m). Define an equivalence relation on 

m by 

x ~ y if and only if \/n e N (x ? pn *-+ y e pn), 

and let [x] := { y G m : y ~ x }. For x G m let g[x] := { n G N : x G pn }; 
then, for every x G m, we have g[x] C N and g[x] = g[y] if and only if 

[jc] = [y]. We can consider g[x] as an co-sequence of {0,1} by stipulating 

g[x](n) = Oifx G pn and g[x](n) = 1 if x ? pn. Now we define an ordering 
on the set { g[x] : x G m } as follows: 

g[x] <g g[y] ifand only if 

3neN (g[x](n) < g[y](n) AVk < n (g[x](k) = g[y](k))). 

This is a total order on the set { g[x] : x G m }. Let P? := { g[x] : g[x](n) = 

0 }; then for each n G N the set P? is a set of co-sequences of {0,1}. The 

order relation <^ defines an ordering on each P? and we must have one of 

the following two cases: 

Case 1. For each n G N, P? is well-ordered by <^. 

Case 2. There exists a least n eN such that P? is not well-ordered by the 

relation <^. 

If we are in case 1, then we find a well-ordering on U?gn^2- Let the 

ordinal a denote its order-type; then a > co (otherwise the ca-sequence 

(Po>Pi>- ? ?) would not be one-to-one) and therefore we can build a one- 

to-one co-sequence (g[xo],g[x\],...) of {g[x] : x G m}. If we define 

q\ := { x G m : g[x] = g[xj]}, then the set Q := { q\ : i G N } is a set of 

pairwise disjoint subsets of m of cardinality No. Therefore, the cardinality 
of V(Q) is 2**? and because for q C Q the function ip(q) := [Jq C m is a 

one-to-one function, we get 2**? < 2m. 

If we are in case 2, let n be the least natural number such that P? is not well- 

ordered by <?. Let So := U{ s Q P? : s has no smallest element}. Then 

So C P% has no smallest element, too. For k G N we define 5^+i as follows. 

If Sk n P^+1 
= 0, then S*+1 := Sk; otherwise, Sk+{ := Sk n P*+k+l. By 

construction, for every k G N, the set S^ is not the empty set and it is not 

well-ordered by <g. Thus, for every k G N there exists an / > k such that 
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5/ is a proper subset of S^. Now let (Sko, Skl,...) be such that for all i < j 
we have Ski \ S^ ^ 0 and let qx? := { x e m : g[x] e (Ski \ Sk.+l }. Then 

the set Q := { qt? : i e N } is again a set of pairwise disjoint subsets of m of 

cardinality No and we can proceed as above. H 

Fact 8.2. If No ^ 2m, then for every natural number n we have n ? 2m < 

(/i + 1) ? 2m andif? <?mwe also have znm < 2(w+1)m. 

Proof. We will give the proof only for the former case, since the proof 
of the latter case is similar. Let n be an arbitrary natural number. It is 

obvious that we have n ? 2m < (n + 1) ? 2m. So, for an m e m, let us 

assume that we also have a one-to-one function / from (n + 1) x V(m) 
into n x V(m). For k > 1 let (so,... , ty-i)* be a one-to-one A>sequence 

ofV(m) and let Uk := {sj : i < k }. We can order the set (n + 1) x JJk as 

follows: (lj,Sj) <u (lj,Sj) ifand only if either i < j or i = j and /,? < //. 
Because |(/i + 1) x Uk\ = (n + 1) ? k and A: > 1, we have (n + l) -k> n-k 

and hence there exists a first (//,$/) (with respect to <u), such that the 

second component of /((//, J/)) does not belong to C/^. Now we define 

sk := f((lj,Sj)) and the (k + l)-sequence (so,... ,^)a:+i is a one-to-one 

sequence of V(m). Repeating this construction, we finally get an one-to- 

one co-sequence of V(m). But this is a contradiction to No % 2m. So, our 

assumption was wrong and we must have n ? 2m < (n + 1) ? 2m. H 

Because it is consistent with ZF that there exists an infinite cardinal number 

m such that No ^ 2m (see Lemma 7.1.2), it is also consistent with ZF that 

there exists an infinite cardinal m such that 2m < 2m + 2m. Concerning z1?, 
Hans Lauchli proved in ZF that for every infinite cardinal number m we have 

2zm + 2zm _ 2zm (see [17]). in particular, he got this result as a corollary of 

the following: It is provable in ZF that for any infinite cardinal m we have 

(2fin(m))No = 2fin(m) (cf [17])# Now? because 2m = fin(m) + q (for some q), 

we have z1? = z^m^ = 2fin<m) - z\ and therefore, z1? = (2fin(m))^? 
. z* > 

2fin(m).2fin(m).2q > 2.2fin(m)+q = ^ + ^ ? and the eqUation 22"1 + 22"1 = 22"1 

follows by the Cantor-Bernstein Theorem. 

Now we give some results concerning the set of partitions of a given set. 

A set p C V(m) is a partition of m if p is a set of pairwise disjoint, 

non-empty sets such that \Jp = m. We denote the set of all partitions of 

a set m by part(m) and the cardinality of part(w) by part(m). Because 

each partition of m is a subset of the power set of m, we obviously have 

part(m) < z1?. It is also easy to see that if m has more than 4 elements, then 

2m < part(m). If we assume the axiom of choice, then for every infinite set 

m we have 2m = part(m) (cf. [23, XVII.4 Ex. 3]). But it is consistent with 

ZF that there exists an infinite set m such that 2m < part(m). Moreover we 

have the following 

Proposition 8.3. If m > 5 and N0 ^ 2m, then zm < part(m). 
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Proof. For a finite m > 5, it is easy to compute that 2m < part(m). So, 
let us assume that m is infinite and take m G m. Because m has more than 

4 elements we have V(m) ^ part(ra). Now let us further assume that there 

exists a one-to-one function / from part(ra) into V(m). First we choose 

4 distinct elements ao, a\, a2, a->> from m. Let a := {at} (for i < 4) and 

C4 := m n U{ ct : i < 4 }; then P$ := { c,? : i < 4 } is a partition of m with 

\P5\ = 5. 

Let Sn = (Ao,... , Xn-\)h be a one-to-one sequence of V(m) of length 
A. With respect to the sequence Sh we define an equivalence relation on 

m as follows. x ~ y if and only if for all i < h: x G A^ <=> y G A"/. 
For x G m let [jc] := {y G m : y ~ x } and let Xx'h ?? {0,1} be such 

that *x(i) = 0 if and only if x G X\. Notice that we have Xx = Xy if and 

only if x ~ j;. We define an ordering on the set of equivalence classes by 

stipulating [x] <x [y] if there exists an i < h such that Xx(i) < Xy(i) and 

for all j < i we have Xx(j) = XyU)- Further, for k = \{ [x] : x G m }|, let 

pk = C(Sh) := {[x] : x G m }; then Pk is a partition of m with |_?^l = k. 

Let us assume that, for some k > 5, we already have constructed a partition 

Pk = {c0,... ,<*_i} G part(m) with |_?^| = k, where P* = C(5A) and 

Sh = (Ao,... ^^-i)/, G seqw(P(/w)) (for some /z). Every partition of A: 

induces naturally a partition of m, and thus we get a one-to-one mapping 
i from part(A:) into part(m). Since A: is a natural number, part(A:) can 

be ordered canonically, and because k > 5, we have |part(&)| > |P(A:)|. 
Hence, we find a first partition q of k (first in the sense of the ordering on 

part(A:)) such that the set f(i(q)) is not the union of elements of _V We 

define Xh := f(i(q)), Sh+X := (X0,... ,Xh)h+l and Pk, := C(Sh+{), where 

k' = \C(Sn+\)\. Repeating this construction, we finally get a one-to-one 

co-sequence of V(m). But this is a contradiction to No ^ 2m and therefore 

we have part(m) ^ V(m) and by V(m) ^ part(m) we get 2m < part(m). H 

One can consider a partition of a set m also as a subset of [m]2. To 

see this, let /: part(m) ?> V([m]2) be such that for p G part(m) we have 

{i,j} G /(/?) if and only if 3b e p ({i,j} Q b). Therefore, for any cardinal 

m we have part(m) < 2[m) and as a consequence we get 

Fact 8.4. If m > 4 and N0 ? 2m, /A^ 2m < 2M2. 

Proof. This follows from the Fact 8.3 and the fact that part(m) < 2tml2. 
H 

Let CH(m) be the following statement: If n is a cardinal number such that 

m < n < 2m, then n = m or n = 2m. Specker showed in [24] that if CH(m) 
holds for every infinite cardinal m, then we have the axiom of choice. 

Concerning the set of partitions we get the following easy 

Fact 8.5. If m is infinite and CH(m) holds, then part(m) = 2m. 

Proof. Note that m < [m]2 < fin(m) < 2m and therefore, by CH(m), we 

must have m = [m]2, and by 2m < part(m) < 2[m] we get part(m) = 2m. H 
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The assumption in Fact 8.5 is of course very strong. For example it is also 

consistent with ZF that there exists an infinite set m such that [m]2 > m; e.g., 
let m be the set of atoms in the basic Fraenkel model or in the model Vp). 
Moreover, in the second Cohen model constructed in [13, 5.4]?which is a 

symmetric model?there exists a set m such that No < [m]2, No % m and 

N0 <* m. 

One cannot expect that the cardinality of a partition p e part(ra) is 

very large: If p is a partition of m and p its cardinality, then p <* m 

and (by Fact 5.1) we get 2P < 2m, which implies p < 2m. On the other 

hand, for p e part(w) we can have p > m. To see this, take any two 

cardinal numbers n and m such that n < m and m <* n (examples for such 

cardinals can be found, e.g., in [7]). Now take m e xn and n e n, then by 
the definition of <* there exists a function / from n onto m and the set 

p := { { x e n : f(x) = y} : y e m} is a, partition of n of cardinality m. 

Moreover, this can also happen even if we partition the real line: 

Fact 8.6. // is consistent with ZF that the real line can bepartitioned into 

a family p, such that p > 2**?, where 2**? is the cardinality ofthe set ofthe real 

numbers. 

Proof. Specker showed in [25, II 3.32] that if the real numbers are the 

countable union of countable sets, then Nj and 2**? are incomparable. Fur- 

thermore, Henri Lebesgue gave in [19] a proof that Ni <* 2**? (see also 

[23, XV 2]). Therefore we can decompose effectively the interval (0,1) into 

Ni disjoint non-empty sets and obtain a decomposition ofthe real line into 

Ni + 2*? disjoint non-empty sets. If Ni ^2*?, then 2*? < Ni + 2*?. Hence, 
in the model of Solomon Feferman and Azriel Levy (cf. [4])?in which the 

real numbers are the countable union of countable sets?we find a decom? 

position of the real line into more than 2**? disjoint non-empty sets (see also 

[23, p. 372]). H 

?9. Summary. First we summarize the results we got in the sections 5 and 

7 by listing all the possible relationships between the cardinal numbers m, 

fin(m), seqM(m), seq(m) and 2m, where the cardinal number m is infinite, in 

Table 1. 

One has to read Table 1 from the left to the right and upwards. The number 

over a relation refers to the section where the relation was mentioned. 

For any infinite cardinal number m, if seq1"1 (m), seq(m) and 2m are all com- 

parable, the only relations between these three cardinals which are consistent 

with ZF are the following: 

(i) seqM(m) = seq(m) < 2m (this is true for m = No) 

(ii) seqM(m) < seq(m) < 2m (see section 7.4) 

(iii) seqM(m) < 2m < seq(m) (see section 7.4) 

(iv) 2m < seqM(m) < seq(m) (see section 7.2). 
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TABLE 1 

To see this, remember that by Proposition 5.4 (2) and (3), the inequalities 

seqM(m) ^ 2m and seq(m) ^ 2m are both provable in ZF, and further notice 

that seqM(m) = seq(m) implies No < m which implies 2m j? seqM(m) (cf. 

[7, Lemma]). So, in ZF it is provable that there exists no cardinal m such 

that 2m < seqw(m) = seq(m). 
Some other relationships which are provable without the axiom of choice 

are the following. 

1. m2 > No -? m > No (see [23, VIII 2 Ex. 5]). 
2. 2m < 2*? -? m < N0 (this means that m is finite) (see [23, VIII 2 Ex. 

3]). 
3. (m it N0 A m < z*?) -? z*? < zm (see [23, VIII 2 Ex. 2]). 
4. N0 < 2m -? 2*? < 2m (see [23, VIII 2 Ex. 9] or Fact 8.1). 
5. N0 < 2m -> 2m ? fin(m)w (where neN) (see [7, p. 36]). 
6. No < 2m ?? 2m ^ finw(m) (the proof is similar to the proof of the 

previousfact9). 
7. n x fin(m) = 2m -> n = 2k (where n,k eN) (see [7, p. 36]). 
8. N0 < 2m -? 2m ^ seqM(m) (see [7, Lemma]). 
9. No < m ?? 2m ^ seq(m) (the proofis similar to the proof ofthe Lemma 

of[7]). 
10. 22tn ,6 2^ (see [23, VIII 2 Ex. 7]). 

11. (2fin(m))Ho = 2fin(m)(see[17]). 
12. For every n e N we have No ^ 2m ?? n ? 

13. 22tn + 22tn = 22"1 (see [17] or section 8). 

2m < (n + 1) ? 2m (see section 
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For each of the following statements we find a permutation model in 

which there exists an infinite set m witnessing the corresponding result, and 

therefore, by the Jech-Sochor Embedding Theorem, the following statements 

are consistent with ZF. 

14. n x fin(m) = 2m (for any n G N ofthe form n = 2*+1) (see [7]). 
15. No < 22"1 = 2fin(m) (see [7, Theorem 1]). 
16. m2 < [m]2 (see section 7.3). 
17. fin(m) < seqM(m) < zm < seq(m) (see section 7.4). 
18. seqM(m) < seq(m) < fin(m) < zm (see section 7.4). 
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