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We show how to build various models of first-order theories, which also have properties 
like: tree with only definable branches, atomic Boolean algebras or ordered fields with only 
definable automorphisms. 

For this we use a set-theoretic assertion, which may be interesting by itself on the existence of 
quite generic subsets of suitable partial orders of power A+, which follows from 0, and even 
weaker hypotheses (e.g., A =X,, or A strongly inaccessible). For a related assertion, which is 
equivalent to the morass see Shelah and Stanley [16]. 

The various specific constructions serve also as examples of how to use this set-theoretic 
lemma. We apply the method to construct rigid ordered fields, rigid atomic Boolean algebras, 
trees with only definable branches; all in successors of regular cardinals under appropriate set- 
theoretic assumptions. So we are able to answer (under suitable set-theoretic assumptions) the 
following algebraic question. 

Saltzman’s Question. Is there a rigid real closed field, which is not a subfield of the reals? 

0. Introduction 

We continue here [S] and [9]. In fact, Sections 1, 3,4 and half of Section 2 were 

done together with [S] and [9] (but not the use of (DO,); Sections 2 and 5 were 

done later. 

We thank Wilfred Hodges for rewriting Sections 1 and 2 (which the author 

somewhat revised mainly adding 2.2-2.7). 

We try here to axiomatize the building of a model of power At by an increasing 

chain of models of power A, using terminology of forcing (note the close affinity of 

genericity and omitting types). See [14] (for A = K,) and Giorgetta and Shelah [3] 

(on 2’0). Let us review the paper. 

1. r-big formulas 

r will tell us which formulas q(x) (over M) are big, so that the non r-big 

formulas over A4 form an ideal; we shall describe how to build generically an 

elementary extension of M in which a distinguished element realizes a r-big type 

over M. In our case ]lMl<A, and the extension is built by approximations of 

power <A. 
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184 S. Shelah 

2. Iteration and an existence theorem 

We describe how to build a model of power A+ by a continuous chain M, 
(a <A’), each M, of power <A, where h4_+r is built as in Section 1 (over K). We 
describe the corresponding forcing. A closely related work is Bruce [7]. 

The problem is how for limit 6 <A+ of cofinality <A to continue. We state a 
theorem (Theorem 2.12) saying we could do it, but we delay the proof of that 
theorem to our next paper [13]. 

Later we state a set-theoretic lemma, Theorem 2.17, which follows from the 
diamond for A (0,). This lemma says that quite generic subsets exist for 
A-complete partial orders P of power A+, (which satisfy the A’-chain condition, 
and more conditions). For a companion lemma, with stronger set-theoretic 
hypothesis (a suitable morass) but having a weaker condition on P, see Shelah and 
Stanley [16]. 

Theorem 2.17 implies that the construction in 2.12 works. 

Problem. In Theorem 2.17 can we replace the hypothesis (De), by A = A<“? 

Remarks. We assume X0 + 1 T] < A. If we want to deal with the case 1 TI = A, we can 
do this, but sometimes there are problems. We cannot use [8, 1.9.11 (nor reprove 
it for A-compact models). This seems crucial in 4.3 (and 5.2, 5.3). In 4.9, 5.1 there 
are no problems (see below). In [13] we shall deal with this, and of course with 
A =X1. 

However if “cp(x, ti) is r-big in M” is determined by the &-type that ti realizes 
in M, L, E L, IL,] <A, our proofs work with no essential change. 

3. The basic lemmas of the (D4?)h-free method 

In [S, Ql, 421 we use a method which does not require (De),, (only A = AcA was 
required), and by it we originally proved some of the theorems here. But at 
present it is doubtful whether it is worthwhile to work for replacing (De), by 
A=A’” as 

(a) Given GCH this adds only one cardinal: K, (see [lo]). 
(b) Even this gain is doubtful as the problem above is open. 
Here we represent the basic lemmas for general r which make the older 

method of [S] work. For understanding their value you should look there. 
Note that the discussion above does not invalidate their value, as they are 

helpful even when there is no A such that A = A<” >K, (see [9].) 

4. Applications with diamond 

We represent here some applications assuming always (De), and assuming 
0 {s<h+:cfs=h). 

In 4.1 we see (with the diamond) that our general construction suffices to do 
[Ill]; the cases mentioned in [ll] for A >K, are left to the reader as exercises. 
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Models with second order properties 185 

In 4.3 we prove that there is a model of T such that e.g., if A is an atomic 

Boolean algebra definable in the model, then any automorphism of A is definable 

in the mode1 by a first-order formula with parameters. So here we improve the 

result of [S, 011: A is not longer required to be strongly inaccessible. 

In 4.9-4.11 we prove a similar result for ordered fields. 

5. More applications: trees with no branches and the strong independence property 
revisited under GCH 

In 5.1 we prove that if T is a complete theory in L(Q), with (Qx) interpreted as 

“there are >A x’s”, then (if (Da), holds) T has a mode1 such that any definable 

tree whose set of levels has cofinality At has no undefinable branches. 

In 5.2 we reprove 4.3 under the weaker hypothesis (DC), +2” = A’, and in 5.3 

we reprove 4.3 under the hypothesis (DC), + (3~) (p <A ~2”). 

Concluding remarks. (1) In order to really understand the method presented 

here in Sections 1 and 2 the reader has to read the applications. Note also that 

instead of A+ we can use other orders of power A’, preferably A’-like, and 2.17 

can still handle them. I think the method should be applicable to most problems 

of the form: is there a mode1 of T with no expansions satisfying some T’, Tc T’ 
(when A-saturation does not make a harm.) 

(2) A serious problem is to get similar results from ZFC alone. 

(3) Salzman has aked: Is every rigid ordered field embeddable into the reals? 

The answer is negative (under suitable set theoretic hypotheses). This follows 

from 4.11 and the observation that if there are parameters d in a real-closed field 

K such that some formula 4(x, y, 5) defines a non-trivial automorphism of K, 

then (by completeness of the theory of real-closed fields) the same must hold for 

the reals, which is impossible. 

(4) There is some parallelism between this paper and [12]. There we interpret 

‘complicated theory’ by unstable, and prove that T is unstable iff it has the 

independence property or the strict order property. Here we prove results on 

existence of models with only definable automorphisms for essentially two cases- 

the strong independence property and ordered field (the field structure is not 

essential-just used to carry a definition of an automorphism from an interval to 

the whole order). 

This parallelism is not totally incidential; look at the following property of T: 

(Pr) For any theory T,, TS T1, and any cardinal A > ITI1 such that (Da), and 

01S<A+:cf6=Al hold, T1 has a model M which satisfies: 

(i) M has cardinality A+. 

(ii) M is A-saturated, moreover any formula which is not algebraic, is realized 

by 11Mlj elements. 

(iii) Every automorphism of MrL(T) is definable (by an L(T,) formula with 

parameters). 
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186 S. Shelah 

By the methods of [12, Ch. VI, OS], it should be clear to the reader that for 
stable T (Pr) fails badly.’ In fact there is T1 such that for any IT)+-saturated model 
of T,, MlL(T) is saturated, provided that any infinite definable set has cardinality 

I\MlI. 
From another point of view we can ask when the notion r-big has cases of 

some interest. If A is a finite set of formulas: {cpt(X; jjl) : 1 <n}, we call p(X) r,-big 
if R”(p, A, X,) SW. 

This is nonempty iff R”‘(% = X, A, X0) 2 o ; this occurs for some r, iff T is 
unstable. 

Notice that any r,-big type p has two contradictory r,-big extensions and then 
call p not r,-isolated. Clearly if any r-big type p has a r-big type p’ extending 
it which is r-isolated, then r-bigness is totally uninteresting from our point of 
view. At last notice that if (for r a bigness notion) p is r-big but has no 
r-isolated extension, then T is unstable. 

(5) In all cases, we could have defined 2’+ models, non-isomorphic and even no 
e.g. Boolean algebra defined in one is embeddable into a Boolean algebra defined 
in another. 

Notation. Standard, see e.g. [12]. Note that cp if(statement) denotes q if the statement 

is true and lcp if the statement is false. 
We let A, K be fixed regular cardinals, usually A = A’” >X,. 
We let L denote a vocabulary of power G+ (i.e. set of predicates, each with 

finite number of places. We treat function symbols and functions as predicates and 
relations in the usual way.) 

We reserve L itself for a fixed vocabulary and let L with indexes denote 
extensions of it (still of power <A). 

We let T be a fixed complete theory in L,,, (i.e. first-order logic on L), always 
we shall assume that L is the vocabulary of the theory T. 

For a model M, let LM be its vocabulary and we call M an L”-model. For L’ a 
vocabulary, let ML’ = Ml L’ be the (L’ tl L”)-reduct of M. We say M is an 

expanded model of T if ML is a model of T. We say that N = Ni vN, if 
INI = INil U IN~I, LN = LNl U LNz, and RN = RN1 U RN2 where for R E LN - LNe, we 

stipulate RN,-, = @. We say that N is a st. L-el. extension [i.e. strict L-elementary 
extension] of M if NL is an elementary extension of ML and N = NL v M. We let 
L’(M) be L’ extended by an individual constant for each member of M (SO if 
L’ = L”, M has a canonical expansion to an L’(M)-model M’; we do not 
distinguish between M and M’). Note L”# L(M). 

The letter 6p denotes a fragment of some L:+,, i.e. a set of <A formulas from 
L : i,K each with <K free variables, containing the formulas of L&,, closed under 
subformulas, and if CY <K, B <K and cpi EL (i <p) then lcpO, l\i<B Cpi, 

’ By [12, Lemma II 3.101 it is enough that M is IT\+-saturated (or even F&,-saturated) and that 

every infinite indiscernible set I has dimension (IM((. If T, is rich enough there is a definable set 
indiscernible for I,(T), which include infinitely many members of 1 (because M, is ITI+-saturated). 

This set has power JIM\\, so we finish. 
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Models with second order properties 187 

(3 ’ . ’ Xj ’ ’ ‘)j<a(PO are in 9. We let Z(M) be the set of cp E 3’ when we substitute 
members of M for some of the free variables. 

For a set of formulas @, X a set of free variables let @ YX = {cp E @: all free 
variables of cp belong to X}. FV(@) is the set of free variables of @. 

1. r-big form&s 

1.1. Description of the constmction. Let M be an expanded model of T of 
cardinality h and 6p a fragment of LF,*. 

We shall construct a st. L-el. extension N of M by building a continuous 
increasing chain (@i)i<k of sets of formulas’ of L(M), SO that CD,, = Ui<, aji is the 
complete diagram of NL. In Section 2 below we shall iterate this construction A+ 
times to produce a model of cardinality h’. 

The chain (cD~)~<* is built by induction on i, and each Gi has cardinality <A. As 
we build the chain we shall aim to perform three separate tasks, as follows: 

Task I. The union CD* must be the complete diagaam of an elementary extension 
NL of ML. 

Task II. NL must have an element (labelled x) whose type over ML is ‘big’ in a 
sense made precise below. 

Task III. Every sentence of Z(N) which is satisfied by N must be ‘forced’ by 

some Gi (i <A). 

1.U. Remark. Instead of x we can work with a sequence of <A variables X and 

this does not change Sections 1 and 2 at all. 

1.2. De&&ion (of bigness). (a) A functional (for L) is a sentence, possibly 
infinitary, whose symbols are symbols of L together with one new l-ary relation 
symbol P. If r is a functional for L and ~(x, 7) is a formula (note necessarily from 
L), we write T(cp) or Qx cp(x, 7) for the formula which results if we put cp(z, 7) in 
place of each subformula Pz of r, avoiding clash of variables. Note that the 
operation r( > commutes with substituting terms for free variables, so that the 
expression Qx cp(x, ii) is unambiguous. 

(b) For K a class of L-models, a notion of bigness (for K) is a function r for L 
such that any ME K satisfies the following axioms, for all first-order formulas 

cp(x, Y) and 4(x, 3: 

(1) v~(vx(‘~~$)~Qxcp+=Q~~), 

(2) WQx(cpv~)+QxcpvQx~), 

(3) WQx cp -+ 3=*x c+,>, 

(4) Qxx=x. 

* First-order logic. 
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188 s. Shelah 

We write & cp for 1Qx lcp. Note that Axiom 1 implies Vy(Vx(cp + $)A 
& cp -+ ox $I), and Axiom 2 implies Vy(& cp A 0.x I& + & (cp A 4)). 

When K is the class of models of T [of power A] we say r is a notion of bigness 
for T [for (T, A)]. 

(c) Let M be a model of K, ii a sequence of elements of A4 and r a notion of 
bigness for K. We say that ~((x, 6) is r-big (in M) if Qx cp(x, a) holds in M. A 
formula which is not r-big (in M) is ~-small (in M). A r-big type p(x) is a set of 
formulas 4,(x, a), any conjunction of which is r-big 

(d) Example. Let x be an infinite cardinal, and let Qx cp(x, 7) be the formula 
which says “At least x elements x satisfy cp(x, 9)“. This defines a notion of 
bigness. 

1.3. Definition (of conditions). Let r be a notion of bigness for T and M a model 
of T. A condition (strictly, a r-condition over M) is a set ?P of <A formulas of 
L(M) whose free variables are among x and yi (i <A), such that for every 
conjunction 4(x, jj) of finitely many formulas from !P, MkQx 37 4. 

Really, we should have said a (T, A)-condition, and note that for A <A,, any 
(r, A)-condition is a (r, A,)-condition. 

1.4. Lemmas (on conditions). r and M are as in 1.3. 
(a) There exist conditions. (Proof. Axiom 4 in Definition 1.2.) 
(b) A subset of a condition is a condition, and the union of a chain of conditions 

is a condition provided it has cardinality <A. 
(c) If P is a condition and cp(x, 7) is a formula of L(M), then either ?PU{(cp} or 

!P U {lq} is a condition. (Proof. If P U (40) is not a condition, then there is a finite 
part +!J of !P such that Mt=lQx 37 ($r\cp). But by Axiom 1, Mb 
Qx3y(+r\(cpvlcp)), and so by Axiom 2 either MkQx3y ($~cp) or M!= 
Qx 37 (+~lcp). Hence MkQx 39 (@Al(p), and the same argument applies if we 
add to I& any other formulas from P.) 

(d) Let P be a condition and @(x, 9, z) a set of formulas such that for every 

conjunction cp(x, y, z) of a finite number of formulas from @, !P contains 
3z cp(x, 1, z). Then for some variable yi, PU @(x, 7, yi) is a condition. (Proof. If 
not, then there are finite parts 4(x, y) and cp(x, 7, z) of !P and @ respectively such 
that MklQx 3jiyi (I,!II~\((x, 7, y,)), contradicting the assumption that Mb 
Qx 37 (4 A~x(P). Here yi is any variable not in !P or a.) 

(e) Task I can be performed. More precisely let x be any set of successor ordinals 
which is cofinal in A, and suppose a continuous chain of conditions (@i)i<h is being 
constructed by induction on i. Then by suitable choices of Qi (i E X) we can ensure 
that the union @A is the complete diagram of a reduct of an elementary extension of 
ML, regardless of how Gj are chosen at successor ordinals jtf X. (Proof. First note 
that by (a) and (b), a continuous chain of conditions (GJ~)~<& can be constructed. 
Now since A is infinite, we can list the formulas of L(M) as ‘pi (i E X). Then using 
(c) and (d), we can choose each Gi (i E X) so that either cpi or lcpi is in G+, and if ‘pi 
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Models with second order properties 189 

is in ai and has form 3z 19, then ai also contains some formula O(yk). By Axiom 

3, aA is consistent. So @A is a maximal consistent set with witnesses for 
existentially quantified formulas. Finally if cp is in the complete diagram of M, 
then by Axioms 1 and 3, lcp is not in @*, so cp E @*.) 

(f) If A = A<“, then in (e) we can also ensure that the elementary extension of ML 
is ~-compact. (N is ~-compact if every l-type over N with cardinality <K is 
realised in N. Use (d).) 

1.5. Definition. Let r be a notion of bigness for T. 
(1) We say that r is invariant if for every cp(x, 7) E L,,,, ii E M, MKN (models 

of T) q(x, a> is r-big in M if cp(X, ii) is r-big in N (i.e. only the type of ii 
matters). 

(2) We say that r is strong if for every cp(x, 7) there is L, G L, IL,1 < h such 
that the truth of “cp(x, ii) is r-big in M” depends only on the type which d 
realizes in M r L,. 

(3) We say that r is simple if the sentence r is a conjunction of first-order 
sentences. 

(4) We say that r is very simple if for every formula cp(x, 9) for some formula 

$(Y), 

Example. Let Qx q say “There are infinitely many x such that cp”. Then this 
notion of bigness is simple; it is strong if h > w. 

1.6. Lemma. Let r be a notion of bigness for T and M a model of T. Then Tasks I 
and II can be perfomzed. More precisely, let X be any set of successor ordinals 
which is cofinal in A, and suppose a continuous chain of conditions (@i)i<h is being 
constructed by induction on i. Then by suitable choices of @i (i E X) we can ensure 
that the unions GA is the complete diagram of an elementary extension NL of ML, 
and that if x names the element a, then the type of a over M contains only r-big 
formulas (and in particular a$ M). 

Prod. Combine Lemma 1.4(e) with Definition 1.3. Note that if b E M, then by 
Axiom 3 the formula x = b is r-small, and so a& M. 

1.7. Definition (of forcing). Let r be a notion of bigness for T and M a model of 
T. We assume that the formulas of L Xt,h(M) have <A free variables, all these 
variables are from x and yi (i <A), and the truth-functions and quantifiers of the 
formulas are just 1, A and V. Let @ be a condition (i.e. r-condition over M) and 
+!I a formula of L,+,*(M). We define the relation @ 114 (“a forces I,!?‘) by induction 
on the structure of 4: 

(1) If $ is atomic, then @ I~+!J iff for some finite conjunction cp(x, 5) of formulas 
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in @, Mk& VY (cp -+ $). (Equivalently, iff for every condition ?P =, @, !PU{I,!J} is 
a condition.) 

(2) @It- Ai<s + iff @II- +ki for all j < 6. 

(3) @lkVZ 4(x, y, 2) iff @11$(x, Y, 7’) for some sequence 7’ of variables distinct 
from each other and from all occurring free in @ or VZ $(x, ji, 2). 

(4) @ Ikl$ iff for all conditions ?P z @, !Plb 4. 

1.8. Lemmas (on forcing). (a) If @ Ik Ic, and 9 is a condition s@, then !Plk +k 
- - - --I (b) If @ kVZt+b(x, y, z), then @II 4(x, y, y ) for all sequences jj’, of variables. 

(c) If @ Ik I+!J, then Q, IF 14. 
(d) If @l,J‘ 4, then !Pltl$ for some condition W 2 @. (Proof. By induction on 

the structure of $.) 
(e) If $ is an atomic sentence of L(M) and CD is a condition, then @II- 4 iff M k +!A 

(Proof. Suppose Mk C/J. Then Mkl11, +IJA~I+G, so by Axiom 1, MkQx X/I 
would imply M k Qx (+lr\r+), contradicting Axiom 3. Therefore M ‘F 6x I,$ and so 
every condition forces 6. Conversely suppose Mb-14 and MkQx 37~. Then 
M!=Vx Vy (cp -+ cpnl+/), so by Axiom 1, Mi=Qx 37 (cpr\-$), whence Mk 
16x Vj7 (cp * 4); so no condition forces 4.) 

(f) Let @ be a condition and 1,4 a formula of L,kxA. Let @* be the set of all 
formulas 32 cp where cp is the conjunction of a finite number of formulas from @, and 
f are the y-variables which occur free in cp but not in ~4. Then @j” is a condition, and 
@II-$ ifi @*It $. (Proof. By induction on the structure of 4.) 

(g) Suppose h = A <’ and that the notion of bigness is a formula of L,+,,(P). Let 
@(x, 7, W) and I+!J(x, ji, W) be respectively a set of <A first-order formulas of L and a 
formula of Lh+,h. Then there is a formula 0(G) of Lh+,k such that for every sequence 
ii of elements of any model M of T, 

MkO(ti) ifl @(x, 9, ii) is a condition which forces 4,(x, y, a). 

(Proof. By induction on the structure of I,!J.) 

Cf. also Lemma 1.10(f) below. 

1.9. Definition (of Z-generic sequences). Let r be a notion of bigness for T, M 
an expanded model of T and .JZ a fragment of LF,,. 

An L&‘-generic sequence (over M) is a continuous chain (@i)i<k of conditions 
such that: 

(1) For each formula I,!J of Z(M) there is i <A such that either @ilk+ or 
Gi IFi+. (Of course, we restrict ourselves to the case FV(P) G {x, y, : (Y <A}.) 

(2) For each formula AicE + of Z(M) there is i <h such that either @i IkA\i<c 4i 
or ai li-l$~~ for some j < [. 

(3) For each formula VZ $(x, 7, Z) of Z(M) there is i <A such that either 
Gi IFVZ 4(x, jj, Z) or @i Iti~/~(x, y, 1’) for some 9’. 
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Models with second order properties 191 

An Z-generic set is the union of an T-generic sequence. We say that the set @ 
forces $ if some subset of @ of cardinality <A is a condition which forces 4. 

We shall say that N is an Z-generic extension of M with distinguished element a 
if for some Z-generic set @, @ is the complete diagram of N, a is the element 
named by the variable X, the type of a over M is r-big, and for every formula C/J 
of P(M), Nk $ implies that @ forces C/J. If we construct an Z-generic extension of 
M, we perform Tasks I-III of 1.1 above. 

If 9 is constant we suppress this prefix. 

1.10. Lemmas (on Z-generic sequences). (a) If @ is an T-generic set and @ = 
Ui<, !Pi where (lZTi)i<h is a continuous chain of sets of cardinal@ <A, then (‘J’i)i<k 
is an Z-generic sequence. 

(b) Let CD be a generic set and A the set of formulas of Z’(M) which are forced by 
@. Then A is the complete Z(M)-diagram of an extension of M. @‘root. By 
Lemma 1.8(c) and Definition 1.9, A is a maximal consistent set of formulas of 
.2!(M) with witnesses for existentially quantified formulas, so it is the complete 
P?(M)-diagram of some structure N. By Lemma 1.8(e) we can choose N z M.) 

(c) Suppose @, A are as in (b), and @ is the complete diagram of some structure. 
Then @ = A n L,,,(M). (Proof. It suffices to show that if 4 is an atomic formula 
4, then @IF+. But this holds, because by Axioms 1 and 3, Mkox Vy (II, + $).) 

(d) Assume A = A’” and let r be a notion of bigness for T. Then Tasks I-III can 
be performed. More precisely, suppose M is an expanded a model of T of cardinal@ 
<A and ?P is a r-condition over M. Then there exists an Z-generic extension of M 
which satisfies P. (Proof. Build (@i)i<h as in the proof of Lemma 1.6, putting 
QO = !P. That proof allows, say, the conditions Qi for odd-numbered i to be 
chosen arbitrarily. Since A = A’“, we can list in order-type A the tasks which have 
to be performed in order to satisfy (l)-(3) of Definition 1.9. Lemma 1.8(b, d) 
shows that suitable choices of the Gi for odd -i will do the job.) 

(e) Let @ be a condition and 4 a (first-order) formula of L(M). Then there is a 
condition ly 2 @ containing $ if and only if there is a condition ‘P 2 @ which forces 
4. (Proof. As in the proof of (d), @ can be extended to a set which forces exactly 
those first-order formulas which it contains; cf. (c).) 

(f) Let Qi be a condition and 4(x, 7) a formula of L(M). Then @It 4 ifi for some 
conjunction cp(x, 7) of a finite part of Qi, Mkox Vg (cp + 4). (Proof. If 
Mk Qx 37 (cp ~14) for every finite part cp of @, then @ U{i$} is a condition and 
hence by (e) some condition extending @ forces -14; so Q, IF 4. If Mk 
Qx Vy (q * 4) for some finite part cp of @, then no condition extending @ 
contains -14, and so by (e) no condition extending @ forces l$; hence @It+.) 

(g) For any M, Ik“the model is K-COmpaCt” (when A = A<,). 

1.11. The empty model. Formally we consider the empty model to be a model of 
T and an elemenary submodel of every other model of T. The definitions and 
constructions above make sense when M is the empty model: an Z-generic 
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extension of M will be a model of T which is described by a ‘generic set’ (defined 
in a natural way) and has a distinguished element whose type is big. This is a 
purely formal device which makes the book-keeping easier in the next section. 

1.12. Remark. Really except in 3.x we can demand r to be a notion of bigness 
for K = {M : Ma K -compact model of T or the empty model}. 

On the other hand we use only r which are invariant and notions of bigness for 
T. 

2. Iteration and an existence theorem 

T is a complete first-order theory with infinite models in a language of 
cardinality <A, and r is a notion of bigness for T. We shall construct a model M* 

of T in cardinality A+, as the union of a continuous elementary chain (Mk),<*+ of 
models of cardinality <A. The construction will be carried out so that whenever 
p <A+, Mktl is derived from MD just as NL was derived from M in 1.1 above; 
moreover, extra relations will be added to the language and the structures at each 
stage of the construction. 

Fragments Za of (Ln),,+,h are defined, L” = L”= is increasing, Mk” = Mk v M,, 

(the role of the L” -L, and &?a is in the genericity demands). 

A set-theoretic assumption (DC), (cf. 2.10 below) is used in the construction. 
Then we shall state a combinatorial lemma (cf. 2.17 below) which generalises this 
construction. 

2.1. De6nition (of languages). (a) Let JU A+ be a linear order extending the 
order (A’, <), 0 minimal in it, {a : a <A’} is increasing continuous and un- 
bounded in it, let [a, plJ = {t E J; a! s t < p} and assume [0, (Y)~ has power <A+ for 

CY <A+. We may let cq 0, y vary on JU A+. We write Jt when [a, (Y + l)J is 
A-saturated, for every cq and CY E J e cf CY = A when (Y E A+. 

(b) For each (Y <A+ let Ila be a set of =SA relation symbols. We assume that 

when CY < /3,17, is disjoint from I& and from the set of symbols of L. II, is empty. 
(c) For each (Y <A’ we introduce distinct new variables x, and yf (i -C A) for 

tE[a,a+l]J; we call them the a-variables. When CY < /3 <A+, LO,” is the 
first-order language got by adding to L the relation symbols in UCSa I$ and 
taking as variables the y-variables for all r<P. We write Lp for lJorCp LB,“. We 
write X, for the set of (<a)-variables. (The elements of X, will name the 
elements of Ma.) 

X,={x,,yf:i<A,s<t,sEJ} and X’={x,,yf:i<A}. 

2.2. Definition. Assume that r is invariant or that J = hf. For s < t E J U A+ and 
an expanded model M of T and a fragment 3 of LF,, we define what are: (a) a 
(t, s)-condition over M (we suppress r, which is constant). (b) IF (i.e. ll-E;s’) and (c) 
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an Z-generic sequence, Y-generic and Z-generic structure, all three with respect 
to (t, s, M). 

If r is not invariant the definition is by induction on t (remember that then 

J= A+). 
(I) A (c, s)-condition is a set !P of <h formulas of L(M) (not L”(M)!) whose 

free variables are X, -X, such that: 
(i) If 21 satisfies s <v < t, cp,, . . . , (P,, belong to 9 and Z include all variables 

from X, -X, which occur freely in some cpe (8 = 1, n), then 

[if we forget this then (xptZ = x~+~ -+ xp = x,,,} would be a (f3, f3 +3)-condition.] 
(ii) If Jf At (hence r is invariant), then for every v, s -=Cv < t, and any 

elementary extension N of ML realizing P r&, W 1 (X, U Xv) is a r-condition 
over N (after suitable changes of names). 

(iii) If J = hf, then 
(0~) WY X, is a (v, s)-condition for v < C; 

(p) YP r (X, U X’) is a r-condition over M except that we use the variables x,, 
yq instead X, yi; 

(y) vqx, Ik(cLa,‘w~~+l is a r-condition over the model we get from the 
(0, y)-conditions (when the variables in X,, -X, become elements”. 

(II) For a (c, s)-condition ly, 8 ELF,,, P Il-‘2’ 8 is defined just like 1.7. 
(III) For ZS.?G LF,, and Y-generic sequence for (t, s, M)’ and ‘S’-generic model 

over (c, s, M)’ and an ‘Z-generic SC. L-el. extension for (c, s, M) with distinguished 
elements a, (s -=c v < t, v E J) are defined as in 1.9. 

(IV) An (c, s)-condition is called complete if it is a complete type (in L) over its 
set of parameters. 

2.3. Lemma. (1) The parallel of 1.4 holds for (0, a&conditions (with x, jj replaced 
by variables from X, -X,). 

(2) The parallel of 1.8, 1.10 holds for (0, cY)-conditions. 
(3) If @ is an (7, a)-condition over M, P a (p, a) condition over M, (Y < 6 < y, 

@ IX, c T, then @ U !P is included in a (y, a)-condition over M. 

2.3A. Remark. However the parallel of the lemma VP*Q = (VP)9 in real forcing 
is problematic here, as we have to have genericity for the formulas 8 indicated in 
1.8(g). But for e.g. invariant r, such problems disappear in proving 2.12. 

If Jf h+, and moreover J = J+, those problems disappear, and we do not see a 
loss for our application. Now 2.4-2.7 deal with the case J = h+ (which we will not 
use). Note that 2.6 becomes trivial, -i is replaced by -T for A-saturated J. 

2.4. Del&Son. We call I’ a super notion of bigness if for every CY < @, and an 
expanded model M of T, and an (0, a)-condition ?P over M, and an increasing 
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function from (a, /3)J into (al, P1)n 

h(!q={cp(. . .) xh(v)‘. . .) yh(&), . . .): Cp(. . .)X,, . . .) y:, . . .)E T 

is an (p’, a’)-condition over A4 (the problem is in Definition 2.2 I(iii)(y) only). 

2.5. Lemma. If r is strong, then r is a super notion of bigness. 

Proof. Easy. 

2.6. Lemma. Let a! <PI, &, h an order-preserving partial function from [a, PI] 
into [a, PI], h&) = &, h(a) = CY, h > (Dom hl and M be an expanded model of T. 
Assume r is a strong bigness notion. 

If 8(h) is a formula from L”, with free variables from X,, -X, (and <h free 
variables) and @ is a (PI, a)-condition, then 

provided that @-a, <, i)iEDomh, (B2-(Y, <, h(i))icDomh are -:-equivalent (which 
means that they satisfy the same L,,, -sentences of quantifier depth <c in their 
vocubulary) where t; is Maxidepth of 8, quantifier depth of T}. (pl - (Y means the set 
difference.) 

Remark. This lemma explains the connection between 2.12 and 2.17. 

Proof. Easy, by induction on 8. 

2.7. Claim. Suppose for k’=O, 1, M~=(cY~,<,@&. . . ,pf,. . .)i<i(o),po=O, pi 
increasing continuous and we let &,, = eye. A sufficient condition for MO -: MI 
is: for every i < i(O), for some y <AC, pF+I- pf = iYA” +y for some So, a1 and: 
6°=O~S’=O;cfS~<h~cfS~<h;cfSo<h~cf60=cf6’. 

Proof. See Kino [6]. 

2.8. Definition (of the game G(T, r)). The game G(T, r) is played by two 
players, the Random Player (I) and the Generic Player (II). There are A+ stages to 
the game. 

(a) At the beginning of the game, MO is chosen to be the empty model (cf. 1.11 
above). 

(b) At the (a + l)-th stage the model M, has just been defined and is an 
La-structure; the variables in X, have been interpreted as constants which name 
all the elements of k&. The Random Player now interprets the symbols in II, as 
relations on M,, thus expanding M, to an La+‘-structure Mk. Also he chooses a 
fragment 9a of LFtK such that lJpCor 22?@ z Za. The Generic Player chooses a 
maximal consistent set @Or+l of formulas of L” (in the a-variables) which contains 
the complete diagram of MA and defines a st. L-el. extension M,+1 of MA. 
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(c) At the F-th stage, where S is a limit ordinal, MS is defined to be the 

L*-structure which is the limit of the Ma (a < 6); i.e. for each p < 8, MS 1 Lp = 

U pry-e n, r L@. 
(d) At the end of the game, two sequences of structures (Il/lp),<h+, (MA),<*- 

have been constructed, and the variables have been interpreted as elements of 

these structures. The Generic Player wins iff for all (Y <p <A+, MO r L”+’ is an 

pa-generic extension for the (a, p, MA) forcing. 

2.9. Remarks (on the game G(T, r)). Let us review the three tasks which Player 

II has to perform for each (Y < p <A+ (cf. 1.1 above). First, define @* = Uac6 @,” 

when 6 is a limit ordinal. Then (@J”) a<h+ is a continuous increasing chain of sets 

of formulas. When (Y < p <A+, @@ r Lp+ is the complete diagram of MD r La+‘, so 

the Task I is performed automatically. 

Let Player II always construct Qi Or+’ n L as the union of a continuous chain 

of r-conditions over MA, (~s”)i<*. Lemma 1.4(e), 2.3(l) says that he can do 

this. Moreover since r is a strong notion of bigness, Lemma 1.6 says that he 

can ensure that the La+’ -type of the element x, over MA contains only r-big 

formulas. Whenever (Y < p < A’, MD 1 L Or+’ is an elementary extension of &&+1, so 

that x, has the same L”+l -type over Mh in Mp as it has in h&+,. In this way the 

Generic Player achieves Task II. 

There remains Task III. This looks alarmingly difficult when (I! <p <A+ and 0 

is a limit ordinal of cofinality <A. How can the Generic Player possibly ensure 

that if 4 is a formula of Lhp;sh which is true in M,, with the variables in X, 

interpreted as constants for elements of M&, then I,!J is forced by some condition 

which is true in MB? After all, 4 may contain E-variables for cofinally many 5 < p. 

The solution is to make the Generic Player predict at each stage i <A what may 

happen at later stages, so that if necessary he can stop it happening. This seems 

to need the following set-theoretic assumption. 

2.10. Definition of (DC),. The principle (De), states: there is a family (9, : a -=c 

A} of sets such that each S”a s p)(a), Ipm 1 <A, and for every set A c A there is a 

stationary set of ordinals a! such that A fl (Y E 9,. 

Remark. If A is regular, then (DC), implies A = A<“. We always assume A 

regular. 

2.11. claim. If any one of (i)-(iv) holds, then (De), holds. 
(i) A = No or A is strongly inaccessible. 

(ii) 0, holds. 
(iii) For some F, A = t.~+ = 2’*, and either ~‘0 = CL or (Vx < p)xKl < p. 

(iv) GCH holds and A is a regular cardinal # Xi. 

Proof. (i), (ii) are clear. For a proof that (iii) imples O,, and the history of this 

result, see [lo]. Finally (iii) implies (iv). 
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2.12. Theorem. Let I’ be a strong notion of bigness for the theory T in a language 
of cardinality <A, J = Jt and assume (De), and A >w. Then the Generic Player 
has a winning strategy for the game G(T, I’). 

We delay the proof of Theorem 2.12 to our next paper [13]. There we shall 
prove an even more general theorem. 

2.12A. Theorem. We can let in 2.1 P, E II= be monadic predicates for t E [a, (Y + l>J 
and let LO,” = UEGol II, U{P, : t E [a, p)J}, and in 2.8 demand PE”:*l= X,, formulas 
of Ze, are allowed to have <K mondic predicates, for which P,‘s can be substituted; 
and still 2.12 conclusion holds. 

Remark. Note that 2.12 and 2.12A follow from 2.17. 

2.13. Jhfhition. When a model M* of T of cardinality A+ is constructed as the 
limit of approximations (m),,* + when Player II uses his winning strategy in the 

game G(T, r), we shall call Mk a generic model of T. If M” is generic and 
(Y <P<h+, then as soon as MA has been constructed, we know what are the 
r-conditions over ML in Lp3” ; these will be known as the (0, a)-conditions. (So 
every LA,, (M,!Jproperty of Mk v ML is forced by some (p, a)-condition.) A @- 
condition is a (6, 0)-condition. 

2.14. Remark. One can analyse the proof of Theorem 2.12 and extract the 
combinatorial principle that makes it work. Some of the applications in later 
sections use the combinatorial principle directly, rather than Theorem 2.12. 

The intuitive idea is as follows. Construct a partial order P whose elements are 
the possible (0, a)-conditions, (Y < p <A+. Each element of P can be thought of 
as a ‘term’ r(X) where X are the variables occurring free in it. The ordering 
relation is inclusion. To find M” is to find a directed subset of P which is closed in 
certain ways. We can choose P so that Tasks I and II are automatically achieved. 

The problem is to perform Task III. Suppose J/(2, W) is a formula of Lf;F with 
(<a)-variables Z and (>a)-variables W, and 7 E P. We want some (p, a)-condition 
extending 7 1 Lp3” to force either + or 14. Fortunately the question whether a 
(6, a)-condition (+ forces 4 depends on (Y and the variables of (T and $, but not on 
p. Thus for each @(ii, 5) of Lk,k we want a function F&, which extends terms 7 to 
terms which force either $(Z, W) or +(Z, W); F$‘, depends on Z, ti in a uniform 
way. These are the ‘appropriate’ functions of Definition 2.9 below. 

Because we added new relations at each stage, there will be separate families of 
functions F”’ for each stage. In fact the family of functions to be considered at the 
((Y + 1)-th stage can be taken as a function H,(M,) of the model M, constructed 
at the a-th stage. Also we could have allowed the Random Player to choose the 
starting condition @:+I for each a, again as a function H,(K) of M,. 
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2.15. Definition. A partial order P is called A+-simple if there is a set T of =sA 
‘terms’ T such that each term T has (Y, <A places, and 

(1) P = {T(X) :X is an increasing sequence from At of length <A}. 
(2) the ordering relation ~(1) s a(y) of P depends only on T, u and the order 

relations between the xi’s and the yj’s. 
(3) For every T(X)EP and y E A’ there is a(z) 27(X) with y among the 

variables Z. 
(4) If T~(x-~) (i <S) is an increasing sequence such that for each limit 6*<S, 

T:(%“*) is the least upper bound of {TV : i <a*}, then {TV : i <S} has a least 
upper bound T(X) with x = Ui x’. 

(5) For each T(Z) E P and each p < cu, there exists a term ~(2) r /3 E P whose 
variables are the first p variables of X; if p is a limit, then TV p is the least 
upper bound of {T(X) r y : y < p}. 

(6) If ~(2) 1 p <a(y) and all the variables in j? are less than the /3-th variable of 
X, then T(Z) and a(y) are compatible. 

2.16. Definition. (a) An appropriate function for P is a function F which assigns 
to each increasing sequence 1 of length <A from A+ a function FY : {T(Z) E P: 7 E 
X} --+ T, such that T(X) s Fv(~(X))(Z), a~, = c+~(~(~~), and Fv(7(f)) depends only on T 

and the truth or otherwise of the equations Xi = yi. We write F,(T(%)) for 

(& (T(x)))(x). 
(b) For each (Y <A+ we write P, for the set P fl(~(3) : Z c a}. If G s P,, we 

write PC for the set of ~(7, X) EP such that 9 E (Y, P E A’-a and ~(7, %) is 
compatible with every a(z) E G. 

2.17. Theorem. Assume (DC), and A >o. Let P, T be as in Definition 2.15. 
(a) For each (Y <A let F” be an appropriate function for P. Then there is a 

directed G CP such that for every (Y <A and every T(X) E G there is ~'(2) ST(X) 

such that F,(T’(%‘)) E G. 
(b) Let H,, Hz be functions such that for any (Y <A+ and any G c P,, H,(G) is 

a set of appropriate functions for PfIG and H,(G) is an element of P,,, nP,+l 
(i.e. an element of P,+1 which is compatible with every element of G nP,). Then 
there is a directed G E P such that for each CY -=c A+, 

(1) if FE H,(G nP,) and T($E G, then there is T'(%')z=T(~) such that 
F(T’(~‘)) E G, 

(2) H,(G nP,)E G. 
(c) As (b), but with the elements H,(G) allowed to by any elements of PGnP,, 

and with (2) holding only for a closed unbounded set of CY. 

The proof of (a)-(c) are all essentially the same as that of Theorem 2.12. 

2.18. Generalisations. (a) Theorems 2.6 and 2.11 still hold when A = o, but the 
proofs are simpler. In fact when A = w, only ZFC is needed. See [15, $21, and 
(with O,,) [14]. 
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(b) In Theorem 2.12 the Generic Player can choose his winning strategy so that 
for each ordinal CY <A’, M,,, is A-compact. This follows from Lemma 1.4(f). 
Note that M8 is then A-compact whenever 6 is a limit ordinal <A+ of cofinality A. 

(c) Again in Theorem 2.12 the Generic Player can choose his winning strategy 
so that whenever CY <P<A’, MD 1 L ut1 is generic over ML for a family of A 
formulas of LfYx. This family of formulas can be chosen as soon as M&has been 
constructed, and the Generic Player can do (b) at the same time. The proof is the 
same as that of Theorem 2.12. Without loss of generality one should assume that 
the family of formulas is closed under subformulas and under first-order opera- 
tions. 

(d) One can weaken clause (4) of Definition 2.9 to: 
(4’) If ri(Xi) (i <S) is an increasing sequence, then {ri(Xi): i <S} has an upper 

bound r(X) with X = lJi Xi. 
(e) Theorem 2.12 adapts to the case where L is replaced by L(Q) and Qx cp 

means “For at least A elements x, cp holds”. [lo] was written in terms of this case. 
(f) If in 2.17 the terms have finitely many variables (so A-completeness holds 

when we fix the set of variables), then the theorem holds even if we assume just 
A = A’“. 

3. The basic lemmas of the (D&-free method 

We here revisit the methods of [S], in a more general fashion. They were used 
in previous proofs of some theorems, but [lo] and (Section 2) gave simpler proofs, 
with a slightly stronger hypothesis. So we decided to omit those proofs, but the 
lemmas may be useful for proofs when e.g. A’” > A (as in [9, Theorem 121 where 
we prove that any T has a model in which no tree has a non-definable branch). 

3.1. Lemma. Suppose M is A-compact, p is a r-big type over M, r any invariant 
notion of bigness for T, \pj <A, and the set of parameters appearing in p is A. Let 
I = {ii< : i <a}~ M be an infinite indiscernible sequence over A, then we can find 
q E S”‘(A U I), such that p c q, q is r-big, and if d realizes q, I is an indiscernible 
sequence over A U ii. 

Remark. We can do this to I whose index-set is any infinite ordered set. If a 
suitable partition theorem holds, we can even let I be partially ordered in some 
more general way, cf. [12. VII §2]. 

Proof. We can replace M by any A-compact elementary extension, and similarly 
(Y can be increased. So w.1.o.g. (Y = (J, p = 1C2X)+, x = A + ITI. We can extend p to 
some F-big p1 E S”‘(A UI) and assume ii EM realizes pi. Expand M to N by 
making all elements of A U ii into individual constants, and making the set I and 
the order < = {(iii, Cj) : i <j < w} into relations of M. The fact that ti realizes over 
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A U I = A U RN a r-big complete L-type, can be expressed by omitting some 

types. 

By Morley theorem on the Hanf number of omitting types and a generalization 

of Chang, (see [17]), there is a model N’, elementarily equivalent to N and 

omitting all the types than N omits, such that in RN’ there is an infinite 

indiscernible sequence J (in the language of N’) and ii realizes a r-big complete 

L-type over A UJ. Now we can find q from tp(G, A Ur> in the L-reduct of N’. 

3.2. Lemma. Suppose 

(a) p is a I-big type over A in M, and ii EM. 
(b) 4 E A for each i E I, and D is a filter over I. 
(c) For any formula cp(X, 6) with parameters from A, if {i E I: Mkcp[& 6))~ D, 

then kcp[ii, 61. 
(d) r is a simple notion of bigness. 

Then we can extend p to a f-big type q E S”‘(A UC) such that for any formula 
cp(X,y,b), if 6EA, and {iEI:q(X,c&b))Eq}ED, then {iEI:cp(X,a,b)Eq}ED 

Proof. W.1.o.g. p E S”‘(A), and now we define ql, by 

q1={cp(x,ii,~):):6EA,{iEI:cp(~,lii,~))Ep}ED}. 

By the hypothesis on 6, q1 is consistent, and as r is simple also r-big. 

Obviously it extends p, and satisfies the conclusion of the lemma, so we finish as 

we can extend q1 to a r-big q E S”(A). 

3.3. Lemma. In 3.2 we can waive the simplicity of I, if D is IT]+-complete, and I 
is invariant. 

3.4. Theorem. For any A = ACA the Generic Player II can still win the game from 
2.8, if we weaken the demands for his winning a play to 

(i) For any (Y <A+, cfa=Ava=Ov(+)o=y+l) andset@of <K fO?mLhS 

from LJUpch+ Mk) if di is finitely satisfiable in K, then @ is satisjiable in n/d. 
(ii) If (a:: i <A, n do> is a sequence of sequences from K, IT] < A and 
(‘Ic)~~: for every C E M, for a closed unbounded set of S <A, (ii:: n <w) is an 

indiscernible sequence over C, 
and player I includes the sentence saying (*)M,L in L,+l, then (*)UBM; holds 

Proof. Clear, just like [8, §l, §2] using 3.1, 3.2 resp. for (i), (ii). 

We can phrase those results in a more general way. 

3.5. Definition. Let rl, r, be two notions of bigness for T, for the sequences of 

variable T1, X2 resp. (maybe infinite). We say that rl, r, are orthogonal (or r1 is 

orthogonal to r,) if for any model M of T, A EM, and sequences ii’, ii2 EM of 

length 1(x’), l(Z*) resp. such that tp(ii’, A) is L’,-big for 1 = 1,2, there are an 
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elementary extension N of M, and sequences 6l, L*E M of length I(%‘), l(Z*) resp. 
such that for 1 = 1,2 6’ realizes tp(a’, A) and tp(g’, A U K3-‘) is rt-big. 

3.6. Theorem. Let ITI <A, A regular, S, c A (a <A+) stationary, [of p + 
(S, n S,] <A], and also P a bigness notion for T. Then Player II (the Generic 
Player) wins in the following game with A’ moves: 

(a) MO is the empty model (see 1.11 above). 
(b) In the (a + 1)-th stage the model M, has already been defined (it is a model 

of T of power A). 7’he Random Player chooses A sequences (rq, (ii$: 5 <A)) for 
i <A, such that rq is a bigness notion (for T) orthogonal to P, iiT< a sequence from 
A& (of the length of Xg, the sequence of distinguished variables of Pia) such that, for 
each i 

(*)L: for any finite C c M, for a closed unbounded set3 of .$ E SAa+i, tp(ii$, E) is 
rq-big. 

Then the Generic Player II chooses a model ti+l, which is an elementary 
extension of M, of power A in which a” E M, + 1 realizes over M, a P-big type, M, 
is K-compact whenever A = A<“. 

(c) At the 6-th stage, MS is defined as lJpccor MD. 
(d) At the end, the Generic Player II wins the play if for any (Y < /3 C A+, i <A: 

(*)ta: for any finite C z a, for a closed unbounded set of e E SaA+i, tp(aT*, E) is 
r;-big. 

Remarks. (1) So part of the hypothesis is “the closed unbounded filter on A is 
not At-saturated” (saturated in the set-theoretic sense); this is not so strong- 
every successor A > X1 satisfies it. 

Also we can omit it but then the proof becomes somewhat more complicated 
(as in [8, 621); and in (*)a we replace “6 E Skati” by “5 <A” and in (*)h,, we omit 
“closed”. 

(2) Theorem 3.5 is a particular case of 3.7-Lemmas 3.1, 3.2 just say that 
suitable rg are orthogonal to r. 

(3) We can in 3.7 replace the choice of ik&+, (by the Generic Player) by a play 
of length A where the players choose an increasing chain (@, : i <A) as in I (@ a 
r-big set of formulas of A.&, FV(@,) c {x,, yq : j < A} and @, has power <A, and 
player II has the choice of @, for a closed unbounded set of (Y E U,,,+ S, (e.g. a 
closed unbounded set of (Y’S). 

4. Applications with diamonds 

4.1. Theorem (CH). There is an uncountable Boolean algebra B with no uncount- 
able chain nor an uncountable pie (= a set of pairwise incomparable elements). 

3 This means that for some closed unbounded C G A, for every c E C n Sha+, . . 
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Moreover there is some countable B, E B such that for every uncountable I s B the 
following holds. 

(f)t : there is a B,-partition bO, . . . , b, (n>O) of 1 (i.e., bl EB,,, LJyzO b, = 1, 

l#mjb,nb,,,=O) and CEB, csb, such that for every bi < b’is bl in Bo 
(l= 1,. . . ) n) thereisxEIsuchthatxnb,=c, b[<xflb,<b’i(forl=l,...,n). 

Proof. Let B, be a countable atomless Boolean algebra. We use the context of 
2.15 for A = X, (and see 2.18(a)). We define T and P as follows: T is the set of all 
conjunctions z-(%(~), . . . , x,~,_~,) of form l\,<” [(IQ, n 4) = ct] where cl c b, < 1 are 
members of B,. We put ~(X)>u(y) if T(Z) implies u(y). We use Theorem 2.17 
for the following F’s and Ht. 

(a) For every a E B,, F$(T(x)) is such that it has a conjunction x, n b = c 

such that acb or aUb=l. 
Now this assures us that if G zP, is generic for the P’s, then for each 

p <a, IP = {b: for some c (x0 fl b = c) E G} is a maximal ideal, and there is a 
unique Boolean algebra B generated by B0 U{x, : p <a} satisfying G. We let 

B, g B,(G) z the Boolean algebra freely generated by B0 U {x6 : B <a}, except 
that it satisfies the equations in G and the equations which B, satisfies. 

(b) By CH we can list as {A, : a <ml} all countable sets of Boolean terms in 
members of B, U{x, : i <K,}; these terms will serve as names for the elements of 
B,,,,, and w.l.o.g.4 Ai E Bi. We define H,(G) (for GE P, * - *) as follows: if A_ 
satisfies (f)r, then FG(T(X)) is T(X) when it should be defined. Suppose & does not 
satisfy (f) 1. Suppose 

A, = @(xi(o)> . . . , qrn-l), -NM), . . > -~n-~,m, 3 : P <PO) 

forsome/3,<X,,E~B,,aaBooleanterm, j(O)<...<j(m-l)<j(m,P)<...< 
j(n - 1, P), [y < P j j(n - 1, y) < j(m, p)]. Suppose further -bk -bz, . . . , -bX,_, 
is a B,-partition of 1, cT< bT, C*E B,,, Xjcl,nbT=cT for l=l, m-l, and 

x~([,~, n bT = CT for m s 1~ n. 

Note that any uncountable A E BUIIG] will contain such a countable subset. 
Then we define F as follows: if jj = (zQ,,,), . . . , qcn-l,), 

n-1 
T(z) = A Xi([) n b[ = C[ AU(~) 

i=Wl 

(where 7, 2 are disjoint, CT(Z) EP) and there are bi, ci E B, such that cl 6 bi 4, 

b[ 6 b;, b[ - cl s b; - c;, and for no /3 < PO does 

n-1 
B, k A Xj(l,o) n bi = C{A a(Z) 

I=m 

then for some such b{, cl 

n-1 
F;(T(x)) = A Q, n b’, = C; A O(f). 

I=m 

4 Bi is the set of terms in B, U {x, : a < i}. we do not strictly distinguish between Bi and Bi(G). 
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If there are no such b;, cl, then F;(T(%)) = T(Z). We leave the rest to the reader 
(he can consult the relevant parts of [ll]). 0 

Let us consider another example. See Rubin and Shelah [7] and [S]. 

4.2. Definition. Let P, Q be one place predicates, R a two place predicate and 
suppose the theory T contains the formula (Vxy) [xRy + Px A Qy]. 

We say R (or P, Q, R)) has the strong independence property (for the theory T) if 
for every n -CO, Mb T, distinct a,, . . . , a2,, E PM there is c E QM such that qRc iff 
i S n. We assume 

Vxy 32 {Q(x)r\Q(y)r\x# y *P(~)A(zRx=~~RY)I. 

4.3. Theorem. Suppose (De),, )Tl<h and OIS<K+:cfs=hl (hence A = hCA >K,). 
Then T has a h-saturated model M of power A+ such that: 

(1) If (P, Q, R) has the strong independence property for T, then every automor- 
phism of the structure (PM U Q”, Q”, R”) is dejinable in M (as a set of pairs, by a 
first order formula with parameters) 

(2) The same holds for any (q(x, C), 4(x, C), 0(x, y, c)). 

Remark. We shall prove (1) only. We shall later work on weakening the set- 
theoretic hypothesis. 

4.4. Example. (1) T = theory of (0, +, X, 0,l). 
Px: x is prime, 

xRy : x divides y, and x is prime. 
(2) Px: x=x. 

xRy: y codes a sequence in which x appears. 
(3) T = infinite atomic B.A. 

PX: x an atom, 
Qx: x = x, 

xRy : x =z y. 

4.5. Defbition. Suppose R has the strong independence property. r, is defined 
so that ~(x, ii) is r,-big if for every n<w it is rR-n-big, i.e. there is a finite 
A E PM so that for any distinct al, . . . , a2,, E PM-A, q(x, 6) AARON,, [~R~lif(~~“) 

is satisfiable. In this case we say that A is a r,-n-witness. Let r,-n-small means 
just not r,-n-big. 

4.6. Claim. r,-big is an invariant notion of bigness (hence by 2.5 a super notion of 
bigness). 
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Proof. (1) Clearly being r,-big depends on tp(ti), cp only, hence r, is invariant. 
(2) If q1 -+ (p2, cpl I’,-n-big and A exemplifies this, then A will work for (p2 

also. 
(3) So Axiom 1 (Definition 1.2) holds if cpl and q2 are small. How about 

cp1vq2? Suppose cpl is not rR-n-big, (p2 is not I’,-m-big and A is a T,-(n +m)- 

witness for qlvq2. 
As cpl is r,-n-small there are a,, . . . , u2,, EP~-A such that 

1(3x) (cp(x, a>r\ /\ [aiRxl’f(‘-). 
i r2n 

Now A’=AU{a,,..., a2,,} is not a r,-m-witness for (p2. So there are 

b I,..., b,, E PM -A’ such that 

1(3x) cp(x, a>~ /\ [biRx]ifCiGm) 
i=Z2m 

Clearly al, . . . , u2n, bl, . . . , b2,,, E PM -A are distinct and 

So A is not a T-(n + m)-witness for q1 v(p2. 

Proof of 4.3. We apply 2.12A. So there is a model M= Uach+ M,, which we get 
as a result of the game, when player II wins, with r = r,. We want to show 

4.7. Claim. In M, (PM U Q”, PM, R”) has only automorphism defined in M, if 

player II plays in the right way. 

Suppose F is such an automorphism, p <(Y < h+ and in his a-th move player I 
chose F r MB as one of the relations in ML, cf p = cf (Y = X, and F 1 M, maps 
PM” U Q”” onto itself. By diamond we can assume (Y = p, (by using just 2A = h+ 
we could only assume that there are such (Y s p). 

There is an element d = F(x,). So in M, 

(Vz E MB) (P(z) + [zRx, f-, F(z)Rd]) (4.8) 

The use of F(Z) is legitimate by player I’s decision. 
We can choose y, cy < y <A+ such that d E w’ but h$ r L”ltl is 5&+,- 

generic for (y, (Y, ML) so some (y, cY)-condition @ forces (4.8) and is satisfied in the 
model for some variable y E X,, - &, (y = d). 

We can assume the set of parameters of @ is GM” G N, I1M*Ij<A, and 
Mp rl M” is closed under F, F’, (as \@I < A, (T( < h, h regular this is possible). Let 

K = {(b, c) : b, c E PM@ - M*, @ lkz) “bRx, cir CRY” or b E M* n PM,, F(b) = c}; 
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whether or not (b, C)E K is determined by tp((b, c), jM*l) (by the definition of 
(y, a)-conditions etc.). 

Let us show K is the graph of PIPMe. Clearly the graph is included in K, 
otherwise for some b, c E Me, F(b) = c, CD’ 2 @, @‘ltlbRx t, cRy contradicts the 
choice of @. 

Suppose (b, c) is in K but not in the graph. Clearly b, c E Ma -M*. So there is 
b’EP”B-M* , F(b’) = c so b’ # b. So @IF bRx, c, cRy as (b, C)E K, and 

@IF b’Rx, f, cRy as F(b’) = c, and the graph of FM” is included in K. So 
@ k“bRx, ++ b’Rx,“, b’f b E Me -M*. We want to show that @U 
{bRx,, Tb’Rx,} is included in a (7, cr)-condition. By 2.3(3) it suffices to show that 
@ U{bRx,, Tb’Rx,} is included in a (a + 1, a)-condition i.e. is P,-big. 

It suffices to show P,-n-bigness of cp(x,, y, ii) U{bRx,, Ib’Rx,} (ii from M*) 
for any n<w and q(x,, Y,Z)E(@]X~+~). Now cp(x,,y,ii) has a finite P,-n- 
witness set A GX. We can prove we can choose A GM” as “there is a 
P,-n-witness of power IA\” is a first-order property (and by an even simpler way, 
we could have chosen here M” like this). 

So the graph of F] PM= is defined in M, in the prescribed way, i.e., by a 
sentence of L,+ in the original language i.e., a, b E PM,, F(a) = b iff a, b E P”~, 
M, kcp[a, b, c], (for some FE M, of length <h). By [S, 1.9.1, p. 641 this implies, if 
a = 6, that F] Me is first-order definable there. As this argument can be repeated 
for stationarily many sets of p’s, we can use Fodors theorem to get one 
definition. Cl 

4.9. Theorem (On dense linear ordering with no undefinable auto- 
morphism). Suppose (De),, X>IT( and 0C~6<h+:cf6=h). Then T has a h- 
saturated model of power A+ such that: 

(1) If TI-“<is a dense linear ordering”, then every automorphism Fof (P”, <> is 
locally definable (i.e. every interval has a subinterval in which F is definable). 

(2) For any formula cp(x, y, Z), and EE M if k“cp(x, y, C) is a dense linear 
ordering of {x : (3~) q(x, y, I?>>“, then every automorphism of ({a EM : Mk 
(3~) cp(a, y, C)}, cp(x, y, C)} is locally definable in M. 

Proof. We concentrate on the proof of (1). 
For this proof we define P by: q(x, 6) is P-big if there are b < c E PM such that 

cp(M, 6) is dense in (b, c) [small here = nowhere dense]; this is clearly a bigness 
notion, very simple and invariant. 

Again we can find M = UolCx+ K, the result of a game won by II (using 2.12). 

Let F be an automorphism of (PM, KM) and assume OISch+ :cfs=hj. So we can 
assume that for stationarily many 6 <A+, cf6=h,FrM,isinM&Wetrytosee 

what occurs to d = F(x,), (Vz E a) (P(z) + (z <x, t, F(z) < d). W.1.o.g. d is a 
variable y E X,, = &. So some (y, 6)-condition @, y > 6, @ is realized and forces 
this with y for d. There is an interval (b,, co) of PM6 such that for every 
b, < b < c < cO, @ U {b < x, < c} is a (-y, 6)-condition, and assume (b, < x, < co) E @. 
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By hypothesis we have if, U {b < x,)1!- F(b) < y for any b E (b,, c~)~s. Let 

K = ((b, c) E PM” : b,c b <co, F(b,) < c < F(c,), Cp U (b =C x&k c < F(x,)}. 

Clearly F(b) > c$ (b, c) E K for b, c in the right intervals. As in the previous 

proof we can show the inverse. So this gives us a definition of K, hence of Fr PM” 
in (b,, co). So for stationarily many S <h’, cf 6 = A, we get a L,.* definition in M,” 

of FrP”a in some interval. By Fodors theorem, for stationarily many 6’s the 

definition and the interval are the same. By X-saturatedness there is one formula 

defining it. 

So we need the parallel of [S, 1.9.11. 

4.10. Claim. Suppose M is a h-saturated model of T, and T ‘says’ “<densely 

linearly orders {x :P(x)} and {x : Q(x)}” and F is an isomorphism from (PM, <) 
onto (Q”, <) defined by a LA,& formula q = cp(x, y) (possibly with parameters). 
Then we can find such a first-order q, which defines F in some interual. 

Proof. Let A be the set of parameters appearing in cp. We can find p E S(A) such 

that the set of a E M realizing p is dense in the interval (b, c) (for some b <c in 

P”). (See 1.4(c), (e).) 

Let b <a Cc, a realizes p. As in [S, p. 641 there is a first-order formula +(x, y) 

with parameters in A, such that $[a, F(a)] and Vx 3”ly I,!J(x, y), Vy ?‘x cp(x, y). 

As in [8, 1.9.1A], the same holds for any b <a’< c realizing p. Look at 

Clearly it is not realized (as F is an isomorphism). As M is A-saturated, there is a 

finite subset which is not realzed, and we can assume we get it by replacing p(xI), 

p(x2> by 0(x,), 0(x2) respectively. We can assume also 

Mb(Vx) [e(x) A b -=c x CC + (3~) +(x, y)]. 

So $(x, y) defines Fr{a EM: k b < a <c r\O{a}}. As F is onto Q and by the 

choice of p, 

defines Fr {x E PM : b < x < c}. So we proved 4.10. q 

Now suppose Tt “(P, <, +, x) is an ordered field”, then as before, in M, every 
automorphism F of (P, <, +, x), being an automorphism of (P, <), is definable in 
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some (b,, co). Now, there is a l-l map from (b,, cO) onto P defined in M: 
x H (x(b, + c&2)/b, - c0 and so we can define F. So 

4.11. Conclusion. If T is first-order, 016<h+:ds=X), (DC), holds, )T(<A, then there 
is a A-saturated model M of T, j]Mj] = A’, such that for any ordered field defined in 
M, every automorphism is definable. 

5. More applications: trees with no branches and the strong independence 

property revisted under GCH 

5.1. Theorem (On trees with only definable branches). Suppose (De), holds. Let 
T” be a complete consistent theory in L(Q), IT*\ <h (Q here is not as in 1.2!). 

Suppose further that in every model M of T”, (MI, <“> is a tree (i.e. a partial order, 
and {y : y CX} is linearly ordered) and (Vx) (lay) (y c x), (Qy) (y = y) E T*. 

Then T” has a model in the A+-interpretation such that every branch of 
(IM], <“) (i.e. a maximal linearly ordered set) of power A+ is definable. 

Remarks. (1) Note that Q is the well-known quantifier: syntactically if cp is a 
formula so is (Qx)cp; in the A -interpretation M k (Qx) cp (x, a) iff 

{b E M: Mkcp[b, a]} has power ah. The standard interpretation is the K,- 
interpretation. (So consistent means in the &-interpretation (see Keilser [4]). If 
A = ACA, II, E L(Q) has a model in the X,-interpretation iff it has a model in the 
A+-interpretation, and in the At-interpretation, L(Q) is A-compact (see e.g. [17]). 

(2) Keisler [5] had dealt with this problem assuming Ors<a+:ds=hl and A = A<“. 
In [9] we deal with such problems for TG L_,, and for A =X1 for T= L(Q). 
(3) We could have deal simultaneously with all definable trees. 
(4) We can waive the requirement Vx 1Qy (y <x), but then restrict ourselves 

to branches of cofinality A+. In the definition of closed we should also demand 
that for y E FV(@) n (&+r -&), y <z E @ for some z E X,, or in no extension of 
@ this occurs, and in defining Y(@) restrict ourselves to such y’s. 

Proof. W.1.o.g. in T*, every formula is equivalent to a predicate, and let 
T = T” n L, so T is a complete first-order theory in L. 

We restrict ourselves to the case of models of T” with no definable branches 
and IT] -C A (for simplicity only). Now we define r : cp(x, ii) is r-big in M (M a 

model of T) if M != R sCx,Yj(a), where R E L is the predicate (or a predicate) such 
that (VT) [(Qx) cp(x, 7) = R(Y)]E T”. Clearly this is a notion of bigness (really the 
prototype). 

We call a r-condition @ closed if for every (Y <A*, @r X, is the complete 
diagram of a model, and if ys~ FV(@), then either for some yp, p < (11, yp = y? E @ 
or @ has no r-condition extending it in which this occurs. Let Y(G) be the set of 
variables for which the second case occurs (obviously x, E FV(@)j x, E Y(a)). 
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5.lA. Fact. Every (p, 0)-condition can be extended to a closed one. 

Let I be a A-saturated dense linear order of power A. Now we shall prove the 

theorem using 2.17, so we have to define P. P will be the set of pairs (@,fl 

satisfying: @ is a closed (A+, O&condition, f is a function from Y(G) to I such that 

(x < t) E @, x E Y(a), y E Y(Q) implies I Ff(x) <f(y). 

Note that 

5.1B. Fact. If @ c !&’ are closed (A+, O)-conditions (@, f) E P, then for some g, fs 
g, (‘I’, g) E P (remember I is a h-saturated dense linear order). 

The main point is 

5.1C. Fact. If (@, f) E P, (@, f) TX, s (Vf, g) E P p a closed (C-X, O)-condition, then 
(~3, f), (T, g) are compatible in P. 

Clearly w.1.o.g. Qi is an (a + 1, 0)-condition. 
We know that @, P are compatible as (h+, O&conditions. It is enough to find an 

((Y + l,O)-condition G1, @U PG G1 such that for every y E Y(G)-&, z E 

Y(T)-Y(a): either (i) l(zSy)~@~ or (ii) for some DE Y(@)nY(P), (vsy)~ 

@‘, (z s U) E q. As r is very simple it is enough to prove that for n <w, pairs 

(y[, zl) as above failing (ii) for 1 = 1, n, @ U !P U{izl S yi: 1 -=c n} is an (cw + l,O)- 

condition, w.1.o.g. yl # x,. 

Let N be an (a, 0)-generic model realizing !P, and let cp(x,, y,,, . . . , y,_J E @ 

(suppressing the appearance of members of X, = l&&I) and we shall prove that 

&x, Yo, . . * 7 Ywl) A [?, l(G s Y,) 

is r-big over A& ; this clearly s&ices. Remember that as @ is a closed (a + 1, O)- 

condition. cp(x,, yO,. . . , y,_J is r-big over A4 but for 1 <n, c EM, 
cp(x,, yo, . . .) A y[ = c is not r-big. As r is very simple the set (of n-tuples) 

A ={(co, . . . , c,-1) E M: V(%, Yl> * . . , Y,_~) A ,?,l(q s yl> is not r-big} 

is definable in M,, and by the choice of q its set of parameters comes from 

IV(@) n X,, which is the universe of an elementary submodel N of M. Clearly in 

A there are no (n + 1) n-‘tuples (cb, . . . , CL-J EM (is n) such that 

i?, t [cl, c{ are incomparable] 

(as then we can choose them in N; for every i for l(i)< n [c~~,s~JE @, hence 

for some if j, l(i) = l(j), hence Qi ‘says’ c:(i) and c&, are comparable as < is a 

tree). Now every countable subset of T has a model in the K,-interpretation 

having no &-branches, hence a model in which the tree is special (see [9]), so (by 

the definition of A) this gives a contradiction. 
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We still are left with the case T says there are denable r-big branches. We then 
should use the device of the proof of Theorem 6 in [9]. 0 

Now we revisit 4.3; (we proved that if R has the strong independence property 
(for P, Q, in the theory T), then for the model M constructed there, (P”U 
Q”, R”, PM) has only automorphisms which are defined in M (by first order 
formulas with parameters).) We have used the hypothesis O~S<h+;cfs=~I (in addi- 
tion to (De),.) 

5.2. Theorem. We assume (Dt), and 2” = ht. 
(1) Any first order theory T, (TI < A has a A-compact model M of power A+, in 

which if R has the strong independence property (for T, P, Q), then every au- 
tomorphism of (PM U Q”, R”, PM) is definable in M (i.e. by a formula with 
parameters). 

(2) We can in (1) assume )TI<h, and get that if (cp,(Z, ii), q$(y, a), 8,(X, y, ii)> 
(~3 E M, &, @, cp, E L(T)) has the strong independence property, then any one-to-one 
function Ffrom {b E M: IFcpo[b, til)v&,[b, ii]} onto {c EM: IFcp,(c, ii)v &,(c, ii)} such 
that O,Jb, c, ti]eOe,[F(b), F(c), a)] is definable in M. 

Proof. Similar to the proof of 4.3 the proof of which we follow. 

We concentrate on (1). 

5.2~1. Definition. We redefine what is a r,-condition @ over M: it is a set of <A 
formulas, lV(@) c{x}U {Yi : i < h} and for every finite conjunction cp = 

cP(x, Yi,, . . . > y,_) of members of Q, and every n <o for some finite A~G M for 
every distinct bO, . . _ , bzn_, E PM-A, 

{44x’, Y,‘,, . . . > yi_); 1<r1}U{[b~Rx’]i~~<“~: k<2n, l(n) 

U{yf,#yi,‘:,I: 1, l(l)<n and k, k(l)<m and (1, k)#(Z(l), k(l))} 

is satisfiable in M. (This is the change indicated in (1) but we use the variables Yi 
instead of more x’s). 

Now all of Sections 1 and 2 holds (only be more careful in 2.4). 
We call a (A+, 0)-condition @ closed if @ r X, is a complete diagram of a model, 

for each (Y. Clearly we can extend every @ to a closed one, s.t. {a :FV(@Z 
(&+, -&) # 0) does not change. 

Let M, M, ((.w <A+) be the models we obtained from Theorem 2.12A for the 
specification mentioned above and let G be an automorphisms of (PM U 
Q”, R”). Let 

C = {/3 <A’: MO is closed under G, G-l}. 

Sh:107



Models with second order properties 209 

Clearly C is closed unbounded. Now as in the proof of 4.3, for every /3 E C 
(cf p = A) there are CY, y, p <a <y and a closed (-y, a)-condition over M, @ 
satisfied by M (whose set of parameters is GM* s M, @I*\[ < A) and y E X, - & 
such that the graph of G r PM” is: 

K = {(b, c): either b, c E PM” -M*, @II-g) bRx, = CRY,, 

or b E PM” n M*, F(b) = c}. 

Note that from K, K1 = the graph of G r Mp is easily defined. Hence there is an 
(a, p)-condition ‘P, satisfied by M, which forces that K induces the graph of an 
automorphism G of (P”B U Q”~, R”~, Q”s ) (provided that in applying 2.17 we 
use more appropriate F’s). Let the set of parameters of zz’ be EN-CM@, INI<& 
and also M* fl MB c N. Assume: 

5.2b. De6nition. Call c E Mp a ‘P-possible value of G(b) if there is a (/3, a)- 
condition T’, !Ps ly’, and qll-“(b, C)E K”. We define similarly when b is a 

possible value of F-‘(c). 

5.2~. Fact. The relation c [resp. b] is a P-possible value of G(b) (resp. of G-‘(c)] 
is preserved by automorphisms of Mp over N, 

Suppose 6 Cp, cf 6 = A, MS is closed under G, G-l and moreover !P 
forces that K is like that. Notice that if c is a T-possible value of G(b), then 
bEM6@cCMMg. 

5.26. Fact. For some A”, N rl MS c A* GM,, iA*] <A and 5 <S for every b, c E 
M8 -M,, if c is a ?P-possible value of G(b), then c E acl(A* U(b)). 

Proof of 5.26. Suppose the conclusion fails. We use the genericity of the set of 
(@,6)-conditions satisfied by MP. Let X be EX~ -X8, N- & included in its set of 
interpretations. The proposition “c E Mp is a ?Fr-possible value of G(b) (in Ma)” is 
expressible by a formula from LA+,*, but the number of such formulas is A, so we 
can assume genericity for them. 

So suppose PI is a (/3, S)-condition, forcing the failure of 5.2d, its set of 
variables is Y1 2 N - &, its set of parameters N1 2 N rl Ms. Let 5 < S be such that 
N1 c Me (6 exists as cf 6 = A). As VI, forces the failure of 5.2d (for A* g NJ, 
there is a (/3,6)-condition ?P*, !PI g Yr,, and b, c E M8 -ME such that: 

(1) Tz forces that c is a ‘P-possible value of G(b), i.e., it determines the type of 
(b, c) over N is the right way (equivalently determine the type of Y over 
Nr U{b, c} in the right way. 

(2) c6 acl(Nr U(b)). 
Let the set of parameters of !Pz be N,, it set of variables Y2, and let 

Let 
Y2fl{y~:i<A}E{y~:i<i(0)} where i(O)<A. 

A = acl(N, U(b)), N2-A={a,:i<i(l)}, i(l)<A, a,=~. 
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Let 

p’1= {cP(~, Y i(o)+jl, . . . > Y~co)+~~, 6) : a E A MEL, jI..*jk<i(l), 

FEY* and Q (Z, ai,, . . . , ajk> ii) E Pz}. 

Trivially ?PI c !P; E P but W; forces that 
(1’) yFCo, is a W-possible value of G(b) (but REM& yips), as the relevant 

information is preserved. But this contradicts the choice of !PI. 

So we have proved fact 5.2d and we can w.1.o.g. assume ME is closed under G, 
GP’. Note also that we could have started with p’ > 0 instead 0, and choose p as 
S: and the proof above could be applied as well for G-‘. We can also increase N 
to include A*, so 

5.2e. Fact. There is 5 < p, such that for every b, c E M6 -ME, if c is a ‘P-possible 
value of G(b), then b E acl(NU{c}), c E acl(NU{b}). 

5.2f. Fact. If b is a q-possible value of G(c), b, c E PM@ -M,, then c is definable 
over N U(b) in a unique way (and b over N U {c}) (maybe after replacing 5 by some 
t’<p, and ly by W’zF). 

Proof. Suppose for every too< p there are b, c E PM” -Mb such that c is a 
P-possible value of G(b) but c is not definable over N U{b}. 

Let~=~N~+~T~<h,andlet~=min{rc:~~>~},so~~~<<~~K=~.Wenow 
define by induction on y < K, a (p, a)-condition ‘y, (q E yw) and elements ab,i,i E 
P”+ME (TE ?‘p, i # j, i <EL, j < F, 1 = 0, 1,2) such that: 

(0) To=% Ix$=lL. 
(1) If v is an initial segment of q, then ‘PV c q,,. 

(2) a!Jf,j,,j, = a!Jzi2,j2 implies qI = qz, il = i2, jl = j2 and 1(l) = 1(2)v{l(l), l(2)) = 

(0, 11. 

(3) W,A(i)Ik I;Cat,i,j) = ai,i,j, *+G)Ik ~<aO,,i,j> = ai,i,j- 

For CY =O, and CY limit there are no problems. For y + 1, 77 eYh we define 
together ?P_,+), CX\,,,~ (i # j < CL, 1 < 3); (we do it by induction on q by an arbitrary 
well ordering of ‘p). For this let {(i, j) : i # j < CL} = {(i,, jm> : CT -=c p}, and we define 
by induction on cr SF, W~,i,al an (q /3)-condition increasing with a, ?Pq,,o = Ik‘,, 

*y,i,F = ‘J’qA(i) and 

~ll,i_+1,Cr+1 IF G(a$,,J = a$_,,, ~q,j,+l,~+l IC- (;(a$i_,j_) = ac,i_j, 

and at,i.j # at,i,j, u:,~,~ # a$j and they are distinct from all previously defined 
at,i,,j,‘s. The atomic step is done by the assumption that 5.2f fails, and we can 
keep ) !P,,j,c\ S p by 5.2~. Let 

4 ={a$@ A lUi,,jRX 19 EY& ')'< K} 
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be consistent (by the strong independence property). Hence there is c E Q”@ -ME 
realizing it, and for each rl E Kk, there is a !P,,-possibe value of G-‘(c), b,,. But 
trivially any ?P-possible value of G-‘(c) belongs to acl(NU{c}) hence (as pLI > K) 

there are n# v in Kp such that b,, = b,. Choose y <K, q 1-y = vry, q(y) # u(y); let 
i = n(r), j = V(Y). But Mp kai,,jRC, P,, forces G(az,i,j) = at,i,r, (as W, 1 (,,+I) does) 
and b, is a W,,-possible value of G-‘(c). Hence 

Mp != at,i,jRb,. 

Similarly MD klaz,i,jRb,,, contradicting b,, = b,. 
We can conclude that for some &, < p for every b, c E PM@ -Mb if c is a possible 

value of G(b), then c is definable in a unique way over NU{b}. Applying the 
same proof to G-l we get also that b is definable in a unique way over NU{b}. 

We can assume Me is closed under G, G-‘. Now if b, c EM,, c a P-possible 
value of G(b), b, ck N (=acl N), then by what we already have proved some time 
ago, there are b’, C’E MO - M,, such that tp((b, c), N) = tp((b’, c’), N) and this 
implies c is a P-possible value of G(b’). We can conclude FrP”o is defined (by 

an L,,, formula with parameters). By [8, 1.9.11 it is definable (by an L-formula 
with parameters). As 0 was any member of a closed unbounded set C E A’ which 
was cofinality A, by Fodor’s theorem we know this holds in M = MA+, so we finish. 

5.2g. Concluding remarks. (1) We can ask whether 5.2(2) causes any problems. 
Dealing with more triples. (P, Q, R), just makes us redefine P, so that if xa E X, 
T(%)EP, then T(X) chooses such triple which is defined in M,, and let Zn be 
“r--big” for this R. 

(2) If we have K,< IT] = A, we should replace A-saturated by A-compact, and 
note in Fact 5.2~ that if L* c L, has cardinality <A, and P, Q, R, and the non- 
logical-symbols appearing in !P are in it, any automorphism of the L*-reduction 
of Mp over N will do, then we have to proceed accordingly. 

The case A =X,, will be discussed elsewhere. 

5.3. Theorem. Suppose (DC), holds, and A is not a strong limit cardinal. Then the 
conclusion of 5.2 holds. 

Proof. Suppose CL < A < 2”, T. P. Q, R as there. 
For a model M a set of formulas p in the variables ~4 (i < p), Yrj (i < p, j < A), 

A a set of parameters from M, IAl < A,’ M A-saturated, is called ri$big if there are 
a:, b$ in M (for i < p, j < A) realizing r such that 

(1) For each i, tp((ap, brj: j < A), A U l_{a’& b&: 5 <i, j < A}) is as required 
in 5.2a. 

(1) For every b2 # b, E PM II acl A for some i < p, b,RaP~lb,RaY (note that 
the truth value of this statment is determined by tp((aY: i < p). A)). 

Now we repeat the proof of 5.2, but replacing rn-big by r&big, and not using 
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H, (there we used 2A = At to produce all relations on any MD). Instead we use the 

following observation. 

If G is an automorphism of (PM U Q”, R”, PM), M closed under G, G-‘, then 

from (xp, G($) : i(p) we can find G 1 MB (by condition (2) above). 
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