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The main results in the paper are the following.

Theorem A. Suppose that T is superstable and M < N are distinct models of TS. Then there
is a c € N\M such that t(c/M) is regular.

For McN two models we say that Mc, N if for all ae M and 6(x, a) such that
0(M, a) # O6(N, a), there is a b € 8(M, a)\acl(a).

Theorem B. Suppose that T is superstable, M ., N are models of T3, and p is a regular type
non-orthogonal to t(N/M). Then there is a c € N such that t(c/ M) is regular and non-orthogonal
to p. Furthermore, there is a formula 0 € t(c/M) such that a € O(N) and t(a/M) £ p > t(a/M) is
regular.

We use these results to obtain ‘good’ tree decompositions of models in (possibly un-
countable) superstable theories with NDOP. See Definition 5.1 for the undefined terms.

Theorem C. Suppose that T is superstable with NDOP and MET™. Then every c,,-
decomposition inside M extends to a c,,,-decomposition of M. Furthermore, if (N,, a,: n€l) is
any c,,-decomposition of M, then M is minimal over \ J N, and for all n € I, M is dominated by
UN, over N,.

Using some stable group theory we show that when Th(M) is superstable with NDOP and
(N,: nel) is a tree decomposition of M, then M is constructible over U N, with respect to a
very strong isolation relation (Section 6).

0. Introduction

Regular types play a crucial role in most theorems concerning the number of
models of a superstable theory. They are central to the classification of countable
first-order theories in [11]. Theorems A and B hein tc close the gap between
superstable and totally transcendental theories (the results are well known for
totally iranscendental theories [10, §D]).

It is unfortunate that this paper was not written several years ago. The results
in [11, XII and XIII] would have been easier to prove with the theorems in this
paper. Without them there are significant technical difficulties in obtaining good
tree decompositions of superstable theories with NDOP. This distracts us from

* Research supported by the U.S.-Israel Binational Science Foundation, and the Fund for Basic
Research, administered by the Israel Academy of Sciences and Humanities.

** Research supported by an NSF Postdoctoral Research fellowship. Current address: University of
Notre Dame, Notre Dame, IN 46556, USA.

0168-0072/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



Sh:307

278 S. Shelah, S. Buechler

the real difference between superstable and totally transcendental theories: the
existence of prime models over sets. So, the ambitious reader could obtain a
smoother proof of the Main Gap by incorporating this paper into [11].

Looking for more important applicaiions, since we never assume that the
theory is countable in this paper, it may play an active part in the classification of
uncountable tl.cories. Outside of the context of the Main Gap we still see
Theorems A and B as important technical results about superstable theories. We
would be very surprised if they did not play an important role in other topics,
e.g., Vaught’s conjecture for superstable theories.

The experienced reader who has seen other attempts to prove (or circumvent)
Theorem A (see, in particular, [13, §1]) may be surprised at how straightforward
the proof is. The reason is the availability of ‘nice’ non-trivial regular pairs. This
is definitely the main ingredient in the proof. The rest of the proof is an excercise
in manipulating p-simple and p-semi-regular iypes. (This is carried out in Section
3.) The niceness of non-trivial regular pairs was defined and proved by Shelah for
superstable theories with NDOP (Theorem 2.2). This, of course, is all that is
needed for Theorem C. Subsequently, Hrushovski eliminated the NDOP
assumption (Theorem 2.1). This is a major advancement in working with general
superstable theories.

Section 4, culminating in a proof of Theorem B, is largely a continuation of
Section 3. The main lemma was already proved in Section 3. In Section 4 we
focus on the c,, relation through a couple of technical lemmas. Combining these
with Section 3 leads quickly to Theorem B.

We will say very little about Section 5 in this introduction as it involves many
terms with lengthy definitions. The basic idea is to obtain a very nice tree
decomposition of a model of a superstable theory with NDOP. We refer the
reader to the introduction of that secticn for a detailed discussion.

The main result in the last section is that for T superstable with NDOP, a
minimal model over an independent tree of models is j-constructible over the
tree. Admittedly this is a rather minor result but its proof may be of major
importance. It is the prototype of combining Hrushovski’s theoreins about the
existence of definable group actions with notions of isolation. We feel that other
results wili come from the methods developed here.

All of the theorems proved in this paper are due to Shelah. The organization of
the material and the proofs as detailed here are by Buechler (as are any
remaining errors). Buechler wishes to thank Bradd Hart for many helpful
conversations on the topics contained herein, and Udi Hreshovski for his
commerts on a preliminary version of this paper. Shelah would like to thank
Steven Buechler for so much improving the paper.

1. Background and some definitions

‘We assume that the reader has a working knowledge of stability theory as
expounded in {10} and [11]. Our notation will largely follow [10]. We also assurae
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that the reader knows the main definitions and theorems in [12] or [5], but not
necessarily the proofs. In keeping with [10] the term ‘regular’ will only be applied
to stationary types. The generalized RK-order on types, written < is defined in
[10, C.13]. For stationary p and q in a stable theory p < gq iff p <, g, where the
latter is as defined in [11, V, 2.1(2)]. We use pOgq to denote p <lq and q <p
(where Makkai uses p 2 q). For p a stationary type, p denotes the type (over
dom(p)) of an independent sequence of realizations of p of length n. R™(-)
denotes »-rank, i.e., the rank R(—, L, «).

Throughout the paper we will tacitly work in 7°9. When we say that M is a
model, we mean that M = N°9 for N some model of the original theory. acl(—) is
algebraic closure as computed in 7°9.

For p a stationary type we call ¢ a restricted canonical base of p if
acl(Cb(p)) = acl(c). In a superstable theory there is always a restricted canonical
base in Cb(p).

Definition. We say that g (a possibly incomplete type) is hereditarily orthogonal
topifq'>q=>q' Lp.

For A, B and C sets we say that A is dominated ty B over C, written
A<B(C), if for all d, dbcB=>dWwcA. As is easily verified, domination is
transitive.

If I} is an isolation relation as discussed in [i1, IV] we shorten Fy -isolated to
x-isolated, etc.

Definition. For p a stationary type and @ € p we say that (p, @) is a regular pair
(RP) if for all g, ¢ €q and R™(q) <R™(¢)=>q Lp.

Lemma 1.1. (a) Suppose that T is superstable, p is stationary and @ € p is such
that @ € q, and q forks over dom(@)= q L p. Then there is a @'} @ over dom(@)
and a p' such that (p', ¢') is an RP and p' Op.

(b) If (p, p) is an RP, g €q and q X p, then (q, @) is an RP.

(©) If (p, @) isan RP, ¢ €q and q 1 p, then q is hereditarily orthogcnal to p.

Proof. Easy.

Caveat. Shelah defines (p, @) to be a regular pair if it satisfies the hypothesis on
@ and p in Lemma 1.1(a). The added condition on rank in our definition is
usually required in working with regular pairs. Because of this and Lemma 1.1 we
choose to add it to the definition.

Abusing the terminology (badly) we will say that p is an RP if chere is a @ such
that (p, @) is an RP.

Definition. Let (p, ¢) be an RP, dom(p) =A. We say that (p, @) is nice if
whenever & realizes p and b is such that a &4 b, therc is a fer.nula 0(x, y) €
t(ab/A) such that F8(a’, b') > stp(e'/b'A) is hereditarily orthogonal to p.
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Definition. (a) We say that a formula y is a-remote if every g € S(£} containing
y is non-orthogonal to a type of x-rank < a.

(b) Let p be an RP. We say that ¢ is p-remote if ¥ is R™(p)-remote and
hereditarily orthogonal to p.

L . T2ER ___%ak A 8 __

(C} Let l‘?,qp, DC anl IKF Wi A = Q
and b such that g ;4.

ATAEY /2 Mﬁllmﬂﬂ n
such that for all &', ¥(x, b')} @ and y¥(x, b’) is p-remote.

(The ‘€ in f-nice is, of course, for ‘foite’.) It is clear that f-nice = nice. With an
example (unpublished) Hrushovski has shown that the comverse is false. In
Hrushovski’s terminology a type is a-remote if it is R”(<a)-analyzable, where
R™(<aj} is the class of formuias of ®-rank < a.

It is Ianlni'-ad to nhennyn I-hnf -f aly -e a-remote, wege CIY and » ic a regular
i lJ Ve v w AVIIAVIVY ¥ T Y T U\ Qe s «“

type non-orthogonal to ¢, then r is non-orthogonal to a regular tvne of
o-rank < &, which contains ¥. Also, if (p, @) is an RP and Fy— @, then v is
p-remoie iff it is R”(p)-remote. This is the usual way in which p-remote formulas
arise.

With the notion of a nice RP we are u'ymg to apptoxunate that "Iorxmg with a

ranhaaiinn af n ic dafinahla” (Thic nranarty wnnld ha dofinad hv ranlacine
ICQIZaGQOnR Oi £ IS GCIERAUC . anfls PIUPCIty WO OC GCHcG JY ICP:aliiig

“w(x, b’) is hereditarily orthogonal to p”’ by “¥(x, b') forks over A”.) In what
follows it will be obvious why such a definability of forking would be desirable. In
the next section we wili see that non-trivial regular pairs are nice.

Lemma 1.2. Suppose that p and p' are RPs, p is parallel to p' and dom(p) and
dom{p’) are both algebraically closed. Then p is f-nice (nice) iff p’ is f-nice (nice).

AL o sl cmmn

-~ L e -_.I £ s T ona A Bl N\ T 0uelC e o
l’l'll!n- .ll.li: pl.UUl.lbu.l SAiLIC 1V (& ¥ QG 1-HILC.,. LOL A — U ul\p). AU DULILED U
consider the case when A c B =dom(p'). It is immediate that if p is nice then so
is p’. Suppose that p’ is mice, a realizes p and a ¥4 b. W.l.o.g., aby, B. Now

apply the niceness of p’ and the definability over A of ¢(ab/B) to ﬁnd the desired
formula in t(ab/A).

Defnition. Lct p be regular, g a non-aigebraic strong type over A. We say that g
PPN ey cale o

te o comei voopislas i thana aeae R A1 s B o1
IS p-semi-reguigr if tnere are: a rcalizing g, M o5 A an a-model with ad 4, M and
Co c¢. such that

(i) p; = t(c:/M) is conjugate to p’ and non-orthogonal to p, p’ || p,
(ii) a € acl{Mc),
(id) if A; = M is such that p;, is based on A, and r o p, | A; forks over A;, then
glr.

Part (:13) ir: thae Acfinitinn ic rothaer iomnactant Tt jo thie which allawe e $n
falc (i e unC GUINNON IS 73wl IMpOTeaiit. it 1S uliS WiliCit auGws UsS WO
conclude that if g is p-semi-regular, then for some n, g (1p™ (see {11, V, 4.1})
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This definition differs slightly from Shelai:’s in that he only requires p; Op in (i).
The present definitior: elucidates the fact tha: the p;’s witnessing p-semi-regularity
must be chosen carefully. That is, g p-semi-regular and p’ O p does not imply that
q is p’-semi-regular. It is important to bear this in mind. The main existence
lemma for semi-regular types is the following.

Lemma 1.3 [11, V, 4.12]). Suppose that T is superstable, p is regular and stp(a/A)
is such that p Y stp(a/A) and if q o p is a forking extension, then g L stp(a/A).
Then there is a ¢ € acl(aA) such that stp(c/A) is p-semi-regular.

The next concept was originally defined and investigated in [11, V, §4], but its
first major use was by Hiushovski in his beautiful work [7]. We repeat the
definitions here.

Definition. (a) Let p be regular, g a strong type. We say that g is p-simple if
there are: an a-model M o dom(p) U dom(q), a realizing g | M and I a Morley
sequence in p | M such that ¢(a/MI) is hereditarily orthogonal to p.

(b) For g a p-simple strong type, the p-weight of q, w,(q), is the cardinality of
a minimal I witnessing the p-simplicity as in (a).

Clearly, 2 p-semi-regular type is p-simple. Unlike p-semi-regularity, p-
simplicity is invariant under 0. That is, if q is p-simple and p’'0p, then q is
p'-simple. Also, if b=bq- - - b, is such that stp(b,/A) is p-simple for all i<n,
then stp(h/A) is p-simple. (Another property uct shared by p-semi-regular
types.) Each of these uses the fact that if stp(@/Ab) and stp(b/A) are p-simple,
then stp(@/A) is p-simple. Furthermore,

w,(ab/A) = w,(a/Ab) + w,(b/A).

Lemms 1.4. Let (p, ¢) be a nice RP. Suppose that A is algebraically closed,
t(b/A) is p-semi-regular and w,(b/Aa)=n. Then there is a formula 6(x, y)e
t(ba/A) such that EO(b', a’')=> 8(x, a') is p-simple and w,(b'/Aa')<n.

Proof. Let M > A be a large saturated model, ba W4 M. By the definability of
types and the fact that p is non-orthogonal to A it suffices to find such 2 formula 6
over M. W.lLo.g., there aie conjugates of (p, @), (p;, @), i<n, p;eS(M),
pi Xp, and ¢; realizing p; such that b € acl(Mc). W.l.o.g., w,(¢/Mb)=0. An
easy computation yields: w,(¢/aM) = w,(b/aM). Since each (p;, @;) is nice it is
easy to find a formula o(%, y)€t(¢a/M) such that Fo(¢', a')>t@i(c;) and
w,(¢'/a’M)<n. Let 0 € t(ba/M) be such that F6(b’, a') > there isa &', Fo(¢', a')
and b’ e acl(¢’,M). Since each @, is p-simple, 8(x, a') is p-simple. The p-weight
computation is easy, completing the proof. 0O
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Note that the p-simplicity of 8(x, a’) does not require the niceness of p.
The main lemmas we use on p-simple types {quoted below) are basic facts 4)
and 5) in |7, §3]. Below T is superstabie.

Lemma 1.5 [11, V, 4.20). Suppose that p is regular and non-orthogonal to
stp(a/A). Then there is a beacl(Aa) such that stp(b/A) is p-simple and
non-orthogon... to p.

Lemma 1.6. Suppose that stp(a/A) is p-simple. Then there is a d € dcl(aA) such
that stp(a/Ad)Op™, for some n, and w,(d/A)=0.

Proof. This proof is easier than the one in [7] because we are assuming that T is
superstable. First, in Claim 1, we establish a useful basic fact about p-simple
types.

An elementary fact about regular types we will be using is that if 7 is any type
and s X r is regular, then there is a regular r’ o7 such that 7' OIs.

Claim 3. If q is a regular type non-orthogonal to stp(a/A), then g O p or there is a

Pl cvsnde slans =t 30 Lacaditnetl notlennrnssal 6o o
q I..Iq QUL sl Y W nITITaRwIsy uuuusuum Wy,

Since stp(a/A) is p-simple there is an a-model M>A, avy M, and I a Morley
sequence in p|M such that w,(a/MI)=0. There is a b ya such that
t(b/M)Oq. Assuming that q L p we must have b &y, I. Thus, stp(b/MI}0Oq and
this strong type is non-orthogonal to stp(a/MI). By the fact mentioned above
there is an rostp(a/MI) such that rOstp(b/MI). Thus, r is hereditarily
orthogonal to p and r O g, proving the claim.

Turning our attention to the lemma, since extensions of p-simple types are
p-simple we may use induction on R”(a/A) to see that it suffices to prove

T lafee P If wo An ot hnates ctonfal A

NoRCINREE SUe “' e WU TsUs  FHSUC E‘P\“ )

dci(aA)\acl(A) such that w,(d/A)=0.

sy JOT 30

Let g be a regular type non-orthogonal to stp(a/A) which is orthogonal to p.
By Claim 1 we may assume that q is hereditarily orthogonal to p. We further pick
q to have least w-rank under these requirements. We want to apply Lemma 1.3 so
consider g’, a forking extension of q. If ¢’ is non-orthogonal to stp(a/A), then
using the above fact on regular types we can find a regular ¢" > q’, ¢" X stp(a/A).
Since q” is hereditarily orthogonal to p and K*(¢") <R(q) we contradict the
minimality assumption on R*(g). Thus, every forking extension of g is orthogonal
to stp(a/A). By Lemma 1.3 there is dyeacl(ad) such that stp(dy/A) is
q-semi-reguiar. Clearly, this strong type is hereditarily orthogonal to p, as is the
element d of € naming {d': d =dy(aA)}. Since d e dcl(Aa)\acl(4), we have

oo s thho lacecesn

m
plUVCU l.llc fA=t FEVELE 9 i
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We say that a formula y is p-simple if every g € S(€) containing v is p-simple.
Notice that if (p, @) is an RP, then ¢ is p-simple. We leave the proof of the
following to the reader.

Lemmsa 1.7. Suppose that p is an RP, A =acl(A) and q € S(A) is p-semi-reguiar.
Then there is a ¢ € q which is p-simple.

Definition. Suppose that p is regular, M c N are models and @ is a formula over
M such that @ is p-simple and b e 6(N), t(b/M) X p=>t(b/M)Qp. Then, if
b € O(N) and t(b/M) X p we say that (¢(b/M), ) is a regular pair relative to N.

2. Notes of depth zero

Initially, Theorems A and B were proved only for theories with NDOP. The
reason being that the main technical lemma, Theorem 2.1, was proved oniy with
this additional assumption. This first result was due to Shelah and is stated here as
Theorem 2.2. Later, while working on a different problem, Udi Hrushovski found
a rather straightforward proof of Theorem 2.1 as it is stated (see [8]). We will
furnish a proof of Theorem 2.2 since we would like the paper to be largely
self-contained for theories with NDOP.

Theorem 2.1. Suppose that T is superstable, A is algebraically closed and t(a/A)
is a non-trivial RP. Then for some a' € dcl(aA)\A, t{a’/A) is an f-nice RP.

Theorem 2.2. Let T be superstable with NDOP, p air RP of depth 0 with dom(p)
algebraically closed. Then p is f-nice.

We prove the theorem with a series of lemmas. By Lemma 1.2 it suffices to
consider the case when dom(p) = M is an a-model. Let ¢ € p be such that (p, @)
is an RP. Suppose that a realizes p and b is such that a 4/, b.

Let y(x, b) € t{a/bM) be such that y(x, b) I p and y(x, b) forks over M.

Let M* > M be a large saturated model containing b. Let M* =M U {ee M*:
E@(e) and R”(e/M) <R™(¢)}. Let I be a basis for p in M*, Noc M* an a-prime
model over UM, N, = M* a-prime over M*, and N =« M* a-prime over NoU N;.
Since Ny 1I(M) and N, AM*(M), Ny Ly N;.

Lemma 2.3. (a) p(N) =p(M*).
(b) There is no infinite set of indiscernibles over M* U I in p(N).

Proof. (a) Suppose, towards a contradiction, that there is a b € p(M*)\N. By
NDOP we know that ¢#(b/N) is non-orthogonal to N, or N;. By a slight refinement
to [10, D.11(v)] we can find a b'e N[b]< M* such that #(b'/N) is regular,
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b' Ly, N or b’ wy, N, and b’ realizes po, a type parallel to p over some finite
subset of M. If R*(b'/M) < R™(p,), b' € M™, a contradiction. Thus, #(b'/M)=p.
Since t(M*/M) is hereditarily orthogonal to p, b'wyN,. If Nuy b’, then
N &y, b'. But N, contains a basis for p in M*, so b’ &y No. Thus, N 4y, b’ and we
may conclude that N Ly, b'. Since p has depth 0 and No= M[I}, ¢(b'/No) X M.
Thus, we can find a b” € M* realizing p, such that b’ 4y b" and b" Wy N. b" cannot
realize p | N since NolI, so #(b"/M)+#p. Thus, b"e M*, contradicting that
b" ¢ N. This proves (). A

(b) By NDOP we know that N is minimal over /U M™* among e-models. It is
easy to show that if J = N is an infinite set of indiscernibles over JUM™ and b
realizes Av(J/N), then NUb is a-atomic over JUM*. This contradicts the
minimality of N, proving (b). O

Actually, (b) implies
(1) there is no infinite set of indiscernibles over M* in y(N, b) N p(N).

(This is because y(x, b) is hereditarily orthogonal to p. There is a finite [,/
such that I\ Lpgs (N, b) 1 p(N). If J < (N, b)Np(N) is an infinite set of
indiscernibles over M™*, then all but finitely much of J is indiscernible over
M*ULUb, hence, indiscernible over M* U 1.) So, Lemma 2.3(a) implies

(2) there is no infinite set of indiscernibles over M* in Yy(M*, b) N p(M*).

Let I'={0: @ is a formula over M, 0} ¢ and R*(0) <R”(@)}.
Of course, we may as well assume that M* =@, yielding

Corollary 2.4. There is no infinite set of indiscernibles over M* in y(€, b)N
p(©).

So, the hereditary orthogonality of y(x, b) to p allowed us to eliminate / in
Lemma 2.3(b). The importance of Corollary 2.4 is that we can now define a
theory expressing that there is a set of indiscernibles over M™* in 9(€, b) N p(€),
and apply compactness. This gives us the desired formula in #(b/M). The details
are as follows.

Add to the language constant symbols for the elements of M Ub and a unary
predicate symbol /. Let T' o T be the theory expressing

(i) the elementary diagram of M U b,

(ii)) I < y(C, b)Np(€), and

(iii) 7 is infinite and indiscernible over M* = {6(€): O e I'}.

By Corollary 2.4, T' is inconsistent. Thus. there are: y'(x, y)et(ab/M),
P'(x, y)Fy(x, y), @ e Iand c € M, such that for all b’

(3) there is no infinite set of indiscernibles over ¢ U 6(€) in y'(€, b’).
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W.l.o.g., c contains the parameters from M in 6 and y’'. We now have to check
that ¢’ is the desired formula. Notice that R“(8) <R(r) and 8 is hereditarily
orthogonal to p. Pick an arbitrary b’ and suppose that g € S(€) contains
Y'(x, b'). By (3), ¢ £ 0. Since ¢ eq and 6+ @, we must have p L g. It follows
immediately that ¢'(x, b') is p-remote. Thus, p is f-nice.

Hrushovski has another proof of Theorem 2.2 which does not use that T has
NDOP, only that the depth of p is 0. But, of course, we need NDOP to know
that the non-trivial RPs have depth 0. In applications, however, we usually need
the niceness of all non-trivial RPs, and we need NDOP to know that all of these
have depth 0. '

Combining the main theorem in {3] with [4, Lemma 2.5] gives: Suppnse that T
is superstable, U(p) =1, p is non-trivial and dom(p) = A is algebraizally closed.
Then there is a @ € p such that @ € g € S(A) non-algebraic=>q Zp. The next
result can be seen as a generalization of this. Inde-d, the proofs are very similar.
This proposition will not be used in the rest of the paper.

Proposition 2.5. Suppose that T is superstable with NDOP, p is a non-trivial RP
and A = dom(p) is algebraicaliy closed. Then there is a @' € p such that (p, @') is
an RP and for all g € S(C), @' eq=>q X p or q is p-remote.

Proof. W.l.o.g., A= M is ar a-model. Let @ € p be such that (p, @) is an RP. By
the non-triviality of p there is {ao, a,, a.} = p(€) pairwise M-independent, but
not M-independent. T having NDOP implies that the depth of p is 0 (see [12,
5.10]), so by Theorem 2.2, (p, ) is f-nice. Thus, there is a formula
Y(xg, X1, X2) € t(aoa,a2/ M) such that: if y(x, §) is obtained from y by some
permutation of the variabies, then

(4) forallb, wu(x, b)\ @ and Yo(x, b) is p-remote.

Let ¢'(x, y) =3z y(x, y, z). Notice that y'(x, a,) does not fork over M. By the
definability of types there is a formula ¢’ over M such that for all r € S(M), @' er
iff the non-forking extension of r over a,M contains y'(x, a,). Of course, @'} @
and @' €p, so (p, @') is an RP.

Now suppose that E@’'(b), b ¢ M ard bwya,. If t(b/M) X p, we are done, so
suppose that ¢{(b/M) Lp. As k@'(h), t(b/M) is hereditarily orthogonal to p, so
we need to show that ¢(b/M) is non-orthogonal to a set of -rank < @ = R™(p).
Let c satisfy y(b, a,, 2).

Claim. c )‘iﬂf‘ll‘

Suppose, towards a contradiction, that ¢ Ly a,. Suppose first that ¢t(c/M) Lp.
Since b, c € (€), t(bc/M) is hereditarily orthogonal to p. Thus, a, @y bc,
contradicting (4). So, ¢(c/M) X p, hence t(c/M)Op. Since t(c/a,bM) is heredi-
tarily orthogonal to p, c 4, ub. Thus, #(b/M) is non-orthogonal to p,
contradiction.
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So, we know that ¢ ¥y a,, hence, R™(c/a,M) < a. If b &, m ¢, then t(b/M) is
non-orthogona! to a cet of c-rank<a@. So, we suppose that bW, ca,. Since
Ey(b, @, ¢) and Y(x, a,, ¢) is p-remote, stp(b/a,cM), hence, t(b/M), is non-
orihogonal to a set of »-rank < . This proves the proposition. O

3. Existerce of regular types

The main goal of this section is to prove Theorem A. The major proposition,
however, will play an essential role in the proof of Theorem B. What we try to do
here is to show that if there is a c € N\ M with ¢(c/M) p-semi-regular, then there
is such a ¢ with #(c/M) O p. That is, reduce the problem of finding a regular type
non-orthogonal to p, to finding a p-semi-regular. We fall slightly short of this
goal, Proposition 3.2 being the actual result. However, Theorem A follows easily
from this proposition using Lemma 1.3 on the existence of semi-regular types.
Throughout the section we work in a superstable theory.

Handling trivial types becomes rather easy because of the following. This is [12,
5.11(5)], but we repeat the proof here.

Proposition 3.1. Suppose that stp(a/A) is non-orthogonal to the trivial regular
type p, and if q op is a forking extension, then q 1 stp(a/A). Then there is a
c € acl{Aa) such that stp(c/A) is regular and non-orthogonal to p.

Proof. W.l.o.g., A=0. By Lemma 1.3 there is an a’ € acl(a) such that stp(a’) is
p-semi-regular. Certainly, if we prove the lemma for a’ we will hav - it for a.
Thus, we may assume that stp(e) is p-semi-regular. We may also assume that
dom(p) = B is finite, a & B, and there is a b realizing p such that a Lz b.

Let J={b;B;: i<w} be a Morley sequence in stp(bB/a) with b,B,=bB,
B'={J{B;: i<w}. Let c be a restricted canonical base of stp(bB/a). We have
c e acl(a)\acl(@), c & B’ and c e acl({_JJ). The first condition implies that stp(c) is
p-semi-regular.

Chaim. w,(c)=1.

Supose that w,(c)>1. We work towards contradicting the triviality of
Po=t(bo/B’)=p | B'. Notice that b, Ly B’ and c 3. b;. Since c € acl(|JJ), the
only way that w,(c) can be >1 is if {b;: i <w} is pairwise B’-independent, but
not B'-independent. By the triviality of p, (and its conjugates: #(b;/B’)) there are
d; realizing p, with d; &5 b, for i =1, 2 (see [12]). It follows that {b,, d,, d;} is
pairwise B’-independent, but not B'-independent. This contradicts the triviality
of p to prove the claim.

Since stp(c) is p-semi-reguiar with p-weight, hence weight =1, it is regular by
f11,V,48). O
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The next result is the main technical lemma in this section and the next. .. is
here where Theorem 2.1 is used.

Proposition 3.2. Suppose that N > M are models and there is an a e N\M such
that t(a/M) is p-semi-regular, for p some RP.

(i) If p is trivial, then there is a c € acl(aM) such that t(c/M)Op.

(ii) Suppose that p is non-trivial. Then there is a formula y over M such that
is p-simple of p-weight 1, and there is a c € Y(N) with w,(c/M)=1.

Proof. (i) follows immediately from Proposition 3.1, so, we assume that p is
non-trivial. Hence, w.l.o.g., p is a nice RP by Theorem 2.1. (There is a p’' Op
which is a nice RP and an a’ € acl(aM)\M with #(a’/M) p'-semi-regular. Thus,
since p-simple and p’-simple are ilic same, we may replace @ and p by a’ and p'.)

Let r =¢t(a/M). By Lemma 1.7 there is a p-simple formula in r. The problem is
that this formula may have p-weight >1. What we will do is to take an extension
of r of p-weight 1, find a formula in the type witnessing this, and use Lemma 1.4
to ‘pull’ this formula into M in a way which guarantees that it is satisfied in N\ M.

Let r' or be a regular type non-orthogonal to p such that dom(r')=M Ud,
where d iy N. Let c realize r’. By the niceness of p and Lemma 1.4 there
is a formula o(x, y) et(cd/M) such that for all &', o(x,d') is p-simple of
p-weight <1.

Since t(a/M) X r' and d &, a we may choose d large enough so that there is a
¢’ realizing r' with a &4, ¢'. Let o'(x, w, 2) € t(ac'd/ M) be such that
() kEo'(a,f,e) => a By feand Fo({, e).
Since awy d we can find a d’ e M with E3w o'(a, w, d'). Let c"ea(a, N, d’).
Since a By c", c"e N\M and t(c"/M) Xp (since t(a/M) is p-semi-regular).
Observing that Fo(c”, d') and o(x, d') is p-simple of p-weight 1 completes the
proof. O

We can now prove Theorem A rather easily. Let M < N be as hypothesized.
Let p be a regular type non-orthogonal to t(N/M) of least »-rank under this
assumption. Applying Lemma 1.3 we get an a e N\M such that t(a/M) is
p-semi-regular. If p is trivial, we can apply Proposition 3.2(i) to finish the proof.
So, suppose that p is non-trivial and c is as in Proposition 3.2(ii). By the minimal
rank assumption on p we can again apply Lemma 1.3 to get a ¢’ € acl(cM) such
that ¢(c’'/M) is p-semi-regular. w,(c'/M)<w,(c/M)=1. Thus, by [11, V, 4.8],
t(c'/M) is regular. This proves Theorem A.

4. Refining the method to get Theorem B

The advantages of Theorem B over Theorem A are fairly clear. Not only do we
get control over which regular type is realized in the difference, but assuming that
Mc,,C, we can choose it to be an RP. As usual, throughout the section T is
superstable.
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We will want to apply Proposition 3.2. This requires that we have an a e N\M
such that t(a/M) is p-semi-regular. In obtaining Theorem A we got such an a by a
minimal rank assumption on p. In this section we use the <,, assumption to
obtain the next two technical lemmas.

Lemma 4.1. Suppose that M c ,, N, c € O(N)\M, and there is a d € acl(cM)\ M.
Further suppose that there are d', ¢’ and B such that: d'c’ =dc (M), {cd, d', B} is
M-independent, and c’ yypuc. Then there is an ee O(N)\M such tha:
R*(e/M)<R™(c/M) and c Jye.

Proof. W.l.o.g., R°(c/M)=R"(8), 0 is over § and d cacl(c). Let y(x, y, z) e
t(c'd’ B/cdM) be such that whenever ky(c”, d*, b’),

(1) £6(c"),
(2) d"eacl(c"),
(3) c B cdD".

By assumption we know that 3x y(x, y, z) (which is a formula over cdM) does
not fork over M. Since B Wy d'cd there is a b’ € M such that £3x ¢(x, d’, b').
Now we use that d’' Wy cd, d' =d(M) and M . N to find a d” € M such that

@) Fx y(x,d", b'), and
(5) d" ¢ acl(9).

Let e satisfy ¥(x, d"b') in N. We have e ;8,4 ¢ by (3) (so, e ¢ M) and F8(e). Since
d” € acl(e) \acl(@) (by (2) and (5)), d" » e. Thus, R”(e/M)<R”(e/d")<R~(6) =
R%(c/M). This proves the lemma. O

Lemms 4.2. Suppose that M c,, N, p is regular and ¢ € N\ M is such that

(1) t(c/M) is p-simple, non-orthogonal to p, and R™(c/M) is minimal under this
assumption, O

(ii) 0 et(c/M) is a p-simple formula, t(c/M) X p, and R*(c/M) is minimal in
{R”(c'/M): c' € 6(N) and t(c'/M) £ p}.

Then, for some n, t(c/M)Op™.

Proof. We will prove the lemma under the assumptions in (i), stating at the end
the alteration neceded to handle (ii).
First note that by Lemma 1.5 and the elementary properties of «-rank,

(6) ifae N\M and t(a/ ) X p, then there is an a’ € N\M such that

t(a'/M) is p-simple, non-orthogonal to p, and R*(a’'/M) < R”(a/M).
By Lemma 1.6 there is a d e acl(cM) such that t(c/dM)p™ for some n and
w,(d/M)=0. We assume, towards a contradiction, that d ¢ M.

Clgimn. There are c¢'d'=cd (M) and My> M such that {d', cd, My} is M-
independent and ¢’ Wiy 44 C.
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Let My;> M be an a-model such that ¢ Wy, My. W.l.0.8., dom(p) = M,. By the
definition of p-simple there is I, an My-independent sequence of realizations of p
such that w,(c/Mol) =0 and w,(I/Myc)=0. Find c'd’ &cd (Mpl), c'd’ Wy, cd.
Since w,(d/Mp)=0, duwyIM, Thus, {d', cd, My} is M-independent by
the tramsitivity of independence. Since w,(I/cMp)=0 and w,(c'/IMy) =0,
w,(c'/cM,) = 0. Thus, ¢’ #44.m,¢. This proves the claim.

Now we can apply Lemma 4.1 to obtain an e € N\M such that e &, c and
R*(e/M) < R™(c/M). The forking condition implies that w,(c/edM) <w,(c/M),
so t(e/M) X p. Using (6) we contradict the minimal rank assumption on #(c/M) in
{(i). This implies that d € M, finishing the proof.

To obtain the lemma under the assumption in (ii), simply observe that in
applying Lemma 4.1 we may require that £6(e), and there is no need to apply
6). O

Corollery 4.3. Suppose that M c,, N, p is regular and non-orthogonal to t(N/M).
Then there is an a € N\ M such that t(a/M) is p-semi-regular.

Proof. This follows immediately from Lemma 1.5, 4.2(i) and 1.3. O

We can now prove Theorem B when p is non-trivial. Applying Corollary 4.3
and Proposition 3.2 we obtain a formula ¥ over M which is p-simple of p-weight
1, and a c € Y(N) with w,(c/M) = 1. Pick a y which has least -rank uader all of
these assumptions. By Lemma 4.2(ii) and the fact that w,(y) =1,

(7) if ¢’ e y(N) and t{c’'/M) X p then t(c’/M)Op.

This proves Theorem B for non-trivial p.

Now we move on to the case when p is trivial. By Corollary 4.3 wz have a
¢ € N\ M such that t(c/M) is p-semi-regular. W.l.o.g., p is an RP. By Lemma 1.7
there is a yyet(c/M) which is p-simple. Pick ¥ of ieast «-rank among the
p-simple formulas, 6, over M such that there is an a € O(N) with t(a/M) X p.

Claim. a € Y(N) and t(a/M) £ p=>t(a/M)Op.

By Lemma 4.2(ii), b € w(N) and #(b/M) X p =>t(b/M) O p™ for some n. Thus,
it suffices to show that w,(a/M)<1. Suppose, towards a contradiction, that
t(a/M)0Op™ for n>1. By Proposition 3.1 there is a b €acl(aM) such that
wy(a/bM) =n — 1. Iterating this procedure, using Lemma 1.6 if necessary, we
obtain a b eacl(aM) such that t(a/bM)0Op. Suppose that b'=b (M) and
b’ Wy ab. Since t(a/bM) is trivial and non-orthogonal to M there is an a' such
that a’b’' =ab (M) and a ;5 a’. This proves the claim.

Theorem B follows immediately for trivial p.

Hrushovski has an example showing that Theorem B is false without the
Mc,, N assumption. We call a model na-correct if N c,,€. Notice that N is
na-correct if for all a € N and non-algebraic 6(x, a), 8(N, a) ¢ acl{a).
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Corollary 4.4. Suppose that M is na-correct and p is a regular type non-orthogonal
to M. Then there is a q € S(M) such that p ¥ q and g is an RP.

Theorem B also yields the following ‘three model lemma’.

Theorem 4.5. Suppose that Myc Myc M,, Myc,, M,, and a € M, is such that
t(a/M,) is regular and non-orthogonal to My. Then there is a c € M, c @y, a.
by, M) and t(c/My) is an RP relative to M,.

Proof. Most of the work goes into proving
Clim. t(a/M,) X t(M,/My).

Let p be an RP non-orthogonal to t(a/M,) with dom(p) = Ag by, M,. Assum-
ing that A, is sufficiently large we can find a finite B, B (), aA,, and a ¢, realizing
P | MyBA, such that co 8y ra,a. Let I={c:A;: i<} be a Morley sequence in
stp(codo/aBM,), ¢ a restricted canonical base of this strong type. Thus,
c eacl(@BM,)Nacl(lJI) and, since Iy, B, c Hpp,a. Let 6; t(c;/A;) witness
that this type is an RP. Since B &y, {a} U {A;: i <w} we can ‘pull B into M;’ to
find a

¢’ e acl(aM,) N acl(‘_U 0,(S)u A,-)

such that ¢’ 2, a. Since {A;: i <w} U M, is My-independent, ¢’ Ly, {A;: i < w}.
Since each 6; is p-simple, #(c’'/M,) is p-simple.

a ,‘f ' > wy(c'laMy) <w,(c'/My) <w,(c’'|Mp).

It follows that t(aM,/M,) X p, proving the claim.

Now, by Theorem B there is a formula 0 over M, such that 6 is p-simple and
beO(M)\M,y, t(b/My) Xp=>t{(b/M;)Op. It is an easy exercise to show that
there is a b € 9(M,) such that b &, a. It follows that b Wy, M,, proving the
theorem. DO

S. Obtainin, ¢ree decompeositions and extending the logic

The primary purpose of this section is to obtain a ‘good’ tree decomposition of
each model of a superstable theory with NDOP. One possible form of ‘good’ is
the following notion.

Definition 5.1. We say that (N,, a,: n €I) is a c,,-decomposition inside N if
(a) (N,: ne€l) is an independent tree of models with |N,|={T| for all n € L.
(b) N,<na N and g, € N,.
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(c) t(ay/N,-) is regular (wher lh(n)>0) and orthogonal to N,-- (when
Ih(n) > 1),

(d) N, <a, (N,-) when Ih(n)>0.

We say that (N,, a,:n€l) is a c,,-decomposition of N if it is a maximal
Cp.-decomposition inside N.

Notice that the only restriction on ay is that it is an element of Nj. It appears
only because its exclusion would be a notational headache.

We will prove Theorem C stated in the abstract. If we removed (d) from the
definition the results in the previous section alone would yield the theorem.
Obtaining the theorem as stated will require a significant amount of work. The
second topic of the section, extending the logic, will be left until later.

The key proposition is the following. The srem C will be easy given this. Notice
that we do not need NDOP here.

Proposition 5.1. Suppose that T is superstable, N and M are models of T with
Nc,.M and Nc Ac M. Then there is a model N'>A, N'<,,M N' A (N)
and |N'| = |A| +|T|.

We separate the proof into two lemmas. In our first lemma we show that the
relation “cA is not dominated by A over M can be witnessed in a particular
canonical way.

Lemma 5.2. Suppose that T is superstable, Mt T, Nc,,M, NcAcMandceM
is such that stp(c/A) is p-semi-regular, p some RP, and cA is not dominated by A
over N. Then there is an e € M such that
(i) t(e/N) is an RP relative to M,
(ii) ewn A, and
(iii) e L4 c.

Proof. Let b be such that bwy A and b &, c. There is a b’ € acl(bN) such that
t(b’'/N) is p-simple and for all BoN with bwyB and all e with stp(e/B)
p-semi-regular, b W, ze. (Take b’ to be the P-internal part of b, where P is the
class of p-semi-regular types. See [6, Proposition 5, p. 16], replacing # by N and
intp(A) by intp(A/N).) Thus, b' Ly A and b’ K, c, sO we may assume that
t(b/N) is p-simple.

Since stp(c/A)Op™, for some n, stp(b/A) is p-simple and c &, b, we have
w,(c/bA)<w,(c/A) by [7, Fact 2, p. 139]. Thus, w,(b/cA)<w,(b/A)=
w,(b/N), implying that p ¥ t(cA/N). A fortiori, p ¥ t(M/N). By Theorem B
there is a q € S(N) such that g is an RP relative to M non-orthogonal to p and
realized in M.

There is a BoN, BuwyAch, and an f=(f;, ..., f,) realizing ¢"*V|BUA
such that w,(b/fB) =0. Since b 4,4 c and stp(c/AB) is p-semi-regular, f &z, c.
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Let 6 witness that g is an RP relative to M. Since B wy Ac and N is a model
(1) there is an é c 6{M) such that & 4, c.

Using that stp(c/A) is p-semi-regular we find an &'e; c & such that

(2) feé'e,>t(fIN)Op, & LyAc and e W, c.

By an argument similar to the one used in obtaining (1) we find a formula z(x)
over Ac such that k7(e) > E6(e) and e &, c. For any such e e M we must have
t(e/A) X p, sc {{e/N)Op and e by A. This proves the lemma. O]

The next lemma is the key to the entire section. The proof we give here is
due to Hrushovski. It has the advantages over Buechler’s proof of being 1/5 as
long and correct. The proof reads most smoothly if we use the following notation
due to Hrushovski. Let p be a strong type cver A in the variable x, @(x, y) a
formula over A. We let (d,x) @(x, y) be the formula in y such that for all b,
E(d,x) @ix, b) iff @(x,b)ep|Ab. We read (d,x) @(x,y) as “for generic x
realizing p. @(x, y) holds”.

Lemma 5.3. Suppose that T is superstable, N —,, M are models of T, NcAc M
and 9(x, b) is a formula over A such that O(M, b) ¢ aci(b). Then there is a
¢ € 8(M, b)\acl(b) such that cA 1A (N).

Proof. Let 9)(x,2,) be a formula over A of least «-rank such that
0,(x, b))} 6(x, b) and 6,(M, b,) ¢ acl(b). Let c € 6,(M, b,). We will show that
cA 1A (N).

Suppose, tcwards a contradiction, that cA is not dominated by A over N.
By Lemma 5.2 there is an ee M such that e 4,c and ewyA. Let a€A be
such that efyca and b,ca, 0)(x,a) a formula in #(c/aN) implying
0,(x, b;). Let @(x,y, z) et{cae/N) be such that ¢(ca, z) forks over N and
@(x, y, z)} 0x(x, y). Let r =t(a/N). Define an equivalence relation by: e’ ~e" iff
(d,y) Vx(@ix, y, e') = @(x, y, €7)). Clearly, e/~ ¢ N, since otherwise we would
kave ce N.

Choose a finite D = N such that cae L, N. As Nc,, M there exists an e’ e N
such that e'/~ ¢acl(D) and F3x @(x, a, e’). Let g =sip(e’'/D) and o(x, y) =
(d,2)9(x, y, 2).

Claim 1. (d,y) 3x [6x(x, ¥) A (@(x, y, €') <> a(x, y))].

Suppose that this is not the case. Then (d,y)Vx[@(x,y, e')<0x(x, y) A
o(x,y)l. If e" realizes ¢, (d,y)Vx[g(x,y,e")e>0,(x,y)A0(x,y)], so
@, y)V¥x [p(x, y, e') o> ¢(x, y, €")]. Thus, ¢’ ~¢". Since we can pick e” so that
e" wpe', we conclude that e'/~ € aci(D). This contradiction proves the claim.

Thus, as a realizes 7 and a by ¢’, E3x [0,(x, a) A (@(x, a, e') < o(x, a})]. Let
¢’ witness this quantifier. Then, k0,(c’, a).
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Suppose tha: Ep(c’, a, e’). Then E—o(c’, a), so by the definition of ¢, we must
have c’'a #pe’. If ko(c’, a), then E-p(c’, g, ¢'), so again by the definition of
g, c'a Wpe’. Since adipe’, the claim holds.

Since e’ fip,c’, ¢’ ¢ acl(a). EOy(c’, a) and e’ e N> R™(c'/aN) < R"(c'/aD) =
R”(0x(x, a)). This contradicts the definition of 6,, proving the lemma. [

Proposition 3.1 now follows easily from these lemmas. Lemma 5.5 below will

virtuaily compiete the proof of Theorem C. The nexi iemma is used there and

may hold some interest in its own right. Recall that we write A c, B when Ac B

nnr‘ Fnr n“ fnrmnlnn nfv\ over A citeh that QLY £ ah-sDR O\ fae cnoen
AVUE LS 41 SUVil ulas FURWY ) lUl Some o € 7y I-U\u] LUl DULRIC

a € A. (Makkai writes <Tv for c,.)

Lemma 5.4. Suppose that N c,, M, are modeis, My B>A>N, MgjoCoA>
N, CwaB, Ac,Band C<A(N). Then CUB < B(N).

Proof. The key to this proof is [11, XI, 1.4] which we quote as
(3) Givenr any set D, p € S(D) and 1p(x y) over D there is a formula 6(y) over

I cronle thné fnw A b oa | § (cinf Ao cant £nnds aracn Th SO -O7LN
L) Sucn nai JU? U U, 7\ YWiA, U}] QUCS UL JUIn vUCr &7 lIJ U\ ).

This fact is used tc establish the following strengthening of the hypothesis:
Ac,B.

Claim 1. For all formulas y(y) over C such that Evy(b) for some b € B, there is a
c € T such thas (e},

Write y(y) as y{a, y) where a e C and y{x, y) is over A. Applying (3) to
¥ we obtain a formula 9(y)et(b/A) such that for all b',

nnt farlk nvar A i QAN Qinca A — R thara ic a h! =2 A anch

o
Wt LIV AVAN U VWA 41 1KLL I—V\U ]- APIMWY L3 Y= k7 UiiWwiWw 10 Q@ UV T L3 OuwiR

that £@(b’). This implies that p U {y(x, b')} does not fork over A4, hence
P(x, b') e p. That is, kys{a, b'), proving the claim.

Turning our attention to the lemma, suppose that C U B is not dominated by B
over N. Then we can find a sequence ca € C such that aB <I B (N), stp(c/aAd) is
p-semi-regular (for some regular p). and caB is not dominated by B over N. By
Lemma 5.2 there is an e € M, such that t(e/N)Op is an RP relative to M,,
ebyaB and e W, gc. Since Cy B, ¢ H,4eb for some be B. Let ¢ et{e/N})
witness that this type is an RP relative to M. Let 7(z, y) € t{eb/caA) be such that
Fr(e’, b')=>c ¥ e'd'; Y(y) the formuia 3z (@(2) A 7(z, y)).

By Claim 1 there is a b’ e A sich that Ey(b'). Let e’ € M, satisfy @(z) A
1(z, b'). Thus, e'd’ W4 c, which is the same as e’ &, , c since b’ € A. Since
stp(c/aA) is p-seml-regular stp(e’'/ad) L p. A" k@(e') and (t(e/N) ) is an RP

~ln zria b e _nethacanal 2l 1. A,. Tiant th
lrlauvc [0 1!10 WiicCii m NUn-viutivguiial o p, C wyri 4

C <A (N), proving the lemma. 0O
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Lemmsa S.5. Suppose the. £ is superstabie with NDOP, M T and (M,, a,:nel)
is an cq,-decomposition of M. Then
) MM, (M,), jorall n el
(i) M is a-atomic over U M,,.
(i5i) If p € S(M), then p X M, for some n.

Proof. (i) Suppose, towards a contradiction, that M is not dominated by U M,
over M,. It is easy to find ar A, UM, c A c M and an @ € M such that a is not
dominated by A over M, and stp(a/A) is semi-regular. Since M, —,, M we may
apply Lemma 5.2 to find an e € M such that t(e/M,) is an RP relative to M and
edy A. By Proposidon 5.1 there is an Nc,, M, [N|=|T|, N>eM, and
N <e(M,). Let v<<7 be minimal such that t(e/M,) X M,. By Theorem 4.5 there
is an e’ € N such that e’ &y, M, and t(e'/M,) is regular. Since N <le (M,) and
e'eN, e Ly A, s0 &' Ly A by the transitivity of independence. Again by
Proposition 5.1 there is 2 model N’ c,, M such that N' 5 M, e’ and N’ <e' (M,).
It follows easily that (M,, a,:nef) U{{N', e')} is a c,,-decomposition inside
M, contradicting that (M,,a,: n€l) is a maximal such decomposition. This
proves (i).

Now find an independent tree of a-models, {N,: n€!), such that N,> M,,
UN, dn, M and N, &y, UM, for nel

Clsim 1. For all vel, MUUN, AUN, (N,).

We are going to apply Lemma 5.4 with N, as N, LM, UN, as 4, MUN, as C
and \UN, as B. Bringing in the heavy artillery, [11, XII, 2.3(3)] implies that
UM, UN, cUN,, taking care of one hypothesis in Lemma 5.4. Since N, is an
a-model we can simply take € as M,. It remains only to estabiish

C) MUN, <\UM,UN, (N,).

Let cwy UM, Since N, dy \JM,, cN, &y, \J M, by the Pairs Lemma. Since
MU M, (M,) (by (i) of this lemma) we conclude that cN, &y, M. Hence
¢ iy, M, proving (4).

Applying Lemma 5.4 in that manner described above gives the claim.

Claim Z. M is a-atomic over N,

Find an a-prime model N > J N, such that N is a-atomic over M |_J N,. Since
beN=>stp(b/M UL N,) is a-isclated, and N, is an a-model, it is easily shown
that

(5) NAIMUUN, (N,), forall s

By Claim 1 and the transitivity of domination N UM <1{U N,, (N,,). A fortiori,
NM <IN (N,). Suppose that M ¢ N. Since T has NDOP, ¢(M/N) X N, for some
7. Thus, there is a ¢ such that ¢ £y M and c wy, N; directly contradicting the
above. Thus, M < N, proving Claim 2.

Now (ii) follows from Claim 2 since U N, W, M.
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Proceeding to (iii), let p € S(M). By Claim 2 and NDOP, p ¥ N, for some 7.
Since N, by, M, p L M,. O

Proof of Theorem C. That every c—,,-decomposition inriiz M extends to an
Cna-decomposition of M is proved like Lemma 5.5(i). By Lemma 5.5(i) it remains
only to show that M is minimal over \UM,, for (M,,a,:nel) any c,-
decomposition of M. Suppose, towards a contradiction, that there is a model M’
with M2 M'oUM,. Let peS(M') be a regular type realized in M. Since
(M,, a,: nel) is also a c,,-decomposition of M’ we may apply Lemma 5.5(jii)
to obtain an # such that p ¥ M,. By Theorem 4.5 there is an a € M such that
t(a/M')Op and a Wy, M'. This is easily shown to contradict that (M,, a,: n € I)
is a maximal c,,-decomposition inside M. This completes the proof. O

To finish this first topic let us summarize the additional information about
na-correct models given by Proposition 5.1. Let K™ be the na-correct models of a
superstable theorey 7. First notice that c=c,, on K"™. Proposition 5.1
becomes: For M, Ne K™, NcAcM, implies that there is an N'e K™,
AcN'cM and N'JA (N). Combining this with Corollary 4.4 gives a very
well-behaved theory for K™.

Our next topic makes a natural companion to this model theory of K™
although it may not seem so at first. Let 7" be a superstable theory with NDOP,
MET. We expand M to M* by adding a predicate for every subset of M<®
definable in the logic L(3>'""). Let T* be the first-order theory of M*. We will
show that T~ is also superstable with NDOP and that the ‘correct’ models of T+
can be decomposed as in Theorem C with resp:-ct to an inclusion relation that is
natural for studying the L(3>'7')-theory of M. Later we wil} mention how —,,
and na-correct models fit into this subject.

First we need to give some additional notation and terminology. Let M be a
model of an arbitrary theory 7" in the language L. Let Q denote the quantifier
3T L(Q) the finitary logic in L with this quaatifier []. We define expansions
L*, M*, T*, L® M*® and T* as follows. For every formula ¢(x,y)eL let
Ra, 4(y) be a new predicate symbol in the obvious arity, L*=LU {Rq,,: @ €
L}. Expand M to the L*-structure M* by:

M*ERq. o (a) iff MEQro(x,a), forallaeMM.

Let M* = (M*)*9, L* the language of M* and T* = Th(M¥).

Let L=Ly, M=M,, and for i<w, M;,,=(M,)*, L.,,=(L)* and T, =
Th(M;,,). M* is defined tobc UM, L* =\ L;, T*={JT,. Any T" obtained in
this way is called an L(Q)-expansion of T.

Notice that M™* is not simpiy obtained by adding a predicate for each
L(Q)-definable subset of M. M also contains imaginary elements for equivalence
relations definable with the new predicates. Furthermore, M* has relations for
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the L(Q)-definable subsets of these new imaginary elements. So, M™ is really an
‘L{Q, eq)-expansion’ of M, and we may identify 7" with (7).

For @(x,7) a formula in L(Q) and NET* we write NF“Qx ¢(x, a)” if
NERq, ,(@). For @(x,7)eL”, ¢=R,, we may write NE“Qx ¢(x, a)” for
NERQq, 4(a@). For A a set we say that a is in acl,(A), called the small closure of A,
if there is a formula @(x) over A such that k@(e) and E*Qx @(x)”.

Of course, in considering T+ as an approximation to an L(Q)-theory we are
not interested in all models. In the next definition we isolate the relevant models
and the corresponding inclusion relation.

Defimition. Let 7% be an L(Q)-expansion of some theory 7.
(1) NET" is called correct for T™ if
(a) NE“Qr p(x, 3)” > jyuN, @)| <|T}, for all pe L™,
(®) Nie“Qx ¢(x, 8)” > @(N, a) ¢ acl,(a), for all p € L*.
(2) We call NET* standard if NE“Qx @(x, @)” iff |@(N, a@)}>|T|, for all
@el™.
(3) For sets A c B we write A =, B if
(a) acl(A)NBc A, and
(b) whenever E@(b,a), beacl(B), aeacl(A), there is a b’ €acl(A),
b’ ¢ acl (@) with £6(b’, a), for every 8 e L*.

Observe that for all A and B, Ac,, B> A c,.B.

There is one L{Q)-expansion of T which is of special interest. Let T™ be the
L(Q)-expansion associated with the monster model. Notice that € k Qx ¢(x, a) iff
@{(€, a) is infinite, so in this case “Qx” means “there are infinitely many x”.

Ovr main result about T7 is

Proposition 5.6. Suppose that T is superstable with NDOP and T* is an
L(Q)-expansion of T. Then T is superstable with NDOP.

Shelal’s proof of this resuit centered on the tree decomposition of models
enabled by NDOP. After hearing of the theorem Hrushovski suggested that the
proposition may follew from Bouscaren’s Theorem (Lemma 5.7). The details of
this second proof of the propositior were worked out by Buechler and appear
below. As Bouscaren’s Theorem relies heavily on ihe tree decomposition of
models it is likely that these two proofs are essentially the same.

Lemms 5.7. (i) [2, Main Theorem] Suppose that T is superstable with NDOP and
N = M are models of T. Let (M, N) be the pair obtained by adding a predicate
symbol for N. Thern T' = Th{(M, N) is superstable witk NDOP.

(ii) [2, Coroliary 3.2] If T, M and N are as above and p is a type in T' such that
ptveN”, Then U(p)<U(p t L).
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Donall sbh.se T+ 2 . ) LYy £ XX

Recau that 7 1s the umit of an w-sequence of € xdelSlonS T;. We will use

Lemma 5.7(i) repeatedly to show that each T; is superstable with NDOP. Then

we use (ii) of the lemma to see that T is superstable with NDOP.

Terminology. There are many possible interpretations of the term “T? is
interpretable in T'”. Below we will only be dealing with one rather simple case.
Let @ be a formula without parameters in T'. We say that T° is interpretable in
T! on ¢ if there is L', a subleanguage of the language of T, such that
T°=Th(g(€) | L") (after changing the language of T?, if necessary).

Recall the definition of M* and T* above.

Lemma 5.8. Suppose that T is superstable with NDOP, Mt T, T* = Th(M*) and
p is some type in T*. Then T* is superstable with NDOP and U(p) < the U-rank
of p | L as computed in T.

Proof. It is not hard to see thai there is a model N' c M*, |N’| =|T]|, such that
for all @(x,y)eL and ae N’, N'ERq,(a) iff (M, N)E(3x ¢ N) ¢(x, a), where
N =N'[ L. This shows that T* is interpretable in 7' = Th(M, N) on N, where N
is the predicate symbel representing the submodel. It follows from [1] that not
only 7", but aiso T* is superstabie with NDOP.

Now let p be any type in T*, (M,, N;) a saturated model of T'. W.lo.g.,
dom(p) = N,.
B O oon al. -2 TO rrl JENI N S
U HHIBEER o Ouppube L 1 » uucrprmuuw l’l l"C auuer.uuuw uleury ana p [ A 74
complete type in T°. Then there is p', a completion of p in T', such that
’Iln)s L’(n’\

This claim is proved by an easy induction on U(p), which we leave to the
By the claim there is a completion p' of p in T* with U(p) < U(p’). Since T* is
intarnratahlea an R ' Fvel, Rv Lemma § '7(“\ '”n’\< {p' } L). Since

BIMWAPSAWRGRSAW WAL ANy Y 4 | &sy

p'IL=p!lL,we have proved the lemma a

Since T¥ = (T*)°? we conclude that T* is also superstable with NDOP.

We can now complete the proof of Proposition 5.6. Let M kT be such that
T*=Th(M"). Let M;, L, and T; be as defined above. We will prove that T* is
superstable by showing that every type has ordinal U-rank. Let p be a complete
type in T*. Let j be minimal such that the variables in p range over sorts
appearing in T;. For i=01let p;=p | L;4;.

We can associate with any such p the descending sequence of ordinals
(U(po), U(pl) .. ) by Lemma 5.8. We leave it to the reader to see that there

cannot be a chain p =qo>¢,; > - - - such that for all i, g;,, forks over dom(q,).

Thus, T is superstable.
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Now we will show that 7 has NDOP. Let N, c N;, N, be 2-models of T* such
that N, wy, Nz; N an a-prime model over Ny U N-. Let p < S(N). We must show
that p Y N, for i=1 or 2. Let a realize p and M be an a-priine model over
NuU{a}. Forj<alet N\=N; | L; (i=1,2) and N'=N [ L;; all models of T;, a
superstabie theory with NDOP. We may construct N so that N’ is a-prime over
N, U N, for j < . For q any type in T let g; denote g | L;, with the convention
that g | L;=q | L; for i <j and L, the smallest language containing the sorts over
which the variables in g range.

Let c e M\N be such that lim;, U(¢(c/N);) = « is minimal. Let q =#(c/N),
and let i< be such that U(g)=a for j=i. Then, for all c¢'e M\N,
U{c'/N')= a in T,. Notice that g; is regular. Since 7; has NDOP and N’ is a-prime
over N U N} we must have g; non-orthogonal to N5 or Ni. Suppose that g; X N5.
By a standard argument there is an r € S(N3) such that r ¥ g;, U(r)=a and r is
regular. Thus, working in T;, there is a co€ M*\N* such that ¢, realizes r | N. Let
r* =t(co/N) in T*. By the minimality condition on &, U(r;)=U(r; [ No) =«
for j=i. Thus, for each j, r; does not fork over N,, so r* does not fork over
N,. Since r* is realized in M = N{a], p X N,. This proves that T* has NDOP.

With Proposition 5.6 in hand our next goal is to prove a decomposition
theorem analogous to Theorem C for T with respect to —,. The explicit
definition and result are as follows.

Definition. Let T* be an L(Q)-expansion of some T, N a correct model of T*.
We say that (N,, a,: n €I} is a c,-decomposition inside N if (a), (c) and (d) of
Definition 5.1 hold and

(b’) N,cn N and g, €N,

‘cn-decomposition of N’ is defined in the obvious way.

Theorem 5.9. Suppose that T is superstable with NDOP, T* is an L(Q)-expansion
of T and MET? is standard. Then every c.,-decomposition inside M extends to a
Cn-decomposition of M. Furthermore, if {N,, a,: n € ) is any c-decomposition
of M, M is minimal over \J N, and for all n € I, M U N, (N,).

The passage from c,, to c,, requires the following additional lemmas.

Lemma 5.10. Suppose that T* is a superstable L(Q)-expansion of T, MET"™,
Ncy,Mand N c Ac M. Let 0(x) be a formula over A such that M £ “—Qx 0(x)”.
Then 8(M)A < A (N).

Proof. Suppose that the iemma is false. After adding some elements of 8(M) to
A, if necessary, there is a ¢y € 6(M) such that ¢, is not dominated by A over N.
Repeatedly applying L.emma 1.3, perhaps adding more elements to A, we find a
¢ € acl(coA) such that stp(c/A) is semi-regular and c is not dominated by A over
N. Furthermore, there is a formula ' e t(c/A) such that MF*“~Qx 8'(x)”. By
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Lemma 5.2 there is an e € M, e Wy A, such that ¢ 4, e. Let 8’ be 0'(x, a) where
ME“V¥y (0Qx 6'(x, y))”. Since ewya we can find an a'eN and a c’'e M
such that k6'(c’,a') and e Hiyc'. Thus, ¢’e M\N. This contradicts that
ME“Qx0'(x,a')’ and Nc, M. O

Lemma 5.11. Suppose that T* is a superstable L(Q)-expansion of T, MET™ is
standard, N c, M is a model of T*, Nc A « M with |A|=|T)|, and 6(x, b) is a
Jormula over A with Mk “Qx 0(x)”. Then there is a c € (M)\acl,,(b) such that
cA <A (N).

Proof. Notice that this a generalization of Lemma 5.3. We begin the proof as in
that previous lemma, but this situation is complicated by the lack of a lemma
saying: e ¢ acl(D) and ¢ e acl,(D)=>eupec.

Let 04(x, b,) be a formula over A of least »-rank such that 8,(x, b,)} 6(x, b)
and 5,(M, b,) ¢acl,(b). Let ce8,(M,b)\acl,((b). We will show that
cA <A (N).

Suppose, towards a contradicticn, that cA is not dominated by A over N. Now
proceed to find e, a, Ox(x, a)et(c/aN) and @(x, y, z) € t(cae/N) exactly as in
Lemma 5.3. Let r =t(a/N) and define ~ as before.

Choose a finite Dy N such that cae wp, N. As N, M there exists an e' e N
such that F3x @(x, a, ¢’) and e'/~ ¢ acl,(D,). Pick D c N finite, D,c D, and
e' € N such that F3x @(x, a, €’), e* =¢'/~ ¢ acl, (D) and R"(e*/D) is minimal
under these conditions. Let @y(u) € t(e*/acl(D)) be such that R¥(e*/D) = R™(@o)
and @o(u)F3z (z/~=u A (d,y) Ix @(x, y, z)). Notice that M £ “Qx @(x)”. Fur-
thermore, the minimal rank assumption implies that if D'>D, N> D' and
f € po(M)\acl(D'), then R¥(f/D') = R™(go).

Sublemmsa 1. Suppose that f e @o(M)\acl (D) and fuwpa. Then there is a
¢’ € 0x(M, a) such that f H,pc’.

Proof. Much of the work here was done in 5.3. First we find an f' with '/~ =,
kd,y)3x p(x, y,f') and f'uypa. Since f'Ubpa, FIx@(x,a,f'). Let g=
stp(f'/D) and o(x, y) = (d,z) @(x, y, z).

Claim 1. (d,y) 3x {0:(x, y) A (@(x, y, ') & olx, y)]

This is proved like Claim 1 in Lemma 5.3.
As a realizes rand a Lp f',

k3x {62(x, @) A (@(x, a, f') < o(x, a))].
Claim 2. E6y{(c’, a) A (@(c’, a, f') > o(c’, a)) implies that ¢’ w,pf'.

This is proved like Claim 2 in Lemma 5.3.
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For the work ahead we must transfer our attention to f, so to what is borrowed
from 5.3 we add

Clgim 3. For ¢’ as in Claim 2, ¢’ %,pf.

Choose an f*&f° (fD) with f* wgp ac’. Since fupa, f” wpa. The definition of
~ then implies that EVx (@(x, a, f) < @(x, a, f")). It iollows that F@,(c’, a) A
~(@(c’, a, )« o(c’, a)). So, by Ciaim 2 and the fact that f*=f" (aD), ¢’ £,pf".
The claim follows immediately since f" wyp ac’.

This proves the sublemma.

30, the e* chosen above satisfies e* )ﬂ,,p(. . We will reach a contradiction rather
quickly once we show that ¢’ ¢ acl,(@). In that previous lemma, where we used

anll_ ) iactand AFf anl ) thic wae an immadiata conseguence nf the ft\r‘rlnn TIn
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this case a lot of work remains.
Sublemma 2. ¢’ ¢ acl,(a).

Proof. Assume that ¢’ e acl,(a). Eventually we will contradict the minimality
assumption on R*(@,) defined above.

Cisim 4. There is an e® € M such that e* ¢ acl,(aN), Fpy(e®) and e* Wy a.

There are two distinct cases involved in the proof.

Case 1: e*eacl(Da). In this case we let yet(e*a/D) be such that
ME“Yy (CQy(x, y))’, vox)=d.y¢(x,y), a formula over acl(D). Since
e* ¢ acl((D), ME“Qx (Po(x) A po(x))”’. The standardness of M and the fact
that |[N|=|T| vields an e*eM, e*¢acl,((Na) and Eye(e®) A @ole®).
e® ¢ acl(Da)=>Ew(e®, a), so by the definition of ¥, we must have e® ¥, a.
The minimal rank assumption on @, implies that R*(e*/N) = R™(e#/D). Hence,
e® & a, proving the claim in this case.

Case 2: e* ¢ aci,{aD). Since we have assumed that ¢’ € aci,{a) this impiies that
e* ¢ aclm(ac'D) Let w(x, ac’)e t(e*/acl(D)ac') have »-rank <R”(e*/D) and
imply (po Since M F“Qx ¢(x, ac’')” and M is standard theie is an ¢” € y(M, ac’)

with e® ¢ acl,(aN). By the minimality assumption on R°°(¢p0), R""(e“/N) =

D""!a#ln\ Thirag # K ant 'f n” N ara sonteading o 2 anl 2 Buny a & 10
£ RC JiF ’ L Y G ﬂJN UL . UJN“ Ww Wuklﬂ\ll\" L 7 ~ ﬂ\'lm\u’ U’ Mllmla wt e AT,

Thus, e” &y a and e® ¢ acl,(Na), proving the claim in this second case.
We wiil show that the conditions exhibited in Claim 4 contradict the minimality

BALEY RALW WA AAGLLAWES) WALAGWibw s LEA wrAlluEE. TS RATAIRNEEW Y Ak aniiiissieldsnady

of R™(g,). To do this, however, we will not work with the elements shown, but
must introduce a model. By Claim 4 and the standardness of M there are e; and
N' > Na such that N'c, M, |N'|=IT|, eoe M\N’, E@ye,) and ey 46y N'. Let
I={e;:i<w} be a Morley sequence in #(e,/N'). We passed from e®, 2 and N to0
e, N' and N in order to obtain the following.
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Suppose that the claim fails. Then by the indiscernibility of I there is a k< w
such that eyeacl,(N'e, - - -e,). Since e, - - - ex wy-eo we can find e;,..., e e N’
with ejeacl,(N'e;---e;)=acl,(N'). This contradicts that e,e M\N' and
N' c,, M, proving the claim.

Let a'eCb(e,/N) be such that egw, N', and k<w such that a'e
acl(ep---e;). By these remarks and Claim 5 there is a formula
O(xq, - . ., X, y) €tleg - - - €ra'/acl(D)) such that

(l) e(x(b oo Xpy y) k q’O(xi)! is k’

(il) Vxg: Xy [0(1.'0, on ey Xgy y)_) 3<wy e(xﬂr co ey Xiy y)

Ai/‘\ka,-- . 'kae(xo, e ,xk,y)].
The assumption that ey 4y N’ implies that a’ € M\N. Since N c, M there is an
a" € N\acl,,(D) such that E3x, - - - x; O(xo, . . . , X, @"). Using (ii) in the defini-
tion of @, the standardness of M and Nc, M, we find ey, . .., e; € N such that
kO(eq, . . . ,ex, a”) and e ¢ acl(Da"ep- - - e;_;), for i<k. Letting &' be the
sequence of e;’s, we get a” € acl(é')\acl(D), so &' &pa". By the Pairs Lernma
there is an i such that e ¥p,;.....,a". Thus, R™(e;/Da"ey---€/_;)<
R”(e;/D) = R™(p,) and e; ¢ acl,,(Da"e; - - - e;_;), so we finally reach a contradic-
tion to the minimality of R™(go).

This contradiction proves Sublemma 2. Thus, e’ &5, ¢’ and ¢’ ¢ acl,(a). This
contradicts the minimality assumption on R-(&,(x, @)), proving that cA <JA(N).
This proves the lemma. [J

Proposition 5.12. Suppose that T* is a superstable L{Q)-expansion of T, MET™
is standard, Nc, M, NET*, Nc Ac M and |A| =|T|. Then there is an N' o A,
such that N'c, M, N' <A (N) and |N'| =|T|.

Proof. This is immediate by Lemmas 5.10 and 5.11. O

Theorem 5.9 is now proved as was Theorem C. We leave the details to the
reader.

6. Improving the constructibility of N over | N,

Using the results in the last section, especially Lemma 5.5, it is not difficult to
show that if T is superstable with NDOP and (N,: 9 € I} is an independent tree
of models with N minimal over {_ N, then N is l-atomic over L N, (see [11, IV,
Definition 2.3]). In [11, XII, §1] we encountered j-isolation, a strengthening of
{-isolation. It was shown that for countable superstable theories and all sets 4
there is a j-constructible model over A. j-isolation plays a central role in finding
useful consequences of NOTOP (see {11, XII, §4]). Here we show that for N and
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(N,:n€l) as above, N is j-constructible over {N,. In fact, we obtain the
constructibility of N over | N,, with re:pect to an isolation relation significantly
stronger than j-isolation, and we can find such an N inside any # o N,,. Aiso,
we do not need to assume that T is covntable.

Our meihod of proving this lasi result may actually be of more¢ interest than the
fact itself. It depends highly on Hrushovski’s theorem guaranteeing the existence

~lf Baflemmlala antirme Denmncitene £ AV Wa will chaw thnt fae Al and
i UuiluIauie gtuup AGUUILD (B LUPUSIUULIE U.5j. WO Wil J1Uw  Eiat iUt (Y anu

{N,: n eI) as above there is a construction {c,: @ <|N|) of N over N, such

that whenevar !’C If' i l| | M \ ic nnn-alm'.-hrsnn there is a definable group nnh_pg

transitively on some formula m this type. We will be able to choose this formula
of minimal «-rank over C,ULJN,. Using results in stable group theory

(Proposition 6.3) we get #(c./C, UU ) 1solated with respect to a notion
stronger than j-isolation (see Definition 6.6(3), below).

First, we will discuss the stable group thecry involved in the proof. After
developing the terminology of definable group actions we will state results from
[6] on ‘generic types’ which generalize well-known results about stable groups.

Definition 6.1 (1) We say that @(@) is an a-definable group action if @ =
(‘pﬂ(x’ 5)9 ‘pl(x:- y z, ﬁ): ‘PZ(x’ ﬁ)! @3(x’ Y Z, &)) where N

(i) @ | 2= (@0, @) is a definable group where A;= @() is the universe and
@(€) is the graph of the operation, and

(ii) @; defines a group action of A; on B; = @,(€).

(2) We say that the deﬁnable group action @ is fransitive if A; acts transitively

£ _ ¥l

— r T oAb oA __tal oL f L L\
llDw,lC,lUl”dllo, &Di,lﬂCl'ClSdgEA@Wlm FYang, 0, O .

Weo adnnt tha et i inad ol\rnu: that far n o Aafinnhla grnnen
LA A ﬂuul)l. My fiIlaaii vl UdLA QUuUTe uiar 20 l,l a JUvilliauviv yuup a\auuu, \‘Iz

defines the set B actea on by A; = @o(€). - denotes the group operation defined

hv @; and © dennt°< the action dpﬁned by @s.
Notation 6.2. Let @(@) be a definable group action.

(i) For 6=0(x, 5) let 0%, z,5)=@(zox,7). For A a set of formulas
A¥1={gl%]: g e A}). We call A @-invariant if for every A-formula 0(x, 5) and
ceA; O(cox, b)is a A-formula.

(ii) We say that p € S(acl(@); is generic if pt ¢, and whenever g€ A; and b
realizes p with gui;b, gu;8°b. If A= dom(q):& we say that g is generic if
there is a generic p with g =p | A.

(iii) We call a formula 6(x, b) @-small if 6+ @, and @ is not contained in any
generic.

Propesition £3 (Jliushovskij. Ler ¢(a) De a mansitive definabie group action; A
finite and invariant.
(]) Genenc types exist and Ag acts iransitively on the set of all generics in
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(2) Suppose that ac A. Then Iy = {q | A: q € S(A) is generic} is finite. In ju-t,
re QQR(’, 4, N0) = R(‘Pz» A, xo)
(3) Assume that T is superstable, d = A. 0 is a formula over A, 0\ @,, and 0 is
not @-small. Then (i) < (ii) > (iii).
(i) O has no extension over A which is §-small.
(ii) There is no 0't 0 over A with R*(0') < R™(@»).
(iii) For every finite A', |[{q | A": 0 €q € S(A)}| <Np.

Proof. The proof is easily obtained from Facts 12 and 13 in [6. Ch. 1]. (1) is just
Facts 12 and 13(a). (2) is 13(c), using its proof to obtain the second claim. For (3)
we need the following additional information about generics when T is
superstable.

Claim. If p is generic, then R*(p) = R*(@,).

Let g € S(acl(@)) be such that ¢, € g and R*(¢) = R”(@,). We first show that ¢
is generic as follows. Pick g € A; and b realizing q | g acl(@). Since b and g<b are
equi-definable over ga, R*(gob/ga)=R~(b/ga)=R*(b/a)=R>(¢g,). Since
R%(g°b/a)<R™(¢,), we conclude that gob J;g, proving that q is generic. it
follows easily from 13(a) that all generics have the same -rank, proving the
claim.

Now the equivalence of (i) and (ii) is clear. (ii) = (iii) follows from (2) and the
fact that every finite A is contained in the finite invariant set Al®l. O :

We turn now to deeper results. The first is just a more explicit statement of
Proposition 2 on p. 35 of [6]. Our claim that ¢, and ¢, may be chosen to extend
given formulas in p and q follows from the proof, as does the transitivity of the
action.

Lemms 6.4. Suppose that T is stable, p, q € S(A) are stationary and the following
hold.
(i) - is an operation from p{(€)xp(€) to p(€), ° an operation from
P(€) x q(€) to q(€), and each of these is the restriction of a definable relation.
(ii) If a and b are A-independent realizations of p, then a - b realizes p and
{a, b, a - b} is pairwise A-independent.
(iii) If a realizes p, b realizes q and a L4 b, then a<b realizes q ard {a, b, a°b}
is pairwise A-independent.
(iv) If {1, b, ¢} c p(€) is A-independent, thena -(b-c)=(a-b)-c.
W) if 4, Eepls), cealB®) and {a. b, c} is A-independent, then a°(bec)=
(a - b)oc.
Then for any @° € p and @* € q there is a transitive A-dzfinable group action §
such that @ot @°, @+ 9%, @o€p, Y€ q and -5, o5 extend - and o, respectively.
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Proposition 6.5. Suppose that T is stable, A =acl(A), q € S(A), t(c/A) Lq and
c W, g(€). Then there is a d € dcl(cA)\ A and a transitive A-definable group action
@ with d € B;. Furthermore, for any ¢ € t(d/A) we may require that @, I y.

Proof. This is basically a combination of Proposition 6.4 and Theorem 2 in §3.4
of [6]. It is not hard to show that t(c/A) X g > there is a d € dcl(cA)\ A such that
t(d/A) is g-internal. The proof of the quoted result yields the hypotheses of
Proposition 6.4. This proves the proposition. O

We come now to the isolation relations relevant to this section.

Definition 6.6 For x € {cl, j1, (c, j)} we define F; as the set of (p, B) with
p €S(A), A>B, |B| <A, such that

(1) if x=cl1, there is a @ep [ B such that g€ S(A) and peq=>R"(q)=
R(g)<o=;

(2) if x=j1, there is a @ep | B such that for all finite A, |{q | A:
peqeSAN <N

(3) if x=(c,j) there is a @ ep | B simultaneously witnessing that (p, B) €
F'NnF.

As usual, F} -isolated is abbreviated x-isolated, etc.

Remark 6.7. Suppose that p € S(A) is jl-isolated, as witnessed by ¢. It follows
that not only is p jl-isolated, but every q € S(A) containing ¢ is j1-isolated.

The next lemma only plays a minor role in our treatment, but it lends insight
into the strength of jl-isolation.

Lemma 6.8. Suppose that T is stable, MET, A>M and t(a/A) is ji-isolated.
Then aA <A (M).

Proof. Suppose that @(x, b) € t(a/A) witnesses ihat this type is jl-isolated. Let
Z={qeS(C): peq} and q does not fork over A. For each finite A let
Za={qlA:qeZ}. qeZ>R(q, A, R)=R(q | A, A, X), so Z, is finite. Using
that each r € 2, is definable over acl(A) we obtain a formula z,(y) over acl(4)
such that for 0(x, y) € A and all ¢, Et,(¢) iff O(x, €) € r for some r € 3,.

Now suppose that CLyA and ¢ L a. Let €{x, ¢) et(a/cA) be a formula
that forks over A, 7, the formula associated to {6(x,y)} as above. Then
Fdx (6(x, ¢) A p(x)) A 174(C). Since € Wy A and M is a model there is a &' e M,
Fax (0(x, ¢') A @(x)) A 179(¢’). Thus, O(x, ¢') is in some r € X g, contradicting
that F17,(¢’). This proves the lemma. O

Defiaition 6.9. (1) We say that t(a/A) is gp-isolated if a € acl(A) or there is a
transitive A-definable group action @ with @, € t(a/A).
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(2) We say that t(a/A) is (c, gp)-isolated if a € acl(A) or there is a transitive
A-definable group action ¢ with @, € ¢(s/A) and for g € S(A), p,eq=>R™(q) =
R¥(@;) <.

Notice that for a type to be (c, gp)-isolated it is not sufficient to simply be both
c1- and gp-isolated. Requiring @, to be the cl-isolating formula has the important
consequence that stp(a/A) is generic.

For x =cl, j1, etc., the notion of an x-construction over A is defined in the
obvious way.

In this section (c, gp)-isolation is used largely in conjunction with the next
lemma, which is an immediate corollary to Proposition 6.3(3).

Lemma 6.10. If t(a/A) is (c, gp)-iso ated, then it is (c, j)-isolated.

To prove the existence of enough {(c, gp)-isolated types we will need the
following refined notion.

Definition 6.11. Let y be a formula over A. We say that {(cy,...,c,) is a
gp-construction over A into ¢ if

@) {co, - .., c,) is a gp-construction over A, £y(c,) and ¢; € acl(c,C;A).

(ii) If c; ¢ acl(C;A) there is a transitive C;A-definable group action @ with
@2 € t(c;/C;A) and E@,(e) > there is a d € Y(C) with e € acl(dC;A).

{coy - - -, C,) is a (c, gp)-construction over A into ¢ if it is a gp-construction
over A into ¥, and under (ii), @, cl-isolates #(c;/C;Aj.

The next lemma is central to the proofs of our main results. Its proof is straight
forward so we leave it to the reader.

Lemma 6.12. Suppose that {c,,...,c,) is a gp-construction over A into ,
where Y is a formula over Bc A. There is a formula @(xo,...,%, )€
t(co - - c,A/B) such that k@, ..., d,, a)>(d,, ..., d,) is a gp-construction
over ab into .

Our main goal is the next result, which is proved with a series of lemmas.

Theorem 6.43. Suppose that T is superstable with NDOP, (N,:nel) is an
independent tree of models and M >\ JN,. Then there is a model M'c M,
M’ 5\ N, such that M’ is (c, gp)-constructible over \ N,.

Proposition 6.14. Suppose that T is superstable with NDOP, (N,: 9 el) is an
independent tree of a-models, A >\ N, and for ali nel, AAUN, (N,). Then
for all formulas vy over A there is a gp-construction over A into .
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Proef. The proof is by induciion on R™(y). Suppose that the proposition is true
for all y' and ali A’ with R™(yp')<R*(y). W.Lo.g., R™(y)=R"(a/A) for all
a € Y(€), A =acl(A), and 1 is non-algebraic.

As in Claim 2 of Lemma 5.5, 4 is a-atomic over | N, . Let p be a regular type
of least x-rank whick is non-orthcgonal to stp(a/A) for some a € p(€). By
NDOP, p YN, for some nel. Since N, is an a-model we may assumne that
dom{p) = N,,. Let a € ¥(€) be such that t(a/A) X p.

Claim. a b, p(C).

Let I be a basis for p | A in €. If a 4,  we can easily contradict that t(a/A) is
cl-isolated since Iwy, A and N, is an a-model. Thus, aw, I. If b €p(€) and
B> IA, R™(b/B)<R™(p), so stp(a/A) 1 stp(b/B), by the minimal rank assump-
tion on p. This proves the claim.

Since A is algebraically closed, we may apply Proposition 6.5 to obtain @, an
A-definable transitive group action with @, e #(d/A) for some d e dcl(ed)\A.
Furthermore, we may assume that k@,(e)=>ihere is an a' € ¥(€) with ee€
dcl(a’'A). Since R™(a/dA)<R”(y), we can apply induction to obtain
{cos - - - » € ), @ gp-comstruction over Ad into ¥ with d € acl(c,A). Now observe
that {d,co,...,c,) is a gp-construction over A into 1, proving the
proposition. [

Propeosition 6.15. Suppose that T is superstable, MET, M > A and for every
formuia v over A there is a gp-construction over A into . Then for every v over
A, in M there is a (c, gp)-construction over A into .

Proof. Tiis, too, is proved by induction on R™(y)=a. Assume that the
proposition is true for all A and all formulas of «-rank <a, and « #0.

First suppose that there are: a € (M), (b, ..., bn_,), a (c, gp)-construction
over A with b; € acl(aB;A), and a c € acl(aAB,,)\acl(AB,,) such that t(c/AB,,) is
cl-isolated and R*(c/AB,)< a. Pick 6(x, y)et(ac/AB,,) such that £0(de)=>
ky(d), eeacl(dAB,,), b; € acl(dAB;) for i <m, and R*(e/AB,,) = R"(c/AB,,).
This is possible since #(c/AB,) is cl-isolated. Let @(y)=3x0(x,y). By
induction there is {cq,...,c,) €M, a (c, gp)-construction over AB,, into @.
Since E@(c,) and c ¢ acl(AB,,), c,¢acl(AB,,), so R*(6(x, c,)) < «. We may
again apply induction to find (d,,...,d;) e M, a (c, gp)-construction over
AB,.C,., into 0(x, c,). Now check that (bg,...,bmn_1,C0r---,Cn,do,...,d;)
is a (¢, gp)-construction over A into . (For i <m, b; € acl(d,B;A) since £2(d,, c,).
For i <n, c; e acl(d,C,B,,A) since c; € acl(c,C;B,.A) and c, € acl(d,B,,A)Thus,
we may assume

(1) If aeyp(M), (be,...,bn_1) is a (c, gp)-construction with b; € acl(aB;A)
for all i, ceacl(eAB,,))\acl(AB,,) and t(c/AB,) is cl-isolated, then
R™(c/AB,)= a.
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By hypothesis there is {(co,...,c,), a gp-construction over A into Y.
Let @{xp,...,x%,)€t(Co - c,/A) be as guaranteed by Lemma 6.12. Let
(dy, ..., d,) e M satisfy @ with R"(d;/D;A) minimal.

Claim. t(d;/D;A) is (c, gp)-isolated.

We do this by induction on i. If d; € acl(D,A) we are done, so suppose that
d; ¢ acl(D;A). By the definition of a gp-construction into ¢, ky(d,), d;e
acl(d,D;,A) and there is @, a transitive D,A-definable group action with
¢, € t(d;/ D;A). By the inductive hypothesis D; is a (c, gp)-construction over A
with d;eacl(d,D;A) for j<i. Thus, we can apply (1) to conclude that
R7(d;/D;A)= «. By the definition of a gp-construction into w there is an
a’' € Y(C) with e e acl(a’D;A) for any e € @,(€). Thus, R*(¢p,) <. Since we
chose R*(d;/D;A) minimal, we conclude that R*(e/D;A)=R™(¢,) for all ee
@+(€). This proves the claim, hence the proposition. 0O

Lemma 6.16. Suppose that T is superstable with NDOP, (M,:nel) is an
independent tree of models and A > M, is such that A1 U M, (M,) forallnel
Then for all formulas y over A there is a gp-construction over A into .

Preof. Let (N,:n<l) be an independent tree of a-models with N, >M,,
N, by, A and U N, Wy, A. By {11, XTI, 2.33)] U M, <,iUN,.

Claim. For all formulas 0(x, y) such that F8(a, b) for ac A and b e\UN,,, there
is a b' e UM, with £6(a, b').

This is proved just like Claim 1 of Lemma 5.4.

As in Ciaim 1 of Lemma 5.5, | N, 4 <N, (¥,) for all 7; € /. By Proposition
6.14 there is (co,...,c,), a gp-construction over AUUJN, into . Let
@(Xos - - - Xn, y) €t(Co " * - ¢, UN,/A) be as guaranieed by Lemma 6.12. By the
claim there is an a’ €| M, such that F3x,- - - x, @{xo, . . . , X,, a'). Witnessing
these existential quantifiers gives the desired gp-construction into ¢. 0O

Proof of Theorem 6.13. This is obtained by iterated application of Propositions
6.14 and 6.15, Lemma 6.16 and the following corollary of .emma 6.8:

if {M,: 7€) is an independent tree of models and A is (c, gr)-constructible
over | M,, then UM, A <\ M, (M,) for all nel

Corollary 6.17. Suppose that T is superstable with NDOP, (N,:nel) is an
independent iree of models and M>\JN,. Then there is a model M'c M,
M' o\ J N, such that M’ is (c, j)-construciible over U N,).

Proof. Combine Theorem 6.13 and Lemma 6.10. O

We have certainly not exhausted the consequences of the ideas in this section.
As an example of an additional application we offer the following.
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Coroliary 6.18. Suppose that T is superstable and non-multidimensional, M, Nt T
with N c A c M. Then shere is a model M' c M, Ac M' and M' is dominated by
A over N.

Preof. We only outline the prooi. We will find an A’ which is (c, gp)-
constructible over A. The corollary ther foilows from Lemmas 6.8 and 6.10.
Combining various results in this section the problem reduces to showing that for
N' an g-model with N’ &y A, there is a gp-constructible model over N' U A. This
is proved as in Lemma 6.14 using that every regular type is non-orthogonal to an
RPover N'. O
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