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r are the following. 
ir supetsrable and M c N are distinct models of T”q. Then there 
ir regular. 

For M c N two models we say that MC, N if for all a EM and 6(x, a) such that 

,,a N are models of T4, and p is a regular type 
E N such that t(c/M) is regukizr and non-orthogonal 

top. Furthermore, there is a formuiia 0 E t(c/M) such that a E O(N) and t(alM) &!p =$ t(alM) ir 
regular. 

VVe use these results to obtain ‘good’ tree decompositions of models in (possibly un- 
uperstable theories with NDOP. See Deli&ion 5.1 for the undefined terms. 
C. Suppose that T is supemtable with NDOP and MkTC9. Then every c,,- 

&composition i&diz M extends to a c,,-decomposition of M. Furthermore, if ( Nq, a+ q E I) is 
any c,,-decomposition of M, then M is minimal over i_j Nq and for all q E 1, M ir dominated by 
u NV over Nq. 

Using some stable group theory we show that when Th(M) is superstable with NDOP and 
(N,: q E I) is a tree decomposition of M, then M is constructible over U Nq with respect to a 
very strong isolation relation (Section 6). 

0. ml 

Regular types play a crucial role in most theorems concerning the number of 
models of a super-stable theory. They are central to the classiikation of countable 
first-order theories in [ll]. Theorems A and help to close the gap between 
super-stable and totally transcende theories (the results are well known for 
totally transcendental theories [ 10, 

at this paper was not written several years ago. results 
would have been easier to prove with the theo in this 

ithout them there are significant technical 
ositions of superstable theories with N 
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278 S. She&h, S. Buechler 

real difference be n superstable and totally transcendental theories: the 
over sets. So, the ambitious reader could obtain a 
Gap by incorporating this paper into [ll]. 

for more important applications, since we never assume that the 
able in this paper, it may play an active part in the classifkation of 

~~~t~ble Leo&s. Outside of the context of the ain Gap we still see 
ant technical results about superstable theories. We 

they did not play an important role in other topics, 
superstable theories. 

r who has seen other attempts to prove (or circumvent) 
(see, in particular, [ sl]) may be surprised at how straightforward 
Thereasonisthe ility of ‘nice’ non-trivial regular pairs. This 

is defmitely the main ingredient in the proof. The rest of the proof is an excercise 
-simple and p-semi-regular types. (This is carried out in Section 
f non-trivial regular pairs was defined and proved by Shelah for 

superstable theories with NDOP (Theorem 2.2). This, of course, is all that is 
needed for Theorem C. Subsequently, Hrushovski eliminated the NDOP 
assumption (Theorem 2.1). This is a major advancement in working with general 
superstable theories. 

Section 4, cuhninating in a proof of Theorem B, is largely a continuation of 
The main lemma was already proved in Section 3. In Section 4 we 
e c, relation through a couple of technical lemmas. Combining these 
n 3 leads quickly to Theorem B. 
say very little about Section 5 in this introduction as it involves many 

terms with lengthy de&&ions. The basic idea is to obtain a very nice tree 
a model of a superstable theory with NDOP. We refer the 
uction of that section for a detailed discussion. 

e main result in the last section is that for T superstable with NDOP, a 
al model over an independent tree of models is j-constructible over the 

tree. Admittedly this is a rather minor resul t its proof may be of major 
importance. It is the prototype of combining shovski’s theorems about the 
existence of definable group actions with notions of isolation. We feel that other 
re&ts wii come from the methods developed here, 

theorems proved in this paper are due to Shelah. The organization of 
the material and proofs as detailed here are by Buechler (as are any 

echler wishes to thank &add Hart for many helptil 
conversations on t pits contained herein, and Udi 

ry version of this paper. Shelah 
uechler for so much improCng the paper. 
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On the existence of regular types 279 

that the reader knows the main definitions and theorems in [ 121 or [S], but not 
necessarily the proofs. n keeping with [lo] the term ‘regular’ will only be applied 
to stationary types. ‘The generalized R&order on types, written Cl is defined in 
[lo, C.135 For stationary p and 4 in a stable theory p 4 4 iff p sS q, where the 
latter is as defined in [ll, V, 2.1(2)]. We use p clq to denote p 4 q and 4 <Ip 

kkai uses p 3 q). For p a stationary type, p@) denotes the type (over 
dam(p)) of an independent sequence of realizations of p of length n. I?“(-) 
denotes a-rank, i.e., the rank R(-, L, 00). 

Throughout the paper we will tacitly work in TeK When we say that M is a 
model, we mean that M = Neq for N some model of the original theory. acl(-) is 
algebraic closure as computed in TY 

For p a stationary type we call c a restricted canonical base of p if 
acl(Cb(p)) = acl(c). In a superstable theory there is always a restricted canonical 
base in Cb(p). 

on. We say that q (a possibly incomplete type) is hereditarily orthogonal 
top ifq’=q=$qQp. 

For A, B and C sets we say that A is dominated by B over C, written 
A Cl B(C), if for all d, d hc B +d hcA. As is easily verified, domination is 
transitive. 

If E is an isolation relation as discussed in [ 11, IV] we shorten -isolated to 
x-isolated, etc. 

on. For p a stationary type and 43 EP we say that (p, q) is a regular pair 
(Rp) if for ah q, q E q and R”(q) < R”(q) + q I p. 

. (a) Suppose that T is superstable, p is stationary and v E p is such 
at 90 E q, anh q forh over dom(& 1 1 p. Then there is a q’ t- QJ over dam(q) 

and a p’ sEcc3h that (ptp q’) is an RP and p’ Op. 

(b) If (P* V) is an RP, v E q and q ,Zp, then (q, a) is an RP. 
(c) If (pE q) is an RP, Q> E q and q P p, then q is hereditarily orthogonal to p. 

Easy. 

§helah defines (p, rp) to be a regular 
QJ and ‘p 

air if it satisfies the hypothesis on 
in Lemma 1.1(a). The added condition on rank in our definition is 

usually required in working with regular pairs. Because of this and Lemma 1.1 we 
choose to add it to the definition. 

Abusing the terminology (ba ly) we will say that p is an 
that (p, q) is an 

t (p, ($9 be a-h 
whenever o realizes p and b is such that Q 

t C at I=$@‘, b’).+st 
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s. She&, s. i!hfecMer 

if every q E S@) 

1 is p-remote if J/J is R”(p)-remote and 

say that (p, 9) is f-nice if for 
ula $v(x, y) E t(& 

in f-nice is, of course, for ‘foite’.) It is clear that f-nice + nice. With an 
has shown that the converse is false. In 

a type is a-remote if it is “(ecu)-analyzable, where 
class of formulas of -rank (: LY. 
to observe that if 21 is cu-remote, 9 E q E S(6) and P is a regular 

al to q, ahen r is non-otio to a regular type of 
contains q. Also, if (p, ~a) is an and I-q+tp, then q is 

-remote i@ it is R”(p)-remote. This is the usual way in which p-remote formulas 
ari!SL 

With the notion of a nice we are trying to approximate that “forking with a 
realization of p is definable”. (This property would be defined by replacing 
“& Q”) is hereditarily orthogonal to p” by “@(x, b’) forks over A99.) In what 
foll be obvious why such a deGnability of forking would be desirable. In 
the next section we will see that non-trivial regular pairs are nice. 

Suppose that p and p’ are RPs, p is parallel to p’ and dom(p) and 
both al,gebm.ically closed. Then p is f -nice (nice) iff p’ is f -nice (nice). 

The proof is the same for nice and f-nice. Let A = dam(p). It suffices to 
n A c B = dom(p’). It is immediate that if p is nice then so 
’ is nice, a realizes p and a ~6’~ b. W.l.o.g., ab CL~ B. Now 

e niceness of p’ and the detiability over A of t(ab/B) to find the desired 

lap, q a non-algebr . strong tylpe over A. We say that q 
are: a realizing qp DA an a-model with a CLQ M and 

is conjugate to p ’ and non-orthogonal to p, p ’ I] p 9 

hat pi is based on Ai and P ~pi 1 Ai forks over Ai, then 

rtant. It is this which allows us to 
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On ti edence of regular rypes 281 

This definition differs slightly fkom Shelaii’s in that he only requires pi Op in (i). 
The present definition elucidates the fact that the pi’s w+tnessing p-semi-regularity 
must be chosen carefully. That is, q p-semi-regular and p’ Up does not imply that 
g is p’-semi-regular, It is important to bear this in mind. The main existence 
lemma for semi-regular types is the following. 

1.3 [ll, V, 4.121. Suppose that T is superstable, p is regzdar and stp(a/A) 
t3 such that p ,I! stp(~/A) and if q =>p is a forking extension, then q _L stp(a/A). 
77rerz there is a c E acl(aA) such that @(c/A) is p-semi-regular. 

The next concept was originally defined and investigated in [ll, V, 941, but its 
first major use was by Hrushovski in his beautiful work [7]. We repeat the 
definitions here. 

De&&ion. (a) Let p be regular, q a strong type. We say that q is p-simple if 
there are: an u-model M 3 dam(p) U dam(q), a realizing q 1 A4 and IT a Morley 
sequence in p 1 iU such that t(a/MZ) is hereditarily orthogonal to p. 

(b) For q a p-simple strong type, the p-weight of q, wP(q), is the cardinal@ of 
a minimal Z witnessing the p-simplicity as in (a). 

Clearly, a p-semi-regular type is p-simple. Unlike p-semi-regularity, p- 
simplicity is invariant under 0. That is, if q is p-simple and p’ q lp, then q is 
p’-simple. Also, if b’ = 6, l - l b, is such that Stp(bi/A) is p-simple for all i d n, 
then stp(d/A) is p-simple. (Another property net shared by p-semi-regular 
types.) Each of these uses the fact that if stp@/Ad) and stp(d/A) are p-simple, 
then stp(a’/A) is p-simple. Furthermore, 

w&6/A) = w,(a’/Ad) + w,(6/A). 

I,emma 1.4. Let (p, rp) be a nice RP. Suppose that A is algebraically closed, 
t(bl’A) is p-semi-regular and wp(6 JAa) = n. Then there is a formula 9(x, y) E 
t&z/A) such that ktI(b’, a’) 3 8(x, a’) is p-simple and w,(b’lAa’) G n. 

of. Let M 3 A be a large saturated model, ba CL~ M. By the definability of 
types and the fact that p is non-orthogonal to A it suffices to find such a formula 8 
over M. W.l.o.g., there are conjugates of (p, cp), (pi, rpi), i d n, pi E S(M), 
pi Xp, and cj realizing pi such that 6 E acl(ME). W.l.o.g., w,(E/Mb) =O. An 
easy computation yields: w,(C/aM) = w,(b/aM). Since each (pi, pi) is nice it is 
easy to find a formula ~(2, y) E t(Ca/M) such that ka(E’, a’) =$ tq&;) and 
w,(E’/a’iw) d n. Let 0 E t(ba/M) be such that M?(b’, a’) + there is a E’, FD(I?, a’) 
and b’ E acl(E’,M). Since each vi is p-simple, 0(x, a’) is p-simple. The p-weight 
computation is easy, completing the proof. I3 
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282 S. Shelah, S. Bud&r 

Note that the p-simplicity of 0(x, a’) does not require the niceness of p. 
The main lemmas we use on p-simple types (quoted below) are basic facts 4) 

and 5) in [7, a3]. Below T is superstable. 

.$ [ll, V, 4.20]. Suppose that p is regular and non-orthogonal to 
2%~ tItere is a b ~acl(Aa) s~h that stp(b/A) is p-simpb and 

non-orthogo~: to 3. 

.6. Suppose that stp(a/A) is p-simple. Then there is a d E dcl(uA) sI(cIz 
/Ad) Op@), for some n, and w,(d/A) = 0. 

This proof is easier than the one in [7] because we are assuming that T is 
. First, in Claim 1, we establish a useful basic fact about p-simple 

type% 
An elementary fact about regular types we will be using is that if r is any type 

and s ,k! r is regular, then there is a regular r’ 3 r such that r’ 0 s. 

a. If q ir a regular type non-orthogonal to stp(alA), then q q p or there is a 
q’Oqsucirrtratq’irhereditarilyorfhogonal~p. 

Since stp(a/A) is p-simple there is an u-model M 3 A, a RIJ~ M, and I a Morley 
sequence in p 1 such that w,(u/MZ) = 0. There is a b &,a such that 

q q. Assuming that q ~_p we must have bhMI. Thus, stp(b/MI)Oq and 
g type is non-orthogonal to stp(a/MI). By the fact mentioned above 

there is an r 2 stp(a/MI) such that rD stp(b/MI). Thus, r is hereditarily 
altopaudrClq,provingtheckim. 
g our attention to the lemma, since extensions of p-simple types are 

p-simple we may use induction on R”(u/A) to see that it suffices to prove 

If we do not have stp(alA)Op@), for some n, there ir a d E 
dcl(aA)\=&@I) such that w,(d/A) = 0. 

q be a regular type non-orthogonal to stp(a/A) which is orthogonal to p. 
aian 1 we may assume that q is hereditarily orthogonal to p. We further pick 

q to have least under these requirements. We want to apply Lemma 1.3 so 
consider q’, a extension of q. If q’ is non-orthogonal to stp(a/A), then 
using the above fact on regular types we can find a regular q” I> q’, q” $ stp(u/A). 

q” is hereditarily orthogonal to p and R”(q”) <R”(q) we contradict the 
ality assumption on R”(q). Thus, every forking extension of q is orthogonal 

to stp(a/A). By Lemma 1.3 there is d,-, E acl(uA) such that stp(d,/A) is 
this strong type is hereditarily orthogonal to p, as is the 
g (d’: d = d,,(aA)} . Since d E dcl(Aa) \acl(A), we have 
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On rhe exisence of regutar rypes 283 

We say that a formula q is p-simple if every q E S(E) containing 11’ is p-simple. 
Notice that if (p, q) is an , then 9” is p-simple. leave the proof of the 
following to the reader. 

1.7. Suppose thut p is an RP, A = ad(A) and q E S(A) is p-semi-regtiar. 
Then there is a ly E q which is p-simple. 

Suppose that p is regular, c N are models and 8 is a formula over 
M such 6at 8 is p-simple and b E 8(N), t(b/M) Yp 3 t(b/M) Op. Then, if 
b E 8(N) and t(blM) ,Zp we say that (t(blM), 6) is a regular pair relative to N. 

Initially, Theorems A and B were proved only for theories with NDOP. The 
reason being that the main technical lemma, Theorem 2.1, was proved only with 
this additional assumption. This first result was due to Shelah and is stated here as 
Theorem 2.2. !Later, while working on a different problem, Udi Hrushovski found 
a rather straightforward proof of Theorem 2.1 as it is stated (see [S]). We will 
furnish a proof of Theorem 2.2 since we would like the paper to be largely 
self-contained for theories with NDOP. 

Suppose that T i& superstable, A is algebraically closed and t(a/A) 
is a non-trivial RP. Then for some a’ E dcl(aA)\A, t(a’/A) is an f-nice RP. 

2.2. Let T be superstable with NDOP, p a;z RP of depth 0 with dam(p) 
algebraically closed. Then p is f-nice. 

We prove the tReorem with a series of lemmas. By Lemma 1.2 it suffices to 
consider the case when dam(p) = M is an a-model. Let q EP be such that (p, q) 
is an RP. Suppose that a realizes p and b is such that a &,+, b. 

Let ~(x, 6) E t(a/bM) be such that I&, 6) I- q and 9(x, 6) forks over M. 
Let M* 2 M be a large saturated model containing b. Let M+ = M U {e E Al*: 

b&e) and R”(e/M) < R”(qt)). Let I be a basis for p in M” , No c M* au a-prime 
model over I U M, Nl t M* a-prime over M+, and N c M* a-prime over No U Nl. 

Since No 4 I(M) and NI Q M+(M), N, &, N,. 

- (4 P(N) =pW*). 
ere is no infinite set of indixernibles over + U I in p(N). 

of. (a) Suppose, towards a contradiction, that there is a b E 
OP we know that t(biN) is non-orthogonal to No or N,. 

to [IO, D.ll(v)] we can find a b’ E N[b] CM* such that t(b’/ 
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+, a contradiction. 

contradicting that 

over I U M+ and b 
contradicts the 

, (b) implies 

is no infinite set of in&cemibles over M+ in $@I, b) np(N). 

tp(x, b) is hereditarily orthogonal to p. There is a 6nite &c Z 
b) rip(N))) If J c ry(N, b) rip(N)) is an infinite set of 

then all but 
indkcernible 

Gnitely much of J is indiscernible over 
+ U b U b, hence, over + U I.) So, Lemma 2.3(a) implies 

(2) there k 110 infiniie set of indiscemibfes over Ad+ in qp(M*, b) np(M*). 

r={& 6isafoimulaover 8 b QD and R”(8) CR”(@). 
cowsc, vie may as well assume that * = a, yielding 

There is no infinite set of indiscernibles over + in I/J@, b) n 

d us to eliminate I in 
rtance of Corollary 2.4 is that can now defme a 

gives us the desired formula in t(b 

Is for the elements of 

2.4, T’ is inconsistent. 
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On the existence of regular types 285 

.l.o.g., c contains the parameters fro e adi qt. now have to check 
t is the desired formula. Notice (8) 6 R”(J) and 8 is hereditarily 

ck an arbitrary b’ and suppose that q ES(E) contains 
, b’). By (3), q J! 6. Since q E q and 8 l-q, we must have p 1 q. It follows 

immediately that *‘(x, 6’) is p-remote. Thus, p is f-nice. 
ovski has another proof of Th m 2.2 which does no at Thas 
only that the depth of p is 0. t, of course, we need to know 

that the non-trivial RPs have h 0. In applications, however, we usually need 
the niceness of all non-trivial and we need NDOP to know that all of these 
have depth 0. 

Combining the main theorem in [3] with [4, Lemma 2.51 gives: Suppse that T 
is superstable, U(p) = 1, p is non-trivial and dam(p) = A is algebraifcally closed. 

en there is a 9p EP such that q.~ E q E S(A) non-algebraic + q ,sl p. The next 
result can be seen as a generalization of this. IndeGd, the proofs are very similar. 
This proposition will not be used in the rest of the paper. 

and A = dom(p\ 
Suppose that T is superstable with NDOP, p is a non-trivial RF 
is algebtaicaily closed. Then there is a q’ EP such that (p, ~JI’) is 

an RP and for all q E S(Q), qr’ E q *q J!p or q is p-remote. 

W.l.o.g., A = is an a-model. Let 80 EP be such that (p, go) is an RP. By 
the non-triviality of p there is {aO, al, a=} cp(6) pairwise M-independent, but 
not M-independent. T having P implies that the depth of p is 0 (see [l2, 
S.lO]), so by Theorem 2.2, p) is f-nice. Thus, there is a formula 
py(xO, x1, x2) E t(aOaIazj ) such that: if vO(x, 9) is obtained from q by some 
permutation of the variables, then 

(4) for all 6, qO(x, 6) t- q and p~g(x, 6) is p-remote. 

Let $J’(x, y) = 31~ +(x, y, z). Notice that ty’(x, aI) does not fork over M. By the 
definability of types there is a formula ~1’ r M such that for all r E S( 

iff the non-forking extension of r over a1 ntains q’(x, a,). Of course, tp’ k- tp 

QI’ EP, so (p, #) is an IV. 
ow suppose that E@(b), b $ and b bMal, If t(b/ ) ,Yp, we are done, so 

suppose that t(b/ ) is hereditarily orthogonal to p, so 
we need to show nal to a set of a-rank < ac = R”(p). 

t c satisfy q(b, a1, z). 
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so, we know that c dMat, hence, R”(cloJb4) < QI. If b J&MC, phen t(blM) is 
non-orthogon& 1 to R ce* of oar&< LY. !So, we suppose that b &Mcul. Since 
kry(b, al, c) and q(x, a1, c) is p-remote, stp(bla* ), hence, t(b/M), is non- 
orthogonal to a set of aarankC (Y. This proves the proposition. Cl 

3. 

The main goal of this section is to prove Theorem A. The major proposition, 
however, will play an essentiai role in the proof of Theorem B. What we try to do 
here is to show that if there is a c E N\M with t(c/M) p-semi-regular, then there 
is such a c with t(clM) Op. That is, reduce the problem of finding a regular type 
non-orthogonal to p, to finding a p-semi-regular. We fall slightly short of this 
goal, F%oposition 3.2 being the actual result. However, Theorem A follows easily 
f+om this proposition using Lemma 1.3 on the existence of semi-regular types. 
Throughout the section we work in a supeRtable theory. 

Handling trivial types becomes rather easy because of the following. This is [12, 
5.11(5)], but we repeat the proof here. 

Suppose that stp(alA) is non-orthogonal to the trivial regular 
type p, and if i xp is a forking extension, then q I stg(a/A). Then there is a 
c E acl(Aa) such that s@c/A) is regutk and non-urthogonal to pm 

W.l.o.g., A = 8. By Lemma 1.3 there is an a’ E acl(u) such 
p-seti-regular. Certainly, if we prove the lemma for u’ we will hav - it for a. 
Thus, we may assume that &p(a) is p-semi-regular. We may also assume that 
dam(p) = B is finite, a J, B, and there is a b realizing p such that a J&:, 6. 

Let J = (biBi: i C O} be a Morley sequence in stp(bB/a) with boBo = bB, 
B’=u {Bi: i< w}. Let c be a restricted canonical base of stp(bB/a). We have 
c E acl(a)\acl@), c & B’ and c E acl(lJ J). The first condition implies that &p(c) is 
p-semi-regular. 

. w,(c) = 1. 

SU ) > 1. We work towards contradicting the triviality of 
PO= Notice that bicLB, B’ and c 16(;8* bi. S&e c E acl(UJ), the 
only way that q,(c) can be >l is if {bi: i C o} is painarise B’-independent, but 

pendent. By the triviality of p. (and its conjugates: t(bi/B’)) there are 
PO with di tin* bi for i = I,2 (see 1121). It follows that {b,, dl, dz} is 

‘-independent. This contradicts the triviality 

t = I, it is regular by 
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On the existence of regular types 287 

The next result is the main technical lemma in this section and the next. rL is 
here where Theorem 2.1 is used. 

3.2. Suppose that N 3 M are modeis and there is an a E N\M such 
is p-semi-regular, for p some RP. 

(i) If p is trivial, then there is a c E acl(aM) such that t(c/M) Op. 
(ii) Suppose that p is non-trivial. Then there is a formula q~ over M such that q 

is p-simple of p-weight 1, and there is a c E q(N) with wr(c JM) = 1. 

(i) follows immediately from Proposition 3.1, so, we assume that p is 

non-trivial. Hence, w.l.o.g., p is a nice I?P by Theorem 2.1. (There is a p’ q p 

which is a nice RP and an a’ E acl(aM)\M with t(a’/M) p’-semi-regular. Thus, 
siuce p-simple and p’-simple are the same, -we may replace a and p by a’ and p’.) 

Let r = t(a/M). By Lemma 1.7 there is a p-simple formula in r. The problem is 
that this formula may have p-weight >l. What we will do is to take an extension 
of r of p-weight 1, futd a formula in the type witnessing this, and use Lemma 1.4 
to ‘pull’ this formula into M in a way which guarantees that it is satisfied in N\ M. 

Let r’ 3 r be a regular type non-orthogonal to p such that dom(r’) = M U d, 
where d&u N. Let c realize r’. By the niceness of p and Lemma 1.4 there 
is a formula a@, y) E t(cd/M) such that for all d’, a@, d’) is p-simple of 
p-weight =Gl. 

Since t(a/M) J! r’ and d bM a we may choose d large enough so that there is a 
c’ realizing r’ with a bdMc’. Let d(x, w, z) E t(ac’d/M) be such that 

(I? W(a, f, e) 3 a ,f& fe and l=a(f, e). 

Since a &ud we can find a d’ EM with Hw o’(a, w, d’). Let C”E a(a, N, d’). 
Since a &M c”, c” E N\ M and t(c”/M) ,Yp (since t(a/M) is p-semi-regular). 
Observing that I&“, d’) and a(~, d’) is p-simple of p-weight 1 completes the 
proof. Cl 

We can now prove Theorem A rather easily. Let M t N be as hypothesized. 
Let p be a regular type non-orthogonal to t(N/M) of least oo-rank under this 
assumption. Applying Lemma 1.3 we get an a E N\M such that t(alM) is 
p-semi-regular. If p is trivial, we can apply Proposition 3.2(i) to finish the proof. 
So, suppose that p is non-trivial and c is as in Proposition 3.2@). 
rank assumption on p we can again apply Lemma 1.3 to get a c’ 
that t(c’/M) is p-semi-regular. w&‘/M) s w,(c/M) = 1. Thus, by [ll, V, 4.81, 
t(c’/M) is regular. This proves Theorem A. 

4. 

The advantages of Theorem B over Theorem A are fairly clear. Not only do we 
get control over which regular type is realized in the difference, but assuming that 

we can choose it to be an As usual, tbro~gbo~t 
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will want to apply proposition 3.2. This requires that we have an 4 E N\ 
) isp-semi-regular. In obtaining Theorem A we got such an (I by a 

assumption on p. h this section we use the c, assumption to 
the next two technical lemmas. 

e,N, CE 8(N)\ and there is a d E acl 
dhar tiere are d’, c’ and B such that: d’c’ = dc (M), (cd, d’, B) is 
and c’ Jr&@BM c. The8 tire ir an eE B(N)\M such that 

) = R”(B), 8 is over 0 and d E acl(c). Let ty(x, y, z) E 
) be such that whenever bq(c”, a”, b’), 

(I) WCS), 
(2) d” E acl(c”), 
(3) c titi c”d”b”. 

By assumption we know that 31n v(x, y, z) (which is a formula over cdM) does 
not fork over M. Since B hMd’cd there is a 6’ E M such that @3x pU(x, d’, 6’). 
Now we use that d’ hM cd, d’ = d(M) and MC, N to find a d” E M such that 

“, b’), and 

Let e satisfy ~(x, d”b’) in N. We have e JJ.&,C by (3) (so, e $ M) and M(e). Since 
d” E acl(e)\acl($) (by (2) and (S)), d” & e. Thus, R”(e/M) s R”(e/d”) < R”(8) = 

). This proves the lemma. IIt 

c,N,p~regulclrandc~N\Miss~hthat 
rthogonal to p, and R”(cfM) is minimal under this 

formula, t(c/M) lp, and R”(cIM) k minimal in 
E 8(N) Qlui t(c’lM) %&. 

will prove the lemma under the assumptions in (i), stating at the end 
on needed to handle (ii). 

First note that by Lemma 1.5 and the elementary properties of a-rank, 

(6) I’fa E N\M and t(a/X) J!P, then there is an a’ EN\ 
) iv p-simple, non-orthogonal to p, and R”(a 

) such that t(c/dM)Op(“) for some n and 
towards a contradiction, that d $ M. 

ere are c’d’ =c 3144 such that (d’, cd, 
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be an a-model such .l.o.g., dam(p) = 
there is I, an sequence of realizations of p 

) = 0 and wP(I/Moc) = 0. Find c’d’ L cd (MoZ), c’d’ dMdcd. 

1 
. 

=; 
indepe bY 

wp(C’ ‘0, 
Thus, c* titieMOc. This proves the claim. 

Lemma 4.1 to obtain an e E N\ 
R”(e/M) <R-@/M). The forking condition implies that w,(c/ 
so t(e/!5) x p. Using (6) we contradict the minimal rank assumption on t(c/M) in 
(i). This implies that d E M, finisbg the proof. 

To obtain the lemma under the assumption in (ii), simply observe that in 
applying Lemma 4.1 we may require th2t HI(e), and *here is no need to apply 

(6) 0 

CWQ 3. Suppose that M c,, N, p is regular and non-orthogonal to t(NIM). 
Then there is an a E N\ M such that t(alM) is p-semi-regular. 

This follows immediately from Lemma 1 S, 4.2(i) and 1.3. 0 

We can now prove Theorem B when p is non-trivial. Applying Corollary 4.3 
and Proposition 3.2 we obtain a formula q ove ch is p-simple of p-weight 
1, and a c E q(N) with w,(c/M) = I. Pick a I/J w as least w-rank under all of 
these assumptions. By Lemma 4.2@) and the fact that w,&) = 1, 

(7) if c’ F q(N) and t(c’/ ) Jip then t(c’/M) Op. 

This proves Theorem 
e move on e case when p is trivial. By Core 4.3 we have a 
such that t( is p-semi-regular. W.l.o.g., p is an By Lemma 1.7 

there is a I/.++ t(c/M) which is p-simple. Pick -J/J of ieast w-rank among the 
p-simple formulas, 8, over such that there is an a E 0(N) with t(a/M) xp. 

. a E v(N) and t(alM) Ilp +t(a/M) Op. 

By Lemma 4.2@), b E q(N) ) JLp =$ t(b/M) q p@) for some n. Thus, 
.uppose, towards a contradiction, that 

Proposition 3.1 there is a b E acl(a 

) Cl p . Suppose 
M there is an a’ such 
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r type non-orthogonal 

yields foll g ‘three model 

Then there is a c E 

of the work goes into proving 

non-orthogonal to t(a/ ) with dam(p) = A0 ILM, 
ntiy large we can fiud a e B, B CIQ,, aAO, and a co realizing 

at cogiM,-a. Let I={ i: i < 0) be a Morley sequence iu 
), c a restricted canonical base of this strong type. Thus, 

n a&) I) and, since I CLM, B, c J&&M, a. Let @ E t(Ci/Ai) witness 
thatthistypeisanIW.SimeB~M~{a}U{Ai:i<~}wecan‘pullBintoM~‘to 
fhda 

) n acl@ 6i(G5) U Ai) 
‘<CD 

such that c’ dMI (1. Since {Ai: i < w) U is independent, c’ LL~, {A i: i c w} . 
Since =Ch Oi is p-simple, t(C’/ 

agfc’ * W,(C’/ 

such that 8 is p-simple and 

easy exercise to show that 

, a. It follows that b LIJ~,, 

of this section is to n a ‘good’ tree decomposition of 
each model of a table theory with One possible form of ‘good’ is 
the following notion. 

decomposition inside N if 

I=I E I. 
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(c) t(aq lN,-1 is regular (when lb(q) Xl) and orthogonal to Nq-- (when 

lh(rl) > I), 
(d) h$ Q a,, (N,,-) when lb(q) > 0. 
We say that (N,, a,, : q E I) is a c,,-decomposition of N if it is a maximal 

c,,-decomposition inside N. 

Notice that the only restriction on ag is t at it is an element of Na. It appears 

only because its exclusion would be a notational headache. 
We will prove Theorem C Ptated in the abstract. If we removed (d) from the 

definition the results in the previous section alone would yield the theorem. 
Obtaining the theorem as stated will require a significant amount of work. The 
second topic of the section, extending the logic, will be left until later. 

The key proposition is the following. The Jrem C will be easy given this. Notice 
that we do not need NDOP here. 

and IN’1 = IAl + ITI. 

that T is superstable, N and M are mode& of T with 
Then there is a model N’ IA, N’ c,, A4 N’ CIA (N) 

We separate the proof into two lemmas. In our first lemma we show that the 
relation “CA is not dominated by A over M” can be witnessed in a particular 
canonical way. 

Suppose that T is superstable, M k T, N c,, M, N c A c 
is such that&c/A) is p-semi-regular, p some RP, and GA is not dominated by A 
over N. Then there is an e E M such that 

(i) t(elN) is an R? relative to M, 
(ii) e+,,A, and 

(iii) e jASA c. 

Let b be such that b hNA and b J.& c. There is a 6’ E acl(bN) such that 
) is p-simple and for all B 3 N with b LIJ~ B and all e with stp(e/B) 

p-semi-regular, b &6eB e. (Take 6’ to be the P-internal part of 6, where P is the 
class of p-semi-regular types. See [6, Proposition 5, p. 161, replacing 
intp(A) by intp(A/N).) Thus, b’ hNA and 6’ dpl c, so we may 
t(b/N) is p-simple. 

(“I, for some n, stp(b/A) is p-simple and 
by [7, Fact 2, p. 1391. Thus, w,,(b/ 

hat p ,L t(cA/N). A fortiori, p 
there is a q E S(N) such that q is an WP relative to 
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t&vitnessthatqisan Since B bNAc and M is a model 

g that stp(c/A) is p-semi-regular we find an Z’eR c e’ such that 

nt similar to the one used in obtaining (1) we find a formula r(x) 
that lx(e) * M(e) and e J& c. For any such e E M we must have 
t(e/N)Op and ehNA. This proves the lemma. Cl 

mma is the key to the entire section. The proof we give here is 
ki. It has the advantages over Buechler’s proof of being l/S as 

long and correct. The proof reads most smoothly if we use the following notation 
due to ovski. Let p be a strong type over A in the variable x, q(x, y) a 
formula over A. We let (d’) qp(x, y) be the formula in y such that for all b, 
b(&x) cp(x, bj itf &x, b) EP 1 Ab. We read Q&x) ~(x, y) as “for generic x 
reahzing p; &x, y) holds? 

3. Suppose that T is superstable, iv c,, M are modeli of T, A! c A c M 
0(x, b) is a form& over A such that 8(M, b) # acl(b). Then there is a 

)\acl(bj such that CA U A (A?). 

tit 0,(x, bl) be a formula over A sf least m-rank such that 
1) b 0(x, b) and 8&W, b,) Q acl(b). Let c E &(M, b,). We will show that 

ci44A(N). 
S tmmds a contradiction, that CA is not dominated by A over N. 

BY 5.2 there is an ee:M such that edAc and ed+,A. Let acA be 
such that edNca and brca, 6&(x, a) a formula in t(c/aM) implying 
8,(x, b,). Let 9(x, y, z) E t(cwlN) be such that ~)(&a, r) forks over N and 

z) t- &(x, y). Let r = t(a/N). Define an equivalence relation by: e’ - e” iff 
(&x, y, e’) w ~(x, y, e”)). Cleuly, e/- $ IV, since otherwise we would 

D c N such that cue ILK N. As Nc,,M there exists an e’ E N 
‘/- Q a@) and Hx q(x, a, e’). Let q = stp(e’lD) and a(x, y) = 

[f&b Y) A ~(rp(x, y9 e’) - 4% Y >)I- 
at this is not the case. en (4~) V.X [V(x, y, 0 e ~2(x, Y) A 

9 en)- @2(x, Y) A 4x, y)l, so 

e”. Since we can pick e” so that 
is contradiction proves the claim. 

t 
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Suppose thai bq(c’, u, e’). Then Fu~(c’, a), so by the def%ition of cr, we must 
have c’a &,e’. If lxr(c’, a), then ~-q$c’, u, e’), so again by the definition of 
o, c’a & 8’. Since a hD e’, the claim holds. 

Since e’ && c’, c’ Q xl(u). f=f&(c’, a) and e’ f6 N =$ R”(c’/uN) C R”(c’laD) = 
R”(O,(x, 0)). This contradicts the definition of t&, proving the lemma. I7 

Proposition 5.I now follows easily from these lemmas. Lemma 5.5 below will 
virtually complete the proof of Theorem C. The next lemma is used there and 
may hold some interest in its own right. Recall that we write A q 51 when A c B 
and for all formulas O(x) over A such that H(b) for some b E B, W(a) for some 
u E A. (Makkai writes -=ZTcr for c,.) 

Lemma 5.4. Suppose that N c,, i& ore models, MO =I B 3 A 3 N, i& I> C 3 A 3 
N, C&&ActB~ndC-4AjN). Then CuBaB(N). 

Proof. The key to this proof id [al, XI, 1.41 which we quote as 

(3) Given any set D, p E S(D) and ~(x, y) over D there is a formula e(y) over 
D such that for all 6, p U {@(x, 6)) does not fork over D if M?(b). 

This fact is used to establish the following strengthening of the hypothesis: 
Ac,B. 

aaim 1. For all formulas q(y) over C such that I=q@) for some b E B, there is a 
CE Z such thnt t+-). 

Write q(y) as $~(a, y) where a E C and v(x, y) is over A. Applying (3) to 
p -t(u/A) and W we obtain a formula e(y) E t(b/A) such that for all b’, 
p U {v(x, b’)} does not fork over A iff E@(b’). Since A ct B there is a b’ E A such 
that M?(b’). This implies that p W {q(x, 6’)) does not fork over A, hence 
T#(x, b’) EP. TM is, QY(u, b’), proving the claim. 

Turning our attention to the lemma, suppose that C U B is not dominated by B 
over N. Then we can find a sequence ca E C such that aB <1 B (N), stp(claA) is 
p-semi-regular (for some regular p): and caB is not dominated by B o:‘er N. By 
Lemma 5.2 there is an e E MO such that t(e/N) Up is an RP re!ative to MO, 
ehNaB and e tiOBc. Since c&A 18, c J&,, eb foor some b E L4. Let q E t(eiN) 
witness that this type is an WP relative to MO. Let t(z, y) E t(eblcaA) be such that 

ET(~), 6’) +c &A e’b’; *y(y) the formula 32 (q(z) A t(z, y)). 
By Claim 1 there is a 6’ EA such that t+(b’). Let e’ E MO satisfy q(z) A 

t(z, b’). Thus, e’b’ &d c, which is the same as e’ J&~ c since 6’ EA. Since 

stp(c/uA) is p-semi-regular, stp(e’/aA) ,i!p. tar iq(e’) and (t(eiN), q) is an RP 
relative to MO which is non-orthogonal to p, e’ bNAa. But this contradicts that 
C Q A (N), proviilg the lemma. 0 
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S.5. Suppse JL d’ is superstubie with NDOP, @Tarad (M,,,a,:q~f) 

) Suppose, towards a co n, that &f is not dominated by U M,, 
It is easy to find ari A, t_J cAcMandanaEMsuchthataisnot 

dominated by A ove and stp(ujA) is semi-regular. Since Mq c,, M we may 
appIy Lemma 5.2 to an e E M such that t(e/M,) is an RP relative to M and 
ehw, A. By Proposition 5.1 there is an NC, M, INI = IT\, N 3 eM,, and 
N Q e (Mq j. Let v< q be minimal such that t(e/M,) L M,. By Theorem 4.5 there 
is an e’ EN such that e’ RLJ~” Mq and f(e’/M,,) is reguiar. Since N 4 e (M,,) and 

e” &zw A, so 8 &,A by the transitivity of independence. Again by 
n $1 there is a mudel N’ c,, M such that N’ 3 Mve’ and N’ <1 e’ (MY). 

follows easily that (Mq, 49: q E f ) W {(N’, e’ ) ) is a c,,-decomposition inside 
contradicting that (M,,, a,,: q E I) is a maxima! such decomposition. This 

IVow tind an independent tree of a-models, (N,: q E 1 j, such that Nq 3 M,, 

UN~rLCJM,M~dN~ILAP,UM~rfortlEI. 

Forall v~l, MUUN, aulv, (NV). 

WearegoingtoappIyiemma5.4withNVasN, UM,UN~~~A, MuN,,asC 
and UN,, as B. Bringing in the heavy artillery, [11, XII, 2.3(3)] implies that 

NV CtU4p ne hypothesis in Lemma 5.4. Since N., is an 
we can simp It remains only to establish 

Let c&&MI, S ke N,,t~~~l_l M,, cN2r~~~lJ Mq by the Pairs Lemma. Since 
) (by (i) of this lemma) we conclude that cN, &MY M. Hence 

g Lemma 5.4 in that manner described above gives the claim. 

.k a-abotic ouer U N,,. 

e modei N ZJ !J Nq such that N is u-atomic over M lJ NV. Since 
U !+I _Sr,) is u-isolated, and NT is an a-model, it is easily shown 

(9 IJ U Nq (Nn), for aii pl. 

By Claim 1 and the transitivity of domination N U M <1 U N, (N,). A fortiori, 
N (N,,). Suppose that M #N. N) Y Nq for some 

, there is a c such that c ,& contradicting the 
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Proceeding to (iii), ilet p E S(M). By Claim 2 and NDOP, p ,J! NV for mme Q. 

QP eorem C. That every c,rdecomposition in:,& A4 extends to an 
c,,-decomposition of M is proved like Lemma 5.5(i). By Lemma 5.5(i) it remains 
only to show that M is minimal over U Iw, 9 for (M,, Ok: q E 1) any c,,- 
decomposition of M. Suppose, towards a contradiction, that there is a model M’ 
with M 2 M’ 3 U Mq. Let p E S(M’) be a regular type realized in M. Since 

(M,, 06 rl E I) is also a c,ddecomposition of M’ we may apply Emma 5S(iii) 
to obtain an q such that p Y Mq. By Theorem 4.5 there is an a E M such that 
t(a/M')Op and a d.~,,, M'. This is easily shown to contradict that (M,, a,+ 1 E I) 
is a maximal c,,-decomposition inside M. This completes the proof. Cl 

To finish this fkst topic let us summarize the additional information about 
na-correct models given by Proposition 5.1. Let K”” be the na-correct models of a 
superstable theorey T. First not& that c = c,, on K”“. Proposition 5.1 
becomes: For M, NE K”“, N CA c M, implies that there is an N’ E K”, 
A c N' c M and N’ d A (N). Combining this with Corollary 4.4 gives a very 
well-behaved theory for K”“. 

Our next topic makes a natural companion to this model theory of Kna 
although it may not seem so at first. ket 1‘ be a superstable theory with NDOP, 
M t= T. We expand M to M+ by adding a predicate for every subset of MC" 
definable in the logic L(3”“). Let T+ be the first-order theory of M+. We will 
show that T+ is also superstable with NDQP and that the ‘correct’ models of T+ 
can be decomposed as in Theorem C with respct to an inclusion relation that is 
natural for studying the L(3’1T’)-theory of M. Later we wilZ mention how c,, 
and na-correct models fit into thii subject. 

First we need to give some additional notation and terminology. Let M be a 
model of an arbitrary theory T in the language L. Let 0 denote the quantifier 
?I*l, L(Q) the finitary logic in L -kth this quantifier [S]. We detke expansions 
L*, M*, T*, L#, M# and T# as follows. For every formula cp(x, y) E L let 
L&,(y) be a new predicate symbol in the obvious arity, L* = L U {I?& ,+ QI E 
L). Expand M to the L*-structure M* by: 

M*U&&z) iff bC& &,a), for all a E M. 

Let M" = (M*)q, L# the language of M* and Ttt = Th(M#). 
, M = MO, and for O, Mi+l= (M,.)#, Li+l and T+l = 

+ is defined to bc IJ L+=IJLi, T’=UT:. T+ obtained in 
this way is calle L(Q)-~pansiom OfT. 
Notice that is not simply obtained by adding a predicate for each 

subset of M. + also contains imaginary eleme 
relations debable with the new predicates. Furthermore, 
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)-definable subsets of these new imaginary elements. So, + Is really an 
dentify T+ with (T+)-. 

Ng T+ we write N l=“Qv 9(x, a>,’ if 
*, 4p = R*, we may write N g “C&x q(x, a)” for 

t: R,-&ii). For A a set we say that a is in a&,(A), called the small closure of A, 
if ehere is a formula q(x) over A such that tq(a) and P-& q(x)“. 

Ofcourse,in T+ as an approximation to an L(CI)-theory we are 
not interested in In the next definition we isolate the relevant models 

corresponding inchtsion relation. 

Let T+ be an L(Q)-expansion of some theory T. 
(1) N b T+ is called correct for T+ if 

(a) N i= ‘e q(x, 6),‘+ i&M, rS)l S ITI, for all q E L+, 
N i= %x ~p(x, Z)” 3 q(N, 5) Q a&,(G), for all Q, E L+. 

(2) call Nl=T* suIRdard if N~“CI.v~(x,Z)” iff lq$N,ii)i>jT), for all 
(pEL+. 

(3) ForsetsAcBwewriteAc,Bif 
(a) a&,(A) t7 B CA, and 
(b) whenever W(6, a), 6 E acl(B), a E acl(A), there is a b’ E acl(A>, 

b’ $ aci,(u) with MI@‘, a), for every 8 E L+. 

QbservethatforaillAandB,Ac,B=SAc,,B. 
There is one L(Q)-expansion of T which is of special interest. Let T”’ be the 

-expansion associated with the monster model. Notice that B k Qx QI(X, a) iff 
q(E, a) is i.&nite, so in this case “W’ means “there are infmitely many x”. 

Our main result about T+ is 

. Suppose that T ir superstable with NDOF and T+ is on 
L(Q)-expan.sion of T. Then T+ is superstable with NDOP. 

‘s proof of this result centered OQ the tree decomposition of models 
enabled by NDOP. After hearing of the theorem Hrushovski suggested that the 

ropositioa may follow from Bouscaren’s Theorem (Lemma 5.7). The details of 
s second proof of the proposition were worked out by Buecbler and appear 

below. As Bouscaren’s Theorem reties heavily on the tree decomposition of 
models it is likely that th&e two proofs are essentialiy the same. 

T is superstable with NDQP and 
) be the pair obtained by adding a predicate 

e in T’ smh that 
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Recall that T+ is the it of an w-sequence of expansions T. We will use 
Lemma 57(i) repeatedly to show that each is super-stable with NDOP. Then 
we use (ii) of the lemma to see that T+ is s rstable with NDOP. 

There are many possible interpretations of the term “To is 
ow we will only be de g with one rather simple case. 

Let 9 be a formula out parameters in T’. say that p is interpretable in 
T’ on 9 if there is L’, a sublanguage of the language of T’, such that 
T” = Th(rg(Q) 1 L’) (after changing the language of T(‘, if necessary). 

Recall the definition of M* and T* above. 

5.8. Suppose that T is superstable with NDOP, M k T, T* = Th(M*) and 
p i$ some type in T *. Then T+ is superstable with NDOP and U(p) c the U-rank 
of p 1 L as computed in T. 

It is not hard to see that there is a mode; N’ c M*, IN’1 = ITI, such that 
11 q(x, y) E E and a E N’, N’ I=Rox Ja) B (M, N) F (3x $ N) cp(x, a), where 

N = N’ r L. This shows that T* is interpretable in T’ = Th(M, N) on N, where 
is the predicate symbol representing the submodel. It follows from [l] that not 
only T’, but also T* is superstable with NDOP. 

Now let p be any type in T*, (M,, No) a saturated model of T’. W.l.o.g., 
dam(p) c No. 

Suppose that p is interpretable in the superstable theory T1 and p is a 
compiete type in To. Then there is p’, a completion of p in T1, such that 

U(P) c WP’I* 

This claim is proved by an easy induction on U(p), which we leave to the 
reader. 

By the claim there is a completion p’ of p in T’ with U(p) d U(p’). Since T* is 
interpretable on By Lemma 5.7@), U(p’)< U(p’ 1 L). Since 
p’ 1 L =p r L, we have proved the lemma. Cl 

Since T”= (T * ) eq we conclude that T# is also superstable with NDQP. 
We can now ete the proof of Proposition 5.6. Let k T be such that 

T+ = Th(M+). , Li and T be as defined above. We w prove that T+ is 
superstable by showing that every type has ordinal U-rank. Let p be a complete 
type in T+. Let j be minimal such that the variables in p range over sorts 
appearing in q. For i 3 0 let pi =p 1 Li+j* 

We can associate with any such the descending sequence of ordinals 

(I%AA U(pA . . . ) by hmma 5.8. leave it to the reader to see that there 
ot be a chain p = q. 3 q1 ZI - - - such that for all i, qi+l forks over dOm(gi)- 
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be a-models of T+ such 
e must show 
model over 

1 Lj; all models Of l& a 
that Ni is a-prime over 

n T+ let qj denote 4 1 Li, with the convention 
e smallest language containing the sorts over 

variables in Q range. 
be such that limiC,, U(~(C/N)~) = 4y is minimal. Let Q = t(c/N), 

at U(qj)=a for jai. Then, for all c’EM\N, 
) 2 ar in &. Notice that qj is regular. Since x has NDOP and N’ is a-prime 

must have qi non-orthogonal to N$ or Wi. Suppose that qi J! Ni. 
Xqi, U(r)=a:andris 

working in T& there is a co E ‘\Ni such that co realizes r 1 N. Let 
U(rT) = CJ(rT 1 N2) = Q! 

fork over N2, so r+ does not fork over 
= N[a], p J! N2. This proves that T+ has NDOP. 

position 5.6 in hand our next goal is to prove a decomposition 
theorem analogous to Theorem C for T+ with respect to c,. The explicit 
definition and result are as follows. 

Let T+ be an L(Q)-expansion of some T, N a correct model of T+. 
e say thit (N,, a+ 9 E I) is a c,-decomposition inside N if (a), (c) and (d) of 
titian 5.1 hold and 

c,Nando,ENq. 
‘c,-decomposition of N’ is de&ted in the obvious way. 

Suppose that T is superstable with NDOP, T+ is an 
T+ is standard. Then every c,-decomposition inside 

Furthermore, if ( Nq, a,,: q E I) is any c,-decomposition 
UN,andforallqEI, MClUN,(N,,). 

e passage from c,, to c, requires the following additional lemmas. 

+ is a superstable. L( 
) be a formula 03er 
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Lemma 5.2 there is an e E e hLNA, such that c &., e. Let 8’ be O’(X, a) where 
M ts ‘Vy (10~ W(n, y))“. Since e &,,,a we can find an a’ E N and a c’ E M 
such that W(c’, Q’) and e&,c’. Thus, c’ E MW. This contradicts that 
A4 b =-Qx W(X, u’)” and NC, Ibf. 0 

Suppose that T+ is a superstable L(Q)-expansion of T, ME T+ is 
standard, Nc,M is a model of T+, N CA CM with IAl = /T(, and 0(x, b) is a 
form& over A with M ~92.~ O(x),‘. Then there ill a c E t?(M)\acB,,,(b) such that 
CA Q A (N). 

Notice that this a generaliiation of Lemma 5.3. We begin the proof as in 
that previous lemma, but this situation is complicated by the lack of a lemma 
saying: e $ acl,(D) and c E acl,(D) + e ho c. 

Let 0,(x, b,) be a formula over A of least m-rank such that 0,(x, b,) I- 0(x, b) 
and 4,(M, b,)Qacl,,,(b). Let c E &(M, bl)\acl,((b). We will show that 
CA 4 A (N). 

Suppose, towards a contradiction, that CA is not dominated by A over N. Now 
proceed to find e, a, &(n, a) E t(c/uN) and q(x, y, z) E t(cae/N) exactly as in 
Lemma 5.3. Let r = t(a/N) and define - as before. 

Choose a finite DO c N such that cue &Do N. As N t, M there exists an e’ E N 
such that El.x QD(X, a, e’) and e’/- $ acl,(DO). Pick D c N finite, D,-, c D, and 
e’ EN such that I=& q(x, CI, e’), e* = e’/- $ acl,(D) and R”(e*/D) is minimal 
under these conditions. Let rpO(u) E t(e*/acl(D)) be such that R”(e*/D) = R”(q,J 
and q,,(u) t- 3z (Z/N = u A (d,y) 3x q(x, y, z)). Notice that h# b “Qx Q),,(X)“. Fur- 
thermore, the minimal rank assumption implies that if D’ 3 D, Nz D’ and 
f E q&f)\acl,(D’), then R”(flD’) = R”(rpO). 

Suble a 1. Suppose that f E q+,(M)\acl,(D) and f hDa. Then there is a 
C’ E e,(M, U) such that f ,I&, c*. 

Much of the work here was done in 5.3. First we find an f’ with f ‘/- =fj 
3x q(x, y, f’) and f’ t+u. Since f’ +,a, k3x q(x, u, f ‘). Let q = 

stp(f ‘D) and a(~, y) = (d,z) QJ(X, y, z). 

This is proved like Claim 1 in Lemma 5.3. 
As a realizes r and a hD f ‘, 

is is proved like Claim 2 in Lemma 5.3. 
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For the work ahead we must transfer our attention tof, so to what is borrowed 
from 5.3 we add 

31. Forc’arin 2, c’JJ&Dfi 

Choose an f”gf’ cfo) with f” tbfD ad. Since f rLD Q, f” cD a_ The definition of 
- then implies that INx (&x, a, f ‘)- q(x, a, f”)). It rollows that M,(c’, a) A 
-I(&‘, a, f “)c+ CT&‘, a)). So, by claim 2 and the fact that f ‘af” (all), c’ &,f”. 
The claim follows immediately since f” &m ac’. 

This proves the sublemma. 

So, the e* chosen above satisfiese* &, c’. We will reach a contradiction rather 
quickly once we show that c’ $ acl,(u). In that previous lemma, where we used 
acl(-) instead of a&,(-), this was an immediate consequence of the forking. In 
this case a lot of work remains. 

. c’ $ ad,(a). 

Assume that c’ E acl,(a). Eventually we will contradict the minima&y 
assumption on R”(qO) defined above. 

. lkre it an es E M such that es $ acl,,,(aN), g&e”) and es &a. 

exe are two distinct cases involved in the proof. 
C&e 1: e* l acl,,,(Da). In this case we let q ~t(e*a/D) be such that 
R Wy (la tp(x, y))“, t/t&) = dry q(x, y), a formula over acl(D). Since 

e* g (D), M k “CLv (t,&,(x) A rpo(x))“. The standardness of M and the fact 
that = ITI yields an e#EM, e# $ acl,((Nu) and Epvo(e*) A &e*). 
e* $ acl#a)+ E lty(e*, a), so by the definition of $I~ we must have es&a. 
The minimal rank assumption on qO impties that R”(e#/ZV) = R”(e’/D). Hence, 
e#dNa, proving the chtim in this case. 

t c’ E acl,(a) this implies that 
e oo-rank< R”(e*lD) and 

standard there is an e# E @(M, ac’) 
assumption on R”(rpo), R”(e#lN) = 

), proving the claim in this second case. 
ns exhibited in Claim 4 contradict the minimality 
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Suppose that the claim fails. Then by the indiscernibility of I there is a k < o 
such that e. E acl,(N’e, = . . ek). Since el - . . ek +. e. we can find e;, . . . , e; E N’ 
with e. E acl,(N’ei l l l e;) = acl,(N’). This contradicts that e. E M \N’ and 
N’ c, M, proving the claim. 

Let II’ E Cb(e,/N’) be such that eorLaV N’, and k < m such that II’ E 
acl(e, . . . ek). By these remarks and Claim 5 there is a formula 
6(x,, - - * , hy)Et(e- e&/acl(D)) such that 

(i) 0(x0, . . . , xk, Y) I- 4po(Xi), i s k, 

(ii) vxo “‘&y[8(xo,..., X&r y)-, 3-y e(&l, . - - , x&t y) 

The assumption that e. tiN N’ implies that a’ E M \N. Since N c, M there is an 
a” E N\acl,(D) such that b&, l l - & @(X,,, . . . , %&, a”). Using (ii) in the defmi- 
tion of 8, the standardness of M and N c, M, we find e& . . . , e; E N such that 
M(e& . . . , e;, a”) and ei $ acl,(Drr”e~ . . . ei_r), for is k. Letting e” be the 
sequence of ei’s, we get u” E acl(Z’)\acl(D), so P’ &a”. By the Pairs Lemma 
there is an i such that e: dDeb.. .c;_, a”. Thus, R”(e!/Da”e~ l . . e:_,)< 
R”(ei/D) = R”(~o) and eE $ acl,(Du”e~~ - . ei_r), so we finally reach a contradic- 
tion to the minimality of R”(qo). 

This contradiction proves Sublemma 2. Thus, e’ &= c’ and c’ $ acl&). This 
contradicts the minimality assumption on R”ie,(x, a)), proving that CA 4 A(N). 
I%is proves the lemma. Cl 

Suppose that T+ is a superstable L(Q)-expansion of T, M E T+ 
is stan&rd, NC, M, N k T+, N c A CM and iAl = ]Tj. Then there is an N’ DA, 
such that N’ c, M, N’ Q A (N) and IN’1 = JTJ. 

b. This is immediate by Lemmas 5.10 and 5.11. Cl 

Theorem 5.9 is now proved as was Theorem C. We leave the details to the 
reader. 

Using the results in the last section, especially Lemma 5.5, it is not dEcuh to 
show that if T is superstable wi OP and (N,,: pl E I) is an independent tree 
of models with N minimal over then N is k-atomic over IJ Nq (see [ll, TV, 
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above, N is j-constructible over U N,,. In fact, we obtain the 
tyofNoverUN,with to an isolation rel 

isolation, and we can xrch an N inside any 
we do not need to assume that T is countable. 

Qur method of proving this last result may actually be of more interest than the 
fact itself. It depends highiy on Hrushovski’s theorem guaranteeing the existence 

Enable group actions (Proposition 6.4). We will show that for N and 
: q ~1) as above there is a construction (cm: CYC INI) of N over UNq such 

that whenever #(c,J& U U NV) is non-algebraic there is a definable group acting 
11 some formula in this type. We will be able to choose this formula 
m over C, U U NW. Using results in stable group theory 

11 6.3) we get t(c,IC, UU NT) isolated with respect to a notion 
stronger than j-isolation (see Definition 6.6(3), below). 

Fust, we will discuss the stable group theory involved in the proof. After 
developing the terminology of definable group actions we will state results from 
[6] on ‘generic types’ which generalize well-known results about stable groups. 

(1) We say that @,(a) is an &de@abk group action if @= 
G&x, G), P&G y, 2, is), (p2(x, a), QD&, Y, z, fi)) where 

0) @ t 2= b0,94 is a definable group where A, = q&Z‘) is the universe and 
ql(tT) is the graph of the operation, and 

defines a group action of A+ on B+ = p&S). 

say that the definable group action 9 is traprsitue if A, acts transitively 
; i.e., for all b, b’ E Be there is a g E A@ with l=&g, b, b’). 

adopt the n~:Gxt used above that for i# a definable group action, cp2 
defines the set B, xteo on by A, = q&X). - denotes the group operation defined 
by g, and 0 denotes the action defined by elf. 

z*x, y’). For A a set of formulas 
A @-invariant if for every A-formula 6(x, b) and 

(cox, 8) is a A-formula. 
say that p E S(acl(Z)j :- a~ ge.~tic if p k q2 and whenever g E A, and b 

s p witi g+b, ghGg*b. If A=dom(q)=Z we say that q is generic if 
nericpwhhq=pJA. 

call a formula 6(x, &) @-small if 0 i- q2 and 8 is not contained in any 
generic. 
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: q E S(A) is generic} h finite. In $,-t! 

is superstable, a’ c A; 0 is a formula over A, 9 I- QD~, and 8 is 
not @-snaall. Then (i) e (ii) 3 (iii). 

(i) B has no extension over A which ti &wuJ~~. 
(ii) There is no 8’ )_ 8 over A 

(iii) For every finite A’, l{q 1 

The proof is easily obtained from Facts 12 and 13 in [6 Ch. I]. (I) is just 
Facts 12 and 13(a). (2) is 13(c), using its proof to obtain the second claim. For (3) 
we need the following additional information about generics when T is 
superstable. 

. If p is generic, then R”(p) = Rw(q2). 

Let q E S(acl@)) be such that e;z E q and R”(q) = R”(q2). We fhst show that q 
is generic as follows. Pick g E A, and b realizing q 1 g acl@). Since 6 and g 4 are 
equi-deGnable over g& R”(goblga’) = R”(blgiS) = R-(b/n) = R”(cp2). Since 
R”(g 0 b/a’) G R”(cpz), we conclude that gob hGg, proving that q is generic. IL 
follows easily from 13(a) that all generics have the same m-rank, proving the 
claim. 

Now the equivalence of (i) and (ii) is clear. (ii) + (iii) follows from (2) and the 
fact that every finite A is contained in the finite invariant set A[@! 0 

We turn now to deeper results. The st is just a more explicit statement of 
Proposition 2 on p. 35 of [6]. Our claim that p. and q2 may be chosen to extend 
given formulas in p and q follows from the proof, as does the transitivity of the 
action. 

. Suppose that 7’ is stable, p, q E S ) are stationary and the following 
hold. 

(i) l is an operatio from p(g) Xp@) to p(6). 0 an operation fkom 

p(Q) x q(a) to 40% and each of these b the restriction of a definable relation. 
(ii) If a and 6 ate A-independent lizations of p, then a l b realizes p and 

{a, 6, a l b) is pairwise A-independent. 
(iii) If a realizes p, b realizes q and a IL~ b, then a 0 b realizes q and (a, 6, a 0 b) 

is pairwise A-independent. 

Sh:307



Suppose that T is stable, A = acl(A), q E 
there a d E dcl(cA)\A and a transitive A- 

, for my @ E t(d/A) we tnuy 

of Proposition 6.4 and Theorem 2 in 93.4 
*there is a d E dcl(cA)\A such that 

result yields the hypotheses of 
6.4. This proves the proposition. Cl 

come now to the isolation relations relevant to this section. 

For x e {cl, jl, (c, j)} we &fine K as the set of (p, B) with 
p E S(A), A =) B, IBI <A, such that 

(1) ifx=cl, there is a QDEP rB such that q&S(A) and gxq+W’(q)= 
JWP) < =; 

(2) if x = jl, there is a q EP 1 B such that for all finite A, I(4 1 A: 
~~q~S(A)wKo; 

(3) if x = (c, j) there is a q~ EP 1 B simultaneously witnessing that (p, B) E 
@ n I!?. 

As usual, P%-isolated is abbreviated x-isolated, etc. 

6.7. Suppose that p E S(A) is jl-isolated, as witnessed by q. It follows 
that not only is p jl-isolated, but every q E S(A) containing QI is jl-isoMed. 

The next lemma only plays a minor role in our treatment, but it lends insight 
into the strength of jl-isolation. 

6.8. Suppose that T is stik, M k T, A 3 M and t(alA) is jX&ohted. 
l7te?WMA(iU). 

Sup- that q(x, b) E t(a/A) witnesses that this pe is jl-imlated. Let 
C= {q E S(CQ: Q, E q} and q does not fork over A. For each finite A let 
& = {q t A: q E 2). q E Z+ R(q, A, 84,) = R(q 1 A, A, &,), so & is finite. Using 
that each r E C, is definable over acl(A) we obtain a formula r&j) over acl(A) 
such that for 0(x, f) E A and all c’, k&) iE 0(x, E) E r for some r E Z& 

Now suppose that c’ &,A and c’ &,,, a. Let 0(x, E) E t(a/ZA) k a formula 
that forks over A, te the formula associated to {0(x, jQ} as above. Then 

k* (@(G c’) A V(X)) A T&). Since c’ +,,,A and M is a model there is a c” E M, 
Elx (0(x, Z) A q(x)) A T&‘). Thus, 0(x, E’) is in some r E &), contradicting 
that k-r&‘). This proves the lemma. 0 

say that t(a/A) is -isolated if Q E xl(A) or there is a 
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(2) We my that t(a/A) ti (c, gp)-isolated if a E acl(A) or there is a transitive 
A-d&*2ble group action Q with q2 E t(a/A) and for q E S(A), q2 E q $4?“(q) = 

RYqpz) < a4 

Notice that for a type to be (c, gp)-isolated it is not sufkient to simply be both 
cl- and gp-isolated. Requiring p2 to be the cl-isolating formula has the important 
consequence that @(a/A) is generic. 

Par x = cl, jl, etc., the notion of an x-construction over A is defined in the 
obvious way. 

In this section (c, gp)-isolation is used largely in conjunction with the next 
lemma, which is an immediate corollary to Proposition 6.3(3). 

6JO. If t(alA) is (c, gp)-isu ated, then it is (c, j)-isolated. 

To prove the existence of enough (c, gp)-isolated types we will need the 
following refined notion. 

EDe&itk 6.ll. Let J, be a formula over A. We say that (co, . . . , cn) is a 
gp-construction otter A into 11 if 

0 ( co, c,) is a &7-COIlStN~OXl over A, bpcI(c,J and CiE acl(cnCiA). 
(i!) If ciiZl(CiA) there is a transitive CA-definable group action @ with 

QD~ E t(ci/CiA) and kq2(e) + there is a d E I/J(&) with e E acl(dCiA). 

( co, . . . , c,,) is a (c, gp)-construction over A into v if it is a gp-construction 
over A into q, and under (ii), ~2 cl-isolates t(ci/CiA). 

The next lemma is central to the proofs of our main results. Its proof is straight 
forward so we leave it to the reader. 

Lemma 6.12. Suppose that (co, . . . , cn) is a gp-construction over A into *, 
where q/~ is a formula over B c A. There is a formula q(xo, . . . , xn, 9) E 

a0 l l - c,,A/B) such that kp(d, . . . , d,, 6) + (do, . . . ,61,) is a gp-construction 
over ti into 11. 

Our main goal is the next result, which is proved with a series of lemmas. 

eorem 6.W. Suppose that T is superstable with NDOP, (IV& q E I) k an 
endent tree of #models and M 3 U Nq. Then there is a model M’ c M, 

3 IJ N,, such that M’ is (c, gp)-constructible over U NV. 

. Suppose that T is superstable with ND0 
of a-models, A 3 lJ N,, and for ali q E I, A 

for all formulas q over A is gp-construction over iuto 
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The proof is by induction on Rm(q). Suppose that the proposition is true 
for all q’ and all A’ with R”( ‘) c R”(qp). W.l.o.g., R”(q) = R”(a/A) for all 

aim 2 of Lemma 5.5, ,4 is a- coverUN&erpbearegulart 
which is non-orthogon stp(a/A) for some a E v(G). 

e q E I. Since Nq is an a-model we may assume that 
such that t(a/A) &I. 

. aW40 
r p 1 A in 6. If a &A Z we can easily contradict that t(a/A) is 

ILN, A and A&, is an a-model. Thus, a CL~ 1. If b q(g) and 
(a/A) 1 stp(b/B), by the minimal rank assump- 

A is algebraicaIly closed, we may apply Proposition 6.5 to obtain @, an 
ble transitive group action with (p2 E t(d/A) for some d E dcl(aA)\ A. 

ermore, we may assume that kq2(e) * t%nere is an a’ E 7/@) with e E 
&l(a’A). She R*(ajdA) < R”(q), we CXUI apply induction to obtain 

( CO, . . . ) cm), a gp-construction over Ad into $J with d E acl(c,A). Now observe 
that (d, co, . . . , en) is a gp-construction over A into 91, proving the 

Pro ition. C! 

. Suppose that T is super-stable, M I= T, M 3 A and for every 
over A there is a gp-construction over A into I/J. Then for every q over 

there is a (c, gp)-construction over A into q. 

Tiis, too, is proved by induction on R”(q) = cy. Assume that the 
ition is true for all A and all formulas of m-rank <cw, and cy # 0. 

that there are: a E v(M), (b,, . . . , b,+), a (c, gp)-construction 
over A tith bi E acl(aB&, and a c E acl(aAB,)\acl(AB,,J such that t(clAB,) is 
cl-isolated and R=(c/AB,) < LY. Pick 0(x, y) E t(ac/ABm) such that W(de) + 
k*(d), e E acl(&lB,), bi E acl(dABJ for i Cm, and R”(e/AB,,,) = R”(cIAB,,J. 
Tllkis s cl-isolated. Let q(y) = 3x 0(x, y). By 

UCtiO gp)-construction over A B, into q. 
0 J?“(B(x, cn)) < i.k We may 

a (c, gp)-construction over 
bO, . . . , b,,,_r, co, . . . , c,,, do, . . . , d,) 

r -4 into (For i cm, bi E acl(dlBiA) since ke(dl, en). 
,,A) and c,, E acl(d,B,A)~X!kI!! 

, b,_, ) is LJ (c, gp)-comtiwtion with bi E ad(d$A) 
B,,J\acl(AB,) and t(c/AB,,J is cl-isolated, then 
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y hypothesis there is (co, . . . , c,), a gp-construction over A into ly. 
Let cp(X*,...,X,)Ef(qJ”’ c,lA) be as guaranteed by Lemma 6.12. Let 
(d,: - - . , d,) E M satisfy Q, with R”(di/DiA) minimal. 

claim. t(dJQA) is (c, gp)-isokafed. 

VVe do this by induction on i. If di E acl(D,A) we are done, so suppose that 
di $ acl(L’+A). By the definition of a gp-construction into q, kq(d,J, di E 
acl(d,QA) and there is @, a transitive QA-defmable group action with 
(pz E t(di/D&). By the inductive hypothesis Di is a (c9 gp)-construction over A 
with dj E acl(d&A) for j < i, Thus, we can apply (1) to conclude that 
R”(di/DiA) 2 IY. By the definition of a gp-construction into I/J there is an 
a’ E ty(G) with e E acl(a’QA) for any e E q#). Thus, I?“(& s EY. Since we 
chose R”(di/DiA) minimal, we conclude that R”(e/DiA) = Rm(& for all e E 
qua. This proves the claim, hence the proposition. El 

6.16. Suppose that T is superstable with NDOP, (M,,: q E I) is an 
independent tree of models and A 2 M,, is such that A Q U M,, (M,,) for all q E I. 
Then for all formulas W over A there is a gp-construction over .A into 3. 

Let (A$: q E I) be an independent tree of a-models with IVq3 M,,, 
N+-k,A and U&h~v A. By 111, XII, 2.3(3)1 U Mq c,uN,. 

For all formulas 0(x, y) such that W(a, b) for a E A and b E U N,,, there 
is a 6’ E U M, with l#(a, b’). 

This is proved just like CEaim 1 of Lemma 5.4. 
As in Claim 1 of Lemma 5.5, U N,A U U N,, (IV,) for all q E I. By Proposition 

6.14 there is (c,, . . . , c,), a gp-construction over A U lJ NV into v&. Let 

q(&I* - - - , &I, Y) E t(co - - - c, U NV/A) be as guaranteed by Lemma 6.12. By the 
claim there is an a’ E U M,, such that I+, - * - x, q(xo, . . . , xn, a‘). Witnessing 
these existential quantifiers gives the desired gp-construction into q. El 

mm 6.1.3. This is obtained by iterated application of Propositions 
6.14 and 6.15, Lemma 6.16 and the following corollary of Lemma 6.S: 

If (M,: q E 1) is an independent tree of models and A is (c, gp)-constructible 
over I_) M,, then U M,A 4 !J Mq (MJ for all q E 1. 

Cm&my 6.17. Suppose that T is superstable with PJDOP, (N,,: q E 1) is an 
independent tree of models and M =I U N,,. Then there is a model M’ c M, 
M’ 3 UN,, such that h4’ is (c, j)-lconstructible over U IV,,. 

Combine Theorem 6.13 and Lemma 6.10. Cl 

We have certainly not exhausted the conse 
As an example of an additional ap 

the ideas in this section. 

Sh:307



28 S. .5%&h, S. Bder 

Suppose that Tis superstable and non-mdtihmhnal, 
NcAcl;i.l%enfhereisamodelM’c ‘andiWishv3abtatedby 

A over N. 

only outline the proof. We will find an M’ which is (c,gp)- 
e over A. The corolhry then follows from Lemmas 6.8 and 6.10. 

tig various results in this secth the problem reduces to showing that for 
an a-model with PI’ bNA, there is a gp-constructibie model over N’ U A. This 

is proved as in Lemma 6.14 using that every regular type is non-orthogonal to an 
over IV’. Cl 
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