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Abstract

In this paper we use a natural forcing to construct a left-separated topology on an arbitrary
cardinalk. The resulting left-separated spakg is also O-dimensional’», hereditarily Lindelof,
and countably tight. Moreover i is regular theni/ (X, ) = k, hencex is not a caliber ofX,., while
all other uncountable regular cardinals are. This implies that some results of [A.V. Archahgelski
Topology Appl. 104(2000) 13-16] and [l. Juhasz, Z. Szentmiklossy, Topology Appl. 119 (2002)
315-324] are, consistently, sharp.

We also prove it is consistent that for every countabledset uncountable regular cardinals there
is a hereditarily Lindel6f3 spaceX such thab = cf(o) > w is a caliber ofX exactly ifo ¢ A.
0 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Let us start by recalling that a regular cardipdk said to be a caliber of a topological
spaceX (in symbols:p € Cal(X)) if among anyp open subsets ok there are always
o many with non-empty intersection. Note that in this paper we restrict the notion of
caliber to regular cardinals, although the definition does make sense for singular cardinals
as well. Note also that € Cal(X) implies thatX has no cellular family of size. Hence,
as any infiniteT> space has an infinite cellular family, for all spaces of interest we have
Cal(X) c R, whereR denotes the class of all uncountable regular cardinals.
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It is trivial to see that ifo = cf(o) > d(X) thenp € Cal(X), moreover Sanin proved
in [9] that, for any fixedp, the property of spaces € Cal(X) is fully productive.
Consequently, for any cardinalwe have CaP*) = Cal([0, 1]¢) = R, showing that the
converse of the above relation between density and calibers is not valid. More precisely, no
bound for the density ok can be deduced from the fact th#tsatisfies the condition
Cal(X) = R that we also call Shanin’s condition, even for very nice (e.g., compact
Hausdorff) spaceX.

Such a converse, however, is validifis a compact’, space of countable tightness, as
was shown by Sapirovskin [8], see also [3, 3.25]. Indeed, in this case Cal(X) implies
d(X) < o or, equivalently,

Cal(X) =[d(X)*, 00),

where the interval on the right-hand side (just like in PCF theory) denotes an interval of
regular cardinals.

More recently, in [1], Archangelskiproved that if X is Lindel6f 75 and countably
tight andw; € Cal(X) thend(X) < 2¢. In [6] both Sapirovski's and Archangelskis
results were strengthened and generalized, moreover, under CH, in the second result the
conclusiond (X) < 2° = w1 was improved tal(X) = w. Of course, this immediately led
us to the question if the use of CH here is essential.

In the present note we give an affirmative answer to this question, in fact we show
that Archangelskis result is sharp for arbitrarily large values of the continuutn &en
for hereditarily Lindel6f (in short HL)T3 spaces of countable tightness. The examples
showing this will be obtained by forcing generic left-separated 0-dimensional spaces in a
natural way. Our methods will then be used to also solve some other problems raised in
[6]. Moreover, we shall also prove the consistency of the statement that for any countable
subsetA of R there is a countably tight HI3 spaceX such that

Cal(X) =R\ A.

This is in sharp contrast with the compact case.

We do not know if there are similar consistency results for uncountélateR and the
following intriguing question also remains open: Is it provable in ZFC that a countably tight
(hereditarily) Lindel6fI3 spaceX satisfying Sanin’s condition CaY) = R is separable?

Our notation and terminology follows [2,3] in topology and [7] in forcing.

2. Generic left-separated spaces

Let v be an arbitrary limit ordinal and consider the subor@grof the Cohen order
Fn(v2, 2) that consists of thosg € Fn(v2, 2) which satisfy conditions (i) and (ii) below:

() if (@, @) € D(p) thenp(a, @) =1;
(i) if p(a, B) =1thena < B.

Clearly, P, is a complete suborder of Fr?, 2), hence it is CCC and thus preserves
cardinals and cofinalities.
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It is straight—forward to check that for any p&r, 8) € v? the set

Do ={pe P (ap)eD(p)}
is dense inP,, consequently itz C P, is P,-generic ovelV then

F:UG:v2—> 2,

i.e., F defines a directed graph erby F(«, 8) = 1 meaning that an edge goes fronto
B.

Now, in V[G], for anya € v andi € 2 let
Uai={Bev: Fa,p)=i},
andzg be the (0-dimensional) topology angenerated by the subbase
S ={Uy,i: x€v, i €2}

In other words is the graph topology on determined by the directed graghin the
sense of [4] or [5].

For all@ € v the minimal element ot/ 1 is & and this shows thais is left-separated
in its natural well-ordering. This immediately implies that is 7> and thus, by O-
dimensionality, alsd’s.

All finite intersections of the elements 6f; form a base3g of t. A typical element
of Bg is of the form

[e]= m{Ua,s(a): o< D(E)}»

wheree € Fn(v, 2).
All this was easy. Let us now turn to the less obvious properties of the topelpgy

Lemma?2.l. 7 isHL.

Proof. Assume, indirectly, thap € P, forces that([¢;]: i € w1) are right-separating
neighbourhoods of the points;: i € w1) in v, where WLOG we may assume that j
implies x; < x;. Then for everyi € w; there arep; € P,, & € v, andy; € Fn(v, 2) such
that p; < p and p; IF x; = & and & = n;. We may also assume that(p;) = al? for
someg; € [v]<?, moreover§; € a; andD(n;) C a;. By a standardA-system and counting
argument we can find j € w1 with i < j such that

@) pi [(@Naj)?=p;|(aNaj)? ie.p; andp; are compatible as functions;
(b) ni TaiNa;=n;la;Naj;
(€) & €a;\aj, & €aj\a;, andg; <&;.

Let us then defing : (a; U aj)2 — 2 in such a way that (19 D p; U p;, moreover (2)

q(a, §j) = pile, &)
if « € D(n;) \aé- anda < & < &;, and finally (3)g(«, B) = 0 for every other pair
(e, B) € (a; Ua;) \(a?UaJZ), not covered by cases (1) and (2). Itis easy to see;tkaP,
because it satisfies (i) and (ii). Moreovetw, &;) = p; («, &) holds for everyx € D(;):
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for o € D(n;) Na; this follows from (b) and for € D(n;) \ a; this follows from (2) and
(3). Consequently

qlFx;=§&; enil=1[&1]
contradicting thap I- x; ¢ [¢;]. O

Next we show thats is countably tight.
Lemma 2.2. ¢ has countable tightness.

Proof. Letus assume that for®,-nameA and some ordindl we have a conditiop € P,
which forcest € A/, i.e., thatt is an accumulation point of. Sincerg is left separated,
we may also assume that- & < A, i.e., p forces that every element df is bigger than
&. It can also be assumed thgt &) € D(p).

Let 1 be a large enough regular cardinal such tH&t) contains “everything in sight”,
e.g.,P,, A € H()), etc. Fix a countable elementary submotiebf (H (%), €) such that
v, &, p, A e N. Clearly, we shall be done if we can prove the following claim.

Claim. plF£ e (NN A).

To see this, consider anye Fn(v, 2) and letg < p be an arbitrary extension gfin P,
such thatD(g) = a? with a € [vV]<?, D(¢) C a, andq I+ & € [¢], i.e.,q(a, §) = e(«) for
everya € D(eg).

Thengy =g N N € N is an extension ofp hencegy I+ |[[eny] N A| > w, where
ey =& N N.Butwe also havgy € N, henceN < H (1) implies that there is an extension
r < gy With € N and an ordinak € N \ a such thatD(r) = b?, x € b, and

rH—xeNﬂAﬂ[eN].

Clearlyg [ (a N N)2=r | (anN N)2 =gy andD(g) N D(r) = (a N N)?, henceg andr
are compatible as functions. We can thus defifie g U r with the following additional
stipulation:g*(«, x) = e(«) wheneverw € D(g) \ N. Note that neitheg nor r is defined
for a pair(«, x) of this form because ¢ « " N anda ¢ N. Also,q* € P, because (i) holds
trivially and (ii) holds because if € D(¢) \ N ande(a) = 1thenbyg (o, &) = e(a) = 1 we
havea < & < x. Finally, if« € D(¢) NN thenwe have™*(a, x) = r(a, x) = en(a) = ¢(a)
because I x € [en], consequently

g*Fxe NNAN[g] #0.

This completes the proof of the claim and thus of Lemma 2(2.

Note that Lemmas 2.1 and 2.2 immediately yield us thats) is a countably tightL
space ifv > w;.
Our next lemma is the main result about caliberg®f In fact, for some applications
to be given later, we formulate a slightly stronger result about calibers of initial segments
of v as subspaces @b, 7¢). So fora < v we let X, denote the subspace of, t5) ona.
Note that for anyg € v \ « we haveUg 1 N o = ¢, consequently for any € Fn(v, 2) we
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have eithefe]Na =0 or [e]Na = [¢ | «] N . Therefore the trace of the baBg on «
can be written as

Be la= {[8](\0{2 e € Fn(a, 2)} U {@}.

Lemma 2.3. If « < v isany limit ordinal and ¢ is an uncountable regular cardinal with
o < cf(a) then o € Cal(X,). Moreover, we also have d(X,) = cf(e) and so Cal(X,) =
R\ {cf(e)}.

Proof. By the above remark, to see the first part it clearly suffices to show that whenever
plF{&;: i € o} C Fn(e, 2) then for somé& € « there is &g < p such that

qlF |{l €p: &€ [éi]H =0.
To see this, first we find for eache ¢ an n; € Fn(e, 2) and an extensiop; < p

such thatp; I+ ¢; = ;. We may also assume that(p;) = al_z for somea; € [v]=® and
D(n;) C a; foralli € 0. But then

Utai: i €0} <0 < cit@),

hence (the trace of) this union is boundedvinConsequently, there is an ordirgk «o
with a; Na < & for all i € 0. Now extend eactp; to a conditiong; € P, such that
gi(a, &) =n;(a) forall @ € D(n;). This is clearly possible because

D) CaiNa <§.

Note that thery; IF & € [n;] = [&;].
SinceP, is CCC andy; < p forall i € g, there is a conditiog € P, with ¢ < p such
that

qlF |{l €0 qi EG}| =0,
hence clearly

gl-|{ico gelél}| =0
which was to be shown.

To see thatl(X,) = cf(a) first note thatd(X,) > cf(«) is trivial becauseXy, is left-
separated in its natural ordering. On the other hanfl df« is any cofinal subset af in
the ground modeV thensS will be dense inX,,. Indeed, it is again sufficient to show that
SN[e] # @ foreverye € Fn(w, 2), and this follows by a straight—forward density argument.
Consequently we haw&(X,) < cf(x), henced (Xy) = cf(a).

Now, if o € R andp > d(Xy) = cf(x) then o € Cal(Xy), trivially. Finally, cfo ¢
Cal(X,) is again obvious becausg, is left-separated. O

It is immediate from the above lemmas that«ifis regular andc® = « then, in
VP we have 2 =« and the space&, is HL, O-dimensionall», countably tight with
d(X,) =« =2% and Ca{X,) = R\ {«}. In particular, this shows that Archangelski
result from [1] saying that a countably tight Lindelff spaceX with w; € Cal(X) satisfies
d(X) < 2“ (or the more general Corollary 1.2 of [6] saying that for such a spaegéth
o' e Cal(X) we haved (X) < 29) is, at least consistently, sharp.
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Clearly, in a Lindel6f space of countable tightness every free sequence is countable.
Consequently, if we also hawe> w,, then the spac&, establishes in addition that from
Corollary 1.5 of [6] (saying that i is a countably tighs space with no free sequence
of lengthw,, and satisfyingw,: 0 <n < w} C Cal(X) thenX is separable provided that
w, IS strong limit) the assumption that, be strong limit cannot be omitted.

With a little extra work we can deduce from our lemmas the following result showing
that we have, again consistently, much more freedom in prescribingCér Lindel6f
(even HL) and countably tighfs spaces than in the case of compact and countably tight
spaces.

Theorem 2.4. Let « be any cardinal. Then, in V%<, for every countable subset A of
R N« thereis a HL and countably tight O-dimensional 7>, hence T3, space X such that
Cal(X) =R\ A.

Proof. For anyp € A let X, be the subspad, 7 [ ¢) as in 2.3 and then let

X =X, 0 € A)

be the (disjoint) topological sum of these subspaces. Siniecountable, it is obvious
that X is HL, countably tight, and O-dimension&. For anyo € A thenX, is a clopen
subspace ok, hence, by Lemma 2.3, we haget Cal(X,), implying thato ¢ Cal(X) as
well. On the other hand, if e R\ A andg is a family of open sets itk with |G| = A
then, again by the countability of, there is & € A suchthat{G € G: GN X, #0}| =2,
hence by Lemma 2.3 we hawxe= Cal(X,) which implies that alsa. € Cal(X). O

A natural question that we could not answer is if a similar result could be proved for
uncountable seta of regular (uncountable) cardinals. Finally, our methods leave open the
following very natural and interesting question formulated below.

Problem 25.1s it provable in ZFC that a Lindel613 spaceX of countable tightness
satisfying Sanin’s condition Ca&) = R is separable?
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