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Abstract

In this paper we use a natural forcing to construct a left-separated topology on an ar
cardinalκ . The resulting left-separated spaceXκ is also 0-dimensionalT2, hereditarily Lindelöf,
and countably tight. Moreover ifκ is regular thend(Xκ) = κ , henceκ is not a caliber ofXκ , while
all other uncountable regular cardinals are. This implies that some results of [A.V. Archangı̆,
Topology Appl. 104(2000) 13–16] and [I. Juhász, Z. Szentmiklóssy, Topology Appl. 119 (2
315–324] are, consistently, sharp.

We also prove it is consistent that for every countable setA of uncountable regular cardinals the
is a hereditarily LindelöfT3 spaceX such that	 = cf(	) > ω is a caliber ofX exactly if	 /∈A.
 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Let us start by recalling that a regular cardinal	 is said to be a caliber of a topologic
spaceX (in symbols:	 ∈ Cal(X)) if among any	 open subsets ofX there are always
	 many with non-empty intersection. Note that in this paper we restrict the notio
caliber to regular cardinals, although the definition does make sense for singular ca
as well. Note also that	 ∈ Cal(X) implies thatX has no cellular family of size	. Hence,
as any infiniteT2 space has an infinite cellular family, for all spaces of interest we
Cal(X) ⊂ R, whereR denotes the class of all uncountable regular cardinals.
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It is trivial to see that if	 = cf(	) > d(X) then	 ∈ Cal(X), moreover Šanin proved
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in [9] that, for any fixed	, the property of spaces	 ∈ Cal(X) is fully productive.
Consequently, for any cardinalκ we have Cal(2κ) = Cal([0,1]κ) = R, showing that the
converse of the above relation between density and calibers is not valid. More precis
bound for the density ofX can be deduced from the fact thatX satisfies the condition
Cal(X) = R that we also call Šhanin’s condition, even for very nice (e.g., com
Hausdorff) spacesX.

Such a converse, however, is valid ifX is a compactT2 space of countable tightness,
was shown by Šapirovskiı̆ in [8], see also [3, 3.25]. Indeed, in this case	 ∈ Cal(X) implies
d(X) < 	 or, equivalently,

Cal(X) = [
d(X)+,∞)

,

where the interval on the right-hand side (just like in PCF theory) denotes an inter
regular cardinals.

More recently, in [1], Archangelskiı̆ proved that ifX is Lindelöf T3 and countably
tight andω1 ∈ Cal(X) then d(X) � 2ω. In [6] both Šapirovskĭı ’s and Archangelskiı̆ ’s
results were strengthened and generalized, moreover, under CH, in the second re
conclusiond(X) � 2ω = ω1 was improved tod(X) = ω. Of course, this immediately le
us to the question if the use of CH here is essential.

In the present note we give an affirmative answer to this question, in fact we
that Archangelskiı̆ ’s result is sharp for arbitrarily large values of the continuum 2ω, even
for hereditarily Lindelöf (in short HL)T3 spaces of countable tightness. The exam
showing this will be obtained by forcing generic left-separated 0-dimensional space
natural way. Our methods will then be used to also solve some other problems ra
[6]. Moreover, we shall also prove the consistency of the statement that for any cou
subsetA of R there is a countably tight HLT3 spaceX such that

Cal(X) = R \A.

This is in sharp contrast with the compact case.
We do not know if there are similar consistency results for uncountableA ⊂ R and the

following intriguing question also remains open: Is it provable in ZFC that a countably
(hereditarily) LindelöfT3 spaceX satisfying Šanin’s condition Cal(X) = R is separable?

Our notation and terminology follows [2,3] in topology and [7] in forcing.

2. Generic left-separated spaces

Let ν be an arbitrary limit ordinal and consider the suborderPν of the Cohen orde
Fn(ν2,2) that consists of thosep ∈ Fn(ν2,2) which satisfy conditions (i) and (ii) below:

(i) if 〈α,α〉 ∈D(p) thenp(α,α) = 1;
(ii) if p(α,β) = 1 thenα � β .

Clearly,Pν is a complete suborder of Fn(ν2,2), hence it is CCC and thus preserv
cardinals and cofinalities.
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It is straight–forward to check that for any pair〈α,β〉 ∈ ν2 the set
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Dα,β = {
p ∈ Pν : 〈α,β〉 ∈D(p)

}

is dense inPν , consequently ifG⊂ Pν is Pν-generic overV then

F =
⋃

G : ν2 → 2,

i.e.,F defines a directed graph onν by F(α,β) = 1 meaning that an edge goes fromα to
β .

Now, inV [G], for anyα ∈ ν andi ∈ 2 let

Uα,i = {
β ∈ ν: F(α,β)= i

}
,

andτG be the (0-dimensional) topology onν generated by the subbase

SG = {Uα,i : α ∈ ν, i ∈ 2}.
In other words,τG is the graph topology onν determined by the directed graphF in the
sense of [4] or [5].

For all α ∈ ν the minimal element ofUα,1 is α and this shows thatτG is left-separated
in its natural well-ordering. This immediately implies thatτG is T2 and thus, by 0-
dimensionality, alsoT3.

All finite intersections of the elements ofSG form a baseBG of τG. A typical element
of BG is of the form

[ε] =
⋂{

Uα,ε(α): α ∈ D(ε)
}
,

whereε ∈ Fn(ν,2).
All this was easy. Let us now turn to the less obvious properties of the topologyτG.

Lemma 2.1. τG is HL.

Proof. Assume, indirectly, thatp ∈ Pν forces that〈[ε̇i]: i ∈ ω1〉 are right-separatin
neighbourhoods of the points〈ẋi : i ∈ ω1〉 in ν, where WLOG we may assume thati < j

implies ẋi < ẋj . Then for everyi ∈ ω1 there arepi ∈ Pν , ξi ∈ ν, andηi ∈ Fn(ν,2) such
that pi � p and pi � ẋi = ξi and ε̇i = ηi . We may also assume thatD(pi) = a2

i for
someai ∈ [ν]<ω, moreover,ξi ∈ ai andD(ηi)⊂ ai . By a standard∆-system and countin
argument we can findi, j ∈ ω1 with i < j such that

(a) pi � (ai ∩ aj )
2 = pj � (ai ∩ aj )

2, i.e.,pi andpj are compatible as functions;
(b) ηi � ai ∩ aj = ηj � ai ∩ aj ;
(c) ξi ∈ ai \ aj , ξj ∈ aj \ ai , andξi < ξj .

Let us then defineq : (ai ∪ aj )
2 → 2 in such a way that (1)q ⊃ pi ∪ pj , moreover (2)

q(α, ξj ) = pi(α, ξi)

if α ∈ D(ηi) \ aj and α � ξi < ξj , and finally (3) q(α,β) = 0 for every other pair
〈α,β〉 ∈ (ai ∪aj )

2 \ (a2
i ∪a2

j ), not covered by cases (1) and (2). It is easy to see thatq ∈ Pν

because it satisfies (i) and (ii). Moreover,q(α, ξj ) = pi(α, ξi) holds for everyα ∈ D(ηi):
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for α ∈ D(ηi) ∩ aj this follows from (b) and forα ∈ D(ηi) \ aj this follows from (2) and
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(3). Consequently

q � ẋj = ξj ∈ [ηi] = [ε̇i],
contradicting thatp � ẋj /∈ [ε̇i]. ✷

Next we show thatτG is countably tight.

Lemma 2.2. τG has countable tightness.

Proof. Let us assume that for aPν -nameȦ and some ordinalξ we have a conditionp ∈ Pν

which forcesξ ∈ Ȧ′, i.e., thatξ is an accumulation point oḟA. SinceτG is left separated
we may also assume thatp � ξ < Ȧ, i.e.,p forces that every element oḟA is bigger than
ξ . It can also be assumed that〈ξ, ξ〉 ∈D(p).

Let λ be a large enough regular cardinal such thatH(λ) contains “everything in sight”
e.g.,Pν , Ȧ ∈ H(λ), etc. Fix a countable elementary submodelN of 〈H(λ),∈〉 such that
ν, ξ,p, Ȧ ∈N . Clearly, we shall be done if we can prove the following claim.

Claim. p � ξ ∈ (N ∩ Ȧ)′.

To see this, consider anyε ∈ Fn(ν,2) and letq � p be an arbitrary extension ofp in Pν

such thatD(q) = a2 with a ∈ [ν]<ω, D(ε) ⊂ a, andq � ξ ∈ [ε], i.e.,q(α, ξ) = ε(α) for
everyα ∈D(ε).

Then qN = q ∩ N ∈ N is an extension ofp henceqN � |[εN ] ∩ Ȧ| � ω, where
εN = ε ∩N . But we also haveqN ∈N , henceN ≺ H(λ) implies that there is an extensio
r � qN with r ∈ N and an ordinalx ∈ N \ a such thatD(r) = b2, x ∈ b, and

r � x ∈ N ∩ Ȧ∩ [εN ].
Clearly q � (a ∩ N)2 = r � (a ∩ N)2 = qN andD(q) ∩ D(r) = (a ∩ N)2, henceq andr
are compatible as functions. We can thus defineq∗ ⊃ q ∪ r with the following additional
stipulation:q∗(α, x) = ε(α) wheneverα ∈ D(ε) \ N . Note that neitherq nor r is defined
for a pair〈α,x〉 of this form becausex /∈ a∩N andα /∈N . Also,q∗ ∈ Pν because (i) hold
trivially and (ii) holds because ifα ∈ D(ε)\N andε(α) = 1 then byq(α, ξ) = ε(α) = 1 we
haveα � ξ < x. Finally, if α ∈ D(ε)∩N then we haveq∗(α, x)= r(α, x)= εN(α) = ε(α)

becauser � x ∈ [εN ], consequently

q∗ � x ∈N ∩ Ȧ∩ [ε] �= ∅.
This completes the proof of the claim and thus of Lemma 2.2.✷

Note that Lemmas 2.1 and 2.2 immediately yield us that〈ν, τG〉 is a countably tightL
space ifν � ω1.

Our next lemma is the main result about calibers ofτG. In fact, for some application
to be given later, we formulate a slightly stronger result about calibers of initial segm
of ν as subspaces of〈ν, τG〉. So forα � ν we letXα denote the subspace of〈ν, τG〉 onα.
Note that for anyβ ∈ ν \ α we haveUβ,1 ∩ α = ∅, consequently for anyε ∈ Fn(ν,2) we
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have either[ε] ∩ α = ∅ or [ε] ∩ α = [ε � α] ∩ α. Therefore the trace of the baseBG on α
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can be written as

BG � α = {[ε] ∩ α: ε ∈ Fn(α,2)
} ∪ {∅}.

Lemma 2.3. If α � ν is any limit ordinal and 	 is an uncountable regular cardinal with
	 < cf(α) then 	 ∈ Cal(Xα). Moreover, we also have d(Xα) = cf(α) and so Cal(Xα) =
R \ {cf(α)}.

Proof. By the above remark, to see the first part it clearly suffices to show that whe
p � {ε̇i : i ∈ 	} ⊂ Fn(α,2) then for someξ ∈ α there is aq � p such that

q �
∣∣{i ∈ 	: ξ ∈ [ε̇i]

}∣∣ = 	.

To see this, first we find for eachi ∈ 	 an ηi ∈ Fn(α,2) and an extensionpi � p

such thatpi � ε̇i = ηi . We may also assume thatD(pi) = a2
i for someai ∈ [ν]<ω and

D(ηi)⊂ ai for all i ∈ 	. But then
∣∣∣
⋃

{ai : i ∈ 	}
∣∣∣ � 	 < cf(α),

hence (the trace of) this union is bounded inα. Consequently, there is an ordinalξ < α

with ai ∩ α < ξ for all i ∈ 	. Now extend eachpi to a conditionqi ∈ Pν such that
qi(α, ξ) = ηi(α) for all α ∈D(ηi ). This is clearly possible because

D(ηi) ⊂ ai ∩ α < ξ.

Note that thenqi � ξ ∈ [ηi] = [ε̇i].
SincePν is CCC andqi � p for all i ∈ 	, there is a conditionq ∈ Pν with q � p such

that

q �
∣∣{i ∈ 	: qi ∈ Ġ

}∣∣ = 	,

hence clearly

q �
∣∣{i ∈ 	: ξ ∈ [ε̇i]

}∣∣ = 	,

which was to be shown.
To see thatd(Xα) = cf(α) first note thatd(Xα) � cf(α) is trivial becauseXα is left-

separated in its natural ordering. On the other hand, ifS ⊂ α is any cofinal subset ofα in
the ground modelV thenS will be dense inXα . Indeed, it is again sufficient to show th
S∩[ε] �= ∅ for everyε ∈ Fn(α,2), and this follows by a straight–forward density argume
Consequently we haved(Xα)� cf(α), henced(Xα)= cf(α).

Now, if 	 ∈ R and 	 > d(Xα) = cf(α) then 	 ∈ Cal(Xα), trivially. Finally, cfα /∈
Cal(Xα) is again obvious becauseXα is left-separated. ✷

It is immediate from the above lemmas that ifκ is regular andκω = κ then, in
V Pκ , we have 2ω = κ and the spaceXκ is HL, 0-dimensionalT2, countably tight with
d(Xκ) = κ = 2ω, and Cal(Xκ) = R \ {κ}. In particular, this shows that Archangelskiı̆ ’s
result from [1] saying that a countably tight LindelöfT3 spaceX with ω1 ∈ Cal(X) satisfies
d(X) � 2ω (or the more general Corollary 1.2 of [6] saying that for such a spaceX with
	+ ∈ Cal(X) we haved(X)� 2	) is, at least consistently, sharp.
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Clearly, in a Lindelöf space of countable tightness every free sequence is countable.
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Consequently, if we also haveκ > ωω then the spaceXκ establishes in addition that from
Corollary 1.5 of [6] (saying that ifX is a countably tightT3 space with no free sequen
of lengthωω and satisfying{ωn: 0< n < ω} ⊂ Cal(X) thenX is separable provided tha
ωω is strong limit) the assumption thatωω be strong limit cannot be omitted.

With a little extra work we can deduce from our lemmas the following result show
that we have, again consistently, much more freedom in prescribing Cal(X) for Lindelöf
(even HL) and countably tightT3 spaces than in the case of compact and countably
spaces.

Theorem 2.4. Let κ be any cardinal. Then, in V Pκ , for every countable subset A of
R ∩ κ there is a HL and countably tight 0-dimensional T2, hence T3, space X such that
Cal(X) = R \A.

Proof. For any	 ∈ A let X	 be the subspace〈	, τG � 	〉 as in 2.3 and then let

X =
⊕

{X	: 	 ∈ A}
be the (disjoint) topological sum of these subspaces. SinceA is countable, it is obviou
thatX is HL, countably tight, and 0-dimensionalT2. For any	 ∈ A thenX	 is a clopen
subspace ofX, hence, by Lemma 2.3, we have	 /∈ Cal(X	), implying that	 /∈ Cal(X) as
well. On the other hand, ifλ ∈ R \ A andG is a family of open sets inX with |G| = λ

then, again by the countability ofA, there is a	 ∈A such that|{G ∈ G: G∩X	 �= ∅}| = λ,
hence by Lemma 2.3 we haveλ ∈ Cal(X	) which implies that alsoλ ∈ Cal(X). ✷

A natural question that we could not answer is if a similar result could be prove
uncountable setsA of regular (uncountable) cardinals. Finally, our methods leave ope
following very natural and interesting question formulated below.

Problem 2.5. Is it provable in ZFC that a LindelöfT3 spaceX of countable tightnes
satisfying Šanin’s condition Cal(X) = R is separable?
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