On countable theories with models - homogeneous models only

1. Theorem: Suppose every model of T of power λ is model homogeneous and $\lambda > |T|$ and T is countable. Then $\lambda \geq \lambda(T)$ (= the first cardinality in which T is stable), T is superstable, unidimensional and every model of T of power $\mu > \lambda(T)$ is model homogeneous.

Proof: We known that (see [Sh 2]):

(*) if M_1, M_2 are models homogeneous model of T of power λ and $\{N/\approx: N \prec M_1, ||N|| = |T|\} = \{N/\approx: N \prec M_2, ||N|| = |T|\}$ then $M_1 \approx M_2$.

By [Sh 1], Ch. VIII, 4.2. if T is not superstable T has non-isomorphic models of power λ which contradict (*).

Suppose T is stable but not unidimensional. By V. 2.10 T has an $\mathbf{F}_{|T|}^{a}$ -saturated model M of cardinality $> (2^{\lambda})^{+}$, with a maximal indiscernible set $\mathbf{I} \subseteq M$ of power $\kappa_{\tau}(T)$. Let $\overline{c} \in \mathbf{I}$ (so $\overline{c} \in M$), $\mathbf{I}_{1} \stackrel{\text{def}}{=} \mathbf{I} - \{\overline{c}\}$ and let $N \prec M$ be $\mathbf{F}_{|T|}^{a}$ -primary over $\bigcup \mathbf{I}_{1}$. By [Sh 1] IV 4.18 N_{1} is isomorphic to N by an isomorphism f mapping \mathbf{I}_{1} onto \mathbf{I}_{1} , and clearly M omit $Av(\mathbf{I}_{1}, \bigcup \mathbf{I}_{1})$. So clearly we cannot extend f to an elementary mapping f^{*} from N into M (as then $f^{*}(\overline{c})$ realizes $Av(\mathbf{I}_{1}, \bigcup \mathbf{I}_{1})$. So if $\lambda > ||N||$ we can finish (see below). Let N^{*} be such that $N^{*} \prec M$, $||N^{*}|| = |T|$ and:

$$(N^*, N_1 \cap N^*, f!(N^* \cap N_1), I \cap N^*, \overline{c}) \prec (M, N_1, f, I, \overline{c})$$

and $\mathbf{I} \subseteq N^{\bullet}$ (possible as $|\mathbf{I}| = \kappa_{r}(T) = \aleph_{0} = |T|$). Again $f \upharpoonright (N^{\bullet} \cap N_{1})$ cannot be extended to an elementary mapping f^{\bullet} from $N^{\bullet} \cap N_{1}$ into M (as then $f^{\bullet}(\overline{c})$ realizes $Av(\mathbf{I}, \bigcup \mathbf{I})$). So M is not $|T|^{+}$ -model homogeneous and $||M|| \geq \lambda$, so we can find $M^{+}, N^{\bullet} \prec M^{+} \prec M$, $||M^{+}|| = \lambda$ and M^{+} contradicts a hypothesis. So T is unidimensional.

The proof that $\lambda > \lambda(T)$ is similar $(M \text{ will be } \mathbf{F}^{\alpha}_{\kappa_{\tau}(T)}\text{-prime over } \mathbf{1}, |\mathbf{I}| = \kappa_{\tau}(T)$, so $||M|| = \lambda(T)$, I maximal in M).

If T has the otop, we get contradiction as in the case of unsuperstable T. T cannot have the dop as it is unidimensional.

Now note:

2. Lemma: If T is superstable unidimensional (or even just with no $M, \varphi, \overline{\alpha}$ such that $\aleph_0 \leq |\varphi(M, \overline{\alpha})| < ||M||$) and with the $(<\infty, \lambda>)$ -existence property, then (see [Sh 1] Ch. XI §2), ($F_{\aleph_0}^t, C_t$) satisfies Ax. A4-6, B1-6, C1⁺, C2, C3⁺, D2⁻¹, E1¹, E2⁺ λ ($F_{\aleph_0}^t, C_t$) $\leq |T|$.

Proof: Suppose M is not model homogeneous, $||M|| > \lambda(T)$ and we shall get a contradiction thus finishing. Clearly M is not saturated, hence by $[Sh\ 1]$ IX 1.8 T is not \aleph_0 stable, $[\text{condition}\ (3)$ fail hence (6) with λ,μ there standing for λ , |T| here, now M is easily not μ^+ -model homogeneous.] So $\lambda(T) = 2^{\aleph_0}$. As M is not model homogeneous there are $\mu < ||M||$, $M_0 < M_1 < M$, $M^0 < M$ f an isomorphism from M_0 onto M^0 which cannot be extended to an elementary embedding of M_1 into M and $||M_1|| \le \mu$. By $[Sh\ 1]\ 2.6(2)$, and Lemma 2, M_0 has an (F_{\aleph_0}, ζ) -decomposition $\langle N_\eta : \eta \in \{<>, <i>: i < \alpha_0\} \rangle$, N_η countable, and it can be extended to an (F_{\aleph_0}, ζ) -decomposition $\langle N_\eta : \eta \in \{<>, <i>: i < \alpha_1\} \rangle$ of M_1 , $||N_\eta|| = \aleph_0$. Clearly $\langle N_\eta^+ : \eta \in \{<>, <i>: i < \alpha^0\} \rangle$ is an (F_{\aleph_0}, ζ) -decomposition of M^0 when $N_\eta^+ = f(N_\eta^+)$ and it can be extended to an (F_{\aleph_0}, ζ) -decomposition of $M: \langle N_\eta^+ : \eta \in \{<>, <i>: i < \beta \rangle \}$, $||N_\eta^+|| = \aleph_0$.

We can define by induction on $\alpha,\alpha_0 \leq \alpha < \alpha_1$ a model $M_{0,\alpha}: M_{0,0} = M_0$, $M_{0,\alpha+1}$ is prime over $M_{0,\alpha} \cup N_{<\alpha>}$ (it exists as T has the $(<\infty,2)$ -existence property), and for limit δ , $M_{0,\delta} = \bigcup_{\alpha_0 \leq \alpha < \delta} M_{0,\alpha}$. We then can try to define by induction on $\alpha,\alpha_0 \leq \alpha < \alpha_1$, an elementary embedding f_{α} of $M_{0,\alpha}$ into M, f_{α} extending f and f_{β} when $\alpha_0 \leq \beta < \alpha$. If f_{α_1} , is defined this

contradicts the choice of M_0, M_1, M^0, f . So for some α , f_{α} is defined but $f_{\alpha+1}$ is not, and (by renaming) W.l.o.g. $\alpha = \alpha_0$, $\alpha_1 = \alpha_0 + 1$. By the $(<\infty,2)$ -existence property there is no N^1 realizing $f(tp_{\bullet}(N_{<\alpha_0>},N_{<>}))$, which is independent over $(M^0, f(N_{<>}))$.

Choose $N \prec M$, ||N|| = |T|, $|N_{<>}| \cup |N_{<>}| \cup |N_{<\alpha_0>}| \subset N$, f maps $N \cap M_0$ onto $N \cap M^1$, $tp_*(N,M_0)$ does not fork over $N \cap M_0$, $tp_*(N,M^0)$ does not fork over $M^0 \cap N$, $N \cap M_0 \prec M_0$. As $||M|| > 2^{\aleph_0} + \mu$ w.l.o.g. $tp(N_{\alpha_0+i}^+, N_{<>}^+)$ is constant for $i \prec \mu^+$ and $\{N_{\alpha_0+i}^+: i \prec \mu^+\}$ is independent over $(M_1 \cup M^0 \cup N, N_{<>}^+)$.

If $\lambda \leq \mu^+$ let M_{λ} be prime over $N \cup \bigcup_{i < \lambda} N_{\alpha_0 + i}^+$ (exists by the $(< \infty, 2)$ -existence property). So w.l.o.g. $M_{\lambda} \prec M$, and we shall show that M_{λ} is not $|T|^+$ -model homogeneous, thus getting a contradiction hence every model of T of power $> \lambda(T)$ is model homogeneous thus finishing the proof. The non $|T|^+$ -model homogeneity of M_{λ} is exemplified by $M_0 \cap N, M_1 \cap N$, and $f \upharpoonright (M_0 \cap N)$. For this it suffices to prove that $f(tp_{\bullet}(N_{<\alpha_0>}, M_0 \cap N))$ is not realized in M_{λ} , so suppose N^+ realizes it, $N^+ \prec M_{\lambda}$. So $N^+ \prec M$. Easily $tp_{\bullet}(N^+, M_1 \cup M^0 \cup N)$ does not fork over N, (as M_{λ} is atomic over $N \cup \bigcup_{i < \lambda} N_{\alpha_0 + i}^+$) and we have chosen N such that $tp_{\bullet}(N, M^0)$ does not fork over $M^0 \cap N$ so by III 0.1, $tp_{\bullet}(N^+ \cup N, M^0)$ does not fork over $M^0 \cap N$, so $tp_{\bullet}(N^+, M^0)$ does not fork over $M^0 \cap N$. So N^+ realizes over M^0 the stationarization of $f(tp_{\bullet}(N_{<\alpha_0>}, N \cap M_0))$ so we can show that it realizes $f(tp_{\bullet}(N_{<\alpha_0>}, M_0))$, contradiction.

If $\lambda \geq \mu^+$ we can "lengthen" $\{N_{\alpha_0+1}^+: i < \mu^+\}$ and the proof is similar.

References

[Sh1]

S. Shelah, Classification Theory, completed for countable. North Holland Publ. Co.

[Sh2]

-----, Classification of non elementary classes II, Abstract Elementary classes, here.