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ABSTRACT

Let X be an Hausdorff space. We say that X is a CO space, if X is
compact and every closed subspace of X is homeomorphic to a clopen
subspace of X, and X is a hereditarily CO space (HCO space), if
every closed subspace is a CO space. It is well-known that every well-
ordered chain with a last element, endowed with the interval topology,
is an HCO space, and every HCO space is scattered. In this paper, we
show the following theorems:

THEOREM (R. Bonnet):

(a) Every HCO space which is a continuous image of a compact totally
disconnected interval space is homeomorphic to §+1 for some ordinal 8.
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(b) Every HCO space of countable Cantor-Bendixson rank is homeomor-
phic to o+ 1 for some countable ordinal a.

THEOREM (S. Shelah): Assume Ox,. Then there is a HCO compact
space X of Cantor-Bendixson rank wy and of cardinality R, such that:

(1) X has only countably many isolated points,
(2) Every closed subset of X is countable or co-countable,

(3) Every countable closed subspace of X is homeomorphic to a clopen
subspace, and every uncountable closed subspace of X is homeomorphic
to X, and

(4) X is retractive.

In particular X is a thin-tall compact space of countable spread, and is
not a continuous image of a compact totally disconnected interval space.
The question whether it is consistent with ZFC, that every HCO space
is homeomorphic to an ordinal, is open.

1. Survey of the results

DEFINITION 1.1: (a) A Boolean algebra is regarded as an algebraic structure of
the form (B, +,+,—,0,1) (B may be just {0}). +, -, — denote respectively the
join, meet and complementation in B. 08, 18 are used when a reference to B is
needed, < or <P denotes the partial orderingon B (a < bifa-b=a),and A is
the symmetric difference in B, that is, aAb = (a — b} + (b — a).

(b) If I is an ideal in a Boolean algebra B, and a € B, then a/I e be
B: bAa € I}. If E is a subset of B, then E/I o {a/I: a € E}. Hence
B/I = {a/I: a € B} denotes the quotient algebra, and for an ideal J 2 I of B,
J/I is an ideal of B/I.

(c) a € Bis an atom of B if a # 0 and for every b € B such that 0 < b < a,
b =0 or b = a. We denote by At(B) the set of atoms of B. B is atomic if for
every non-zero b € B, there is a € At(B) such that a <b.

(d) A Boolean algebra B is said to be superatomic if every homomorphic
image of B is atomic.

(e) If a € B, then B | a denotes the Boolean algebra induced by B on {b €

B:b<a}. So1Bls 4y and —zBle &gz
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(f) For a subset D of B, we denote by:
¢ clg(D) the subalgebra of B generated by D. For instance, if J is an ideal
of B, then clp(J) = J U —J where —J ' {—b: b € J}.
o cli4(D) the ideal of B generated by D.

If B is understood from the context, we omit its mention.

(g) If E is a set, then p(E), the power set of E, is regarded as a Boolean
algebra, where + and - are U and N respectively. FC(E) denotes the subalgebra
of p(E) of finite or cofinite subsets of E.

(h) Let (C, <) be a partial ordered set. We say that (C, <) is a chain if every
pair of members of C are comparable, and (C, <) is well-ordered if (C,<) is a
chain with no strictly decreasing sequence. Hence (C, <) is order-isomorphic to
an ordinal.

(i) Let (C,<) be a chain with a first element denoted by 0° (if (C,<) has
no first element, then we must add one). Let C* “cou {00} be the chain,
obtained by adding a greatest element co®. We denote by B(C) the subalgebra
of p(C) generated by the set of [a,b) fora € C and b € Ct, i.e. clyc)({[a,b): a €
C and b € C*}). B(C) is called the interval algebra of C (see Koppelberg
[12]).

B is an ordinal algebra if B is isomorphic to B(C), where C is a well-ordered
chain.

(j) A subalgebra A of B is called a retract of J, or of B/J, if for every b € B,
|[AN(b/J)] = 1. An ideal J is retractive, if there is a retract of J. We say that
B is retractive if every ideal of B is retractive.

(k) For a Boolean algebra B, let Ult(B) denote the Boolean space of B, i.e.
the space of ultrafilters of B.

Let us recall classical results:

PROPOSITION 1.2: Let J be an ideal of a Boolean algebra B, A a subalgebra
of B, and n; the canonical homomorphism from B onto B/J. The following
properties are equivalent:
(i) A is a retract of J
(ii) ms | A is an isomorphism from A onto B/J.
(i) AnJ = {0p} and clg(AUJ) = B.

Day [9] (see also [12], Vol. 1, pp. 233, and [18]) has given different equivalence

conditions for a Boolean algebra to be superatomic:
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PRroPOSITION 1.3: (Day [1977]) Let B be a Boolean algebra. The following are
equivalent:
(i) B is superatomic.
(i) Every subalgebra of B is atomic.
(i) There is no embedding from the atomless countable algebra into B.

DEFINITION 1.4: (a) Let B be a Boolean algebra. We define, by induction on «,
a sequence (I,(B), Do(B)), with the conditions D,(B) B /Ia(B) (the algebra
D,(B) is called the a-th Cantor Bendixson derivative of B). Let Iy(B) =
{0}, and thus Do(B) = B. Li(B) &f 14(At(B)). Suppose that § is a limit, and
Io(B) has been defined for every a < §, then Is(B) = |, 5 Ia(B)- Suppose that
I(B) has been defined. Then I,41(B) & {b € B: b/I.(B) € I,(Da(B))}.

(b) A topological space X is scattered if every non-empty subset of X has
an isolated point in its subspace topology.

Trivially, (Ia(B))aco:d is an increasing sequence of ideals of B (Ord denotes
the class of ordinals). The following additional equivalences are well-known and
their proof are straightforward (see [12}).

PROPOSITION 1.5: Let B be a Boolean algebra. The following conditions are
equivalent:

(i) B is superatomic.

(ii) There is an ordinal 4 such that 1 € I,(B).
(i) The Boolean space Ult(B) of B is a scattered space.

Clearly the first ordinal « for which 12 € I,(B) is a successor ordinal, say a+1,
then a is denoted by rk(B). So 12 € Ly(py+1(B) — Lix(s)(B) and Dyy(5)(B) is a
non-trivial finite algebra isomorphic to p(n) (n > 0 integer). Let I(B) and D(B)
denote Iiy(py(B) and B/I(B) respectively. If n = 1, then I(B) is a maximal
ideal of B.

Let o be a countable ordinal and p > 0 be an integer. If B' and B" are
countable Boolean algebras such that rk(B') = tk(B") = a and D(B'), D(B")
and p(p) are isomorphic, then B’ and B" are isomorphic algebras (see [12]: §17.2).
Hence we denote by B, , a representative Boolean algebra of this class.

DEFINITION 1.6: (a) Let X be a topological space. X is a CO space if every
closed subspace of X is homeomorphic to a clopen subspace of X. X is an HCO

space if every closed subspace of X is a CO space.
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(b) A Boolean algebra B is a CO algebra (HCO algebra) if the Boolean
space Ult(B) of B is a CO space (HCO space).

(¢) B is a thin-tall Boolean algebra, if B is uncountable and for every a <
tk(B), |AY(Da(B))] = No.

PROPOSITION 1.7:

(a) Let B be a Boolean algebra.

(1) B isa CO Boolean algebra, if and only if every quotient is isomophic
to a factor, i.e. for every ideal I of B, there is an algebra A such that
B is isomorphic to (B/I) x A.

(2) B is an HCO algebra if and only if every ideal J of B, B/J is a CO
algebra.

(b)

(1) Every homomorphic image of a HCO algebra is a HCO algebra.

(2) Every finite product of CO algebras is a CO algebra.

(3) Let B be a finite product of Boolean algebras (B;)i<n. B is a HCO
algebra if and only if each B; is a HCO algebra.

(c) Let B be a countable superatomic algebra. Let f = rk(B) < w;, and
p = |Dg(B)|. Then B is isomorphic to Bg , and to the ordinal algebra
B(w? - p).

(d) Every ordinal algebra is a HCO algebra. In particular every finite Boolean
algebra is a HCO algebra and every countable superatomic interval algebra
is a HCO algebra.

(e) FC(X) is a CO algebra if and only if X is countable.

(f) If B is an infinite Boolean CO algebra, then B has infinitely many atoms.

(g) Every atomic CO algebra is superatomic.

(h) Every HCO algebra is superatomic.

Proof: (a), () and (g) are obvious.

(b1) is a trivial consequence of the definition of a HCO algebra.

(b2) is a consequence of the fact that every ideal of B x B; has the form I x I;
where I; is an ideal of By for £ =0, 1.

(b3) First suppose that for every ¢ < n, B; is HCO. Using (bl) and the ar-
guments of (b2), B is HCO. Conversely, if B is HCO, then B; is HCO (i < n)
follows from (b1) and the fact that B; is a homomorphic image of B.

(c): see [12] (section 17.2).
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(d) Let B = B(C) be an interval algebra generated by a well-ordered chain.
Let I be an ideal of B. Then B/I is generated by C/I (= {¢/I: c€ C})and C/I
is a well-ordered chain too. So it sufficies to show that B is a CO algebra. Let
J be an ideal of B. Then C//J is a well-ordered chain and ¢ — ¢/J is increasing.
Therefore C/J is order-isomorphic to a (unique) initial interval L of C (we recall
that S C C is an initial interval of C if ¢ < s € S, implies ¢ € S). From the facts
that:

(i) B/J is isomorphic to the interval algebra B(C/J).

(ii) B(C/J) is isomorphic to B(L).

(ii1) B(L) is isomorphic to a factor of B(C): this follows from the fact that the
result is trivial if L = C. If C — L # 0, then C — L has a first element, and
thus B(C) is isomorphic to B(L) x B(C — L) (see [12], Theorem 15.11; or
Lemma 2.3 below).

it follows that B/J is isomorphic to a factor of B. Now, the other parts of (d)
are clear (by (c)).

(f) For every integer n > 1, let J be an ideal of B such that B/J is finite with
n atoms; B is isomorphic to (B/J) x A for some Boolean algebra A, and thus B
has at least n atoms.

(h) Let A be a quotient algebra of B, and 0 # a € A. Because A [ a can be
regarded as a quotient of B, A [ a is a CO algebra, A [ a contains an atom and
thus A is atomic. |

Bekkali, Bonnet and Rubin ([4] and [5]) have shown that if B is a CO interval
algebra, then B is superatomic, and if B is an interval HCO algebra, then B is
isomorphic to B(a) for some ordinal a. Note also that S. Mazurkiewicz and W.
Sierpinski [14] have shown that countable Boolean algebras are HCO if and only
if they are countable ordinal algebras. We will show:

THEOREM 1.8;

(a) Let B be an HCO algebra (and hence by Proposition 1.7(g), superatomic).
If the rank of B is countable, then B is isomorphic to a countable ordinal
algebra,

(b) Let B be a subalgebra of an interval algebra. If B is an HCO algebra, then
B is isomorphic to an ordinal algebra.

So, we prove that a HCO algebra which satisfies some additional conditions
must be isomorphic to an ordinal algebra. In Theorem 1.9, we will see that
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it is consistent that there are HCO algebras which are not isomorphic to or-
dinal algebras. Indeed the counterexample that we construct is thin-tall. The
counterexample of Theorem 1.9 is also retractive. So we obtain a superatomic
retractive Boolean algebra with no uncountable subalgebra embeddable in an
interval algebra. The fact that a thin-tall algebra does not contain an uncount-
able subalgebra embeddable in an interval algebra, is an easy consequence of the
following result due to Rubin and Shelah which appear in Avraham and Bonnet
(11)):

If B is an infinite superatomic algebra, embeddable in an interval algebra, then
|B| = |At(B)|

THEOREM 1.9: Assume {p,. There is a Boolean algebra B such that:

(A1) B a thin-tall algebra, rk(B) = w; and D, (B) = {0,1}.

(A2) B is a HCO algebra.

(A3) B is retractive, and for every uncountable ideal I of B, B/I is countable.

(A4) Every countable homomorphic image of B is isomorphic to a factor, and is
isomophic to By, for some integer p > 0 and some countable ordinal a.

(A5) Every uncountable homomorphic image of B is isomorphic to B.

J. Roitman ([19]) has constructed, under CH, a Boolean algebra satisfying the
properties (A1), (A2), (A4) and (A5) of Theorem 1.9. (Note that (A4) and (A5)
imply (A2): see the proof of Lemma 3.9.)

Comment: Let B be a Boolean algebra satisfying properties (A1)-(A5) above.
Then every quotient of B has only countably many atoms. Recall that the
spread of B is countable if every quotient of B has only countably many atoms,
or equivalently, the Boolean space of B has no uncountable discrete subset. We
claim that the spread of B is countable. For a contradiction, suppose that the
spread of B is uncountable. This means that there is an ideal J of B such
that B/J has uncountably many atoms. From (A5) and (Al), it follows that
At(B) and thus At(B/J) is countable. Contradiction. In fact, the Boolean
space Ult(B) of B is an Ostaszewski’s space: in particular it is an uncountable
scattered compact space such that every open set is countable or co-countable
and every closed subset is the closure of a countable set (see Ostaszewski [16],
[17], and Rudin [21]: pp. 35-36). Theorem 1.9(A5) is related to the existence
of a Toronto space (see [22]: a Toronto space is an uncountable Hausdorff space
which is homeomorphic to each of its uncountable subspace).



Sh:359

296 R. BONNET AND S. SHELAH Isr. J. Math.

G. Gruenhage has point out that it is an easy consequence of a work of Balogh,
Dow, Fremlin and Nyikos [2] that, under PFA, every HCO algebra of cardinality
R; is isomorphic to B(w;). The following problems are open.

QUESTION 1.10: (a) In ZFC, is it consistent that every HCO algebra of cardi-
nality > R, is an ordinal algebra?
(b) Is a CO algebra superatomic? |

To complete this introduction, let us state some recent results related to this
subject:
The first is due to M. Weese ([23]):

PROPOSITION 1.11:
(a) Let B be a Boolean algebra of cardinality ¥, such that every uncountable
homomorphic image is isomorphic to B. Then B is superatomic.
(b) Let B be Boolean algebra of cardinality Ry such that every uncountable
subalgebra is isomorphic to B. Then B is superatomic. Moreover if 2% <
2™ and B is not isomorphic to FC(w; ), then B is thin-tall.

The second result, due to R. Bonnet and M. Rubin ([7]), concerns Boolean
algebras B for which each uncountable subalgebra is isomorphic to B:

THEOREM 1.12: Assume {y,. Then there is a thin-tall Boolean algebra B such
that every uncountable subalgebra is isomorphic to B.

2. Proof of Theorem 1.8

Let us begin to introduce a definition and a result which are needed in the proof
of Theorems 1.8 and 1.9.

DEFINITION 2.1: (a) Let B be a superatomic Boolean algebra, and b € B,
b# 0. Let v be the first ordinal & such that b € I(B). Clearly, v is a successor
ordinal, say 8 + 1, and we set tkB(b) = g;so b€ Lys (3)41(B) ~ ke (3)(B). For
instance rk®(b) = 0 for b € At(B), and rk?(1) = rk(B).

(b) Let J be an ideal of a Boolean algebra B. We denote by J¢ the ideal of
those b € B such that b-a = 0 for every a € J.

(¢) (1) Let C} and C; be two chains with first elements. We denote by C; +C>
the chain, lexicographic sum of C; and C; (by definition, z <y in C, + C; if z,y
are in the same C; and z < y in C; or, z € C; and y € C3).
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(2) Let (Ca)a<p be a family of chains indexed by an ordinal p. Then the
lexicographic sum C of (Cq )a<p, defined similarly to (cl), is a chain. We suppose
that each C, has a first element. Then the interval algebra B(C,) is canonically
isomorphic to a factor of B(C).

LEMMA 2.2:
(a) Let B be a Boolean algebra and b € B, b # 0. Then for every ordinal a:
(1) L(B [ §) = L.(B) (B | b
(2) Da(B) — (Da(B 1)) X (Da(B [ b)) defined by
a/Io(B) — (a-b/Ia(B [ b),a- —b/I1(B | —b))
(for a € B) is an isomorphism onto.
(3) If B is superatomic, then rkB(b) = rk(B | b) = rk(clp(B [ b)).
(b) Let A and B be superatomic Boolean algebras, and f be a homomorphism
from B onto A. Then for every ordinal a:
(1) flI«(B)] € La(4).
(2) f induces a homomorphism f, from Do(B) onto Do(A) defined by

fa(b/1a(B)) = f(b)/1a(A) (for b€ B).

(3) rk(A) < 1k(B).
(4) Let A be a subalgebra of B, and a,b € B such that a < b. Then
k(A [ @) < k(4 [ b) < rk(A4) = rkA(1).
(c) Let A and B be superatomic Boolean algebras, and f be a one-to-one
homomorphism from A into B. Then for every ordinal a:
(1) FL(B)] C Lu(4).
(2) rk(4) < 1k(B).
(d) For every ideal J of an algebra B, cI'3(J U J¢) is a dense ideal of B.
(e) Let B be an atomic Boolean algebra, J an ideal of B and w be the canonical
homomorphism from B onto B/J°.
(1) If J is principal, say generated by a, then B/J is isomorphic to B | —a,
B/J¢ is isomorphic to B | a, and both are atomic.
(2) If J is non-principal, then:
o clp(J) and B/J® are atomic,
o At(clp(J)) = At(B)NJ,
o = | At(clg(J)) is a one-to-one function from At(clg(J)) onto the
set At(B/J°), '
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o = [clp(J) is an isomorphism into B/J¢, and
e cp(J)nJe={0}.

Proof: (a) Simultaneously, we will prove by induction: (al) and (a2) and
()ai {a€BIba/l(B15)€A(Da(B 1)} =
{a € B | b:a/I(B) € At(Dq(B))}

We prove the three conditions simultaneously by induction on a; except that
(%)a and (a2), are consequences of (al)a. We prove the last fact first. For
(a2)q, define for any a € B, h(a) = {(a-b/Ia(B | b),a- —b/I(B | -b)).
Thus k is a homomorphism from B onto Do(B [ b) X Do(B | —b), with kernel
{a€B:a-be I, (B |banda-—b e I,(B [ —b)}, which is by (al)a {a €
B:a-b € I,(B)and a- ~b € I,(B)} = I.(B). The existence of the indicated
isomorphism is hence clear. For (%),, suppose that ¢ € B [ b is such that
c/I(B | b) € At((B | b)/Is(B | b)), and hence by (a2),, ¢/Is(B) € At(Dq(B)),
as desired; the other inclusion in (%), is proved similarly.

Now, we turn to the inductive step. The case a = 0 is obvious. Suppose
the conditions for a. Suppose that ¢ € Io41(B [ b). There is a finite subset
{di: i < n} of B | b such that di/I,(B [ b) € At(Do(B [ b)) (: < n) and
¢/Io(B [ b) = Y {di/I(B | b): i < n}. It follows that cA(} {di: i < n}) €
I(B [ b) C I4(B) by (al)a. By (¥)a, di/Is(B) € At(Do(B)), for i < n, and
thus ¢ € In41(B) N (B | b). Conversely, suppose that ¢ € Io41(B) N (B [ b).
Then we write ¢/Io(B) = Y_{di/I.(B): i < n} with d;/I.(B) € At(Da(B)).
Now, ¢ < b, so d;/I(B) < ¢/I,(B) < b/I,(B). Hence we may assume that
d; < b for i < n, and the argument goes as above (but backwards). The limit
step of the induction is obvious.

(a3) follows directly from (al), the definitions of rk?() and of rk(B | b), and
from the fact that clg(B [ b) = (B | b)U—(B | b) is isomorphic to (B | b) x {0,1}
if b#0,1.

(b1) is proved by induction. The cases a = 0 and « limit are trivial. Now,
suppose that f{I,(B)] € Ia(A) and f induces an homomorphism f, from Do(B)
onto Dy (A) defined by fo(b/Io(B)) = f(b)/I(A) (for b € B). Let a € f[Ia41(B)
— I(B)]. So a = Y, f(bi), where the b;/Io(B)’s are atoms of Do(B). It
suffices to show that f(b;) € I,+1(4) for all i < n. Let ¢ < n. Let (af,a}) be
a partition of f(b;). Hence there are bf € B such that f(b¢) = af for £ =0,1.
There is no loss in assuming that (b2, b}) is a partition of b;. Because b;/Is(B) is

[ i §

an atom, b/I,(B) = 0 for some £, say £'. Hence, af /I,(A) = 0 by the induction
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hypothesis. So a € Ia41(A).

(b2) follows from (b1). (b3) follows from (bl) and (b2). For (b4), we recall
that A [ a is a homomorphic image of A.

(c1) is proved by induction on a. The cases @ = 0 and a limit are trivial.
Now, for a contradiction, suppose that a € f~}[la41(B)] — Io4+1(4). Write
a =), @i, where the a;’s are pairwise disjoint elements of 4 and f(a;)/I.(B) €
At(Dqo(B)). Because a ¢ I,41(A), there exists disjoint elements co,...cn € A
such that @ = Y, ¢i and ¢;/Ia(A) # 0 in Da(A) for all j < n. Now f(a;) =
Li<n f(a,-)-f(c_,-),_so there is an (i) < n such that f(a;)- f(cy(i)) € Io(B) and
f(ai) - f(ej) € In(B) for all j # ¢(i). Choose £ € (n + 1) — rng(y). Then:

flee) = Z;«. fce) - f(ai) € Ia(B).
Hence c¢ € I,(A) by the induction hypothesis, contradiction.

(c2) is consequence of (c1).

(d) is trivial.

(e) The facts about principal ideals are trivial. So, assume that J is non-
principal. Clearly, At(clg(J)) 2 At(B) N J. Suppose that a € At(clp(J)). If
—a € J, choose z € J with —a < z; then 0 < —z < q, contradiction. So a € J,
and it is an atom of B. This proves that At(clp(J)) = At(B) N J. To show that
clp(J) is atomic, suppose that 0 # & € clg(J). If b € J, it is easy to get an atom
contained in 5. Suppose that —b € J. Choose —b < y € J, and let z be an atom
contained in y - b ; clearly z is as desired.

It is clear that = [ At(clp(J)), is one-to-one; and it is easily checked that it
maps into At(B/J¢). Now, suppose that b/J¢ is an atom of B/J¢. Thus b ¢ J¢,
so there is an z € J such that b-z # 0. Let a be an atom of B such that a < b-z.
Then clearly a/J¢ = b/J¢. This shows that n [ At(clp(J)) maps onto At(B/J¢).

The other statements of the claim are now clear. [ |
Now, we are ready to prove Part (a) of 1.8.

2.1 PROOF OF THEOREM 1.8(a). It suffices to prove, by induction on the rank
of B, that B is countable (see for example Henkin, Monk and Tarski [10].) First,
if tk(B) = 0, i.e. B is finite, then the result is trivial. Now, let a < w;. We
suppose that every HCO algebra A of rank < « is countable. Let B be a HCO
algebra of rank a. By Proposition 1.7(b3) there is no loss in assuming that
D4(B) = {0,1}. For a contradiction, assume that B is uncountable.

We claim that B has uncountably many atoms. Because B is uncountable, and
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rk(B) < wi, there is a < rk(B) such that D,(B) has uncountably many atoms.
Now our claim follows from the CO property.

We say that a € B is a generalized atom of B if there is § such that a/I3(B) €
At(Dg(B)). We will construct a sequence (@, )n<w of pairwise disjoint generalized
atoms of B such that sup{rk®(a,)+1: n < w} = a. First suppose that & = f+1.
From D,(B) = {0, 1}, it follows that the algebra Dg(B) is isomorphic to FC(X)
for some infinite set X. Hence, by induction, we can choose a set {an: n <w} C B
of pairwise disjoint generalized atoms of Dg(B). Suppose a islimit. By induction,
we construct a set {an: n < w} of pairwise disjoint elements of B such that
sup{rk®(a;) 4+ 1: n < w} = @ and each a, is a generalized atom of Dyy5(a,)(B)-
The set {an: n < w} is as required.

Let J = cdS(U{B | an: n < w}). Obviously J is a non-principal ideal of
B. Clearly clp(J) has rank a. By Lemma 2.2(e2), (c) and (b), rk(clp(J)) <
tk(B/J¢) < 1k(B) = a, and hence tk(B/J¢) = a. Because B [ a, is of rank
tk®(a,) < a, it is countable; hence so is clp(J), and so by Lemma 2.2(e2)
again, B/J° has only countably many atoms. Now B/J¢ is isomorphic to a
factor of B; say that B is isomorphic to (B/J¢) x C. Since B/J* has rank a
and D,(B) = {0,1} it follows that C has rank < a and hence C is countable.
Now, because B/J¢ and C have only countably many atoms, the same holds for
(B/J®) x C, and thus for B, contradiction. |

2.2 PrROOF OF THEOREM 1.8(b). Let us begin by a simple fact on interval
Boolean algebra:

LEMMA 2.3:

(a) Let Cy and C; be two chains with first elements. Then B(C; + C2) is
canonically isomorphic to B(Cy) x B(C»).

(b) Let C be a chain with a first element and B be a Boolean algebra. Assume
that B is isomophic to B(C). Then there is a chain C' C B such that C
and C' are order-isomorphic, and B = clg(C").

(¢) Let C be a subchain of a Boolean algebra B. We suppose that 08 € C
(and so 0B = 0€). Then B(C) and clp(C) are isomorphic.

Proof: (a) More precisely, let us recall the following fact concerning chains
and Boolean algebras (see [12]: Proposition 15.11). Let Cy and C; be chains
with first element 0€* and 0 respectively. Let C = C; + C; be the chain,
lexicographic sum of C; and C; (50 ¢; < ¢; for ¢; € C} and ¢; € C3). Note that
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C has a first element, namely 0€!. A canonical isomorphism f from B(C) onto
B(Ch1) x B(C,) is obtained by letting: f(c) = (¢ N C1,c¢N C2). Let us remark
that we identified 0c0©! with 0. B(C,), B(C:) are factors of B(C); and by
identification, B(C) | C, = B(C}) and B(C) | C2 = B(C3).

(b) and (c) are obvious. |

Let B be an infinite Boolean algebra of rank a. We suppose that B is embed-
dable in an interval algebra, and B is a HCO algebra. By Proposition 1.7(b3),
we can suppose that Do(B) = {0,1} and, from Theorem 1.8(a), a > wy. We will
reduce the proof of Theorem 1.8(b) to:

LEMMA 2.4: Let B be a superatomic subalgebra of an interval algebra. We
suppose that B is an HCO algebra. We set a = rk(B) and we suppose Do(B) =
{o0,1}.

Then there are a chain C in B and an ideal I of B such that

(1) C is order-isomorphic to w?,

(2) B/I is isomorphic to B(w®),

(8) clp(C) is isomorphic to B(C), and

(4) clB(C) is a retract of B/I.

Assuming Lemma 2.4 for a moment, let us see why this finishes the proof
of Theorem 1.8(b). First note that, by an easy induction, rk(B(w®)) = « and
D, (B(w*)) = {0,1}. Now, from Lemma 2.4, there is a subchain C of B and an
ideal J of B such that: C is order-isomorphic to w?®; the interval algebra B(C)
is isomorphic to the subalgebra clp(C) of B; and the interval algebra B(C) is
isomorphic to B/J. Now, B is isomorphic to (B/J) x A for some algebra A.
From the facts that rk(B/J) = rk(B) = a, and the fact that Do(B) = {0,1},
it follows that rk(A) < a. Because A is an homomorphic image of B, A is a
HCO algebra of rank< a. By the induction hypothesis, A is isomorphic to B(C')
where C' is a well-founded chain. Hence, by Lemma 2.3(a), B is generated by a
well-ordered chain, namely C' + C. |

So it suffices to prove Lemma 2.4. Before continuing, let us give an exam-
ple of Boolean algebra, of rank w;, embeddable in an interval algebra, with no
uncountable chain (so, by Lemma 2.4, such an algebra is not a HCO algebra).
Consider B(w;). Let (aq)a<w, be the strictly increasing sequence in w; defined
by ag = 0; (@a,aa+1) is order-isomorphic to a + 1, for successor ordinal «; and
ax = sup{aq: a < A} for limit ordinals A < w;. Let B be the subalgebra of
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B(w1) consisting of b € B(w;) such that b or —b is disjoint from {as: o < w;},
i.e. either b or —b is contained in a finite union of (aq,a4+1). Then rk(B) = w
and every subchain in B is countable.

We begin by two facts concerning interval Boolean algebras.

LEMMA 2.5: Let D be a well-ordered subchain of a Boolean algebra B. We
denote by {cy: 8 < p} the canonical increasing enumeration of the elements of
DuU{0}, and let J def S (U{B I (co+1 — co): 8 < p}). We suppose that:

(1) (D) is a non-principal ideal of B.

(2) For 8 < p, B | (co+1 — ce) is isomorphic to an interval algebra, denoted by

B(Ce).

Then clp(D U J) is isomorphic to the interval algebra B(C) where C is the
lexicographic sum of (Cp)e<,.

Proof: For each 6 < p, let By By (co+1 — ¢p). By Lemma 2.3(b), we can
suppose that Cy C By C B. Let C be the lexicographic sum of (Cp)e<,. We
set Cp = {cg+b: b€ Cy} for < pand C = |J{Cy: 0 < p}. Then C and
C are trivially order-isomorphic. Hence we consider C as a subchain of B. We
claim that clg(D U J) and B(C) are isomorphic. To see this, let us remark
that, if we denote by ry the first element of Cy C C, then Cy = [rg,r9+1). Let
D* = {ry: 8 < p} and 9¥* be the isomorphism from B(D*) onto clg(D) defined
by ¢*(r¢) = co. Hence ¥*([re,ro+1)) = co4+1 — co. Let thg be an isomorphism
from B(C}) onto By. Now, let u < vin C. Let g £ v < p be such that « € C,,
and v € C,. Then

¥([u,)) & Yulle,v) N Cu) U (e — cutr) U ([, 0) N Cu)

extends ¥* U Uy, ¥, and is extendable in an isomorphism from B(C) onto
clp(D U J). [ |

Because FC(w) and B(w) are isomorphic algebras, the proof above, can be
applied to show:

LEMMA 2.6: Let {b,: n € w} be a set of pairwise disjoint non-zero element of a
Boolean algebra B. We suppose that B [ b, is isomorphic to an interval algebra,
denoted by B(Cy), for n € w. We set

J=c(J{B ba:n€w})
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Then clg(J) is isomorphic to the interval algebra B(C) where C is the lexico-
graphic sum of (Cp)n<w-

Let us introduce some notions and results concerning Boolean algebras and

partial ordered sets.

DEFINITION 2.7: Let B be a superatomic Boolean algebra.

Let o < tk(B). We set Ato(B) &' {a € B: a/I.(B) € At(Do(B))}, and
ﬁ(B) o Ua<ek(a) ﬁa(B). An element @ of ﬂ(B) is called a generalized
atom of B.

We say that H is a complete set of generalized atoms of B, whenever
H = J{Ha: « < 1k(B)}, where for every a < rk(B), Ho C Z\ta(B) and for every
g € At(B), there is a unique h € H such that rtkB(gAR) < tkB(h) = 1kB(y).
That means that for every a < rk(B), a — a/I4(B) is a one-to-one function
from Hqy onto At(Dg4(B)). Note that 0 ¢ H. Obviously, if H is a complete set of
generalized atoms of B and & < rk(B), then H, denotes {h € H: rk?(h) = a}.

The following result seems to be well-known (see for example Bekkali [3]).

LEMMA 2.8: Let B be a superatomic Boolean algebra.
(a) Let H =, <mp) Ha be a complete set of generalized atoms of B. Then
for every ordinal a,
1(B) = d%(Up<a Hs) € cln(Ug<q He) = Ia(B) U ~Lo(B).
(b) In particular B = clp(H).

Proof: (a) First let us remark that if g, Hg C Ia(B) C cla(Ug, Ha), then
clp(Upg<a Hs) = Ia(B)U~Ia(B). So it suffices to prove, by induction on a, that
I(B) = cl§(Upca Hp) € c18(Ug<a Hp)- For a =0, we have I(B) = {0} =
cd¥(0) € clp(9) = {0,1}. For a limit, we have
1(B) = Upca 15(B) = Upca (18 (U<s B) = 8 (Upca Hp),

and Ugcq 18(B) € Upca 18(Uy<g Hy) = clB(Ug<a Hp)- Let us consider the
successor case. Now, let a € Io41(B) — Ia(B). Because a/I,(B) is a finite sum
of atoms of Dy (B), there is a finite subset F' of H, such that & o Y {h: h€ F}
verifies a/Io(B) = &/I4(B), and thus aAd € I4(B). Hence there are unique
u,v € I4(B) such that a = (6+v) —u, u £ d and v-& = 0. By induction
hypothesis, u,v € clIg(Uﬂ<a Hyg) (contained in clp(| s, Hp)), and thusé+v €
clg(UﬂSQ Hp) (and @ +v € clp(Upc, Hp)). Hence a € clg(UﬁSa Hpg) and
a € clB(Ug<q Hp)- Now, suppose that a € clg(UﬂSa Hg). Thena < ) ;. ai+v
with v € clg(Uﬂ«, Hpg) and a; € Hy (i < n). By induction hypothesis, v €
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I.(B), and thus a/Io(B) < ¥, ., ai/Ia(B). Therefore a/I.(B) is a finite sum
of atoms of D4(B) and so a € Io4+1(B). Hence Iq41(B) = clg(UﬂSa Hp).
(b) is a direct consequence of (a). |

Let us introduce some characterization of superatomic subalgebra of an interval

algebra:

THEOREM 2.9: Let B be a Boolean algebra. The following conditions are
equivalent:
(i) B has a complete set G of generalized atoms such that every pair of which
are either comparable or disjoint.
(i) B is embeddable in an ordinal algebra.
(iii) B is embeddable in an interval algebra B(C) generated by a well founded
chain C such that At(B) = At(B(C)).
(iv) B is a superatomic Boolean algebra, embeddable in an interval algebra.

Proof: For (i)¢(ii), see Bonnet, Rubin and Si-Kaddour [8], and for (i)« (i)
(iv), see Avraham and Bonnet [1] (for a self-contained proof of 2.9, see also
Bonnet [6)). ]

DEFINITION 2.10: (a) Let (P,<) be a partial ordering, and X a subset of P.
We say that:

(1) X is cofinal in P if for every p € P, there is ¢ € X such that ¢ > p.

(2) X is an initial interval of P if p < ¢ and ¢ € X implies p € X, and

(3) X is an ideal of P if X is an initial interval of P such that for every
p,q € X, there is r € X such that r 2 p,q.

(4) Let p,g € X. ¢ is a successor of pin X if p < ¢ and (p,q) N D = §.
We also say that p and ¢ are consecutive. Moreover, if p has a unique
successor, it is denoted by p% or more simply p*.

(b) Let B and G be as in Theorem 2.9(i) (so, by 2.9(iv) B is superatomic).

We suppose 0 # 1. Whenever Dyy(p)(B) = {0,1}, let:
G-« {g € G: 1kP(g) < 1kB(1)}, and
Maxid(G™) be the set of maximal ideals of the partial ordering (G~,<B} G-).

LEMMA 2.11:
(a) Let B and G be as in Theorem 2.9(i) (so B is superatomic and, by Lemma
2.8, clg(G) = B). We consider (G, <[ G) as a partial ordering. We recall
that B # {0,1}.
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(1) G is a well-founded set, containing At(B). Moreover At(B) is the
set of minimal elements of G.

(2) G verifies: “For every element g of G, the set {¢' € G: ¢’ > g} is
totally ordered.”

In particular:

(3) If D is a subchain of G, and if d € D is not a maximal element of D,

then d has a unique successor dB in D.
(b) Let B and G be as in Theorem 2.9(i). We suppose that

D,(5)(B) = {0,1}.

Then:

(1) cI¥(G-) is a maximal ideal of B, and thus B = clg(G™).

(2) Let a be an atom of B. Because (a2) and At(B) C G~, there is a
unique maximal chain of G™, containing a, denoted by C,, and the
initial interval I, of G~ generated by C, is an element of Maxid(G ™).

(3) Conversely, let K be an element of Maxid(G™). Let a € K N At(B),
and C, be the maximal chain of G~ containing a. Then C; C K and
thus I, = K.

(4) Let K € Maxid(G~) and C, as in (b2). Then C, is cofinal in K and
if ' < ¢" in C,, then rkB(g') < rkB(g").

(5) Let go,91 € G~. Fori = 0,1, there is K; € Maxid(G™) such that
gi € Ki. If go- g1 # 0, then Ky = Ky. In particular for every g € G,
there is a unique K € Maxid(G™) such that g € K.

(6) The elements of Maxid(G ™) are pairwise disjoint.

Proof: (a) is obvious.

(b) Let B and G be as in Theorem 2.9(i). (bl) follows from Theorem 2.9(i).
(b2)—(b4) are trivial. For (b5), if a € At(B) € G~ is such that @ < go - g1, then
a € KyN K, and thus g9 and ¢, are comparable. Assume gg < ¢g;. Then ¢p € K;,
and so Ko = K;. (b6) is a direct consequence of (b5). ]

We recall (see Definition 2.1) that for an ideal J of a Boolean algebra B, we
denote by J¢ the ideal of those b € B such that b-a = 0 for every a € J.

LEMMA 2.12: Let B be a superatomic subalgebra of an interval algebra such
that Dyy(g)(B) = {0,1}, and G be a complete set of generalized atoms verifying
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the properties of Theorem 2.9(i). Let J be a non-principal ideal of B. We suppose
that:
(1) For every K € Maxid(G™), if the set K N J is non-empty, then either
K C J, or KN J has a greatest element denoted by by .
(2) J =cZ(U{K € Maxid(G™): K C J}U {bx: K € J and K N J # 0}).
Then B/J¢ has a retract, namely clg(J).

Proof: First G~ C clp(J U J®). Let g € G~. If g € JU J¢, there is nothing
to prove. Suppose that ¢ ¢ J U J°. Let K be the unique element of Maxid(G™)
such that ¢ € K. Because g ¢ J°, let a € J be such that g - a # 0. Note that
g-a € J. Let g € At(B) be such that a < g-a. So a € J. Because At(B) C G~
anda < g;a€ K. Henceg-a=a € KNJ. So, KNJ is non-empty and thus
has a greatest element bg. Because 0 # g-a < g, ¢g-a < bx and g,bx € G~;
g and by are comparable; and because by € J and g € J: by < g. Let us show
that g — bx € J°. For a contradiction, suppose ¢ — b & J¢. Let d € J be such
that d- (g — bx) # 0. Since J is an ideal, we can suppose that d € J N At(B),
and thus d < ¢ — bx. Because At(B) C G~,d < g € K and K € Maxid(G™):
d € JN K N At(B). A contradiction follows from the facts that: d € J N K,
d-bg = 0 and the fact that bx is the gratest element of J N K. Now, because
g-bx € Jand g—bg € J°, we have g =g - bk + (9 — bx) € clg(J U J®).

Now, B = clg(clp(J) U J¢) follows from the fact that G~ C ¢lp(J U J¢) and
Lemma 2.11(b1).

The fact that clg(J)N J¢ = {0} follows from Lemma 2.2(e2) and the fact that

J is non-principal. Now the lemma is a consequence of Proposition 1.2. |

DEFINITION 2.13: Let K € Maxid(G~). We recall that J = cl'3(K) is an ideal
of B, clg(J)=JU—J. We set tkP(K) < rk(clp(J)).

Now we will prove Lemma 2.4, by induction on rk(B).
2.2.1 Proof of Lemma 2.4: a rk(B) is a successor or cf(a) = w.

CASE 1: There is K € Maxid(G™) such that tk®(K) = rk(B). We choose such
a K. We set J = cli3(K).

CLAIM 1: J is a non-pricipal ideal and o is limit (and thus cf(a) = w).

Proof: For every g € K, we have rk2(g) < tkB(1) = rk(B). First J is non-

principal. For a contradiction, suppose that J is principal, generated by a member
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of J, say ¢'. Clearly ¢’ € K. Because rkB(g') < rk?(1), we have ¢' # 0,1, and
thus clg(J) and (B [ ¢') x {0,1} are isomorphic. Therefore,

rkB(K) % rk(clp(J)) = tk((B [ ¢') x {0,1}) =1k(B | ¢') = 1kB(¢") < k(B) ,

that is contradictory with rk?(X) = rk(B). Hence J is non-principal. Clearly o
is limit. |

By Lemma 2.11(b3) and (b4), let (¢n)n<w be a cofinal and strictly increasing
sequence of elements of K. We set by = gp and bp41 = gn41 — gn for 0 < n < w.
We have J = cl¥(K) = li({ba: n < w}) and tk(B | b,) = rkB(b,) < a for
n < w. By the induction hypothesis, there are well-ordered chains C,, such that
B [ b, is isomorphic to B(Cy) for n < w. Let C be the lexicographic sum of
(Cr)n<w. From Lemma 2.3(c), we consider C as a subchain of B. We will show
that the interval algebra B(C) is as required. Trivially, C is a well-ordered chain;
B(C) is of rank «; by Lemma 2.3(c) again, B(C) and clg(C) are isomorphic; and
clp(C) = clp(J) is a retract of B/J*, follows from Lemma 2.12. |

CASE 2: For every K € Maxid(G™), we have rk®(K) < rk(B). We claim that:

CLAIM 2: There are {b,: n € w} C G~ and {Kn: n € w} C Maxid(G™) such
that: form # n, b, € K., Kn # K, (and thus b, - b, = 0), and for every
B < a, there are infinitely many n < w such that g < rkB(b,.) <a.

Proof: First suppose that a = § + 1. Since G is a complete set of generalized
atoms, {g/Ig(B): ¢ € G~} generates Dg(B), and because Dg1(B) = {0,1},
it follows that Dg(B) is isomorphic to FC(X) for some infinite set X. Let
{bn: n € w} € G~ be such that b,/Ig(B) € At(Dg(B)). For n < w, let
K, € Maxid(G™) be such that b, € K,. Then {b,: n € w} C G~ and
{Ka: n € w} are as required. Now, suppose o limit. Let (an)n<w be a cofi-
nal and strictly increasing sequence in a. Let Ky € Maxid(G~) and by € Kp.
Suppose that {b;: 1 < n} and {K;: i < n} satisfy the conditions above. We
set B; = rkB(K,-). Let § = max{an,f0,...,0n-1}. Let byy; € G~ be such
that bp+1/Is4+2(B) € At(Ds42(B)) and let Kny1 € Maxid(G™) be such that
bnt1 € Kpt1. We claim that

(o) bus1 € Kny1 — Ki foralli<n+1

holds. First rkB(b,,+1) =§+2. Let i <n be given. Let J; = clg(Kg). Note that
Bi = tkB(K;) = tk(clp(J;)) < § + 1. Hence bn41 & Ki. So (e) is proved.
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Therefore K,4+1 # K; for ¢ < n+1. Now the other parts of the claim are clear.
|

Now, let J = cl!S({bn: n € w}). By the induction hypothesis, there are well-
ordered chains Cy, such that B [ b, is isomorphic to B(Cy) for n < w. Let C be
the lexicographic sum of (Cn)n<w. Then, we conclude as in Case 1. |

2.2.2 Proof of Lemma 2.4: a & rk(B) satisfies cf(a) > w. Let C be a chain,
and D be a well-ordered subset of C. Let {dg: 8 < p} be the canonical increasing
enumeration of elements of D. We say that D is closed in C if for every limit
ordinal ¢ < p, we have d, = sups({z € C: z < d,}). That means that C =

U{[ds, ds+1): 6 < p}.

LEMMA 2.14: Let B be a superatomic subalgebra of an interval algebra such
that Dyy(g)(B) = {0,1}, G be a complete set of generalized atoms of B verifying
the properties of Theorem 2.9(i). Let C be a chain of B. We suppose that C and
clg(C) satisfy:

(1) CN G~ is contained in a unique K € Maxid(G™). We set D ' onk,
that is a well-ordered chain; and we denote by {ds: 8 < p} the canonical
increasing enumeration of elements of D U {0}.

(2) The set D is a maximal subchain of K, with no greatest element (and thus
cofinal in K ), and D is closed in C.

(3) For8 < p, B | (ds41~ds)=cls(C) [ (deg1 — dp).

Let

7E B (dosr = do): 0 < p)) .
Then B/J¢ has a retract, namely clp(C).

Proof: Let us remark that D is closed in C means that clg(C) = clp(D U J)
since if dy < ¢ < dg41, then ¢ = dp + (dp41 — ¢), with dg € D and dp4y —c € J.
Because D C C, for every ¢ € C, there is a unique 6 < p such that dg < ¢ < dg41.
Also, note that dy = 0p, and by the hypotheses, dg4+1 — dg € cl(C) for 6 < p.
Let By < B [ (g1 — do).

First, we will prove that B = clp(clp(C) U J¢). It suffices to show that G~ C
clp(clg(C)U J®). For a contradiction, let ¢ € G~ be such that g ¢ clp(clp(C)U
J¢). In particular g € G- - C C (G~ -~ K)U (K - C).
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CASE 1: ¢ € G~ — K. Then, by Lemma 2.11(b6), for h € K, we have g-h = 0.
In particular g-dy = 0 for @ <-p. From the definition of J, it follows that g € J¢,
that contradicts g € J¢.

CASE 2: g € K — C. By the hypothesis (2), let 7, be the first ordinal §{ < p
such that ¢ < d,. We claim that

(o) For 6 <7y, g-d¢=0.

For a contradiction, suppose that g - dg # 0 for some 8 < 4,. Then g < dy, or
g > dg. The first case contradicts the definition of 7,. Now, suppose dy < g <
d,,. From the fact that {h € G™: h > dp} is a chain contained in K, dy € D
and the fact that D is a maximal chain of K, it follows that g€ {h € G™: A >
de} € D= KNC. That contradicts g € K — C. So () holds.

Assume that «, is a successor, say 7, = § + 1. In this case, because g - ds = 0,
and g < ds+1; g € B [ (ds4+1 —ds) C clp(C) C clp(clg(C) U J€). Contradiction.
Suppose that v, is a limit ordinal. For every § < 4,, we have g - dg41 = 0,
and thus g - (dg4+1 — d¢) = 0; and for every 6§ > v, we have ¢ < dy and thus
g - (do+1 — dg) = 0 too. Hence g € J¢, that contradicts g € clp(clg(C) U J*).
That proves B = clg(clp(C) U J¢).

Now, we will prove that clp(C)NJ¢ = {0}. Let b € clg(C)N J°. We have b =
S {u2r41 —u2r: k < n} where k < w; with uj,uj € CU{0,1}and 0 < u; <u; <1
in CU{0,1} for i < j < 2n — 1. We will show that each uzg41 — u2x = 0. By
contradiction, suppose that ugg+1 —u2i # 0, i.e. uzg < ugg41. By the hypothesis
(2) and the fact that D C C, there are 4 < v < p such that d, < uox < dpy
and d, < ugp41 < dyyi1. Because b € J°, and thus uggy1 — ugp € J¢, we have

¢ < v. Hence:
k1 — Uzk =((vzk41 — u2i) - (du1 — du)) + (dy — dpusa)
+ ((v2rt1 — ugk) - (dosr — dv))

and thus:

du _dp-}-] €Je , and
(u2k41 — u2k) - (dpg1 — dy) € JC.

From the definition of J and J¢, it follows that:

{ (uzk41 — uak)  (dus1 — du) € J¢,

(uakt1 — u2k) - (dug1 — dy) = 0 = (var41 — u2k) - (dyy1 — do),
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and thus ugx41—ugx = dy —d,41. Thisimples that dy41 = ugx (and ugryy =d,),
that contradicts ugx < dy41. Hence b = 0. Now, the Lemma 2.14 is a consequence
of Proposition 1.2, |

LEMMA 2.15: The set Maxid(G™) is countable.

Proof: By contradiction, suppose that Maxid(G™) is uncountable. Let
(Ka)a<w, be a family of pairwise disjoint members of Maxid(G™), and a4 €
Ko NAt(B) for @ < w;. We set X = {aa: @ < w1}, J = ci¥(X) and
A = clg(J) = clp(X). Because J is a non-principal ideal of B and satisfies
the hypotheses of Lemma 2.12, the subalgebra A is isomorphic to B/J¢. From
the fact that FC(X) is isomorphic to A, and the fact that A is a quotient of the
HCO algebra B, it follows that FC(X) is a CO algebra. By Proposition 1.7(e), X
is countable, that is contradictory. Consequently Maxid(G ™) is countable. |

There is K € Maxid(G~) such that tk?(K) = a, follows from cf(a) > w; and
Lemma 2.15. Let D be a maximal chain in K, and {ds: § < p} be the canonical
increasing enumeration of elements of D U {0}. Note that D has no greatest
element. For each 6 < p, let By efp [ (do+1 — dg), and ag def tk(Bs). Let us

remark that
ag = tk(Bg) = rkB(dp41 — dg) = kP (dp41) < kP(1) = k(B) = « .

By induction hypothesis, B | (dg4+1 — dg) is isomorphic to some B(Cjp), where
Cp is order-isomorphic to w®. We set a = ) {ags: 8 < p}. Let C be the
lexicographic sum of (Cp)s<, over p.  C is order-isomorphic to w®, and by
Lemma 2.3(c), we consider each Cy and C as a subchain of B. We will show
that the interval algebra B(C) over C is as required. Trivially, B(C) is of rank
a. B(C) and clp(C) are isomorphic algebras (that follows from Lemma 2.3(c)
again). We claim that clg(C) is a retract of some quotient of B. To see this,
let J = AB(U{B 1 (ds41 — da): 8 < p}). We have by the definition, clg(C) =
cp(DU J).

The hypotheses of Lemma 2.14 are satisfied, and thus B/J¢ has a retract,
namely clp(C). 1
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3. Proof of Theorem 1.9
Let us begin by a definition:
DEFINITION 3.1: A Boolean algebra B is a good algebra if it has the following

properties:
(G1) B is thin-tall, rk(B) = wy, and D, (B) = {0,1}.
(G2) If I is an uncountable ideal of B, then B/I is countable.
(G3) There is By(B) < w; such that for every 8 > Bo(B), there is a retract Ag
of B/Ig(B) such that Ig(B) is generated by
U ZB)te.
c€At(Ap)

Let us recall that Qy, is the following axiom: “ There is a family (Sa)a<w; of
subsets of wy such that S, C a and such that for every subset A of wi, the set
{a <wi: ANa =S4} is stationary in w;”.

The family (Sa)a<w, is called a O, -sequence: On, “captures” all subsets of
w; as well (see [11], [13] or [15]). The proof of Theorem 1.9 is divided into the

two main parts (a) and (b) of the following result.

THEOREM 3.2:
(a) A good Boolean algebra satisfies the requirements of Theorem 1.9.
(b) Assume $,. There is a good Boolean algebra.

We first turn to the proof of Theorem 3.2(a).

3.1 PROOF OF THEOREM 3.2(a) . We start by stating some easy facts needed
in that proof.

DEFINITION 3.3: (a) Let B be an algebra, I an ideal of B, A a subalgebra of
B, and b € B. We set
Ilb
Alb

It

{a-b:ael}
{a-b:a€ A}.

(b) For two algebras B' and B", we denote by B’ = B" the relation: B’ and
B" are isomorphic.

(c) For every superatomic Boolean algebra B and every ordinal 8 < rk(B), we
set By < clp(I5(B)) that is Is(B) U —Is(B).

(d) Let B be a superatomic Boolean algebra and A be a subalgebra of B.
AC Bif for some a, A = clg(Io(B)). Note that in this case, Do(A4) € {0,1}.
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The next proposition is obvious:

PROPOSITION 3.4:
(a) Let B, A and b as in the Definition 3.3(a). Then:
(1) Ith={ceLc<b},
(2) A b is asubalgebra of B | b, and is a homomorphic image of A.
(b) Let B be a superatomic Boolean algebra, A a subalgebra of B such that
A C B and a =rk(A). Then:
(1) For every v < a, I,(A) = I,(B).
(2) I.(A) = Ia(B) and I,(A) is a maximal ideal of A (and thus Do (A) =
{0,1}).

(c¢) C is an order relation in the class of superatomic Boolean algebras.

The proofs of all parts of the following proposition are straight-forward. For

the sake of completeness, we will prove it, at the end of subsection 3.1.

PROPOSITION 3.5:

(a) Let B be a Boolean algebra and I be an ideal of B, such that B/I is
countable. Then B/I has a retract. In particular every countable algebra
is retractive.

(b) Let B be a thin-tall Boolean algebra and J be a countable ideal of B. Then
for some a < w1, J C I(B).

(c)

(1) Let B be a thin-tall Boolean algebra. For every 8 < wy, Bp is
isomorphic to Bg ;.
(2) For  <wy and 0 < p < w, IBg, is isomorphic to a factor of B.
(d) Let B be a Boolean algebra and J be an ideal of B.
(1) Let K be an ideal of B. If J C K, then

{beB:b/JeI(B/J)}C{beB:b/K € I,(B/K)} .
(2) Let a be an ordinal such that J C I4(B), and f > a-w. Then
{be B:be Ig(B)} ={be B:b/J € Ig(B/J)} .

(Hence Ig(B/J) = Ig(B)/J.), and there is an isomorphism g from
Dg(B/J) onto Dg(B) such that for all b € B,

9((6/J)/1(B/J)) = b/15(B) -
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(8) For every ordinal a and 8,
{b € B: b/1a(B) € Iy(B/Ia(B))} = Ia+4(B)

and there is an isomorphism f from Dg(Dq(B)) onto D4 s(B) such
that for all b € B,

f((/1a(B))/15(B/Ia(B))) = b/ Lat p(B)

(e¢) (Isomorphism Theorem.) Let B be a Boolean algebra, I and J be ideals
suchthat I 2 J. ThenI]/J is an ideal of B/J and the algebras (B/J)/(I]J)
and B/I are isomorphic.

To show Theorem 3.2(a), let us begin by the retractive property:
LEMMA 3.6: If B is a good Boolean algebra, then B is retractive.

Proof: Let B be a good Boolean algebra. We will prove that B has the following
property (%), and that property () implies retractiveness, where: (%) is the
following property:

There are ideals {I;: t € T} of B, and subalgebras {A,: t € T} of B such that:
(*1) Foreveryt € T, B/I, is atomic, A is a retract of B/I;, I, is generated

by U{I: | ¢: ¢ € At(A)}, and for every c € At(As), B | c is retractive.

(*2) If J is an ideal of B, then either B/J has a retract, or there ist € T' such
that J C I,.

Let us show that a good algebra has the property (*). Let

T={6+1:ﬂo(B)_<_6<w1}.

Now, for 6 +1 € T, let T4y % I;41(B) and Asyq be given by (G3). For (%),
the only non-trivial part is the fact that B [ a for a € At(As41) is retractive.
But this is a consequence of the fact that B [ a, for a € At(As+1), is countable
and thus, by Proposition 3.5(a), retractive. Let us show (*z). Let J be an ideal
of B. First suppose that J is uncountable. By (G2), B/J is countable, and
thus retractive, by Proposition 3.5(a). Now, suppose that J is countable. By
Proposition 3.5(b), let § be such that J C I;(B). So §+1 € T and J C I541(B).

Next, we show that if B has property (x), then B is retractive. Let J be an
ideal of B. By contradiction, suppose that B/J has no retract. By (x;),lett € T
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be such that J C I;. From (%), if a € At(A;), then B [ a is retractive; let A, be
a retract of (B [ a)/(J [ a) (so As € B [aC B). Let

A clp(A U J{4a: a € At(A))}) .

We claim that A is a retract of B/J.

Let b € B. We show that b € clg(A U J). Because A, is a retract of B/I,
let ¥ € A, u% u! € I such that «® < V', u! -0’ =0and b = o' —u® + ul.
Because It = cll§ (J{I: | & a € At(4:)}), for i = 0,1, there is a finite subset
F¥ of At(A;) such that u* € cl'y (U{L: | a®: & € F'}). Since A, is a retract of
(Bla)/(Jla)and I; | @' € B | @, let by € Agi, ugi, vi € J [ a* € J such
that ugi < bgi, vgi-bei = 0and u'-a® = byi —ugi+v,i. Hence u' = b;—u;+v; where
bi = Yo {bsi: o' € F'} € clp(U{Aai: @' € F'}), u;i = Y {usira’ € F'} € J and
vi =Y {vsira' € F'} € J. Sob=0b'—u'+ul = b'—(bg—ug+vo)+ (b1 —u1+v1) €
clp (At UUJ{Aq: a € At(A)} U J), that finishes this part.

We show that ANJ = {0}. It suffices to show thatif b € A;andce€ A, CB |a
for some a € At(A;) with b-c € J, then b-c = 0. Because a € At(4;): b-a=0
or a < b. In the first case, b- ¢ = 0 since ¢ < a. In the second case, we have
c<a<bandthusb-c=c€ A, N(J [ a) = {0}.

So A is a retract of B/J. |

Our next goal is to show that if B is good and if J is a countable ideal of B,
B/J and B are isomorphic algebras.

DEFINITION 3.7: Let B be an atomic Boolean algebra, and C be a Boolean
algebra. We define the Boolean algebra C o B. (Informaly speaking, C o B is
the Boolean algebra obtained by replacing every atom of B by a copy of C.) For
every a € At(B) and ¢ € C, let k? be the member of CA*B) such that:

0 otherwise,

kg(b):{c ifb=a,

for all b € At(B). Note that the mapping k®: ¢ — k{ is an isomorphism from C
onto the factor C, & k2[C] of CAYB). Now, we define Co B to be the subalgebra
of CAUB) generated by

(U C)u{ > 1%:beB}.

a€At(B) a€At(B)
a<b
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Note that for every a € C o B, there are unique b € B, u® = Y, u? and
ul =Y., ul such that, setting p 4 ZaEAt(B) 1Ca. Uj € C,, with a; € At(B),

a<bh
u <b*, u%-b* =0and a =b* — u +ul.
We need the following lemma.
LEMMA 3.8:
(a) Let B be a good Boolean algebra, and J be a countable ideal of B. Then
B/J is good.

(b) Let B be a good Boolean algebra. Then for every § > (o(B), B and
Bg o Dg(B) are isomorphic algebras.

Proof: (a) Let J be a countable ideal of B.

B/J satisfies (G1). Let a < w; be such that J C I,(B) and f = a-w. From

Proposition 3.5(d2), it follows that

{be B:b/J € Ig(B/J)} = I3(B)
holds. Because Bg C B, it is easy to check that for ¢ < 8, At(D¢(Bg/J)) =
At(D¢(B/J)). By Proposition 3.5(d2), for < € < w1, De(B) = D¢(B/J).
Hence B/J is thin-tall and D, (B/J) = {0,1}.

B/J satisfies (G2): let I be an uncountable ideal of B/J. Let K be an ideal
of B such that K/J = I. Then K 2 J and K is uncountable. From (G1)p and
from Proposition 3.5(e), it follows that (B/J)/I = B/K is countable.

B/J satisfies (G3): let & < w; be such that J C I,(B), and f; & a-w. We
set fo(B/J) < max(B; + 1, 50(B)). Let B > Bo(B/J). Let AP be a retract of
B/I4(B) relative to B, be assured by 8o(B). By Proposition 3.5(d2), Is(B/J) =
I5(B)/J. Now AP /] is a retract of (B/J)/Is(B/J) and At(A?/J) = {a/J: a €
At(A?)}. By (G3), Is(B/J) is generated by U{Is(B/J) [ c: c € At(A#/])}.

(b) is a trivial consequence of the following claim:

CLaM: Let J be an ideal of B. We suppose that
(1) B/J is atomic.
(2) B/J has a retract A.
(3) J=d§(U{J | @ a € At(4)}).
(4) There is an algebra D such that D is isomorphic to clgs(J | a) for every
a € At(D).
Then B is isomorphic to D o (B/J).
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Proof: Forbe B,let b € A, u°, u' € J be such that u® < b, u! - ¥ = 0 and
b=~ u® + ul. From the hypothesis (3), for ¢ = 0,1,

Fi¥ (g e At(A):a- v #0)

is finite. We set:
e®)=( Y 1P)-u"+d

a€At(B)
a<b’
where u* = D acAi(4) u.a=Y,piu'-afori=0,1. Note that ¢(b) € Do A
It is easy to check that ¢ is an isomorphism from B onto D o A that concludes
the proof of our claim and of Lemma 3.8. 1

LEMMA 3.9: Let B be a good Boolean algebra, and J be a countable ideal of
B, then B and B/J are isomorphic algebras.

Proof: By Proposition 3.5(b), there is a such that J C I.(B). Let §; = a - w,
and B2 = Bo(B). By Lemma 3.8(a), B/J is good. So, let f3 = fo(B/J), and let
B > f1, P2, Bs. By Lemma 3.8(b),

(1) B/J=(B/J)so Dg(B/J), and by Proposition 3.5(cl)

(2) (B/J)s = Bg,. Dsg(B/J)=(B/J)/Is(B/J). By Proposition 3.5(d2),
Is(B/J) = Is(B)/J. Hence Dg(B/J) = (B/J)/(1s(B)/J). Because J C
I5(B), by the isomorphism theorem (Proposition 3.5(e)),

(3) Dg(B/J) = B/Is(B) = Dg(B). It follows from (1), (2) and (3) that:

(4) BJJ = B, o0 Dy(B).

The same holds for I = {0} (by the goodness of B} and thus, B & Bg 10D4(B).

Hence by (4), B/J and B are isomorphic algebras. |

Let us end the proof of Theoreom 3.2(a).

(A1) follows trivially from (G1).

(A3) The first part follows from Lemma 3.6, and the second part is a conse-
quence of (G2).

(A4) Let J be an ideal of B such that B/J is countable. Hence B/J is iso-
morphic to Bgp for some f < w; and 1 < p < w. (A4) follows from Proposi-
tion 3.5(c2).

(A5) Let J be an ideal of B such that B/J is uncountable. By (G2) J is
countable. Now (A5) follows from Lemma 3.9.
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(A2) From (A4) and (A5), it follows that B is a CO algebra. Let us show that
if I is an ideal of B, then B/I is a CO algebra. If B/I is uncountable, then
B/I = B and thus is a CO algebra. If B/I is countable, then B/I = Bg , for
some f < w; and p < w, i.e. B/I = B(w?-p). In this case the result follows
from Proposition 1.7(c) and (d).

To complete the proof of Theorem 3.2(a), it remains to prove Proposition 3.5.

Proof of Proposition 3.5: (a) Let B/I = {b;: i < w}. We will construct a retract
A = {a;: i <w} of B/I such that a;/I = b; for all i and a; — b; is a one-to-one
homomorphism. We can suppose that by = 0 and b, = 1, and thus a, 41 0 and
a; 1. Assume that {ai: i < n} are defined such that: A, 4 g ({ai: i < n})
and B, def clB/I({b,-: 1 < n}) are isomorphic by ¢ — ¢/I for c € A,. If b, € B,,
then we set Anq; = A, and Bp4; = B,. Now suppose that b, ¢ B,. Let
{a’: j < p} = At(A,) an ¥ = a’ /I for j < p (hence At(B,) = {V: j < p}). We
define (af)j<p by i, = 0if &/ - b, =0, a, = o’ if ¥ < bp; next if b - b, # 0 and
b — b, # 0, then we choose al € B such that @/ < a7, al /I = b/ - b,. Hence
(af —al)/I =¥ —b,. Weset a, = Yi<p al, A «f clp({ai: i < n}) and
B, def clB/I({b.-: i < n}). Clearly by = an/I and, by the construction, Ant1
is a retract of Bn41/(I N Byy1) containing A,. Hence A =, ., An is a retract
of B/I.

(b) Let J be a countable ideal of B. For each a € J, a € Iyp(5)41(B)- Let
a = sup{rkB(a) + 1: a € J}. Then J C I,(B).

(c1) Because By is a countable algebra and Dg(B) = {0,1}, then Bg and Bg
are isomorphic.

(c2) Let Bg, be given. For i < p, let ¢; € B be such that ¢;/Is(B) €
At(Dg(B)). We can suppose that for i < j < p, ¢; - ¢; = 0. Clearly By is
isomorphic to B [ ¢; and thus Bg,, is isomorphic to B [ 3., ¢i.

(d1) By induction on 7. The case v = 0 or 7 limit, are trivial. For the successor
case, suppose that (b/J)/I,(B/J}is an atom of (B/J)/I(B/J); we would like to
show that (b/K)/I,(B/K) is zero, or is an atom of (b/K)/I,(B/K). For b € B,
we recall that (8°,b') is a partition of bif b = 50 +b! with 5°-b! = 0. For a partition
(8°,b1) of b, we set i,(J,8°,8%) = {€ € {0,1}: b*/J € L(B/J)}. i, (K, 1%, b)is
defined similarly. The fact that (b/J)/I,(B/J) is an atom of (B/J)/I,(B/J)
means that for every partition (8°,8') of b, i.(J,8°,8') # 0. Our induction
hypothesis implies that i,(J,5°,b') C i,(K, 8%, b'). Hence i,(K,b°,4') # @ for
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every partition (b%,5*) of b. So, if |i, (K, b°,b!)| = 2, then (b/K)/L,(B/K) is zero,
and if |i4(X,b% 8')| = 1, then (b/K)/I,(B/K) is an atom of (B/K)/L,(B/K).

(d2) Suppose that J C I,(B). We set 8 = a - w. For every £ < w, we have,
using (d1) twice:

{beB:b/J € Ioo(B/J)} S {b€ B:b/Ia(B) € Ia.t(B/Is(B))}

Ioe41)(B)
{b € B: b/J € Ia.([+1)(B/J)} H

il

N

from this the desired conclusion follows.
(d3) is proved similarly by induction.
(e) is a classical result on commutative rings and left to the reader. 1

3.2 PrROOF OF THEOREM 3.2(b).

3.2.1 Preliminaries. We will give a proof of Theorem 3.2(b), with 84(B) =0 in
the the part (G3) of our definition of a good Boolean algebra.

The following result can be found in Bonnet, Rubin and Si-Kaddour [8]:
THEOREM 3.10: Let (Aa)a<p be a sequence of cardinals, with A, = 1 and
A% Ao, Let {@aw: v < Aa j @ < p} C p(X) satisfy the following properties. For
B < p, let Bg be the subalgebra of p(\) generated by {aaw: v < Ao ; @ < B},
and Jg be the ideal of Bg generated by {aa,u: v < Aa ; a < B}. We suppose:
(H1) ao,i = {1} for every i < .

(H2) @a,v ¢ Ba for every v < Ay and a < p.

(H3) @awN@a,u € Jo forevery a < p andv < p < Aq.

(H4) For every a < f < p andv < Aq, p < Ag, we have aa,, Nag,, € Boya.

(H5) For every a < p, v < Aq and < a there are infinitely many pu’s in Aq
such that ag , — aq,v € Jp.

Let BY B,. Then:

(1) Jqo is a maximal ideal of By.

(2) Jo = Is(Bp) for 8 > a, (in particular J, is an ideal of B) and

At(Do(Bg) = {aq,u/Ia(Bg): v < Aq} for f 2 a.

In particular:
(8) Jo = I4(B) and for a < 8, B, E B E B.
(4) At(Do(B)) = {aa,u/Ia(B): v < Aa} for a < p.
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Let us remark that (H3) and (H4) imply:

(H6) For every {a,v) € 2 def Us<x{B} x Ag, B[ aa,u C Bast1.

Indeed, the set {b € B: @q,v N b € Bat1} contains all the generators of B by
(H3) and (H4), and is clearly closed under the Boolean operations, so it consists
of all the B, as desired.

In what follows, we set

Ja dé‘ Ia(Ba) = Ia(Bun)

for @ € wy. We will construct {cq,it i < w,a < w;} satisfying the conditions of
Theorem 3.10.

Let (Aa)a<w, be the canonical enumeration of limit countable ordinals. Hence
Ae = w - (1 + a), (for instance A\g = w). Note that if w* = a, then A\, = a
(for informations, see J. G. Rosenstein [20]: exercice 3.34). We set Lim(w;) =
{Aat @ <wy}, and

Dy def {Aa € Lim(w,): Ao = a}

that is a club (closed unbounded subset) of wy.

In order to use {y,, we shall also have a one-to-one correspondance y, from
Ao onto the subalgebra By of p(w) generated by {cs,i: ¢ < w, < a}; in such
a way pg C @4 for f < a. Note that 0¥() = ¢, 1¢(*) = o; B, = FC(w), and
¢[Aa] = Bq for all a < wy. We set ¢ e Ua<w, #as that is a one-to-one function
from w; onto B def B.,.

Let (Sa)a<w, be a Ox,-sequence. Let us remark that:

(1) a € Dy if and only if p[a] = B,.
(2) If a € Dy, then ¢[S,] € Ba.

LEMMA 3.11:
(a) Let a,c € B be such that a/Jo € At(Do(B)). rkB(a —c) < rkB(a) (= a)
ifandonly ifa/Ju = (aNc)/Ja < ¢/Ja.
(b) Let {ca,it ¢ < w,& < w1} € p(w) satisfy the hypotheses of Theorem 3.10,
and the following property:
(o) Forevery a <ws, if

(i) @ € Dy (so a = Ay is limit and p[a] = B,) ,

(ii) ¢[Sa] € Ja

(iii) If a € ¢[Sq], then aJyy5a(s) € AH(Dyy8a(s)(Ba)) , and
(iv) sup{rkP=(a): a € p[Sa]} = @ ;
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then for every i < w, and every ¢ € ca,i/ Ja, there is a € ¢[Sa] such that
kP (a - ¢) < tkP*(a).
Then B satisfies:

(1) B is thin-tall and D, (B) = {0,1}.

(2) If J is an uncountable ideal of B, then B/J is countable.

Proof: (a) is trivial.

(b1) follows from the conclusions of Theorem 3.10.

(b2) Let J be an ideal of B. We suppose that B/J is uncountable. We will
show that there is @ < w; such that J C J, and thus J is countable (since
trivially J, is countable).

CLAIM 1: For every a € B, ifrkB(a) = o < wy, there are unique n, ig,..., in—1
<wandu, v€ J,suchthata=a—-u+v, With&q-:dzknca,,', ,u<aand

v-a=0.

Proof: Clear. [ |

CLAIM 2: Let £ < wy and d € At(D¢(B/J)). There are a(d) < w; and i(d) < w
such that:

(1) a(d) Y caqa),i(ay satisfies (a(d)/T)/I¢(B/J) = d and

(2) Kv € Jyq | a(d) (so v < a(d)), then (v/J)[Ie(B[J) = 0.

Proof: Similar to that of Lemma 2.8. Let
o(d) = min({a <wi: Ja € B, 1k®(a) = a and (a/J)/I¢(B/T)=d}),

and a be such that rk?(a) = a(d) and (a/J)/I¢(B/J) = d. By Clim 1, a =
G—ul+v! withd = ¥p . caqay,in» 4° < & u'-d = 0and u®, u! € Ja(q). From the
definition of a(d) and from rk?(u') < a(d) (i = 0,1), we have (u*/J)/I(B/J) =
0. Hence we can suppose that @ = & = ;. Ca,i,- Because d € At(De(B/J)),
it follows that for some £ < n, say i(d), (ca,i,/J)/Ie(B/J) = d. We set i(d) = i,
and a(d) def Ca(d),i(a)- Then, a(d) and i(d) are as required: (2) follows from the
fact that d € At(Dg(B/J)) and from the definition of a(d). |

End of the proof of Lemma 3.11(b2). With the notation of Claim 2, for each
d, we choose a(d), and let A def Ue<w, {a(d): d € At(D¢(B/J))}, that is, by
the definition, a set of generalized atoms of B. We recall that ¢ is a one-to-one

function from w; onto B.
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Let S C w; be such that ¢[S] = A. The set

Dy = {6€ Dy §=sup{rkB(p(v)): v € S and tkB(p(v)) < 6}}
= {& € Dy: §=sup{rkB(b): b € A and rk?(}) < 6}}

is a club of wy. By ¢y,, there is a € D such that SNa = S,. Hence « satisfies
the hypotheses (i)-(iv) of (e).

We will show that J C Jo4+1. By contradiction, let b € J — Jo41. Then
b/Ja # 0. Then, there are i < w and u € J, such that ¢, — 4 < b. Hence
Ca,i — u € J. From (e), the choice of a, and from the definition of A, S and S,
it follows that there is ¥ € S, such that a(d) o ¢(v) verifies

rkB(a(d) ~ (ca;i — 1)) < ofd) = rkB(a(d)).

Hence a(d) — (ca,i = u) € Jqo(a). Let £ be such that d € D¢(B/J). We have:

(1) ((a(d) ~ (ca — w)/T)/Te(B/J) = 0 by Claim 2(2),

(2) ((a(d)/ )/ Ie(B]J) # 0 since d € At(D¢(B/J).
Therefore (a(d) « (ca,i —u)/J)/Ie(B/J) # 0, and thus a(d) - (ca,i —u) € J. That
implies ¢q,i — u € J. Contradiction. [ |

3.2.2 The inductive step. Our induction hypothesis *(a) (for @ < w;) is as

follows:

*1(a) For every vy £ # < a, Bpg and J, satisfy the hypotheses (H1)-(HS5) of
Theorem 3.10.

*2(a) For every v < B < a, there is a retract Bg , of Bg[J,.
For every A < a limit, if f < A, then Bay = U,cgcr Bsr

x3(et) For every v < f' < 8" < a, By C Bgn 4.

x4(a) For everyy < a, every finite subset o of ¥ and every a € J,—|U{Js: 6 < v}

there is a D a such that a € JyN({Ba,g: B € 0}.

First, let us show that *3(a) implies that for y < f) < B2 < @, Bg, , =

Bg, 4N Bg,. This is a direct consequence of Part (a) of the following lemma:

LEMMA 3.12:
(a) Let By, B; be Boolean algebras such that B, C B;, I an ideal of By,
A; C B; a retract of By /I, and A; C By be a retract of B /(I N By). If
Al g Az, then Al = A2 nB].
(b) Moreover, we suppose that A, is atomic and that there is an atomic subal-
gebra C of B, such that:
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(1) A2 =clp,(4,UC).

(2) We assume that there is ideal J; 2 At(A;) of Ay such that for every
a1 € Jy and every c € At(C), a1-c€ A;.

Then A, is atomic and At(A4;) = At(A4;).
(¢) Let o be a limit ordinal. Suppose that:

(1) For every 8 < a, Bg and Jg satisfies the hypotheses (H1) — (H5) of
Theorem 3.10.

(2) For every vy < B < o, Bg/J has a retract Bg .

(3) Forevery v < B < a, Bp,y C Bp1,4-

(4) For every limit A < a and every ¥ < A, By = Ugcy Bg,r-

Fory < @, let Bayy ™ Ugco Bpyy- Then Ba,y is a retract of Ba/J,.
Proof: (a) First, suppose that By = B,. It suffices to show that A; C A;.
Let a; € A;. Let a3 € A; be such that ayAa; € I. Since a3 € A; C Ay,
we have a;Aa; € A; and thus a;Aa; = 0. So 4; 3 a; = a;. In the general
case, it suffices to show that A; N By is a retract of By /(I N B;). Trivially
AN By NI = {0}, and B; = clp,((A1 U(I N By)) C clp,((A; N B1) U (I 0 By)),
and thus clg, ((42 N B1)U(I N By)) = B,. Now (a) follows from Proposition 1.2.

(b) Clearly

At(CIB,(Al u C)) = {a1 -cia; € At(Al), ceE At(C) and a; * ¢ # 0} .

Let ay € At(A2). Let us show that a; € At(A;). a; has the form a, - ¢, with
a; € At(A,) and ¢ € At(C). By (2), a1- ¢ € A, and thus a; = a1 - ¢ = a;.
Hence At(A;) C At(A;). Let a; € At(A;) — At(42). This means that there are
a; € At(Az) and ¢ € At(C) such that 0 #£ a2 - ¢ < a;. As a3 - ¢ € A;, we obtain
a contradiction. So At(A;) = At(Ay).

(c) is obvious. |

Because we will construct a subalgebra B = B, of p(w), the operation - and
+ are denoted by N and U.

It is easy to construct (Ba, Ja,(Ba,m)m<a)a<w satisfying (w). Let a < wy
be limit and suppose that for every § < a, (Bg)s<s, (J4)v<s, and (B y)v<p<s
are defined and verify x(6). We set B = {Jgcq Bss Jo = Upcq /8 and Bayy =
Up<q Bv,p- From Lemma 3.12(c), it follows that (Bg)g<a (Jy)y<a, and
(Bg,v)v<p<a satisfy *(a).
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Let w £ a < w;. We suppose that By, J, and for 8 < a, Jg and B, s are
constructed, and satisfy *(a). We must construct Baj1, Ja41 and Bayi g for
B<a+l.

Let {Bi: k < w} be a fixed enumeration of a.

For i < w, we will define c4,; as a union of cj ;, for i < n < w. To do this,
we will define an increasing sequence IP = (p")n<w of conditions. A condition
p" has the form (a®, {cj ;: < n}), where n is an integer, and (a", {c} ;: ¢ < n})
satisfies:

(P1) a" € Js.
(P2) a" € [ \{Ba,p:: k <n}.
(P3) {ch;:ch;#0andi<n}isa partition of a”.

For two conditions p™ = (a™, {cy;: i < m}) and p" = (a®, {c} ;: i < n}) (in
IP), we set p™ <p™ if m < n and if:

(P4) a™ Ca™

(P5) ¢ ;Na™ =cy; foreveryi < k <m.

(P6) ca,,- —a™ € ﬂ{Ba,ﬂ,. k < m} for every i < n,
hold.

Before continuing, let us note an easy fact:

LEMMA 3.13:  Let p? = (a%,{c] ;: i < q}) for ¢ < n satisfy (P1)-(P6) (so the
conditions are pairwise comparable). Then:

(P7) Foreveryi<p,andm<p, ¢ ;N(a? —a™) € ({Ba,gs,: k <m}.

(P8) Ii<p<m,thenc;—a™=0. Hence (P6) is trivial in this case.

(P9) Ii<pandm<p,thenc,;—a™=ch;—cp;

(P10) Ifm <p, then a®? —a™ € (|{Ba,s.: k <m}.

(P11) < is an order relation on IP.

Proof: (P7) From (P3) and (P6), it follows that:
&iN(@ —am) =, —a™ € ({Bagpy: k < m).
(P8) ¢b; € a? C a™ by (P3) and (P4).
(P9) follows from the fact that ¢} ; —a™ =} ; ~ (e} ;na™) =) ; —cT,.
(P10) is a consequence of (P3) and (P5).
(P11) The only non-trivial part is the fact that the property (P6) is transitive,
but this follows from (P9) and (P5). |

The case of a legal guess (defined in 3.14) ensures that our construction will
satisfies the hypotheses (o) of Lemma 3.11(b).



Sh:359

324

R. BONNET AND S. SHELAR Isr. J. Math.

DEFINITION 3.14: S, is a legal guess whenever:
(1) a = X4 € Dy (and thus pla] = By,).
(2) ¢[Sa] € Ja S Bo = plo],
(3) For every a € ¢[Sal, a/JiyBa(,) is an atom of B/Jysa(s)-
(4) For every B < a, there is € € p[Sa4) such that rkZ=(e) > 8.

LEMMA 3.15:

(a)

(b)

(c)

Suppose that a is a limit ordinal, B, has been defined, and S, is a legal

guess. There is an increasing sequence of conditions IP = {p™: n < w}

with p* = (a”,{cp ;: i < n}) such that IP satisfies the following density

requirements:

(R1) For every a € J,, there is n < w such that a C a™.

(R2) For every i <w and § < a, there is n < w such that cj, ; ¢ Jg.

(R3) Foreveryi < w,n < w and B < a, there are k > n and e € ¢[S,)
such that e ¢ Jg and rkB=(e — (cki-a) < rkBe (e).

Suppose that a is a limit, B, has been defined, and S, is not a legal

guess. There is an increasing sequence of conditions P = {p™: n < w}

with p® = (a®,{c} ;: i < n}) such that IP satisfles the following density

requirements:

(R1) For every a € J,, there isn < w such that a C a".

(R2) For every i <w and § < a, there is n <w such that c} ; ¢ J;s.

Suppose that « is a successor ordinal and B, has been defined. We set

a = i+ 1. There is an increasing sequence of conditions P = {p™: n < w}

with p* = (a®,{c} ;: ¢ < n}) such that IP satisfies the following density

requirements:-

(R1) For every a € Jq, there isn < w such that a C a”.

(R2) For every i < w and r < w, there is n < w such that c}, ;/Jp is the
union of at least r atoms of B,/ Jg.

Proof of Lemma 3.15(a): The claims 1, 2 and 3 are stated to satisfy the density
requirements (R1), (R2) and (R3) respectively.

CLAIM 1: Let {(aj,{c{,,i: i < j}): j < n} satisfy (P1)~(P6), and let a € Ja.
Then, there are a™ and {cj ;: i < n} such that a C a™ and {(a",{c;’,'i: i <
iN:j < n} satisfy (P1)~(P6).

Proof: Let a™ be such that a® € Ja, a" 2 aU a™! and a® € ({Ba,g;: j < n}.

The existence of a™ follows from x4(a). Let ¢} ,_; = a" —a"", and ¢} ; = ¢

n-—1
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for every i < n—1. Trivially (P1)-(P5) are satisfied. Let us prove (P6). Because
(P2) holds for a®~! and a®, we have c},_, = a” — a"! € ({Bag,: k <
n~1}. Hence, for £ < n, ¢}, —al =a”~-a""' € {Bag: k<n-1} C
N{Ba,s,: k < £}. Next, suppose i <n—1and £ < n. Kcj; —a’ =0, then
cpi—a € N{Bap: k< £} Hel;—al #0,thenf <nandch;—al =
chit — at € N{Ba,s,: k < £} by the induction hypothesis. |

CLAaM 2: Let {(aj,{cili: i < j}):j < n} satisfy (P1)-(P6), let p< n~1 and
B < a. Then, there are a™ and {cZ ;: i < n} such that a 2 a" and {{d/, {cfm.: i<
i}): j S n} satisfy (P1)~(P6), and ¢} , € Jp.

Proof: Let a € Jy — Jg be such that aNa™! = 0. By *x4(a), let a® be such
that a® € Jo, a” 2 a¢Ua"! and a® € (\{Ba,;: § < n}. Weset ¢ , =2 U
(a® —a™1), cpno1 =0, and foreveryi <n—1andi#p, weset ci; = c:;’.
Trivially (P1)-(P5) holds. Now, (P6) holds. Because (P2) holds for a®~! and
a®, (a® —a"!) € ({Ba,g;: j Sn—1},and thus cj , —a" ' =a" —a™! €

N{Bas;:j<n-1}. fl<n-—1,thenci, —a =(a" —a" 1)U (ch;' —a’) €
n{Bavﬂi:j S e}‘ .

Cram 3: Let {(o/,{c} ;: i < j}):j < n} satisfy (P1)~(P6), and let p < n —1
and § < a. Then, there are a™ and {c}, ;: i < n}, and there is e € p[S,] such
that {(a’,{c] ;i < j}): j < n} satisfy (P1)~(P6), e ¢ Jp and rkP=(e — (cl: , —
a"1)) < rk®=(e).

Proof: Let 4 < a be such that a"~! € J,. Since S, is a legal guess, there
is e € ¢[Sa] such that e € Jo — (JgU J,) (so e € Jg). By x4(a), let a®
be such that a® € Ja, a® 2 a® 1 U e and a® € ({Ba,;: j < n}. We set
chp = Cap U(a® —a™1), ch .y = 0, and for every i < n —1 such that i # p,
we set cp ; = c::;-l. As in the proof of Claim 2, {a’: j < n}, {E;:i<k<n}
satisfy (P1)~(P6). Next, rkB=(en a®) = rkP=(e) follows from the fact that
At(Dyy5a(e)(B) 3 €/ Jiysa(e) S a"/JikBa(.). By the choice of e, the fact that
a"~! € J,, and the definition of cf} ,; we have rkB= (e — (cn ,—a™1)) < 1kPe(e).

End of the proof of Lemma 3.15(a): Let ag = @ (= 0). Then ao, {cj;: i < 0}
satisfy (P1)~(P6). In order that (i), (ii) and (iii) will hold, we have to fulfil Ry
tasks. We make an w-sequence of taskes such that every task appears infinitely
many times. By claims 1-3 the taskes can be fulfilled, that ends Part (a).
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Proof of Lemma 3.15(b) and (c): Similar. |

3.2.3 End of the proof. We set:
o Fori<w,leteq Uze;: ca i
BQ_H = clp(w)(Ba U {ca,,-: 1< w})
o Bati,a =clyu)({ca,iii <w}).
e For 8 < a, let k be the unique index such that fx = 5. (We recall that
{Bk: k < w} is an enumeration of a.) Let

Bas1,8 = clpw)(Ba,s U{cai—a*:i <w}) .

Note that for k > 1 cq,i — a* = cq,i — cﬁ,,- and for k S i cqi —a* = cq,i. We

will prove that:

LEMMA 3.16: With the above notations, we have:
(a)
1) Uleaiti<wl=w
(2) Ifi#j thencoiNca,j = 0.
(3) {cpi: ¢ < w and B < a} satisifies the hypotheses (H1)-(H5) of
Theorem 3.10.
(b) Ba+1,q is a retract of Bay1/Ja.
(¢) For B < a, Bat1, is a retract of Bay1/J3.
(d) Forevery a € Jay1—Jq and every finite subset o of a+1, thereisa € Jo41
such that ¢ D a and @ € (\{Ba+1,8: 8 € 7}

Proof: (al) and (a2) follows from (P3) and (R1).

(a3). It suffices to verify (H1)-(H5) for 8 = a. (H2) is a consequence of (R2),
and (H3) follows from (a2). (H4) holds: let ¥ < a and j < w. Then ¢y ; € Ja.
By (R1), ¢,,j C a® for some n, and thus cq,j N ca,i € &® € Ja. Therefore
Cv,j N €ai € Jo € Ba. (H5) holds: let i < w and B < a. For every £ # i, there
is j¢ such that cg j, Ncq,e & Jg, and thus cg j, — cq,i € Jg. Moreover, if £ # £,
then jp # jeu. So (H5) holds.

(b) Trivially ¢qi € Bat1. €a,i/Ja # 0/Ja in Bay1/Jo follows from (R2) and
from the definition of ¢4 ;. Now, it is easy to check that Ba41,q is a retract of
Bat1/Ja-

(¢) In what follows, B and k are such that § = B;.
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First, we show that cl,,)(Jg U Ba+1,8) = Bat1. We have:
B, C clp(w)(Jp U Ba,p) - clp(u)(Jg U Ba+1,8)

So, it suffices to show that cq i € cly(w)(Js U Bat1,8). We have:
(1) Caji — ¢t ; = cqi — a* € Bay1s. By (P3), ck; C o € Ja, and thus

ck ;i € Ja C cpw)(Ja) = Ba = cly(w)(Jg U Ba,g)- Therefore:

(2) ¢k ; € elyu)(Jp U Ba,g). Hence
Cai = (Cayi = €,) U €yi € clp(u)(Ja U Bat1,6) -

That shows that clj,)(Js U Ba+1,8) = Bast1-
In order to prove that Jg N Baq1,3 = {0}, we need the following result.

SUBLEMMA 3.17:
(a) Let b€ Jo N Bq g, and i < w. Then bN (cq,i — a*) € By p.
(b) Let 8 < a. Then At(Bqa,g) = At(Bat1,8).
(c) Let d € Jg. Suppose that d has the form b N (ca,; — a*) with b € B, g.
Then b € J,.
(d) Letd € Jg. Suppose that d has the form bN\(;cp —(Ca,i—6*) With b € Bag
and F C w finite. Then:
(1) be Jo and
(2) d has the form b (;cg(ca,i — a*) for some finite subset G of w.

Proof: (a) From (R1) and (P4), there is n > k such that b C a".
bN(cai—a*)=caiN(a® —a*)Nb= (cai— a*)nb

since cq,iN(a™ —a*) = (cq,i-a™)~(cq,i-a*) = c:,i—a". By (P6) (and the fact that

B = i), we have c? ; — a* € Ba,g, and because b € Ba,g, bN(ca,i—a*) € Bag.

(b) Let C = clp,,,({ca,i — a*: i <w}). Clearly C is an atomic subalgebra of
B,+1 and every atom of C has the form ¢q i — ak. Now (b) follows from the fact
that Bay1,5 = clp,,(Ba,s U C), from Part (a) and Lemma 3.12(b).

(c) By contradiction b € By — Jo and thus —b € J,. By Part (a), we have
(=b) N (ca,i — a¥) € By g. From the facts that d € Jg C B, and the fact that

Ca,i ~a* (6N (cai = a") U (=) N (ca,i — a¥))
dU (=) N (ca,i = b)) ,
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it follows that cq i —a* € B,. Because C:,i C a* € Jo C B,, we have cf;,.- €Ja C
B,. Consequently cq,i = (Cq,i — cﬁ,i) U ck ; € B,. Contradiction.

(d1): b € Jo. We have:
(1) d/Jy = 0Ba+1/Ja sinced € Jg C Ja.
(2) (cayi —a*)/Ja = ca,i/ Ja € At(Ba+1/Ja), since af € J,. By (1),
(3) 0Bat1/Ja = dfJa = (b/Jq)- (HieF("Ca,i/Ja) .
From (1)—(3), it follows that
(4) b/Js # 1Bat1/ta, But
(5) b/Jy = 0Bat1/Ja op 1ga+1yy, since b € By = Jo U ~Jo C Bay1.

From (4) and (5), it follows that b/J, = 0Ba+1/Ja ie. b€ J,. So (dl1) is proved.

(d2): d has the form b N (;¢g(Ca,i — a*) for some finite subset G of w. We
have

d = bn(ﬂ —(Ca,.‘ —Gk)) = ﬂ b—(ca,,- —ak)
i€F ieF
= (b-cai-a*)una).
i€F

Because: af € B, g (this follows from (P2) and # = B;) and b € B, s; we
have b N aF € B,g. Because bNa*F C d € Jg, we have bNa* € Jg N Byp.
Therefore 5N a* = 0. By (R1), let n < w be such that b C a®. We have

bCa™ =J;cn €2 € Ca,i- Hence
d=[)(b=cai—a¥)= | bN(cas—a¥).
i€F i<n
i€F

That finishes the proof of Sublemma 3.17. ]

We end the proof of 3.16(c). To show that Jg N B,y g = {0B=+1}, it suffices to
show that if d € Jg has the form b N[;cp b with b € Ba g, F C w finite and
bi = cq,i — a* or —(ca,i —a¥), then d = 0B+, Let bN Micr bi be such a d. Note
that:

(1) ¥ b; = cqa,i — af and bj = Ca,j — a* with 1 # j, then b; N b; = 0, and thus

d=0=0.

(2) I b; = cq,i — a* and b; = —(ca,; — a*) with i # j, then b; C —b;, and thus

dCbn niGF—{j} b;.
Therefore, there is no loss in assuming that d has the form
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(i) : 8N (cq,i — a¥) or

(i) © 50 i —(cai — a¥)
We will distinguish the two cases:

CASE 1: d = bN(ca;i — a¥). We have b € Bag € By = I, U—-I,. By
Sublemma 3.17(c), b € J,. Now, d € B, g by Sublemma 3.17(a). Therefore
d € JsN By g, and thus d = 0.

CASE 2: d = bN();cp —(Ca,i — a¥). By Sublemma 3.17(d), d has the form
b N ;eg(€a,i — a¥) for some finite subset G of w. But in this case, we can
suppose that d has the form b N (cq,; — a¥), and the arguments go as in Case 1.

Now (c) is a consequence of Proposition 1.2.

(d) Let a € Ja41 — Jo, and 0 C a + 1 finite. There is no loss in assuming
a € o (note that this implies that we must find g as a finite sum of ¢4 ;).

First, we claim that

(d') There is n* < w such that a C |J{ca,i: t < n°}.

By definition, a € bU |J{cq,i: ¢ < r} where b € Jo. From (R1), let s be such
that b C a’. From (P3), a® C |J{c} ;: ¢ < s}. Consequently a C U{cq,it i <n®}
where n® = max(r, s).

Next, we claim that

(d") For every 8 < « there is ng < w such that for every ¢ > ng, [J{ca,i: ¢ <
q} € Bay1,p

Let ¥ < w be such that 8y = 8. We set ng = k+ 1. Let ¢ > ng be
fixed. By (P3), we have a*+! C {J{ck¥": i < k +1}. Hence U{ca,ii i < ¢} =
U{(ca,i —a**t1)Ua**1: i < g}. By (P2) a¥*! € By g, = Ba,s. Now ca,i —a*t! =
(Ca,i — a¥) — (a**! — a*). Because i = B and the definition of Ba41,4,, e have
(Ca,i — a*) € Bat1,p,- By Lemma 3.13(P10), (a**! — a*) € Ba,p,. Consequently
U{eca,it ¢ < ¢} € Bat1,8, = Bat1,6-

We will finish the proof of (d). Let n = max(n® max({ng: # € ¢})) and g =
U{ca,i: i < n}. Soa € Jay1. By (d'), a C g; and by (d"), a € {Ba+1,5: B € 0}.
This finishes the proof of (d), and of Lemma 3.16. |

To finish the proof of Theorem 3.2(b), it remains to show:

LEMMA 3.18:
(a) The induction hypothesis (a + 1) holds.
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(b) {ep,iti <w ;B < a+1} verifies the hypotheses (H1)-(H5) of Theorem 3.10
(therefore B e U{Ba: @ < w1} verifies the conclusions of Theorem 3.10).

(¢) B is good (i.e. verifies (G1), (G2) and (G3)), that shows that B is as
required in Theorem 3.2(b).

Proof: (a) *¢(a+1) holds trivially for £ = 1,2; x3(a+1) follows from Lemma 3.16
(b) and (c); and *4(a + 1) is a consequence of *4(a) and of Lemma 3.16
(d).

(b) is a consequence of Lemma 3.16(a3).

(c). Let us show that B is good.

(G1) follows from Part (a) and Theorem 3.10.

(G2) is a consequence of Lemma 3.11(b). Let us verify that the hypothesis (o)
of 3.11(b) holds. Let a < w; be such that the hypotheses (i)~(iv) of (¢) holds.
Then S, is a legal guess. Let i < w and ¢ € ¢q,i/ Jo. We must find a € ¢[S,] such
that rkB=(a ~ ¢) < rkB*(a). There is no loss in assuming that ¢ = cq,i — u With
u € Jo. By Lemma 3.15(a) (R1) there is n < w such that u C a", and thus we
can suppose that ¢ = ¢4,i—a™. By (R3), for § < a, there are k > n and a € ¢[Sa]
such that rkB=(a — (c’;,,- ~a")) < rkB=(a). Since ¢ = cq,i — a" 2 cf,'i —a", the
conclusion of (e) holds.

(G3). Let a € J,. By (R1), let n < w be such that a C a®. By (P1) and
(P3), Uicnchi = a™ € Jo. Therefore a C (J;, Ca,i and a = (J;(ancy ;) €
AFUicn Ja [ €ayi). B
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