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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 61, Number 4, Dec. 1996 

UNIFORMIZATION, CHOICE FUNCTIONS 
AND WELL ORDERS IN THE CLASS OF TREES 

SHMUEL LIFSCHES AND SAHARON SHELAH 

Abstract. The monadic second-order theory of trees allows quantification over elements and over 
arbitrary subsets. We classify the class of trees with respect to the question: does a tree T have a definable 
choice function (by a monadic formula with parameters)? A natural dichotomy arises where the trees that 
fall in the first class don't have a definable choice function and the trees in the second class have even a 
definable well ordering of their elements. This has a close connection to the uniformization problem. 

§0. Introduction. The uniformization problem for a theory T in a language S? 
can be formulated as follows: Suppose ST r- (VY)(3X)y/(X, Y) where y/ is an 
^-formula and X, Y are tuples of variables. Is there another ^-formula y/* such 
that 

& h (VY){VX)[y*(X, Y) = • y/{X, ?)] and f h {VY){3\X)V*{X, ?)? 

Here 3! means "there is a unique". 
The monadic second-order logic is the fragment of the full second-order logic that 

allows quantification over elements and over monadic (unary) predicates only. The 
monadic version of a first-order language Sf can be described as the augmentation 
of S? by a list of quantifiable set variables and by new atomic formulas t € X where 
t is a first order term and X is a set variable. The monadic theory of a structure Jl 
is the theory of Jl in the extended language where the set variables range over all 
subsets of \Jf\ and e is the membership relation. 

Given a structure Jl we may ask the following question: is there a finite se­
quence P of subsets of Jl and a formula ip(x, X, Z) in the monadic language of Jl 
such that 

Jl \= <p(a,A,P)=>a £ A, 

Jl (= (VX)(3y)[X ± 0 =»<p(y, X, P)] 

and 

Jl (= <p(a, A,P) A<p(b,A,P)=^-a= bl 

If the answer is positive we will say that Jl has a monadically definable choice 
function and that tp defines a choice function from non-empty subsets of Jl. Note 
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UNIFORMIZATION ... IN THE CLASS OF TREES 1207 

that if we let <p(x, Y) be the formula that says "if Y is not empty then x e Y" 
then a negative answer to the choice function problem for Jt implies a negative 
answer to the uniformization problem for the monadic theory of Jl (with ip being 
a counter-example). 

The uniformization problem for the monadic theory of the tree (ffl>2, <) was first 
asked be Rabin ([6]). Here we continue the work by Gurevich and Shelah ([3]) who 
gave a negative answer by showing that (m>2, <) does not even have a monadically 
definable choice function. We ask what trees do have a monadically definable choice 
function. 

Answering this question we split the class of trees into two natural subclasses, the 
class of wild trees and the class of tame trees and prove the following: 

THEOREM. Let T be a tree. If T is wild then there is no definable choice function 
on T {by a monadic formula with parameters). If T is tame then there is even a 
definable well ordering of the elements of T by a monadic formula {with parameters) 
f{x,y,P). 

Looking at the definitions and proofs we observe that a tree is tame [wild] if and 
only if its completion is tame [wild] and that the counter-examples for the choice 
function problem are either anti-chains or linearly ordered subsets of T. Hence we 
can prove: 

CONCLUSION. Let T be a tree and T' be its completion. Then the following are 
equivalent: 

(a) T is tame. 
(b) For some n, l € N, for every anti-chain/branch AofT there is a monadic 

formula <PA{X,X,PA) with quantifier depth < n and < £ parameters from T, 
that defines a choice function from nonempty subsets of A. 

(c) There is a monadic formula with parameters, y/{x, y, P) that defines a well 
ordering of the elements of T. 

(d) There is a monadic formula, with parameters, y/'{x, y, P') that defines a well 
ordering of the elements of T. 

The 'positive' results on the existence of a definable well ordering (§§3 and 5) are 
elementary and do not require knowledge of monadic logic. The negative results 
(§§2, 3, and 4) are based on understanding of some composition theorems that hold 
for the monadic theory of trees. These facts are collected in §1. 

More details and historical background can be found in [2] and [3]. 

§1. Composition theorems. In this section we will define partial theories and 
establish the technical tools that will be applied later. The composition theorems 
formalized here will enable us to compute partial theories of trees from partial 
theories of their parts. By using such theorems we will prove later that if for 
example a dense chain does not have definable choice function then a tree with a 
dense branch does not have a definable choice function as well. 

DEFINITION 1.1. {T, <) is a tree if < is a partial order on T and for every n e T, 
{ v : v < n } is linearly ordered by <. < means < or =. 

Note, a chain (C, <) is a tree and so is a set without structure / . 
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1208 SHMUEL LIFSCHES AND SAHARON SHELAH 

DEFINITION 1.2. Let T be a tree. 
(1) S C T is a convex subset if 7, v € S and 77 < c < v G 71 implies a G S. 

When £ is a convex subset of 7" we say that (S, <g) is a subtree of (T, <). If 
r is a chain we use the term a convex segment or just a segment. 

(2) 5 C r is a sub-branch of T if i? is convex and <-linearly ordered. 
(3) fi C 7 is a branch of 7" if 5 is a maximal sub-branch of 7\ 
(4) A C 71 is an initial segment of T if A is a sub-branch that is -^-downward 

closed, 77 is above [strictly above] an initial segment A if v € A = > v < 77 
[ V £ J 4 =$• v < 77]. In these cases we write 4̂ < n [A < 77]. 

(5) For 77 G T, 7>„ is the sub-tree ({ v e T : 77 < v }, <). r>7 is the sub-tree 
(7V, \ {77}, <). For A C T an initial segment, T>A and r>^ are defined 
naturally (and are equal if A does not have a <i-maximal element). 

(6) For 77 G 71 we denote by Suc(w) or Sucr(w) the set of <l-immediate succes­
sors of 77 (which may be empty). 

(7) For 77, v G T we denote the common initial segment of 77 and v in T by 77 n v. 
This is defined to be the initial segment { T : T < 7 7 & T < V } . However, 
when 77 n v has a maximal element we may identify it with this element. 

(8) If there is an 77 G T that satisfies (Vv G T)[rj <\ v] we say that T has a root 
and denote 77 by r{T). 

(9) n,v £ T are incomparable in T and we write 77 J_ v, if neither 77 < v nor v < 
77. X C T is an anti-chain of T if X consists of pairwise incomparable 
elements of T. 

(10) When B C T isa sub-branch and A C B is an initial segment we say that 
a G T cuts B at A if for every 77 G A and v G B \ A we have 77 < a & v _L <r. 

(11) A gap in 7" is a pair (A\,A2) where A\DA2 = 0, 4̂i U ^ is a sub-branch, 
4̂i is an initial segment, (so 77 G ^ 1 , v G ̂ 2=>>7<iv) without a <-maximal 

element, A2 without a <-minimal element, and there is some a G T that 
cuts^i U^2 a t ^ i . 

(12) Filling a gap (A\,A2) in T is addinganoder to T suchthatn G ̂ 1 =>n<lT, 
v £ A2 =4> T < v and for every a as above we have x <\a. 

DEFINITION 1.3. The full binary tree is the tree (ra>2, <) where for sequences 
77, v G co>2, 77 < v means 77 is an initial segment of v. 

DEFINITION 1.4. The monadic language of trees 3? is the monadic version of the 
language of partial orders {<}. Formally, we let .2? = (Sing, Empty, <, C) where 
'Sing' and 'Empty' are unary predicates, < and < are binary relations. (J? is a first 
order language). 

Given a tree T we define the monadic theory of T as the first order theory of the 
model JCT •= (&>(T); Sing, Empty, <, c ) where 

JtT (= Empty(A') «=>> X = 0, 

J?T (= Sing(X) <=> X = {x} for some x G T, 

J?T\=X<Y <=> X = {x}, Y = {y} and T f= x < y, 

C is interpreted in J?T as the usual inclusion relation. 
We will not distinguish between T and J(j and write for example T f= Sing(A') 

a n d T \=X< Y. 
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UNIFORMIZATION ... IN THE CLASS OF TREES 1209 

The definable relations < and G will be used freely thus we will write T \= X < Y 
and T |= X e F (meaning . # r |= Sing(X) & X C 7) . 

When P is a chain (linearly ordered set) we replace < and < by < and < 
respectively. 

NOTE. Everything that is defined in 1.2 is definable by a monadic formula. 

NOTATIONS. C, D and / denote chains. S, T and T denote trees. 
Lower case and Greek letters (x, y,a,b,tj,v) are used to denote elements, upper 

case letters {X, Y, A, P, Q) denote subsets. 
a and P denote finite sequences of elements and subsets, their lengths are 

lg(a) and lg(P). We will write a e T and P C T instead of a e lg(<5)P and 
p G is(P)gi>(T). 

When P and g are of the same length we will write P U g to denote (Po U 
go, • •, Pe-i U 2^- i ) . Similarly we write (JI-€/ P

; (assuming lg(P;) is constant). 
PDS means (P0 n S , . . . , P e _ i n 5 ) . 

P A g is the sequence (Po,. -., go, • • • )• 

Next we define, following [7], the partial theories of a tree T. These are finite 
approximations of the monadic theory of T. Th" (T; P) is essentially the monadic 
theory of (T; P, <) restricted to sentences of quantifier depth n. 

DEFINITION 1.5. For any tree T, ACT, and a natural number n, define by 
induction 

t = Tb"{T;A), 

for n = 0: 

t = {(f{X) : ip{X) e Se, tp{X) quantifier free, T \= <p(A) }, 

for n = m + 1: 
t = {Thm(T;AAB);BC T}. 

Tn)e is the set of all formally possible Th"(P; P) where T is a tree and lg(P) = t. 

NOTATION. When x e T we will usually write Th"(P; x) instead of Th"(P; {*}). 

FACT 1.6. 

(A) For every formula y/{X) € 5C there is an n e N such that from Th"(P; A) 
we can effectively decide whether T j= y/{A). We will call the minimal 
such n 'the depth of i//' and write dp(^) = n. 

(B) If m > n thenTh"(P;i") can be effectively computed from Tti"{T;l). 
(C) Each Th"(T;A) is hereditarily finite, and we can effectively compute the 

set T„te from« and^. 

Next we recall the composition theorem for linear orders which states that the 
partial theory of a chain can be computed from the partial theories of its convex 
parts. This enables us to define the operation of addition of theories. 

DEFINITION 1.7. If C, D are chains then C + D is the chain that is obtained by 
adding a copy of D after C. 

If ( C,; : i e / ) is a sequence of chains then ^ / € / C, is the chain D that is the 
concatenation of the C,'s. 
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1210 SHMUEL LIFSCHES AND SAHARON SHELAH 

THEOREM 1.8 (composition theorem for linear orders). 

(1) 7/lgU") = lg( 5 ) = IgU"') = lg(B') = I, and 

Thm(C;A) = Thm{C';A') and Tti"(D;B) = Thm(D';B') 

then 
Thm(C + D; AU B) = T h m ( C + D';A' U B'). 

(2) If Thm{Ci\Al) = T h m ( A ; 5 0 and lg(A<) = lg(B') = I for each i e / , 
then 

Thm (J2 Ct\ |J A') = Thm (J2Di\ IJ *''). 
^iei iei ' Me/ <€/ ' 

PROOF. By [7, Theorem 2.4] (where a more general theorem is proved), or directly 
by induction onm. H 

NOTATION 1.9. 

(1) When, for some m, £ e N, t\, t2, h & Tm<i then t\ + t2 = h means: there 
are chains C and D such that 

h = Thm(C;A0,.. .,Ae-i) & h = Thm(D; Bo,..., 2?,_i) 

& t3=Tti"(C +D;Al)B). 

(By the composition theorem, the choice of C and D is immaterial.) 
(2) E , e /Th m (C ,M") is Thm(E,-6 / Cr,\JieIA'), (assuming lg(A<) = l g ( ^ ) 

fori,./ el). 
(3) If£> is a sub-chain of C a n d l e C then Thm{D;A) abbreviates Thm(D;AD 

D). 
(4) For C a chain, a < i e C a n d K C w e denote by Jb"{C;P)\[ab) the 

theoryTb.n([a,b);Pn[a,b)). 

The class of trees has some weaker (but useful) composition theorems. First we 
define the composition of subtrees of the full binary tree following [3] and quote 
the respective composition theorem. 

DEFINITION 1.10. Let S C m>2 be a tree. A grafting function on S is a function g 
satisfying the following conditions: 

(a) dom(g) C 5 x { 0 , l } , 
(b) i f (x ,0 )edom(g) thenx A (0) £ 5 and if (x, 1) € dom(g) then* A{1) £S, 
(c) every value g(x, d) of g {d e {0,1}) is a tree C m>2. 

The composition of a tree 5 and a grafting function g is the tree 

Su{xA(d)Ay: (x, d) e dom(g), >> e g(x, rf) }. 

THEOREM 1.11 (composition theorem for binary trees). Let S c ra>2 fte a free, 
N C m> 2 be the composition of S and a grafting function g and P C N withlg{P) = £. 

Then, for every n € N f/iere £y m = m(n,£) € N {effectively computable from n 
and i) such that from Thm(S;P,Lg(n,P),Rg{n,P)) we can effectively compute 
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UNIFORMIZATION ... IN THE CLASS OF TREES 1211 

Thm{N;P) where 

Lg
t(n,P) := {x 6 M : (JC,0) € dom(g), Th"(^(x,0),P) = t}, 

Rg(n,P) :={x€M: (x,l) € dom(g), Thn(g(x,0),P) = t}, 

Lg{n,P):=(Lg{n,P):t£Tn/) 

and 

Rg{n,P):=(Rg{n,P):t£Tn>i). 

PROOF. This is Theorem 2 in §2.3 of [3]. (The language that is used there is 
different from our L but all the mentioned symbols are monadically inter-definable 
with some additional parameters with our <].) H 

The next three theorems enable us to compute a partial theory Th"(T; P) from 
partial theories of sub-structures of T. The proofs are by induction on n noting that 
Th°(r; P) can express only statements as Pt C Ph Pt < Ph Pt = Ph Empty(P,) 
and Sing(i>,) and that Th"+1 is a collection of n-theories. Everything is basically 
the same as in the previous case and we will not elaborate beyond that. 

In the first case we are given a tree T a sequence X C T and an initial segment A C 
T. We would like to compute Th"(r; X) from the theories of subtrees above A. 

First, for x above A'mT denote by TA,X, the subtree 

{y e T : (3z)[z < x & z < y & A <\z]}. 

Call x and y equivalent above A if x and y are above A and TA,X = TA,y and 
let { Tt : i £ IA} list the equivalence classes above A (it's a collection of pairwise 
disjoint of sub-trees). Finally, let 

T::=T\\jTi = {yeT:->A<y}. 
ie/A 

A typical case is when { v, : r e / } is the set of immediate successors of some tj e 
T. In this case we are interested in the trees { T> v, : i € 1} and {T : T <rj\Z-z ±ij}. 

THEOREM 1.12 (composition theorem for general successors). Let T be a tree, let 
X C T with \g{X) = I and let AC. T be an initial segment. Then, for every n e N, 
there is m = m(n, £) £ N (effectively computable from n and I) such that from 

Tti"(T*A;X) and Thm(lA;PA{n,X)) 

we can effectively compute Th"(T; X) where 

Pf(n,X) :={i£lA: Th"(r,-;X) = t} 

and 

PA(X):=(Pf(n,X):t£Tn>e). 

Note, Thm (lA;PA{n, X)) is the m-theory of a set without structure—i.e., in the 
monadic language of equality. 
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1212 SHMUEL LIFSCHES AND SAHARON SHELAH 

In the second case we are given a tree T and a branch B C T. Now we would 
like to compute the theory of T from an enrichment of the theory of the branch B, 
that is a theory of a chain. This can be done by adding unary predicates that will 
tell us, for each node tj e B, the theory of the sub-tree consisting of the elements 
that cut B at n. However, we must take into account the possibility that B contains 
gaps. Thus, given a branch B C T let (B\ <) be the chain that is obtained by filling 
all the gaps in B. So B' is a subset of the completion of B as a linear ordering. 

Now for 17 e B' let T^ := 7>, \ B'. 

THEOREM 1.13 (composition theorem for branches). Let T be a tree, B C T a 
branch and X C T with lg(^f) = £. Then, for every n e N there is m = m{n,£) € N 
{effectively computable from n and £) such that from Thm (B'; B, PB (n, X)) we can 
effectively compute Th"(T; X) where 

Pf\n,X) :={n€B': Thm(T^;X) = t} 

and 

P?(n,X):=(Pf'(n,X):t€Tn,e). 

Moreover, if Y C B then from Thm {B';B, P3'(n, X), Y) we can effectively com­
pute Th"(T;X AY). 

As we already know by [3], the binary tree does not have a definable choice 
function. We would like to reflect this fact in trees that embed it. 

DEFINITION 1.14. Let T be a tree, by "F:w>2^> T is an embedding" we mean 
F is 1-1 and for n, v € m>2, n<v <=>• F(n) < F{v), we also assume that T has a 
root and f(r(a , >2)) = r ( r ) . 

Now let F: a>2 ^ T be an embedding and let S C T be F"(m>2). S is a tree 
(but not necessarily a sub-tree of 7") that can be identified with m>2. 

For x = F(n) e 5 define x° [x1] G S to be F(nA(0)) [F(nA(l))]. 
For F C S a n anti-chain (hence an anti-chain of T) let Bush(F) := {x e T : 

{3y e Y)[x < y]}, (it's a subtree of T) and let Bushs(y) := Bush(r) n S (it's a 
subtree of S). 

For every y e S denote y° n yl by y'. It may be an element of T or an initial 
segment (see the convention in 1.2 (7)). Anyway, in the definitions below we think 
of the y"s as elements. When y' happens to be an initial segment, one should 
replace occurrences of "x < y,n by "x £ y'". 

For every y € S v/e define some subtrees of T>y (some of them may be trivial if 
for example y = y'): 

(0) TQ(y) := T>y. 
(1) Ti{y):={xeT: hyl <x) & (3z)[(z < x) & (y<z </)]}. 

[These are the elements that split from the segment (y,y').] 
(2) T2(y) :={x€T:(y<x)& (\fz)[(z < y>) &(z<x)=>(z< y)]}. 

[These are the elements that split from y but not from the segment (y, y').] 
(3) r3GO := { x e T : ( V < x) & (3z)[(z < x) & (y' < z < y0)]}. 

[These are the elements that split from the segment (y', y0).] 
(4) T4(y) :={xET: hyl <ix)& (3z)[(z < x) & (y< < z < y1)]}. 

[These are the elements that split from the segment (yl, y1).] 
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(5) T5(y) : = { * € T : {y' <x)&(Vz)[(z < x) & (z <y°Vz < yl)=^{z < 

[These are the elements that split from y' but not from the segments 
( / , / ) and ( / , / ) . ] 

(6) T6(y) := 7>y,. 
(7) r 7 ( j ) : = r > y l . 

For y e S, X C T with lg(Z) = £, t - (t0, h,..., f7) where /,- € 7 ^ , define 
Q;(n,X) by 

y e Qr(n,X) ^=* [Thn(T0(y);X) = t0 & • • • & Thn(T7(y);X) = t7]. 

Let Q$:=T\ S. 
Finally let Q(n, X) be ( &-(", X) : t e 7(Tnj))

 A (g0) . 

Note that every anti-chain 7 C S i s definable from Bushs(y) and that S is 
definable from Q(n, X). 

THEOREM 1.15 (composition theorem for embeddings). Let T be a tree, X C T 
with lg(Z) = t, F:w>2^ T an embedding and let S = F"{m>2). Then, for 
every n e N there is m — m(n,£) € N (effectively computable from n and £) 
such that, following the above notations, for every anti-chain Y C S and y £ Y, 
from Thm(Bushs(Y);y, Q(n, X)) we can effectively compute TW{T;y, Y, X). 

§2. Dense linear orders. Every finite set A has a definable well ordering (by a 
formula with < \A\ parameters). This is not the case for infinite models. 

CLAIM 2.1. Let A be an infinite set without structure. Then there is no definable 
choice function on A. Moreover, if \A\ > 2e then no formula with < £ parameters 
defines a choice function on A. 

PROOF. Let P = (Po>•••,Pi-\) Q A and suppose tp(x,X,P) defines a choice 
function from subsets of A. Let B = {b\, b{\ C A be such that for every / < £, 

bx € Pt <=^ b2€ Pi. 

B exists if Ml > 2' and in particular if A is infinite. Clearly 

A^<p(buB,P) <=> A^ip(b2,B,P) 

contradicting "<p chooses an element from B". -\ 

A chain C that embeds a dense linear order (hence the chain of rational numbers 
order Q) does not have a definable choice function. The proof is by applying a 
Ramsey-like theorem for additive colorings from [7]. 

DEFINITION 2.2. 

(a) A coloring of a chain C is a function / : [C]2 —> / where [C]2 is the set 
of unordered pairs of distinct elements of C and / is a finite set (the set of 
colors). 

(b) The coloring / is additive if for every x\ < y\ < z\ and x2 < y2 < z2 in C 

[f(x\,yi) = f(x2,y2), f(yi,zi) = f (y2,z2)] ==>f'(xuz\) = f(x2,z2). 
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1214 SHMUELLIFSCHESAND S AH ARON SHELAH 

In this case a partial operation + is well defined on / : 

h + h = h «=>• (3x, y, z e C)[x < y < z & / (x , y) = i\ 

& f(y,z) = h 
&f{x,z) = h]. 

(Compare with 1.9(1).) 
(c) A sub-chain D C C is homogeneous (for / ) if there is an z'o € / such that 

for every x, y € D, f(x, y) = io. 

THEOREM 2.3. If f is an additive coloring of a dense chain C by a finite set I of 
colors, then there is an interval ofC which has a dense homogeneous subset. 

PROOF. This is Theorem 1.3. in [7]. H 

CLAIM 2.4. Let (C, <) be a linear order that embeds a dense linear order. Then 
there is no definable choice function on C. 

PROOF. Let P C C with lg(P) = £ and suppose <p{x,X,P) defines a choice 
function on C. Suppose dp(<p) = n (sofromTh"(C;x, X, P) we know if <p(x,X,P) 
holds). Finally let D C C be dense (in itself). 

By 2.3 there is an A C D, dense inside an interval of D, hence in itself, ho­
mogeneous with respect to the coloring f{a,b) = Thn+5(C;P)\[a^, (see Nota­
tion 1.9 (4)) that is, for some t € Tn+$/: 

[a,b,c,d€A&a<b&c< d]^ [Thn+5(C;P)\[a:b) = Thn+5(C;P)\[c>d) = t*]. 

Let Z be the set of integers and choose X C A of order type Z, denote X := { x„ : 
n € Z }. Suppose our choice function picks xm from X, i.e. 

(*) C ^<p{xm,X,P) & / \ C\=^(xk,X,P). 

Let C0 - {c e C : xi e X = > c < x, } and C\ = {c 6 C : xt> e X =»x , < c }. 
Let?0 = Th"(C;P)rCoand?1 = Th"(C;P)\Cl. So 

Th" (C;P) = to + ̂ Th"(C;P)\[XhXi+l) + tx. 

Now denote: 

^:=Th"(C;xm,Z,P)rCo=Th"(C;0,0,P)rCo, 

t{k) 

= Th"(C;xm,Z,P)rCl=Th"(C;0,0,P)rCl, 

= Th"{C;xhX,P)\lXkiXM), when A: # / thisisTh"(C;0,xt>P)r[Xt>,i+l) 

= Th"(C;xifc,Jr,P)r[xt,Xi+1)=Th"(C;^>xfc,P)r[,tA+1). 

Now 0 is definable and x^ is the first element in the segment [xk, xk+\) hence also 
definable. So, as we started with n + 5 (which is an overkill), 

• JQ and t[ do not depend on m, 
• to determines t'Q and t\ determines t[, 
• t* determines t' and t^k\ 
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We also have, for every k e Z: 

(**) Th"(C; xt, JT, P) = f£+ £ Y + *<*> + £ / ' + *{. 

j<k j>I 

It follows (by homogeneity and the above remarks) that for every k £ Z: 

(a) t(k) = t{m), 

j<k j<m 

GO £'' = £<'• 
j>k j>m 

So by (**), for every k e Z 

Th"(C;x*,Jr)P) = Th"(C;*m>jr,/i). 

Hence 
C\=tp(xk,X,P) ^=> C\=<p{xm,X,P) 

Contradicting (*) = "tp chooses xm from X". H 

§3. Scattered orders. A chain is scattered if it does not embed a dense chain. 
We will define Hdeg, the Hausdorff degree of scattered chains, and show that a 
scattered chain (C, <) has a definable well ordering if and only if Hdeg(C) < co 
and that Hdeg(C) > co =>• there is no definable choice function on C. 

DEFINITION 3.1. We define by recursion the Hausdorff degree of a scattered 
chain (C, <): 

• Hdeg(C) = 0 if and only if C is finite 
• Hdeg(C) = a if and only if Aj?<a Hdeg(C) ^ fi and C = £ , 6 / C, where 

/ is well ordered or inversely well ordered and for every i e. I, 

V Hdeg(Q) - p. 

CLAIM 3.2. 

(1) C is a scattered chain if and only if Hdeg(C) is well defined (i.e., there is 
one and only one ordinal such that Hdeg(C) = a). 

(2) Let C be a scattered chain with Hdeg(C) = a, C the completion ofC and 
D C C". Then C andD are scattered and Hdeg(D) < Hdeg(C') = a. 

PROOF. 

(1) By [4]. 
(2) By induction on a. H 

CLAIM 3.3. For every n € N there is a formula <p„(x, y, Z) with lg(Z) < n - 1 such 
that ifC is a scattered chain with Hdeg(C) < n, then there are P C C with such that 
<p„(x,y,P) defines a well ordering of C. 
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PROOF. We will show, by induction on n G N the existence of a formula y/„{x,y,Z) 
with Z = (Z\,..., Z„_i) such that for every scattered chain C with Hdeg(C) = n 
there are P C C such that y/n(x,y, P) well orders C. <p(x,y, Z) that should apply 
to chains C with Hdeg(C) < n will be of the form 

(Z„_i ^ 0 - y/„) & ((Z„_i = 0 A Z„_2 ^ 0) -• Wn_x).... 

For n = 0 define y/„{x,y) := x < y. For « = 1, if Hdeg(C) = 1 then either C is 
well ordered or inversely well ordered. The monadic sentence 

6 := (VJ5T) [X ? 0 -> (3x G X)[(Vj G X)(x < j)]] 

distinguishes between these cases. Let then 

Wi(x,y) := (0 - (x < y)) & (-,0 - (x > j>))-

To finish suppose Hdeg(C) = n + 1, so C = Y^tei ̂  where / is well ordered or 
inversely well ordered and each Hdeg(C,) is n. By the induction hypothesis there 
is a sequence (Pl : i £ I) with Pl C C, where P' = {P\,...,Pi

n_x) such that 
y/„(x, y, P') well orders each C,. For 0 < k < n let Pk •= \JieI Pk (disjoint union). 

Let P„ := (J{ Q : ' an even ordinal}. Using Pn define an equivalence relation ~ 
on C by x ~ y if and only if f\t{x e C, •£=> y G C,). The definition is by the 
formula 

e(x,y,Pn) := [x G P„ ^ ^ S P„] 

& (Vz)[(x < ^ < z V j < z < x ) = > ( x G i , „ <!=> z G P„)]. 

Similarly we can define the ~-equivalence classes [x]. Now there is a formula 6' (Pn) 
such that C (= 0'(P„) if and only if I is well ordered: 

9'(P„) := (VJT)[[JT ^ 0 A (Vx,j G Xbe(x,>>,/>„)] 

- [ ( 3 x e l ) [ ( v ^ l ) ( . < j ) ] ] ] . 

(y„+i (x, >>, Z) is defined by: 

[0'(Z„) A [x ^ ^] -+ x < >;] & [-.0'(Z„) A [x / j,] - x > >>] 

& [[x~>]-» y/„{x,y,Zr\[x])}. H 

Next we prove that scattered chains of infinite Hdeg don't have a definable choice 
function (hence a well ordering). It suffices to look only at special chains: "-co with 
the 'alternating' lexicographic order. 

DEFINITION 3.4. We define for every n < co a model JC" in the language consisting 
of a binary relation <": 

(a) The universe of Mn, which will be denoted by M", is the tree "-co. 
(b) Let, for every rj G "-co, <n be a linear ordering of Suc(^) := {rj A(fc) : 

k < co } such that if lev(?7) is even then k < I =>- qA(k) <n rjA{l), and if 
lev(^) is odd then k < I =^>r\ A(/) <n rjA(k). (So <n orders Suc(^) with 
order type co if rj is in an even level and with order type co* if rj is in an odd 
level.) 
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(c) <" is the lexicographic order induced by the orders <n of immediate suc­
cessors. 

(M", <") is hence a chain. Note, the 'usual' partial order < on "-co (being an initial 
segment), is not definable in Jl". 

DEFINITION 3.5. We define by induction the scattered chains C„ and C*: 

C\ := co, Cf := to*, 

C2 :=£>*, C2*:=^w, 

and in general: 
l£w i£(U* 

DEFINITION 3.6. / : Jl" «-> C is an embedding of M" in a scattered chain (C, <) 
if / is 1-1 and a <" T = > / ( < T ) < / ( T ) . 

FACT 3.7. Let C be a scattered chain with Hdeg(C) > n + 1. Then there is an 
embedding / : .J"1 «-> C. 

PROOF. Clearly the following hold: 
(a) For a scattered chain C, Hdeg(C) = n =*> [C„ C C or C„* C C]. 
(iff) M" Cj?"+l. 
(y) There is an embedding g: . #" «-• C„. 

Now assume Hdeg(C) = n + 1 and use (a). In the case Cn+l C C we have by (y) 
an embedding g: •#"+ 1 <-• C and by (/?) an embedding / : J(n <-• C. In the case 
C*+l C C we have, by the definition of C*+l, C„ C C*+1 and by (y) an embedding 
f:JC"^C. -\ 

CONCLUSION 3.8. Let C be a scattered chain with Hdeg(C) > co. Then, for 
every n < co there is an embedding of Jt" into C. 

LEMMA3.9. Let C be scattered. Suppose F: [C]2 —> {j\,...,jn-\} isanadditive 
coloring. Then, if Hdeg(C) > n + 1, there is a subset X C C of order type Z, 
homogeneous with respect to F. 

PROOF. Without loss of generality C is {Jt„, <"): As Hdeg(C) > n + 1 there is 
an embedding / : Jl" «-> C. Now F o f: [M„]2 —» {j\,.. .,j„-\} is an additive 
coloring and if Y C M„ is homogeneous of order type Z (with respect to F o f) 
then so is X = f"(Y) (with respect to F). 

NOTATION. We will write (T, <) instead of {"-co, <"). T>n and T>n are as usual. 

The plan is the following: We will thin out T to get a subtree A* C T of height n 
such that for n e A* | Suc^. {n)\ = KQ. .4* will satisfy: 

(*) /\(<x, € ^*) & /\(lev(ff,-) = n) & (lev(«ro n CTI) = lev((T2 n a3)) 
•i<4 i < 4 

[F((To, (Tl) = F(<72,<73)]. 

(Here a n T is always an element and not an initial segment.) 
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Assuming such an A* can be obtained we define, for 0 < k < n, tk to be the 
color F(a, x) for a, x £ A*, with level n and with lev(er n T) = n - k. As we have 
only n — 1 colors there are 0 < / < r < n such that tg = tr. Using the fact that F is 
additive we can prove that ti = ti+\ as well: 

Let a < x be in A* such that lev(cr) = lev(r) = n and lev(er n T) = n - r, (so 
F(a,x) = tr). Then find p £ A* wither < p< x, lev(p) = n, levari/?) = n-(l + \) 
and lev(/7 n T) — n - r. What we get is the following equation: 

tr = F{a,x) = F(cr,p)+F{p,x) = tM + tr 

but tr = ti hence 

(t) U = tt+i + te. 

Imitate this computation: let a < t be in A* be such that lev(o-) = lev(r) = n and 
this time lev(crn-r) = n — {l + \), (soF(a,x) = ^+i)andfind/? £ A* wither < p < x, 
lev(p) = n, lev(cr n p) = n — (£ + 1) and lev(p n T) = n — I. What we get is the 
following equation: 

U+i = F{a,x) = F{a,p) + F{p,x) = tM + tt 

hence 

(t) tt+i=tt+i + te. 

Combining (f) and (|) we get tt+\ = tg. 
Finding 0 < k < n with tk = fjt+i pick tj e A* with lev(//) = n - (k + 1). Let 

SucA,(t,) = {rjA(ei):i< co} 

{{It : i < co) strictly increasing) and denote v,- = r\ A(^,-). 
Assuming n - (k + 1) is even we get lt < £j=>A* \= v,- < v,-. For each v,-

with i > 0 choose <r, £ 4̂* with lev(<r,) = n such that v, is an initial segment of er,. 
By the definition of the linear order in T hence in A*, 0 < i < j < co =$• at < Oj. 
Moreover, as i ± j => Oj n Oj = r\, we get for every i and j 

F(cTi,CTj) = tk+\ = tk-

Hence (er,• : 0 < /' < co) is a homogeneous sequence of order type co. Returning 
to vo we have lev(vo) = n - k < n let 

Suc^. (v0) = { v0
 A(w,) :i<co} 

((mi : i < co) strictly increasing) and denote/?, = vo A(w,). As now n — k is odd 
we get m,- < rtij =$-A* \= pt > pj. For each /?, choose T, £ A* with lev(r,) = n 
such that pi is an initial segment of T, . Now we have i < j < co = > T, > xj and as 
/ ^ j ^=> T,- n xj = vo, we get for every i and j 

F(oi,aj) = tk. 

Hence (T, : i < co) is a homogeneous sequence of order type co*. Clearly for 
every /' < co and 0 < j < co we have A* \= xt < er,- and xt r\oj = rj (hence 
F(xi,Oj) = tk+\ = tk). Therefore 

X := { Xi : i < co } U { a} : 0 < j < co } 
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is the required homogeneous subset of order type Z. 
When n - {k + 1) is odd the T,'S that extend vo (which is the maximal element 

in Suc^« (/;)) are of order type co and the <-smaller 0-,'s are of order type co* so X is 
again as required. 

We are left now with the task of defining the subtree A* C T that will satisfy (*). 
This will be done by induction going down with levels. Arriving to a node t] we will 
have defined for each v = rj A(i) e Suc^O/) a sub-tree A>v C T>v, in the next step 
we will choose an infinite 5 , C co. A>n will be 

{7} U U{^>^A<'> : min(5,) < i e Bn }. 

A* is^4><). 
Denote for 0 < I < n 

0 := /\(lev(t7,) = n) & (lev(<T0 n <TI) = lev(<72 n <r3) = I) 
L;<4 

[F((T0,ffl) = F ( C T 2 , C T 3 ) ] . 

(So (*) means 0 „ _ , & 0 „ _ 2 & • • • & 0 O ) . 
Assume without loss of generality that n is odd. 

STEP 1. Given rj e T with lev(^) = n - 1 pick an infinite set 2?£-1 C to such that 
for some color y£_1 

Let o7 = m i n ( ^ - 1 ) and let A>n C r > , be 

Mul^Wi^iei),"-1}. 
^4>, clearly satisfies 0 n _ i -

STEP 2. Given?/ € r withlev^) = n - 2 we have defined y"- 1 ,Uv, ov and^4>v for 
every v € Sucr(>/). Pick an infinite B* C co such that AC, ^ € B* => j ^ 1 ^ = J^~\e)-
Call the common color v'£-1. Clearly 

Al>r,:={ri}u\J{A>^{i):ieBx} 

satisfies 0 n _ [ . 
Taking care of 0 „ _ 2 let k, £ e B\, ak := tiA{k) and ae := vA(^). Let 

r0 < r\ < r2 be in B„k \ {o„k} and so < *i be in Bat \ {o„t}. Define T = ak
A(o„k), 

TO = <TfcA(r0), TI = fffcA(ri), T2 = ak
A{r2), /? = ae

A{oae}, p0 = ae
A{s0) 

and p\= oiA(s\). As we assume « is odd we get x < TO < TI < z2 < p < po < p\. 
Now: 

(a) F(T, />) = F ( T 1 , / > ) , 

[as F(T, />) = F ( T , T 2 ) + F ( T 2 , / > ) = F ( T I , T 2 ) + F (T 2 , /> ) = F(TI , /> ) ] . 

(jJ) F(r,p)=F(t2,p), 
[as F ( T , />) = F ( T , T3) + F ( T 3 , />) = F ( T 2 , T3) + F ( T 3 , />) = F ( T 3 , p)\. 

00 F(TUp) = F(r2,p), 
[by (a) and (yS)]. 
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(S) F{z,px) = F(x,P2) 
[asF(T,/>!) =F{T,p) + F(p,pi) = F{t,p) + F(p,p2) = F(x,p2)]. 

(e) F{xi,p\) = F{TI,P2) = F(i2,Pi) =F(r2,p2) and this is equal to 

F{z,p) + jn
a;K 

(Note: when n is even we can apply similar considerations by reversing the order.) 
By our previous choices j " ~ l is j%~1- We conclude that if vi, v2 e Al

>n 

withlev(vi) = lev(v2) = n, v\\lv2 = wand say w<«ri<lv1, w<(T2<iV2thenF(vi, V2)isa 
function of a\ A(oCTl) and a2

A(oa2), i.e., of a\ and a2. Denote F(vi, V2) = g{a\,a2). 
Now choose an infinite 5 , C Bx such that k < £ e B,, =4>g(w A(fc),w A(^)) is 
constant. Let on := min(57) and let 

A>n : = { 7 } u | J { ^ > , A ( / t > \on <k G 5 , }. 

A>n satisfies 0 „ _ ! and 0 „ _ 2 (and y'jp1 is implicitly defined). 

STEP m. Given n £ T with lev(w) = « - m we have defined 

n •= (j"-1 jn-m + U 

Bv, ov and A>v for every v e Sucr(w). Pick an infinite Bx
n C co such that k, £ e 

B1n=^jtlA{k) = J , A W . Call the common sequence J, = (y'Jp1,.. .,j%~m+l). 
Clearly 

satisfies 0 „ _ 1 , . . . , © „ _ m + 1 . 
Using the canonical branches 

W < W A(k) = ak< T„_m+2 < • • • < To 

and 

W < W A (^) = at < Pn-m+2 <•••</><) 

where 

T«-m+/= f„_m+,+i (otji_m+(+1) and p„-m+i — pn-m+i+\ \oPn_m+l+l) 

we can verify, as in Step 2, that when k, £ e 5^, (T4 = rjA(k), at — nA{£), 
ak < T, (7; < /; (so i n /> = >;) and 1CV(T) = lev(/?) = w, F{x,p) depends only on 
0> and o-f. Denote such values by g(<J/t, 0*) and pick an infinite Bn C Bjj Ceo such 
that k,£ Gfi, =>g(n A (A:), w A (£)) is constant. Let o, = min(5,). 

A>n '•= W u | J { / l > , A { i ) :o , < / e 5 , } 

satisfies 0 „ „ m and the previous 0 ' s . 
A* := ^ > ( ) satisfies (B„_v • • •, 0 O

 h e n c e (*)• H 

CONCLUSION 3.10. For every m,£eN there is an n £ N st/c/z fwa? i /C is a scattered 
chain and Hdeg(C) > n + 1 then C does not have a definable choice function by a 
formula with quantifier depth < m and with < £ parameters. 
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PROOF. Let n be \Tm+5j\. Suppose <p(x,X,P) defines a choice function on a 
scattered chain C with Hdeg(C) > n + 1. The additive coloring F: [C]2 —» Tm# 
that is defined by F(a,b) = Thm+5(C;P)\[aJ>) has, by the previous lemma, a 
homogeneous subset A C C of order type Z. As in the proof of Claim 2.4, ip can 
not choose an element from A. -\ 

§4. Wild trees. Large sets without structure, dense chains, scattered chains with 
large Hausdorff degree and the binary tree are prototypes of structures without a 
monadically definable choice function. 

Respectively, wild trees are trees that have a large amount of splitting (4.2 (l)(i)) 
or have 'wild' branches (4.2 (l)(ii)(iii)), or embed the binary tree (4.2 (l)(iv)). 
Thus, using the composition theorems, there are no definable choice functions in 
the class of wild trees (4.7). 

DEFINITION 4.1. Let (T, <) be a tree and ACTan initial segment. 
(1) The binary relation ~° on T \ A is defined by 

x ~° y <*=> (v ' e A)V <x = t<y]. 

(It is an equivalence relation that says "x and y cut A at the same place".) 
(2) The binary relation ~J, on T \ A is defined by 

x~\y <=> [x ~^ y] & (3z <ET\ A)[Z < x & z < y & z ~^ x]. 

(It's an equivalence relation that refines ~° by dividing each ~° -equivalence 
class into disjoint subtrees.) 

DEFINITION 4.2. 

(1) A tree T is called wild if either 
(i) sup{ \T>A/~A\ : A C T an initial segment} > Ho, or 
(ii) There is a branch B C T and an embedding / : Q —• fi, or 
(iii) All the branches of 71 are scattered but sup{ Hdeg(5) : B a branch 

of T } > co, or 
(iv) There is an embedding / : co>2 ^-> T. 

(2) A tree T is tame for (n*,k*) if the value in (i) is < «*, the value in (iii) 
is < k* and (ii) and (iv) do not hold. 

(3) A tree T is tame if T is tame for («*, k*) for some «*, A:* € N. 

CLAIM 4.3. If T is a wild tree and (l)(i) of 4.2 /*o/<& then no monadic for­
mula <p{x, X, P) defines a choice function on T. 

PROOF. We will use the composition theorem for general successors 1.12: Suppose 
ip{x, X, Q) defines a choice function on T, dp(ip) = n and lg(2) = £. Given an 
initial segment A C T let T \ A/~\ — {Tj : i e I A} and by our assumption, there 
is an initial segment ACT such that \IA\ > \ T„te+i \. For every i € I A pick x, e T,-. 
Now there are a, /? e IA such that Th"(Ta;xa,Q) = Th"(Tfi;xfi,Q). 

Denote, for t e Tn/+2, Pf(a) = { i e IA : Th"(r,; jca, {xa, x^}, g) = f } and 
let jP^(a) = (Pf(a) : t e r„^+2). By 1.12 there is some w e N such that from 

Thm(r;;xQ,{xa,x/J},e) and Th m ( /^ ;^(a) ) 
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we compute Th"(T; xa, {xa, xp}, Q). Similarly, replacing xa by xp, from 

Thm(T^,xp,{xa,xp},Q) and Thm(lA;PA(p)) 

we compute Th"(T; xp, {xa, xp}, Q). (T% is T \ \Jie,A Tt). Now 

(i) Thm(r; ; X a ,{X a ,X f i } , Q) = Th m (r ; ; X p ,{x a , X p} ,Q) = T h m ( n ; 0 , 0 , Q ) . 
(ii) PA{a) = PA{fS) 

as Th"(rQ; xa, Q) = Th"(7>; xp, Q) and as for ieIA\ {a, p} 

Thn(Ti;xh{xa,xp},Q) = Thn(Ti;xi,{xa,xp},Q) = Thn(Tf,0,0, g ) . 

Therefore 

(iii) Thm(lA;PA(a))=Thm(lA;PA(f3)). 

It follows that 

Thn(T;xa,{xa,xp},Q) = Thn(T;xp,{xa,xp},Q) 

hence 
T^(p(xa,{xa,xp},Q) <=^> T \=ip(xp,{xa,xp},Q). 

So ip cannot choose an element from {xa, xp}, a contradiction. H 

CLAIM 4.4. If T is a wild tree and (l)(ii) of 4.2 holds then no monadic for­
mula ip{x, X, Q) defines a choice function on T. 

PROOF. Let B C T be a branch that embeds Q. We will apply the composi­
tion 1.13 and reflect a choice function on T to a choice function on B, contradicting 
Claim 2.4. 

So assume that <p{x, X, Q) defines a choice function on T where dp(</?) = n 
and lg(g) = I. By 1.13 there is an m e N, a chain (B',<') with (5, <) C 
(5 ' , <) and a sequence of parameters K B ' such that from Thm(B'; B, P) we can 
compute Th" (T; Q). Define, for rj < v e 5 , 

f{?l,v)=Thm+5{B';B,P)\M. 

/ is an additive coloring hence by 2.3 there is Y = {»7i},-ez> of order type Z, 
homogeneous with respect to / . As in the proof of 2.4 we have: 

i,j e Z = ^ Thm(B';nh Y,P) = Thm(B';Vj, Y,P) 

and (by the 'moreover' clause in 1.13) this implies 

i,j € Z = ^ Th"(r ; j / , , Y,Q) = Th"(T;nj, Y,Q). 

Hence 

i , ; 6 Z = M r ^ ( 7 i . i : e ) « = • T\=V(tij,Y,Q)] 

and this contradicts "cp chooses an element from Y". H 

CLAIM 4.5. If T is a wild tree and (l)(iii) of 4.1 holds then no monadic for­
mula (p(x, X, Q) defines a choice function on T. 
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PROOF. Combine the two previous proofs: Suppose <p(x, X, Q) defines a choice 
function on T with dp(<p) = n and lg(Q) — £. 

By (l)(iii) for every k e N there is a branch B C T with Hdeg(5) > k. By 
conclusion 3.10 a formula with depth n and £ parameters cannot define a choice 
function from subsets of branches with large enough Hausdorff degree. By the 
composition Theorem 1.13, the extra structure in T makes no difference. H 

CLAIM 4.6. Let T be a tree and F: <a>2 <—• T be a tree embedding. Then no 
monadic formula <p(x, X, P) defines a choice function on T. 

PROOF. First, we may assume, without loss of generality, that T has a root (adding 
a root will not effect the existence of a choice function) and that F(r(co>2)) = r(r) . 
The proof in §5 of [3] shows the following: 

for every Q C m>2 and m e N there is an infinite anti-chain Y C 
(*) m>2 such that for every y e Y there is y* •£ y in Y with 

Thm(Bush„>2(F); >>, Q) = Thm(Buslw2(y);y*, Q). 

(Bush.>2(r) := {x_e m>2 : (3^ e Y)[x < y]}.) 
Assume <p (x, X, P) defines a choice function on T with dp(y>) = n and \g(P) = £. 

Denote F"{m>2) = S C T. Let Q = Q(n,P) C S be a sequence of parameters as 
in the composition theorem 1.13 and let m = m{n,£) be as there. As S = w>2 it 
follows by (*) that there is an infinite anti-chain Y Q S such that 

/ x for each y e Y there is y* ^ y in Y with Thm(Bushs( Y); y, Q) = 
{**> Thm(Bmhs(Y);y*,Q). 

Now assume T (= <p(y, Y,P). By 1.13 Tb.m{Bushs(Y);y, Q) determines Th"(r;>^, 
Y,P) hence by (**) there is y* ^ y in Y with 

Th"(T;y, Y,P) = Th"(T;y*, Y,P) 

therefore 
T\=<p{y,Y,P) ^ T\=<p{y*,Y,P). 

So ip fails to choose an element from Y. -\ 

We conclude 

THEOREM 4.7. If T is a wild tree, then T does not have a monadically definable 
choice function. Moreover, every candidate fails to choose from either linearly ordered 
subsets (4.4, 4.5) or anti-chains (4.3, 4.6). 

§5. Tame trees. Not only that tame trees have definable choice functions, they 
even have definable well orderings of their elements. 

DEFINITION 5.1. Let T be a tree. For n e r we define by recursion a rank function 
rk(//) by: 

rk(^) > a + 1 <*=> there are vi, v2 e 71 with n < v\ and tj < v2 
such that vi _L v2, rk(vj) > a and rk(v2) > a. 

If rk(^) is not defined we stipulate rk(^) = oo. 
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FACT 5.2. 

(1) n < v G T =4> rk(v) < rk(^) where < has the obvious meaning. 
(2) co>2 is not embeddable in a tree T •<=>• for every n £ T, rk(n) ^ oo. 
(3) If ?/ < v\, n < v2 and vi _L v2 then rk(vi) < rk(^) or rk(v2) < xk{n). 

PROOF. Straightforward. H 

LEMMA 5.3. Let T be a tame tree. Then there are Q C T and a monadic for­
mula <p(x, y, Q) that defines a well ordering ofT. 

PROOF. Suppose that T is (n*,/c*)-tame (w* bounds splittings and k* bounds 
Hausdorff degrees of branches). We will partition T into a disjoint union of sub-
branches, indexed by the nodes of a well founded tree T and reduce the problem of 
a well ordering of T to a problem of a well ordering of T. The tameness will enable 
us to define r in T and to well order the set of immediate successors of each node 
of r . The well ordering of T will be induced by the lexicographic order of T. 

STEP 1 (Defining T). LetA = | r |+ . Define by induction on a a set Fa C "A (this 
is a our set of indices), for every rj £ Ta define a tree Tn C T and a branch An C Tn. 

a = 0: To is {()}, T^ is T and A^ is any branch (i.e., a maximal linearly 
ordered subset) of T. 

a = 1: Look at (T \ AQ)/^1
A (see Definition 4.1), it's a disjoint union of trees 

and name it (T^ : i < i*}, let T\ := {(i) : i < i* } and for every (?) £ Ti let 
A^ be a branch of T^. 

a = p + 1: For tj £ Tp denote ( r , \ - 4 , ) / ~ ^ by { 7^A ( ( ) : / < r7 }, let 
r Q = { n A(/) : n £ T/?, / < in } and choose An A(,) to be a branch of T^ A ^ . 

a limit: Let Ta = {// e aA : A/»«» tft/J e I>, hfi<a T„h ± 0 }, let for i , e r o 

I", = C\p<a Tritp and ^ be a branch of T1 .̂ ( r , may be empty.) 
Now, at some stage a < \T\+ we have ra = 0 and let T = U«<Q ^V Clearly 

{ .4, : ?/ € T } is a partition of T into disjoint sub-branches. 

NOTATION. Having two trees T and T, to avoid confusion, we use x, y, s, t for 
nodes of T and 77, v, a for nodes of T. 

STEP 2 ( r is well founded). By tameness of T, for every x £ T, rk(x) is defined 
(i.e., < 00). We would like to show that T contains no infinite branch. For that, we 
have to restrict the choice of the branches Av C Tn. 

For rjA(i) £ F define ynj as max{ rk(/) : t £ T,,*^ } . The maximum is obtained 
by Fact 5.3 and by the definition of ~ ! (from which it follows that for every t\, r2 

in Tn A (,-) there is a £ TnA ̂  such that a <x\ and a <] T2). 

PROVISO. For every n £ F and i < in, the sub-branch A^A^ contains every s £ 
Tr,A{i) withrk(s) = yn>i. 

Now, choose the A^'s by abiding the proviso there is no infinite branch in T. 
Otherwise, suppose {n„ }„<co is < increasing in T and choose s„ £ An„, with rk(s„) = 
yVnti (where n„ = vn {i)). It follows 

rk(i0) > rk(sj) > rk(^2) > • • • 
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hence (rk(s„) : n < co) is an infinite, strictly decreasing sequence of ordinals, a 
contradiction. 

STEP 3 (Definability of r ) . We will show that "x and y belong to the same An" is 
expressible by a monadic formula (with parameters). For that choose for each 77 e T 
a representative sn £ An and let Q := { s^ : rj £ T }. Let h: T —> {Jo, • • •, dn*} be a 
coloring that satisfies 

(i) M , ^ = Jo, 
(ii) for rjA(i) £ T, A|"̂  A . is constant. 

(iii) for / < j < i„, if 5, A<0 ~° ? 5 , A (y) then A ^ A <(> + h ^ A <;). 
There is no difficulty to define h (clause (iii) is taken care of by («*, /c*)-tameness). 

Define a sequence (Do, ...,D„*) of subsets of T by x£ A if and only if A (x) = dt. 
Now li\Jn[x, y £ A,,]" is defined by 

#(*,;>;,£):= [(x < j ) V (7 < * ) ] & Y (x £Di=y£ A) l 

& (Vz) [(* < z < y) V (7 < * < *)] -» [\/(x €Dt=ze D{) 

Let, for x £ T, A^x) = ^4* be the sub-branch to which x belongs. ^4* is definable 
from {x} and D and in particular each An is definable from {s,} = Q n -4, and Z) 
so there is a monadic formula ^(s , , A', JD) saying "X = ^4^". We would like now to 
interpret the partial order of T in T. 

By the construction, T \= rj < v if and only if every element of Av cuts A,,, i.e., 
is above an initial segment and is incomparable with a final segment of An. Let 
the partial order < on sub-branches be defined by X < Y if and only if for some 
rj, v £ T, X = An and Y = Av and T \= (rj < v). Now "X < Y" is definable by 

4>(X, Y,Q,D) := (3sn,s, £ Q)[X{s„X,D) AX(sv, Y,D)] 

& (3v,w £ X)[(v < {Q n 7)) A ( w l ( g f l 7 ) ) ] . 

Caution! if T has a root this is not true for A() and a < w* J4<,-)'S. TO fix that 
we may have to add < n* parameters (for A^,.. .,A^,^) but there is no problem 
with that. 

So cj> and 6 interpret ( r , <) in T. 

STEP 4 (Well ordering of immediate successors in T). As each An has Hausdorff 
degree < k*, we can choose a sequence Pn = (P%,..., Pl»_x) C ,4, and use it to 
define a well ordering of An by a monadic formula ipk. (x, y, P) as in Claim 3.3. Let 
P C T be U»sr ^ ( t n e u n i ° n is disjoint in each coordinate) and let 

<p(x,y,P) := (6(x,y,D) & ^ . ( x j . P f l ^ ) ) . 

This defines a partial order on T such that the restriction to each sub-branch An is 
a well order. 

Now as "v G S u c r W is definable (as a relation between sv and 5,), so is the 
set AJ := { ^ A ^ : j < z, } (from sn, Q and .D). The order on An induces an 
order on {sn A <;) / ~ ° } that is embeddable in the completion of An and therefore has 

Sh:539



1226 SHMUEL LIFSCHES AND SAHARON SHELAH 

Hausdorff degree < k* as well. (To compare sn^^ and ^ A ^ compare the initial 
segment of An below sn A ̂  and the initial segment of An below sn A (;->). Thus, using a 
sequence of parameters (Q\,..., Ql»), we can define a well order on {sn *(i)/~°A }• 
To compare S^A^'S that are ~° -equivalent but not ~^ -equivalent (each such 
collection has < n* elements), fix once and for all an ordering between the colors 
{do,.. -,d„*}. 

As before, the sequence Q := U„er Qi enaWes us to define a partial order on Q 
such that its restriction to each A+ is a well order. This defines a well order on sets 
of immediate successors in T. 

STEP 5 (Well ordering T). Using the parameters Q, D, P, and Q define a well 
order on the elements of T by x < y if and only if one of the following: 

(i) x and y belong to the same An and x < y according to the well order 
on A,, 

(ii) x e An, y e Av and T \= {n < v), 
(iii) x € An, y € Av, a = nV\v, aA{i)<n, a A(j) < v and saA{i) < s„ A ( ; ) 

according to the well order on A+. [a = n n v is easily definable as a 
relation between sa, s^ and sv.) 

We have defined a linear order < on the elements of T in which each An is a convex 
subset and well ordered. Moreover on T (that is on the set of representatives Q), 
< is the lexicographical ordering where each set of immediate successors is well 
ordered. As T is well founded we have defined a well order of T. -\ 

We conclude: 

THEOREM 5.4. Let T be a tree. If T is wild then there is no definable choice 
function on T {by a monadic formula with parameters). If T is tame then there 
is even a definable well ordering of the elements of T by a monadic formula {with 
parameters) tp(x, y, P). 

A tree is tame [wild] if and only if its completion (the tree obtained by completing 
each branch) is tame [wild]. By this and Theorem 4.7 we have: 

CONCLUSION. Let T be a tree and T' be its completion. Then the following are 
equivalent: 

(a) T is tame. 
(b) For some n, £ 6 N, for every anti-chain/branch A of T there is a monadic 

formula PA{X, X, PA) with dp(y>) <n, P C T and lg(-P) < t, that defines 
a choice function from nonempty subsets of A. 

(c) There is a monadic formula, with parameters, y/{x, y, P) that defines a well 
ordering of the elements of T. 

(d) There is a monadic formula, with parameters, y/'{x, y, P') that defines a well 
ordering of the elements ofT'. H 

REMARK. In a forthcoming paper ([5]) we solve the full uniformization problem 
for the monadic theory of trees. 
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