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Annals of Mathematics, 102 (1975), 379-419 

The monadic theory of order 
By SAHARON SHELAH 

Abstract 

We deal with the monadic (second-order) theory of order. We prove all 
known results in a unified way, show a general way of reduction, prove more 
results and show the limitation on extending them. We prove (CH) that the 
monadic theory of the real order is undecidable. Our methods are model- 
theoretic, and we do not use automaton theory. 

0. Introduction 

The monadic logic is first order logic when we add variables ranging 
over sets, and allow quantification over them. If pairing functions are avail- 
able this is essentially second order logic. The monadic theory of a class K 
of L-models is {*: g is a sentence in monadic logic, satisfied by any member 
of K}. 

Here we shall investigate cases where the members of K are linear 
orders (with one-place predicates). 
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Let us review the history. Ehrenfeucht [Eh 1] proved the decidability 
of the first-order theory of order. Gurevich [Gu 1] deduced from it the case 
of linear order with one-place predicates. BUchi [B 1] and Elgot [El 1] proved 
the decidability of the weak monadic theory (i.e., we can quantify over finite 
sets) of (the order of) se, using automaton theory. BUchi continued in this 
direction, in [B 2], showing that also the monadic theory (i.e., quantification 
is possible over arbitrary sets) of o is decidable; and in [B 4] he showed the 
decidability of the weak monadic theory of ordinals. In [B 5, 96] he proved 
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380 SAHARON SHELAH 

the decidability of the monadic theory of countable ordinals. Rabin [Ra 1] 
proved a very strong and difficult result, implying the decidability of the 
monadic theory of countable orders. Biichi [B 5] showed the decidability of 
the monadic theory of o)N and of {a: a < a)2}. 

Meanwhile Laiichli [La 1], using methods of Ehrenfeucht [Eh 2] and 
Fraisse [Fr 1] and continuing works of Galvin (unpublished) and Laiichli and 
Leonard [LL 1], proved the decidability of the weak monadic theory of order. 
He did not use automaton theory. Pinus [Pi 1] strengthened, somewhat, 
those results. Our results have been announced in [Sh 1], [Sh 2]. 

By our notation LaUchli used Thn only for I <1, 1, 1, ***> (changed for 
the quantification over finite sets). 

Remark. We are not interested here in results without the axiom of 
choice. See Siefkes [Si 2] which shows that the result on 0) is provable in ZF. 
This holds also for a < soe. Litman [Li 1] pointed out some mistakes in [B 5, 
? 6] (theorems without AC); proved connected results, and showed in ZF that 
(ON is always characterizable by a sentence. 

In Section 7 we prove (CH) the undecidability of the monadic theory of 
the real order and of the class of orders, and related problems. It can be 
read independently, and has a discussion on those problems. Gurevich finds 
that our proof works also for the lattice of subsets of a Cantor discontinuum, 
with the closure operation, and similar spaces. Hence Grzegorczy's [Gr 1] 
question is answered (under CH).' 

Our work continues [La 1], but for well ordering we use ideas of Biichi 
and Rabin. We reduce here the decision problem of the monadic theories of 
some (classes of) orders [e.g., well orderings; the orders which do not embed 
(oN nor s)] to problems more combinatorial in nature. So we get a direct 
proof for the decidability of countable orders (answering a question of Biichi 
[B 5, p. 35]). Our proof works for a wider class, thus showing that the count- 
able orders cannot be characterized in monadic theory, thus answering a 
question of Rabin [Ra 1, p. 12]. Moreover, there are uncountable orders which 
have the same monadic theory as the rationals (e.g., dense Specker order; 
see [Je 1] for their existence; and also some uncountable subsets of the reals). 
We also show that the monadic theory of {a: a < )+} is recursive in that of 
X, generalizing results of Buichi for wo and (o. Unfortunately, even the 
monadic theory of 02 contains a statement independent of ZFC. For a set A 
of ordinals, let F(A) = {a: a is a limit ordinal of cofinality > (o, a < sup A, 
and a n A is a stationary subset of a}. 

I Gurevich meanwhile has proved more and has a paper in preparation. 
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THE MONADIC THEORY OF ORDER 381 

Now Jensen [J 1] proved the following: 
THEOREM 0.1 (V= L). A regular cardinal K is weakly compact if and 

only if for every stationary A C K, such that (Voa e A) [cf a = a)], F(A) # 0. 

As the second part is expressible in the monadic theory of order, the 
Hanf number of the monadic theory of order is high. Clearly also the monadic 
theory of the ordinals depends on an axiom of large cardinals. 

Now, Baumgartner [Ba 1] shows that if ZFC + (there is a weakly compact 
cardinal) is consistent, then it is consistent with ZFC that 

( * ) for any stationary A ( o2, if (Voa e A) [cfa = a)], then F(A) + 0 
(and in fact is stationary). 

So ZFC does not determine the monadic theory of o)2. This partially 
answers [B 5, p. 34-43; p. 38, Problem 3]. 

We can still hope that the number of possible such theories is small, and 
each decidable, but this seems unlikely. We can also hope to find the sentences 
true in every model of ZFC. A more hopeful project is to find a decision 
procedure assuming V = L. We show that for this it suffices to prove only 
the following fact. Let D,02 be the filter of closed unbounded subsets of 0)2. 
(Magidore disproves (**) in V= L, but it may still be consistent with ZFC.) 

(* *) if A C-{-a < 02: Cf a = w}, F(A) = B U C, A is stationary, then 
there are A,, A2, such that A = A, U A2, Al nA2 = 0, A,, A2 are stationary 
and F(A1) = B(mod Dm,2), F(A2) = C(mod Dm2). 

We prove, in fact, more: that the monadic theory of a)2 and the first 
order theory of <P(a1)2)/DO2, fl, U, F> are recursive one in the other. 

Conjecture 0.1 (V = L). The monadic theory of ()2 (and even (o)n) is 
decidable. 

Conjecture 0.2 (V = L + there is no weakly compact cardinal). The 
monadic theory of well orders is decidable. 

LaUchli and Leonard [LL 1] define a family M of orders as follows: It is 
the closure of {1} by 

(1) M+ N, 
(2) M.a) and M.a)*, 
(3) * Mi which is Rae Q Ma and la C Q: Mla- =Mi is a dense subset of 

the rationals, and each Ma C {Mi: i < n}. 
(See Rosenstein [Ro 1] and Rubin [Ru 1] for generalization.) 
LaUchli [La 1] proved that every sentence from the weak monadic lan- 

guage of order has a countable model if and only if it has a model in M. Easy 
checking of Section 4 shows this holds also for the monadic language. On the 
other hand, looking at the definition of M, we can easily see that for every 
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382 SAHARON SHELAH 

Me Mthere is a monadic sentence * such that M I , and 11 Nl < Row 
N = imply N- M. 

In this way we have a direct characterization of M. 

THEOREM 0.2. Me M if and only if M is countable and satisfies some 
monadic sentence which is (?: 0)-categorical. 

Also for other classes whose decidability we prove, we can find sub- 
classes analogous to M. This theorem raises the following question: 

Conjecture 0.3. For every Ne M there is a monadic sentence * such 
that M t * implies that M and N have the same monadic theory. (It suffices 
to prove this for the rational order.) 

Related questions are: 

Conjecture 0.4. There is a monadic sentence * such that R l + and 
M l + imply that M and R have the same monadic theory.2 

Conjecture 0.5. There is an order Mwhich has the same monadic theory 
as R, but is not isomorphic to R.3 

Conjecture 0.6. There are orders with the same monadic theories, whose 
completions do not have the same monadic theories.4 

The characterization of M gives us also 

Conclusion 0.3. The question whether a sentence in the first-order (or 
even monadic) theory of order is (?80)-categorical (or N0-categorical) is 
decidable. 

A natural question is whether the monadic theory of OR is more "com- 
plex" than that of the ordinals (the orders in OR are countable unions of 
scattered types; see Laver [Lv ? 3], which includes results of Galvin). To 
answer this, we have the 

Definition. For a model M with relations only, let MO be the following 
model: 

(i) its universe is the set of finite sequences of elements of M; 
(ii) its relations are 

(a) <, where d' < b means a is an initial segment of b, 
(b) for each n-place predicate R from the language of M, 

RM` - {K<<a, ..., a.-,, b'>, <a,, .., a,,-,, b2>, ..., <a,, ..., a.l, b?>>: 

ai, b' are elements of M, and M l= R[b', *.., bn]} 

2 Confirmed by Gurevich. 
Refuted by Gurevich. 
Confirmed by Gurevich. 
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THE MONADIC THEORY OF ORDER 383 

The author suggested a generalization of Rabin's automaton from [Ra 1], 
proved the easy parts: the lemmas on union and intersection, and solved the 
emptiness problem. Then J. Stup elaborated those proofs, and proved the 
complementation lemma. Thus a generalization of the theorem and proof of 
[Ra 1] gives 

THEOREM 0.4. The monadic theory of MI is recursive in the monadic 
theory of M. 

Thus, using [Lv 1, ? 3] notation, we get, e.g., 
Conclusion 0.5. The monadic theory of {M: Me OR, 11 MI < XI is recur- 

sive in the monadic theory of x. 
Because by Section 2 the monadic theory of a is recursive in the 

monadic theory of x, by 0.4 the monadic theory of Hi+,i+ is recursive in the 
monadic theory of x, and so we finish, as by [Lv 3.2 (iv), 3.4] hi+,i+ is a 
universal member of {Me OR: II MI < XI. 

Also useful are the following (Le Tourneau [To 1] proved parts (1), (2) 
at least):5 

THEOREM 0.6. Let L be a language with one one-place function symbol 
equality and one place predicates. 

(1) The monadic theory of L is decidable. 
(2) If a monadic sentence * of L has a model, it has a model of cardi- 

nality ? JR, 
(3) In (2) we can find n = n(*) < )A0 and a model M such that I {b e 

I MI: f (b) = a} I < n for any a e I MI. 
This is because, if M, is the model whose universe is X, and whose 

language contains equality only, in MO we can interpret a universal L-model 
(see Rabin [Ra 1]). This implies (1). Note that all M, (\ an infinite cardinal) 
have the same monadic theory. This proves (2). For (3) note that if Mx0 l 
then for all big enough n, M, l= 

Remark (1). Rabin [Ra 1] prove the decidability of the countable Boolean 
algebras, in first-order logic expanded by quantification over ideals. By the 
Stone representation theorem, each countable Boolean algebra can be repre- 
sented as the Boolean algebra generated by the intervals of a countable order. 
By the method of Section 3 we can prove that the theory of countable linear 
orders in monadic logic expanded by quantification over such ideals, is 
decidable, thus reproving Rabin's result. (The only point is that the methods 
of Section 2 apply.) 

I Le Tourneau only claimed the result. Lately also Routenberg and Vinner proved this 
theorem. 
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384 SAHARON SHELAH 

Conjecture 0.7. The monadic theory of orders of cardinality < tA is 
decidable when 8A <K 2`o. 

Conjecture 0.8. The theory of Boolean algebras of cardinality < X or in 
first-order logic expanded by allowing quantification over ideals is decidable, 
when X ? 2Ro (X - = ,2 < 20o). 

Remark. We can prove Conclusion 0.5 by amalgamating the methods of 
Sections 4, 5, and 6. 

1. Ramsey theorem for additive coloring 

A coloring of a set I is a function f from the set of unordered pairs of 
distinct elements of I, into a finite set T of colors. We write f(x, y) instead 
of f({x, y}), assuming usually that x < y. The coloring f is additive if for 
xi < yi < zi E I (i = 1, 2), 

f (x1, Y1) = f (X2, Y2) , f (Y1, Z1) = f (y2, Z2) 

imply f(x1, z1) = f(X2, z2). In this case a (partial) operation + is defined on T, 
such that for x < y < z e I, f(x, z) = f(x, y) + f(y, z). A set JC I is homo- 
geneous (for f) if there is a t0 e T such that for every x < y e J, f(x, y) = to. 

Ramsey's theorem [Rm 1] states, in particular, that if we color an infinite 
set with a finite set of colors, then there is an infinite homogeneous subset. 
This theorem has many generalizations and applications. It was used in [B 2] 
for a coloring which was, in fact, additive. Using an idea of Rabin, Biichi 
[B 5, (12, p. 58)] offered an alternative proof (using, in fact, additivity) and 
in [B 5, (6.2, p. 111)] straightforwardly generalized it to co, (the result for w1 
is not true for colorings in general). We give the natural extension to arbi- 
trary ordinals (which is immediate, and included for completeness) and a 
parallel theorem for dense orders. 

THEOREM 1.1. If a is a limit ordinal, f an additive coloring of a (by a 
set T of n colors), then there is an unbounded homogeneous subset J of 3. 

Remarks. (1) If the cofinality of a is ? w1 we can assume that if a, 
b < c', f (a, c') = f (b, c'), then a, b < c C J implies f (a, c) = f (b, c). 

( 2 ) Instead of I T K < 8t, we need assume only T K < cf (a). 

Conclusion 1.2. Under the condition of 1.1, there are a closed unbounded 
subset J of a, and Jk, J1, 1 ! k, 1 I TI and t'e T such thatJ= UkJk= 

U, J' the Jk's are disjoint, the JXs are disjoint, and if a < b e J, a e Jk, b e J1 
then f (a, b) = tk - 

THEOREM 1.3. If f is an additive coloring of a dense set I, by a finite 
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THE MONADIC THEORY OF ORDER 385 

set T of n colors, then there is an interval of I which has a dense homo- 
geneous subset. 

Conclusion 1.4. Under the hypothesis of 1.3, there is an interval (a, b) 
of I, and (a, b) = U'Tl Jk = Ut31 J1 and colors t' e T such that for x < y, x e 

Jk, Y G J, f (x, Y) = t~k 

Remark. We can choose the J0, Jk, JX's so that they are definable by 
first-order formulas with parameters in the structure (Q, <, f) (or (I, <, f )). 

Proof of Theorem 1.1. Define: For x, y e 3, x - y if there is a z such 
that x, y < z < 3, and f (x, z) = f (y, z); clearly this implies by the additivity 
of f that for any z', z < z' < 3, f(x, z') = f(y, z'). It is easy to verify that - 
is an equivalence relation with ? I T I equivalence classes. So there is at least 
one equivalence class I, which is an unbounded subset of 3. Let x0 be the 
first element of I. Let, for t e T, It = {y: x0 # y e I, f(x0, y) = t}. Clearly 
I - {JX} = UteT IT, hence for some s, Is is an unbounded subset of 3. Let 

<aj: i < cf6> be an increasing unbounded sequence of elements of 3. Define 
by induction on i elements yi e I. If for all j < i (i < cf 3), yj have been 
defined, let yi < a be such that yi > yj, yi > aj, yi > x. and f(xo, yi) = f(yj, yi) 
for any j < i, and yi e Is. Now J = {jy: i < cf3} is the desired set. Clearly 
it is unbounded. If yj < Ky (hence j < i) then 

f(yj, yi) = f(xo, ys) = s. 
So J is homogeneous. 

Proof of Conclusion 1.2. If the cofinality of a is w4, then the Jfrom 1.1 
is also closed (trivially). So assume cf a > J,, let T = {t1, ... *, tj, and let J, 

yj be as defined in the proof of 1.1; and let J* be the closure of {Yjy1: j < cf }. 
Then J* = {y5: j < cf 3} is increasing, continuous, and yj+l = yj+, Let J' = 

{yj: j is a limit ordinal}, 

Jk = {Yj: j is a limit ordinal, f (yi, yj+l) = tk}, 

Jl= {yj: j is a limit ordinal, and (vi < j)(3a) (i < a < A A f (ya+l y5) = to) 

but this does not hold for any 1' < 1} . 

Now clearly J' = Uk Jk = U, J', and if x e Jky z e J', x < z then x = yi, z = 
yj, i < j, i, j are limit ordinals and there is an a, i < a < j, such that 
f(y0+', y5) = t,. Hence 

f(x, z) = f( yi yj) = f(yi yi+1) + f(yi+1 y+1) + f(Py0?+l yi) 

tk + f(Yi+l, Yl+)) + tl tk + + tt 

Clearly all the demands are satisfied. 

Proof of Theorem 1.3. Remember that J I is dense in an interval (a, b) 
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386 SAHARON SHELAH 

if for every x,y e I, a < x < y < b, there is a z e J such that x < z < y. It 
is easy to see that if JC Iis dense in an interval (a, b) and J = U m=1 Jk (m > 1) 
then there are k and a', b' such that a <a' < b' Kb, 1 : i k? m and Jk i3 
dense in (a', b'). 

Define for any a e I, JC I 

F(a, J) = {t: t e T, ('lx > a) (3 y e J)(a < y < A A f (a, y) = t)} 

Notice, that since T is finite, for any a e I, and any JCZ I there is a b, 
a KbeIsuch that: 

t e F(a, J) if and only if there is a y e J, a Ky Kb, f(a, y) = t. 

We define by induction on m ? n2n + 2 intervals (am, bin), sets Jm dense in 
(am, bin), and (for m > 0) sets D. - T. 

For m = 0, let (ao, bo) be any interval of I, and Jo = {x e I: ao < x < bo}. 
Suppose (am, b.), Jm are defined. For any D ( T let JJ(D) = {a G J:m F(a, J.) = 
D}. Clearly J. = UD T efm(D) and as there are only finitely many possible 
D's (<2n), there is an interval (a,+,, bm+i) and Dm+, ( T such that Jfm(Dmi+) is 
dense in (a.?1, bm.+), and am < a,1 < bm+ < bn. Let Jm+i = (a.?, bm+i) n 
Jm(Dm.+). Clearly Jm _ Jx,+l and m > k implies Jk l-J J., and (am, bin) is a sub- 
interval of (ak, bk). 

As there are only ? 2n possible DiR, there are a D C T and 0 ? mo < ... < 
mn _ n2l + 1 such that Dni+? = D. Define, for 0 < k < n, ak -amk, bk = bmnk, 

jk = T~ -6 'J- mjsk 

It is easy to check that if O < k < 1 ? n, x e J' then x e J-1 _1 Jmk+l, hence 
F(x, Jk) = F(x, Jmk) Dk+ = D. It is clear that J0 D J' D 

Jn. 

Choose x. e Ja. Then there is x1, x0 < x1 < bn, such that xo < y < x1, y e 
J? implies f(x0, y) e F(x0, J?) = D. Hence t e D if and only if there is y 2 Jn-1 

x0 < y < x1, f(xo, y) = t, if and only if there is y e Jo, xo < y < x1, f(x,, y)- 
t. Clearly 

J n (xo, xi) = UteT {Y: Y G J., x0 < y < x1, f(xo, y) = t}. 

Hence there are a, b, to such that xo < a < b < x1 and 

J* {y: y e J", a < y < b, f (xo, y) = to} 

is dense in (a, b). Clearly to e D. 
It is easy to check that for t, s e D, t + s is defined and e D, so for t e D 

m > 1 define mt e T. by induction on m: lt = t, (m + 1)t = mt + t. As Thas 
n elements, ito, 2to, *.. , (n + 1)to cannot be pairwise distinct. So there are 
, j, 1 < i < (i + j) n + 1 such that ito= (i + j)to. Define 

6 In fact Dm(T) :-Dm(T), hence we can replace n2n + 2 by n2 + 2. 
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THE MONADIC THEORY OF ORDER 387 

J = {y: a < y < b, f(x0, y) = jt0, y e J"-j+l} 

We shall show that J is the desired set. 

(I) J is dense in (a, b). 
Suppose a <a' <b' <b, and we shall find z J, a' <z <b'. As J* is 

dense in (a, b) there are z e J* Jn, a' < zn < b'. We define by downward 
induction zk for n - j + 1 < k < n such that zk e Jk, a' < zk < b'. For k = n, 
zk is defined. Suppose zk+, is defined, then as Zk+l G Jk+1 it follows that 
F(zk+l, Jk) = D. As to e D there is Zk 2 Jk, such that Zk+1 < zk < b' and f(zk+l, 

zk) = to. Clearly 

x < Zn4 < Zn4-1 < ...< z n j+l 

f (X09 Z ) = to , f (zi+' zi) = to 

Hence f(xo, zn-i+') = to + * + to = jto, so Z '-i+, e J, a' < zn-i+1 < b'. 

(II) J is homogeneous. 
Suppose a < y < z < b, y, z e J. Then y e Jn-j+l. Now define by down- 

ward induction yk G Jk for O < k < i, y < yk < z. Let yi = y (yi e Ji because 
yi = y (S Jflj+l and as i + j < n + 1, i n-ji + 1 hence Jn-j+lC Ji) If 
yk+l is defined then F(yk+l, Jk) = D, hence there are yk G Jk, yk+l < yk < z such 
that f(yk+l, yk) = to. It follows that xo < y = yi < yi-l < ... < y0 < z and 

f (yk, yk-1) = to 

Hence 

f(y, YO) = f(y i 
y?) = ito 

So 

f(y, Z) = f(y, y0) + f(y?, Z) = ito + f(y0, z) 
= (i + j)to + fP(Y0, z) = jto + ito + f(yg, z) 
= f(x0, ) A+ f(y, y?) + f(y?, z) = f(X0, z) = jto0 

This proves the homogeneity of J. 

Proof of Conclusion 1.4. Let (a, b), J and to be as in the proof of 1.3. 
Let T = {t1, *.., tJ}. Let 

Jk = {y: y s (a, b), tk GF(Y, J) t1, *..., tk-1 F(Y, J)} 9 

J' = {y: y e (a, b), t, 2 F'(y, J), t, *... t,1 2 F'(y, J)} 

where F' is defined just as F is, but for the reversed order. 
Clearly (a, b) = Uk Jk = U1 J1. Suppose x < y, x e Jkq y e J,. Then we 

can find x', y', x < x' < y' < y, x', y' E J, such that f(x, x') = tk, f(y', y) = t . 
Hence 

f (x, y) = f (x, x') + f (x', y) + f(y, y) = tk + to + tt - t= . 
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388 SAHARON SHELAH 

2. The monadic theory of generalized sums 

Feferman and Vaught [FV 1] proved that the first order theory of sum, 
product, and even generalized products of models depends only on the first- 
order theories of the models. Their theorem has generalizations to even more 
general products (see Olmann [01, 1]) and to suitable infinitary languages (L., 
see Malitz [Ma 1]). On the other hand, it is well-known that for second order 
theory this is false even for sum (as there is a sentence true in the sum of 
two models if and only if they are isomorphic, for fixed finite language, of 
course). Also for monadic (second-order) theory this is false for products of 
models (there is a sentence true in a direct product of two models of the 
theory of linear order if and only if the orders are isomorphic). We notice 
here that the monadic theory of generalized sum depends only on the monadic 
theories of the summands and notice also generalization of known refinement 
(see Fraisse [Fr 1]). We can prove them using natural generalizations of 
Ehrenfeucht games (see [Eh 1]). LaUchli [La 1] uses some particular cases of 
those theorems for the weak monadic theory. As there is no new point in the 
proofs, we skip them. We should notice only that a subset of sum of models 
is the union of subsets of the summands. The results of [FV] can be applied 
directly by replacing Mby (I Ml U P(M), M, E). 

Notation. L will be first-order language with a finite number of symbols, 
LM the corresponding monadic language, L(M) the first-order, language cor- 
responding to the model M, the universe of M, is I Ml. Let x, y, z be individual 
variables; X, Y, Z set variables; a, b, c elements; P, Q sets; P(M) = {P: PZ 
I MI}. Bar denotes that this is a finite sequence, e.g., a; l(d') its length, a = 
... , aj, *...>i<l(a), and let a-(i) = aj. We write a- E A instead of ai E A and 

a E M instead of a- E I M 1. K is a class of L(K) models (L(K) = L(M) for any 
Me K). Let 

Km = {(M, P): P G P(M)m}, Koo = Um<. Km. 

Let k, 1, m, n, p, q, r denote natural numbers. 

Definition 2.1. For any L-model M, PeP(M), a-E Ml, afinitesetof 
formulas (X1, * * *, x1, ***) e L, a natural number n, and a sequence of natural 
numbers k of length > n, define 

t = th'((My P. a-), (D) 

by induction on n: 
For n = 0: 
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THE MONADIC THEORY OF ORDER 389 

For n = m + 1: 

t = {th-(M, Pa b): bE M|r"}. 

Definition 2.2. For any L-model M, P E P(M), a finite set D of formulas 
* **, X1, ***)cE L, n, lof length ? n-+1, define T = Th!((M, P), (D) by 

induction on n: 
For n = 0: 

T = th'((M, P), D) 

For n = m + 1: 

T = {Th A((M PQ), (D): Q E P(M)k'(} 

Remarks. ( 1 ) If D is the set of atomic formulas we shall omit it and 
write Th"(M, P). 

(2) We always assume k(i) > 1 for any i < I(k), and k(O) > m, if R E 
L(M) is mR-place. 

(3) If we write k(i) for i ? I(k), then we mean 1, and when we omit k 
we mean <max mR, 1, * * * >. 

(4) We could have mixed Definitions 2.1, and 2.2, and obtained a similar 
theorem which would be more refined. 

LEMMA 2.1. (A) For every formula A(X) E LM(M) there is an n such 
that from Th7(M, P) we can find effectively whether M #= *[P]. 

(B) For every L,lk,n , '1L, and m there is a set T = {'(X): I< 1,(<w), 
I(X) = m} (,r e LM) such that for any L-models M, N and Pe P(M)m, 
Q E P(N)m the following hold: 

(1) Th"((N, Q), I) can be computed from {l < lo: N # 11Q]}. 
(2) Th7((N, Q), I) = Th7((M, P), (D) if and only if for any 1 < lo, 

M k f ,[P] = N l= *[Q]. 

Proof. Immediate. In (A) it suffices to take for n the quantifier depth 
oft. 

LEMMA 2.2. (A) For given L, n, m, k, each Thk(M, P) is hereditarily 
finite, and we can compute the set of formally possible Th"(M, P), I(P) = m, M 
an L-model. The same holds for O. 

(B) If 1(0) l k(O), 1 = O < p1 < p2 < ... < p, m and for 1 ? i? 
nk(i) < jP j l(j) then from Thj ((M, P), () we can effectively compute 
Thk((My P), (D). 

(C) For every n, k, 1 we can compute m such that from Thm-((M, F), $) 
we can effectively compute Thn((M, P), 0). 

(D) Suppose in Definition 2.2 we make the following changes: We 
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390 SAHARON SHELAH 

restrict ourselves to partition P, and let Q be a partition refining P, which 
divides each Pi to 2k m) parts. What we get we call pTh7((M, P), (D). Then 
from pTh7((M, P), (D) we can effectively compute Th"((M, P), (D), and vice- 
versa. 

(E) Let K, n, D be given. If for every k there is an 1 such that for 
every m, M, NE Km, 

Th-(M, (D) = Th"(N, (D) - Thk"'(M, () = Th"+'(N, (D) 

then for every m, k there is an 1 such that for any m, M, Ne Km 

Th-(M, D) = Th"(N, D) - Th-(M, D) = Th-(N, D). 

Remark. This is parallel to elimination of quantifiers. 

(F) In (E), if in the hypothesis 1 can be found effectively fromi k then 
in the conclusion, I can be found effectively from m, k. If in addition 
{Th"(M, LI): Me Km} is recursive in k, m then {Th"(M, (D): Me K} is recur- 
sive in p, A. 

Proof. Immediate. 

The following generalizes the ordered sum of ordered sets (which will be 
our main interest) to the notion of a generalized sum of models. (Parts (1), 
(2), (3) of the definition are technical preliminaries.) 

Definition 2.3. Let L1, L2, L3 be first-order languages, Mi an L1-model 
(for i e I NI), N an L2-model, and we shall define the L3-model M = NI 

(the generalized sum of the Mi's relative to a).7 
(1 ) An n-condition z is a triple <E, 'l, P> where: 

(A) E is an equivalence relation on {O, 1, ... , n-1}. 
(B) 1 is a finite set of formulas of the form 9(xj1, **, xik) where j1, 

* * , are E-equivalent and <n; and q' E L1. 
(C) T is a finite set of formulas of the form /(xj1, ... , xj,) where j1, 

Y@ ik < iny *eL2- 
(2) If a0, ... , an_1 E Uie 1N, Mi, z = <E, '1, P> is an n-condition, at E Mi(l,, 

then we say <a0, ..., a,-1> satisfies z if: 
(A) i(l) = i(m) I lEm; 
(B) (P(xil, . ., Y) E P MN # ) pi(j[aj, ..., k 

MC *(Xily .. * * Xjk) e NY- N W= Ati~i), * *,i(jk)]- 

(3 ) The rule, a, is <L1, L2, L3, v*> where a* is a function whose domain 
is the set of predicates of L3; if R is an n-place predicate in L3, a*(R) will be 
a finite set of n-conditions. 

7 We assume, of course, that the IMl 's are pairwise disjoint. 
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THE MONADIC THEORY OF ORDER 391 

(4) M= EieINI Mi is an L3-model, whose universe is Uie INI I Mi l, and 
for every predicate R E L3, RM'{Ka , ** , a-,>: <a., **, an-,> satisfies some 
c E *(R)} 

Let e1(u)(T(a)) be the set of all formulas q'j e L1(a) (*, E L2(a)) appearing 
in the a(R)'s, R E L3(a), and the equality. 

Remarks. (1) We use the convention that 

EieN (Mi' P ) - (L:eN M", Ue N P ) 
where for Pi = <Pl, *.*.*, Pm>, Ui Pi = <Ui Pi, 9 * * Ui Pi>. 

(2) We could have defined the sum more generally, by allowing the 
universe and the equality to be defined just as the other relations. 

LEMMA 2.3. For any a, n, m, k, if for I = 1, 2, P1 E P(Mil)m and for 
every i E N, 

Thn((Mi, Pt'), @(o)) = Thn((Mi, pi) q1(a)) 

then 

T(EK eN (Mi Pi')) = ThV( 2N (kh ps)) 

THEOREM 2.4. For any a, n, m, k we can find an f such that: if M= 

lieN Mi, ti = Thn((Mo, Pi), 0I(a)), and Qt = {i N: ti = t}, I(Pi) = m, then 
from Th"((N, *.., Qt, ... ), T(u)) we can effectively compute Th"(M, Ui Pi) 
(which is uniquely determined). 

Definition 2.4. (1) For a class K of models 

Th;(K, I) = {Th"(M, (D): Me K} . 

(2) The monadic theory of K is the set of monadic sentences true in 
every model in K. 

(3 ) For any d, K1, K2, let ClU(K1, K2) be the minimal class K such that 
(A) K1 c K, 
(B) if j < 1(a), Mi E K, Ne K2 then A(i) Mi E K. 

Conclusion 2.5. Suppose d, n, k, m are given. L,(ui) L3(%i) = L, L2(ui)= 
L2; L, L2 are finite and each '(vi), T(ui) is a set of atomic formulas. There 
is an r- such that for every K1, K2, from Thr(K2t1`), Th"(K,-) we can effec- 
tively compute Thn(Km) where K Cl7(Kg, K2) (remember K,- = {(M, P): 
Me K1, P E P(M)m) (K1 should be a class of L-models, K2 a class of L2-models). 

Proof. For every j < 1(a) let f- relate to v(j), n, k, m just as r- relates 
to a, n, k, m in Theorem 2.4. Now choose an r- such that for every I < n, 

Let> rT(l). 
Let T be the set of formally possible Th?,(M, Pfor M an L-model, 
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392 SAHARON SHELAH 

l(P) m, and we can define r(n + 1) = 1 TI. Let T = {t(O), **, t(p - 1)} 

(sop = I Tj = r(n + 1)). 
Clearly, by the definition of rj, and by (a trivial case of) 2.2 (B), if M= 

,; j Mj, ti = Th!(Mi, P%), Q, = {i e N: t. = t(l)}, I(Pi) = m, then from t = 
Th!(N, * *, Qi, ... )I<p we can effectively compute Th"(M, Uj, Pj, and denote 
it by g(t). 

Now define by induction on 1, T7 _ T. 
Let T, = Th"(K7m), and if T, is defined let Tq,+ be the union of Tq with 

the set of t e T satisfying the following condition: 
(*) There is a t* e Th!!(K("+1')) such that t = g(t*), and if t* implies that 

Q, is not empty, then t(l) e Tq. 

Remark. Clearly if t* = Th!!(N, *... Q1, *.. ) then from t* we can com- 
pute Tho (N, ... Q1, ) and hence know whether Q, # 0 

Clearly T,, T1, T2, *.. * *T so, as I TI = p, for some q < p, Tq = Tq+1. 
Now let 

K* = {Me K: for every P e (P(f M1)tm Thn(M, P) e Tq}. 

Clearly Th"(K.f) _ Tq, and we can effectively find Tq. Now if Ne K2, Mi e K* 
for i e N, and M= , Mi, then for any Pe P(1 Ml)m, Thn(M, P) e Tq+= 
Tq by the definition of Tq+,, and Me K by the definition of K, hence Me K*. 
As clearly K, ( K* _ K, by the definition of K = Cl(K1, K2) necessarily K* = 
K. So it suffices to prove that Th;(K") _ T. (Take 1 = q.) This is done by 
induction on 1. 

LEMMA 2.6. If M is a finite model, then for any $D, n, k we can effec- 
tively compute Th"(M, $D) from M. 

Remark 2.7. Naturally we can ask whether we can add to (or replace 
the) monadic quantifiers (by) other quantifiers, without essentially changing 
the conclusions of this section. It is easily seen that, e.g., the following 
quantifiers are suitable: 

(1) (3 X) -there is a finite set X 
(2) (3IX) -there is a set X, I X I < X (x a regular cardinal). When 

dealing with ordered sums of linear order, also 
(3) (3WOX) -there is a well-ordered set X 
(4) (32X) -there is a set X, with no increasing nor decreasing se- 

quence in it of length X (x a regular cardinal). 
If we add some of those quantifiers, we should, in the definition of 

Th?((M, P), sD) state which Boolean combinations of the P,'s are in the range 
of which quantifiers. If we e.g., replace the monadic quantifier by (31X), we 
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THE MONADIC THEORY OF ORDER 393 

should restrict the P's to sets of cardinality < X. 
Another possible generalization is to generalized products. Let M= 
Mi (where L(Mi) L1(a), L(N) = L2(a), L(M) = L4(a)) means: I MI = 

ll ieNI Mi I ,and if f1, ,fn r M, M R[f, ,fj if and only if Nkt R[ 

Pi,*] where 
Pi {i e N: Mi # q1 [f1(i), *.*,fn(i)]} 

(and 9o is a first order sentence from L1(a), AR a monadic sentence from L3(a)). 
Then, of course, we use Th:(N, P), th"(M%, a), and th"(M, a). All our theorems 
generalize easily, but still no application was found. 

If not specified otherwise, we restrict ourselves to the class Kord of models 
of the theory of order (sometimes with one-place relations which will be 
denoted, e.g., (M, P)). a = aord is the ordered sum of ordered sets and is 
omitted. Therefore +(a) and <>(a) are the set of atomic formulas. For the 
sum of two orders we write M1 + M2. The ordinals, the reals R, and the 
rationals Q have their natural orders. If M=Eie N Mi we write Th;(M, P) = 

IN Th"(Mi, Pj) where P = Ui Pi. Let T(n, m, k) be the set of formally 
possible Th'-(M, P), Man order, I(P) = m. 

COROLLARY 2.8. For any n, m, k there is ; = i(n, m, k) such that if 
Pt = {i e N: ti = t} for t e T(n, m, k) then Eli , N ti can be effectively computed 
from Th"(N, ., Po ... 

3. Simple application for decidability 

Using Section 2 we shall prove here some theorems, most of them known. 
We prove the decidability of the theories of the finite orders, the countable 
ordinals ([B 5]), and show that from the monadic theory of X we can compute 
effectively the monadic theory of K {=a: a < X+} (this was shown for X = 

op X = oj, in [B 5]). We do not try to prove the results on definability and 
elimination of quantifiers. For finite orders this can be done and the method 
becomes similar to that of automaton theory. For co, {a: a < w0}, QN this can 
be done by using the previous cases (e.g., for w using the result on the finite 
orders). We can prove the decidability of the weak monadic theory (with 3t 
only) of the n-successors theory by the method of this section (Doner [D 1] 
proved it). It would be very interesting if we could have proved in this way 
that the monadic theory of the 2-successor theory is decidable (Rabin [Ra 1] 
proved it). 

In order to use Section 1 we should note 

LEMMA 3.1. For any n, k, (N, P), the coloring fj' on N is additive 
where 
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394 SAHARON SHELAH 

fR'(a, b) = Thk((N, P) r [a, b)), 
where (N, P) r [a, b) is a submodel of (N. P) with the universe [a, b) = {x e 
N: a < x < b}. 

Proof. By Lemma 2.3. 

Let us list some immediate claims. 

LEMMA 3.2. (A) If for any n, k we can compute effectively Th-(K), then 
the monadic theory of K is decidable; and vice-versa. 

(B) If the monadic theory of K is decidable then so is the monadic theory 
of K' where K' is the class of: 

(i) submodels of models of K, 
(ii) initial segments of orders from K, 
(iii) orders which we get by adding (deleting) first (last) elements from 

orders of K, 
(iv) converses of orders from K, 
(v) (M, F), Me K, Pe P(M)m. 

Proof. Immediate. 

THEOREM 3.3. The monadic theory of the class Kf,1 of finite orders is 
decidable. 

Proof. Let Kn be the class of orders of cardinality n; up to isomorphism 
Kn has only one element, n. Hence by Lemma 2.6 we can compute Th"'(Ki). 
Hence by Conclusion 2.5, for every n, k we can compute Th7(K) where K = 
Cl(K1, K2). But clearly K is the class of finite orders. So by 3.2 (A) we finish. 

THEOREM 3.4. The monadic theory of c) is decidable. 

Proof. We shall compute {Thk(o, P): Pe P(N)m} by induction on n, for 
every k, m simultaneously. 

For n = 0 it is easy. 
Suppose we have done it for n - 1 and we shall do it for n, m, k. By 

the induction hypothesis we can compute Th-(oo) for every 1, in particular 
for i =O(n, m, k) (see 2.8). Now for any M= (o, Pi, ..., Pm), by 1.1 we 
can find an f-homogeneous set {a: i < w} (a0 < ai+). So letting 

t = T 
Y((o, 

F) L [0, a)), s = Th'n((w, P) L [as, aj)) for i < J 

we have 

Th-((o, P) = Thn((wy, P) r [0, ao)) + Ei<(, Th"((oj, P) f [ai, aij?)) 
= t + Ei< ~s 

As Thr((o) is known, by 2.8, we can compute Thl(M, P) from s, t. Now 
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THE MONADIC THEORY OF ORDER 395 

for any t, s e Thn(Kin), s # Th,&(O, F), F e P(0)m, there is an (o, P) such that 
Thn(w, P) = t + Ei<a' s. 

As we know Thn(Kfin) by 3.3, and can easily find whether s e Thn(K"I') - 
Thn(1O}), we finish. 

THEOREM 3.5. (A) From the monadic theory of X (X a cardinal) we can 
compute effectively the monadic theory of K = {a: a < X+}. 

(B) Moreover every monadic sentence which has model a < X+, has a 
model /8 < V0. 

(C) (i) For every a < X+ there is a 8 < X''+ + )P which has the same 
monadic theory 

(ii) If pe < X and for every regular X < X there is a X' < pa such 
that X, X' have the same monadic theory, then we can chose / < Vto + XVO. 

(iii) If we could always find X < a then 8 < )pe, and if X =a, 
/ < X + X9 

(iv) Also, for every a < X+, there are n < w, 1, *... X < X, such 
that the monadic theory of a is recursive in the monadic theories of X1, .. 
Xns and -x is a regular cardinal. 

(D) In general, the bounds in (B), (C) cannot be improved. 

Remark. BUchi [B 51 already proved (B), (C) for X = o) and (B) for X = (o, 
Proof. (A) Define K1 = K2 = {a: a < -}; by 3.2 (B) (i) and 3.2 (A) we 

can compute Th'!(Kj) for every n, k and i = 1, 2 (from the monadic theory 
of X, of course). Hence by 2.5 we can compute Th"(K') for every n, k, where 
K' = Cl(K1, K2). Clearly every member of K' is well-ordered and has cardi- 
nality < X. So up to isomorphism K' C K. We should prove now only that 
equality holds. If not, let a be the first ordinal not in K', and a < X+. If ar 
is a successor ordinal, a -1 e K'; 1, 2 e K hence a = (a -1) + 1 e K', a 
contradiction. If a is a limit ordinal, its cofinality is <X. Let a = i 
%o < x, ai < a; then i0, ar e K' so a e K', a contradiction. 

(B) Let us first show that 
(*) For every n, k there is q = q(n, k) < o such that if a,c < X , f (a)= 

cf (,), and a, fi are divisible by Xqy then Th"(a) = Th"G(13). 
For n = 0 it is immediate, and we prove it for n. By the pigeon-hole 

principle there are 1 < 1 < p < 2 I T(n, 0, k) I + 1 such that Thk(X1) = Th"(V). 
Clearly, 

X = 2 
i<X (x + x1) 

Hence 

8 In fact, 3< MW+ + Mw. 
In the first case B < M. 
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396 SAHARON SHELAH 

Thn(-X12) = Thn[Ei<, (-Xl\ + X1)] = T< Thn(VX + x1) 
= Ei<A [ Thn(-X1') + Thn('X)] = i<X [Thn(-X1') 

+ Thn(-X)] = Si< Thn(Xl+l + 'A) = Ei<X Thn(AP) 

= E< Th"(xl) = Th"(Ei<x \1) = Thn(x\ ') 

Hence we prove by induction on m, I < m < cl that Thn(xm) = Thn(-xl+'); 
choose q = q(n, ik) = I + 1. Let a, a < X+ be divisible by -X and have the 
same cofinality, and we shall prove Thn(a) = Th(j89). Clearly it suffices to 
prove Thn(a) = Thn( _t) where ,ct = cf(a). Let us prove it by induction on 
a, and let a = Xq-. If - = -1 + 1, then for -r1 = O it is trivial, and for -1 > O 

Thln(a) = Th"(jqxl + Xq) = Thn(Xq-l) + Thn(Xq) 
= Thn [qocf(-Xq y)] + Thn(-Xq+2) 

= Th[-X q ocf(f y1) Jr xq+2] = TV -Xq+2) = ThV(XqoX) 
= Thn [Xq? cf (a)] 

If Y is a limit ordinal 7 = Ei<Cf(T) vi, vi < 7 a successor, 

Thn (a) = Thn- [jq(i<Cf () vi)] = Thn(Ei<cf(T) Ajqy) 

= Ei <cf (T) Thnk(,Xq~i 

= Li<cf(r)Th-t[,q o Cf (Xqefi)] 

= i<Cf (r) Thn(Xq+l) = i<cf () Thn(X,) 

=Thn[-X[ q 0 Cf (f)] I 

So we have proved (*). Let us prove (B). Let a < X+ be a model of a 
sentence *. Choose by 2.1 (A), n, k such that from ThnG(,) we know whether 
,8 t Aand let q = q(n, k), and let a =X Sq8 + 7, 7 < Xq. Then 

ThV(a) = Thn[o Cf (Xq,8) + 7], and -X o Cf (Vq) + y < Xq?2 

(C) Divide a by )P so a = XwCa, + a2, a2 < >P. Let 1 be 1 if a, is a 
successor, and cf a1 otherwise. Then Xal1, X'Oa' are divisible by Xq(nk) for 
every n, k and have equal cofinality. So by the proof of (B), for every n, k, 
Th!!(X?wal) = Th-(X?wa'). Hence Xw0a, + a2, Xwa' + a2 has the same monadic 
theory, and VWPa1 + a2 < X'X + ?P = xw+1 + Vw. This proves (C) (i). 

If X' < , has the same monadic theory as a' then XVal + a2, VwaW + a2 
and XVX' + a2 (which is <Xlop + x@) have the same monadic theories. If X' < 
, clearly X'X% + a2 < \ pa 

If X = o then cf(Xwca1) = o in any case, hence a = 0ca, + a2, and o0 + 
a1 < WI? + oam has the same monadic theory. Every a < X+ we can uniquely 
represent as 

Cl = XO + ,X~ + *+ Va 1+ ao; ai < X 
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THE MONADIC THEORY OF ORDER 397 

The monadic theory of a is recursive in the monadic theories of X, cf(xoa'), 
a,,,* a ., ao. So we can prove inductively (C) (iv). 

(D) Suppose x > co, x is regular, and there is a sentence * such that 
a W + if and only if a = x. Then there are sentences A, such that a l 
if and only if a = X", sentences (P. such that a 1= gn if and only if a is 
divisible by X", and sentence p such that a W p if and only if cf a = x. Then 
XV+1is a model of {qa, 9n: n < o}. If a is also a model of {a, 'n: n < co} then 
X' divides a for every n, hence XV divides a, so a = X0,8. If fi is a successor, 
cf (a) = co but a # 9q so fi is a limit hence cf (a) = cf (f), so cfS = X, so fi > X 
hence a > X0 ox = 'X+1. Similarly X1+1 + X' is the smallest model of its 
monadic theory. 

LEMMA 3.6. (A) In 3.5 (A) it suffices to know the monadic theory of {I: 
p a regular cardinal < -}. So if X is singular it suffices to know the 
monadic theory of {a: a < X}. 

(B) For every sentence A, (1) there is a sentence 9 (all in the monadic 
theory of order) such that a 9# if and only if a is a limit and cf (a) # *, 
(2) there is a sentence characterizing the first ordinal which satisfies * and 
(3) for every n < co there is g'n such that a # qn if and only if a is the nth 

regular cardinal satisfying *. 
(C) There are monadic sentences p,, such that a # gwe if and only if 

a = cas. If V = L there are monadic sentences q, such that a # qp if and 
only if a is the nth weakly compact cardinal. 

Proof. (A) Immediate by 3.5 (C) (iv). 
(B) ( 1 ) Let p say that there is no last element, and for any unbounded 

P there is an unbounded Q =P which satisfies * (if cf ax - ' i we can choose 
Q as a set of order-type cfa; so a # qI. If cfa -= ', let P be a subset of 
a of order-type cfa; hence any unbounded Q P has order-type cfa, so 
a - # p) 

(2) Immediate. 
(3) We use (1) and (2) to define qn inductively. Let qp say that a is the 

first ordinal whose cofinality satisfies A. Let 9n+i say that a is the first 
ordinal whose cofinality satisfies * A -q go A ... A -* / 9n. 

(C) For q'n use (B) (3) for * saying a is an infinite ordinal. For (n use 
(B) (3) and Theorem 0.1 (of Jensen). 

4. The monadic theory of well-orderings 

If a (M, P) let 

th(a, P) = {Ixe X,: a e Pi U {x Xi: a X Pi} 
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398 SAHARON SHELAH 

(so it is a set of formulas). 
Let Da denote the filter of (generated by) the closed unbounded subsets of 

at cf a > co. 

LEMMA 4.1. If the cofinality of a is >0o, then for every Pe P(a)m' there 
is a closed unbounded subset J of a such that: for each f < a, all the models 

{(a, P) r [f,7 ): -i e J, cf(-) = cl, > A} 

have the same monadic theory. 

Remark. BUchi [B 5, 6.1, p. 1101 proved Lemma 4.1 for a = col, by a 
different method. 

Proof. For every n, k there is, by 1.1, 3.1 a homogeneous unbounded 
I- zo a, by the coloring f-" of (a, P), so there is t-' such that for every 8 < 
t' e I-j, Th#((a, P) L [S. 7)) tn. Let J,- be the set of accumulation points of 
I-k, and J fln.<-k . Clearly J is a closed and unbounded subset of a. 

Let f < a, and Dan be the first ordinal > f in I,". Then for any -C e J, 
7 > A, cf(7) = , and for every n, k we can find -l e Ijkn -ij < -/,+.I lim1. Z1 = 
-i and -i =3n. Therefore 

Th'n((a, P) r [, )) = Th"((a, P) [fe, jlT)) + 1<w Thn((a, P) ['1, 'Y+1)) 
= Thn((a, P) [R,. Sk)) + t1< tE 

So, Thn((a, P) L [R,. 7)) does not depend on the particular -'. 

Definition 4.1. ATh"(/, (a, P)) for a <a a a limit ordinal of co- 
finality > co is Thn((a, P) L [LS, 7)) for every Ir e J, Ir > A, cf (7) = a); where 
J is from Lemma 4.1. 

Remark. As Da is a filter, this definition does not depend on the choice 
of J. 

Definition 4.2. We define WTh"(a, P): 
(1) if a is a successor or has cofinality co, it is 0, 
(2) otherwise we define it by induction on n: 

for n = 0: WThn-(a, P) = {t: {fl < a: th(fl, P) = t} is a stationary sub- 
set of a}, 

for n + 1: let WThn+1(a, P) = {<S1(Q), S2(Q)>: Q e P(a)k(n + )} 

where 

S1(Q) = WThn(a, P, Q), 
S2(Q) = {<t, s>:: {f < a: WThn((a, P, Q) ' S)= t, th(/, PAQ) = SI 

is a stationary subset of a}. 

Remark. Clearly, if we replace (a, P) by a submod-el whose universe is 
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THE MONADIC THEORY OF ORDER 399 

a close unbounded subset of a, WThV(a, P) will not change. Of course 
WTh"(M) is well defined for every well-ordered model. 

Definition 4.3. Let ?f(a) > c, M = (a, P) and we define the model 
gk(M) = (a, ga(P)). 

Let 

(91(0)) = {f < a: s = A Th"(S, M)} 
and (when m I(P)) 

gk(P) < K (gnk(P))s, . *eT(>sn,mk) 

Remark. (1 ) In gn(P) we unjustly omit a, but there will be no confu- 
sion. 

(2) Remember T(n, m, k) is the set of formally possible Thnk(MA P), 
I(P)= m. 

LEMMA 4.2. (A) gny(P) is a partition of a. 
(B) gnf(PAQ) is a refinement of g!(P) and we can effectively correlate 

the parts. 
(C) gn+1(P) is a refinement of gn(P) and we can effectively correlate the 

parts. 
(D) The parallels of Lemma 2.2 for Th, p Th, hold for WTh, p WTh. 
Proof. Immediate. 
THEOREM 4.3. For every n, m, k we can effectively find r- = r-1(n, m, k) 

such that: If cf (a') > w, Mi = (ai, Pi), I(Pi) = m for i = 1, 2 and A Thn(O, M1)= 
AThn-k(O, I2) and WThnr(gn(M1)) = WTh (gn(M2)) then Thn(M1) = Thn(M2). 

Proof. We prove by induction on n. 
For n = 0, it is easy to check that Thn(Mi) = AThn(O, Mi) hence the 

theorem is trivial. 
Suppose we have proved the theorem for n, and we shall prove it for 

n + 1. Suppose Q1 e P(a l)k(n l), and we shall find Q2 eP(la2)k(n+l) such that 

Th,(al, P1, Q1) = Th-(a2, P2, Q2); by the symmetry in the hypothesis this is 

sufficient. Let gn(PlAQl) = Q*1, gn+1(pl) = p*1 g_+1(P2) = p*2* Define r(n + 
1) =I(gnk(P1AQ-1)) =1(Q*1) and r [ (n + 1) = r1(n, m + 1(P1), k). 

By the assumptions and Definition 4.2, there is Q*2 e P(a 2)k(n+l) such that 
(for our n, r and a,2 p*2; al P*%), S1(Q*l) = S1(Q*2) for I = 1, 2. (The nota- 
tion is inaccurate, but should be clear.) So, for I = 1, we get WThn(al, P*1, 
Q*1) = WThn(a2, P*2, Q*2), and without loss of generalitY 0 e Q$ < 0 e Q2. 
(From now on we can replace r- by r- r (n + 1).) So by Lemma 4.2, for I = 1, 2, 
Q*l is a partition of a' refining Pl, hence for every , < a' there is a unique 
s1(fl) such that $ e Q *IS 
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400 SAHARON SHELAH 

Now, for I = 1, 2, choose a closed unbounded subset J, of a' such that: 
(0) every member of J, which is not an accumulation point of J1, has 

cofinality wo, 
(1) for any s, if Q*' is not a stationary subset of a' then Q* n l = 0, 
(2) if a < -i < a'; 8, - e J1; cf(-i) = wo then 

Thn+'((al, PI) ' [fi, y)) = AThn+1(/3, (a', PI)) (use Lemma 4.1) 

(3) for every - e JI, cf() = , 

Thn+'((al, PI) r [0, -1)) = AThn+'(O, (at, PI)) 

(4) if Q*'lnJ1#0, a eJ1 

then there are 7r e JI, 7 > f, s,(-) = s such that {d e Jl: fi< - _ ?} is finite, 
(5) for any s, t, if {f < a': t = WThr((al, Q*l) r f), s = Th(, Q*l)} is 

not a stationary subset of J1, then it is disjoint to J,. 

Remark. Note that (5) just strengthens (1). 
Now we define Q2 by parts. That is, for every f < 'Y e J2 U {O}, 'Y is the 

successor of f in J2, we define Q2 1 [,i, -Y) such that 

S2(fl) = Thn((a, P 2AQ2) r [a, ))7 

This is possible as by definition of s2(f), SI(e Q2,, hence 

Si(,S) e A Thn+'(tS, (ar p) 

We now prove 
(* ) ifl<'YeJ2U {0}, cf(7) = w, then 

SA(S) = Thn((a2, P2, Q2) | [ 7)) 
We prove it by induction on -i for all f. 

(i) By (0) the first -i > f1, 'Y e J2 has cofinality w, and by the definition 
of Q2 (*) is satisfied. 

(ii) Let < <e < t e J2, for no e J2, < < -, and has cofinality . 
Then by the induction hypothesis Th"((a 2 P2t 

Q2) 1 [ $)) = S2(f) and 
2 

-t -2 ) S( Thn((a, P2Q)[,))=s) 

We should show that s2(f) + s2(O) = s2(M). So it suffices to find a' < ' < 7' e 
J,, Sl(fl') = S2(fS) cft ' = w = cf7', Sl(V') = S2($); and by the definition of S2 in 
4.2 this is possible. As f e J2, S is a stationary subset of a2, QS" is a 
stationary subset of a', hence for some f're J, i' e Q8*1p hence s2(fl') = s2(a). 
As dJ2, 

{Ie Q82): WTh"(a2 p*2 Q*2) = 0} 

is stationary, hence we can find d' e J1, ch(d') = w , s2(V') = s2(M). 
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THE MONADIC THEORY OF ORDER 401 

(iii) If -r is an accumulation point of J2 the proof is similar to that of (ii). 
Choose e m < A, f < <m K em?1 < 7, li m = 'i, cf($m) = wj, and 52(m) = 

S2($m+i) (use (4)). Then 

Thn((a2, P2 Q2) [ [ )) = Thn((a2 P2 Q2) [I, SO)) 

+ Th ((a2 p2 Q2) V [ ?)) 

= S2(/) + Sm< A O2($0) 

We should prove this sum is s2(/), and this is done as in (ii). 
(iv) There are e e J, f < $ < ^', ' the successor of e in J2 and cf > (0. 

As before we can find '< '<'Y' e J1, sl(f') =s2(f), WThS2((s r l*) 1 ) 

WThn((a2, P*2) 1 $)sb') = s2(;), cf$' > (, of'Yr = (. SO clearly 

Th"((a2, P2Q2) P V, 7)) - 52(e) - s2($) = Th((al, pi Ql) P [P, yP)) 

Now also 

Thn((a2, P2, Q2) P [ )) = Thft((a6l Al Ql) [fi s')) 
by the induction hypothesis on n and on /r. 

So we have proved (*) and gn((a 2 p2 Q2)) = (a2, Q*2). 

Now by the induction hypothesis on n it follows that Th-(al, Pi, Q1) = 
Th"k(a2, P2 Q2). 

THEOREM 4.4. If cf (a) > C, 

t, = WThr(g"(P)), t2 = AThft(O, (a, P)), r = r1(n, I(P), k) 
then we can effectively compute Th-(a, P) from ti, t2. 

Proof. The proof is similar to that of 4.3. 

Conclusion 4.5. If X is a regular cardinal, and we know AThn(O, X), 

WTh"(X) (;T = r1(n, 0, k)), then we can compute Th-(X). 

LEMMA 4.6. If X is a regular cardinal > Cl, r = r(n, 0, k), then, letting 

T, = {Th"(t) cl < A < s Al a regular cardinal}, T2 = {Th"(a): a < X}, we 
can compute effectively ATh"(0, X) from T1; and we can compute T1 effec- 
tively from T2. 

Proof. Let T = {t1, *.*, tJ}, and if tj = Thn(4a) let t' = Th"(fq)e), q = q(n, k) 
(we can compute it effectively: see the proof of 3.5 (B) for the definition of 
q(n, k)) and let t = t' + * + to, then 

lm<wt = to) = ATh"(0, X) 10 

Conclusion 4.7. Let X be a regular cardinal. If the monadic theory of 
{a: a < X}, and { WThV(x): n, k} are given then we can compute effectively 
the monadic theory of X. 

10 The second phrase is immediate by 3.6 B(3). 
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402 SAHARON SHELAH 

LEMMA 4.8. For a regular X, {WTh"(X): n < w} and the first-order 
theory of M' = (P(X)/D,, U. n, -, 0, 1, ***, R, *..) are recursive one in 
the other, where RI(P, Q) holds if and only if 

{fl < X: f e P, and for some n, t = WTh4((X, Q) #is)} + 0 (mod D,) . 

Remark. Note that for every t there is at most one possible n. 

Proof. Immediate, similar to the proof of Lemma 2.1. 

Conclusion 4.9. If the monadic theory of {a: a < X} and the first-order 
theory of M' are decidable, then so is the monadic theory of x. 

Using 4.9 we can try to prove the decidability of the monadic theory of 
X by induction on X. 

For X - c we know it by 3.4. 
For X = w1 the R'"1's are trivial, (because each e < oi is a successor or 

cf/S = S, hence by Definition 4.3 (1), R`1(P, Q) holds if and only if t = 0). 
So it suffices to prove the decidability of (P(w1)/D.1, n, U, u 0, 1). But by 
Ulam [U 1] this is an atomless Boolean algebra, so its theory is decidable. 
Hence we reprove the theorem of Biichi [B 5]. 

Conclusion 4.10. The monadic theory of w, is decidable. 

Now we can proceed to X = j2, Looking more closely at the proof for 
wc, we see that WTh?(wo, P) can be computed from the set of atoms in the 
Boolean algebra generated by the Pi which are stationary subsets of co1; and 
we can replace (e by any ordinal of cofinality N. So all the R102 can be defined 
by the function F/D W2, 

F(I) = {a < (02: cf(a) = otl, a -i nIfl2 X Da}. 

Conclusion 4.11. The first order theory of 

0= (P(2)/DU2, f, U, - 0, 1, F/Do2) 
is decidable if and only if the monadic theory of a)2 is decidable. 

Notice that F(I U J) = F(I) U F(J), and that for M1@2 to have a decidable 
theory, it suffices that it have elimination of quantifiers. For this it suffices 

(*) for any stationary A _ {a < 02: cf (a) = Ce} and B, C such that 
F(A) B U C there are stationary A', B', A = A' U B', A' f B' = 0, F(A') = 

A(mod D,02) and F(B') = B(mod D,02). 

Conjecture 4 (A). (*) is consistent with ZFC. 

5. From orders to uniform orders 

An equivalence relation E on ordered set N is convex if x E y, x < z < 
y e N, implies x E z, i.e., every equivalence class is convex. On N/E = {a/E: 
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THE MONADIC THEORY OF ORDER 403 

a e N} a natural ordering is defined. If Jis a convex subset of a model (M, P) 
then th(J, P) is <1, Si, s2> such that if there is no last (first) element in J, s, = 

1 (sI = 1), if b is the last (first) element, s2 = th(b, P) (si = th(b, P)) (for defini- 
tion, see the beginning of Section 4) and I = min (I J , 2). 

Definition 5.1. (1 ) K(M) is the first cardinal K, such that neither K nor 
K* is embeddable in M. 

(2) K(K) is l.u.b. {K(M): Me K}. 

Definition 5.2. We define for every n, k, the class U" and UTh#((M, P)) 
for Me Uk 

( 1 ) U1 = {(M, P): M is dense order with no first nor last element and 
there are to and a dense I_ i MI such that for every a < b e I: 

t = Th'((M, P) r (a, b)) and th(a, P) = th(b, P)}. 

Now we define UTh"(M, P) by induction on n. 
(2) UThO(M, P) Tho(M, P). 
(3) UThnk+'(M, P) = <S1, S2, com> where 

(A) Si {UThn((M p, Q)): Q P(M)k(n+l) (MI P Q) C uG 
a 

(B) Before we define S2, we make some conventions: 
(a) T1[ T21 is the set of formally possible th(J, P'), J # 0, and 1(P') l(P), 

(1(Pl) = 1(P) + k(n + 1)); 
(G) T3 = {l, 

sI, 
t, S2>: <1, sI, 

s2> e T2, t e T(n, (P) + k(ln + 1), k) and I = 1 if 
and only if t is the "theory" of the empty model}; 

(7) If <1, sl, S2> e T1, <1', s', t, s'> e T3 then <1, si, s2> < <1', s', t, s'> when: I = 
I'and s1 = 1->s = 1,82 = 1- s = 1 and s1#1 ==s1? s1, S 2 1= S2Q s2; 

(a) At last let r = r(n, l(P), k) be from 2.8, S2= { UTh" (M/E, P*, Q*): E a non- 
trivial convex equivalence relation over I MI, (M/E, P*, Q*) e U P, P = 

<. * Pt*, *.*.>teT j where Pt* {a/E: a e I MI, th(a/E, P) t} and Q* 
< * * s Qt* ** * >te73 is a partition of I M I E refining P* and Q * Q1 Pt* 
implies t(1) ? t}. 

(C) Com is + if M is a complete order, and - otherwise. 

LEMMA 5.1. (A) From Th"+2(M, P) we caln check whether (M, P) G Uk 
and compute UTh"(M, P). 

(B) Also the parallel to 2.2 holds. 

LEMMA 5.2. For every dense Ne K, I NII > 1, n, k, there is a convex 
submodel M of N which belongs to U-, I I MI I > 2. 

Proof. By- Theorem 1.3, and 4.1 (A). 

LEMMA 5.3. Suppose N is a dense order, ic(N) ; I - i N I is a dense 
subset, and for every a < b e I, to = Th#((N, P) r [a, b)). Then there is t1 
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404 SAHARON SHELAH 

such that 
(1 ) for every a < b e I NJ, t1 = Th"((N, P) [ (a, b)). 
(2 ) Moreover for every convex Jz i N l, with no first nor last element, 

ti = Th'n((N, P) r J). 

Proof. Clearly it suffices to prove (2). Choose a, e J f I. Now define a", 
0 < n < co such that a.e Jl nI, a. < a,+1 and {an: n < co) is unbounded in J 
(this is possible as c(N) < 81). Now define similarly, a. e J n I, n a negative 
integer so that a,1 < a. < a, and {a": n is a negative integer} is unbounded 
from below in J. 

So, letting Z be the integers, 

Thn((N, P) [ J)=neZ Thn((N, P) [ [an, a,+,)) = tneZ to E 

THEOREM 5.4. Let Mbe an order, ic(M) ? 8. 

(A) Knowing t and that t = UTh"(M, P), (M, P) e U-kn we can effectively 
compute F(t) = Th"(M, P). 

(B) If(M2, Pi) e U-knfor i = 1, 2, and UTh-(M', P') = UTh-(M2, P2) then 
Thk(Ml, P') = Th"(M2, P2) 

Proof. Clearly (A) implies (B). So we prove (A) by induction on n. 
For n = 0 it is trivial. 
Suppose we have proved the theorem for n, and we shall prove it for 

n + 1. 
Let UThn+'(M, P) = <S1, S2, com>. We should find 

T = {ThV(Mt P, Q): Q e P(M)k(n+l)} 

If t e S1, then for some Q e P(M)k(n+l), (M, P. Q) e Un and t = UTh-n(M, P. 
Q), hence, by the induction hypothesis F(t) = Th"(M, P, Q), so F(t) e T. We 
can conclude that T' = {F(t): T e S1} _ T. 

Now if t* e S2, then there is a convex equivalence relation E on M, such 
that tV = UThn(M/E, P*, Q*) where the conditions of S2 are satisfied. If 
Q<1 81 t, 8 2) 0, and I > 1 implies t E T then we can define Q E P(M) such that 
for alEc Q ,8<1l,82>. 

(1 ) UThn((M, P, Q) r int (alE)) = t, 
(2) th(a/E, Q) -<1, Sl, 82> 

Remark. (1) can be done because by Lemma 4.3 (2), if int (a/E) + 0 
then 

Thn+'((My P) r 1nt (alE)) = ThONk(M, P) = T. 

Now clearly knowing t* we can compute 

S(t*) = {t: Q<,81,t,82> # 0, t # Thn(0), for some s1, S2} 
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THE MONADIC THEORY OF ORDER 405 

where Q* is as above. We can also compute G(t) = Th"(M, Q). We know 
that t e S2, S(t) _ T, imply G(t) e T. 

We know also that if (i) t = Th"((M, P) r {a}) for some a E M, and (ii) t1, 
t2e T. then: E.,.(t, + t)e T andE <n (t + t2)c Tt1 + t + t2e T andif com 
is -, tl + t2 E T (where Z is the set of integers) (we use the facts that M is 
dense, I(M) < ;1). 

Now let T* be the minimal subset of T(n, I(P), k) such that 
(a) T*_ T', 
(b) t e S2, S(t) _-T* imply G(t) e T*, 
(c) if t1, t2e T*, t = Th-((M, P) r {a}) then t1 + t + t2e T*; 
(d) if t2e T*, t1 - Th-((Mp P) [ {a}) for some a e Mthen 

E n<O (t2 + tj) ? T*, pEns (tl + t2) eT* 
n e Z 

(e) if t1, t2e T2, com is - then t1 + t2e T*. 
It is easy to see that as S1, S2 are given and T(n, I(P), k) is (hereditarily) 

finite and known, we can effectively compute T*. So it suffices to prove that 
T = T* but as clearly T* _ T it suffices to prove: 

te T - te T* 

As t e T, there is Q e P(M)k'n+1 such that t = Th,(M P, Q). Define the 
equivalence relation E on M: a Eb if and only if a = b or, without loss of 
generality we assume that a < b, for every a', b'? M, a ? a' < b' < b, 
Thn((M PA Q) [ (a', b')) e T*. It is easy to check that E is a convex equiv- 
alence relation over M. Now we shall show that if a e M, int (alE) + 0 then 
Thn((Mt P, Q) r int (alE)) belongs to T*. Choose aO e alE, and then define an, 
n > 0 such that an < a,+, {an: 0 < n < co} is unbounded in int (alE). With- 
out loss of generality th(a., P^Q) = s, for every n > 0. Hence 

Thn((Mt P^Q) r {x e int (alE): a, < x}) 

- ,O~ff< [Thn((M P. Q) r (an, a.+,)) + Thn((M, P, Q) r la.+11)] 
By the definition of E, Thn((My P, Q) r (as, a,+l)) e T*, hence by (d), 

Thn((M, P, Q) r {x e int (alE): aO < x}) ? T* . 
Similarly, 

Th'n((M, P, Q) r{x e int (alE): x < aO}) e T* . 
So by (c), 

Thn((M, P, Q) [ int (alE)) e T*. 
Similarly, by (c), (e) in MIE there are no two successive elements, so 

MIE is a dense order. 
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406 SAHARON SHELAH 

Define P = ... P *,8i,82>, *>, * = a * , * > such that 
(1 ) a/Ee P<1,,82> if and only if th(a/E, P) = <1, sl, 82>, 
(2) a/Ec Q* if and only if Th"((My P. Q) r int (alE)) = t; and 

th(a/E, PAQ) = <1, sl, 82> 

By Lemma 5.2, (M/E, P*, Q*) either has only one element or it has an 
interval (alE, b/E) : 0 such that (MIE, P*, Q*) r (alE, b/E) e Uj". 

Now we prove a E b and so show that this case does not occur and E has 
one equivalence relation, hence Thk(M, P, Q) e T* and so we shall finish. 

Let a < a' < b' < b, then let 

J2= {c e M: a'/E < c/E < b'/E} 
J1 = {c e M: a' < c E int a'/E)}, 

3= {c eM:b' > c int (b'/E)} 

By (b), Th"((My 
P, Q) r J2) e T*; by (d) Thn((M, PQ) [J)e T* for i = 

1, 3. Hence by (c) and (e) Thn((M, P, Q) y (a', b'))e T*. So aEb, and we 
finish. 

THEOREM 5.5. (A) If ,(K) < 1,, and for every Me K, there is Ne 
K n Un+l extending M, then from UThn+'(K) = {UThn+'(M): MeK n U}+l}, 

we can compute Th-(K). Hence if UThn(K) is recursive in n, then the 
monadic theory of K is decidable. 

(B) Suppose i(K) < j,, K is closed under M + N, Ifn<c Miy Cnez Mn, 
n<O 

LieQ Mi are convex submodels and division by convex equivalence relations. 
Then from UThn(K) (f = r(n, 0, k)) we can compute Thn(K). Hence if 
UTh"(K) is recursive in n, then the monadic Theory of K is decidable. 

Proof. (A) Immediate. 
(B) Essentially the same as the proof of 5.4. 

Remark. Of course there are other versions of (B), e.g., for a class 
of complete orders. 

6. Applications of Section 5 to dense orders 

Definition 6.1. Ks is the class of orders M such that no submodel of M 
is isomorphic to co, or co or an uncountable subset of the reals."1 

LEMMA 6.1. (A) K. satisfies the hypothesis of 5.5 (B). Also no member 
of Ks is complete, except the finite ones. 

(B) K. has uncountable members, but Me K. implies I M < 

Proof. (A) Immediate. 
" Those are the Specker orders; we get them from Aronszain trees. 
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THE MONADIC THEORY OF ORDER 407 

(B) The Specker orders. See e.g., [Je 1]12 for existence. 

THEOREM 6.2. (A) The monadic theory of K, is decidable. 
(B) All dense order from K, with no first nor last element, have the 

same monadic theory. 
Proof. We shall show that for (M, P) e U0(K), Pa partition, p UTh'(M, P) 

can be computed from p UTh0(M, P) (hence the former uniquely determine 
the latter). Then by the parallel to Lemma 2.2, (B) follows immediately and 
(A) follows by 5.6. 

So let t = p UTh0(M, P) be given; that is, we know that P is a partition 
of M to dense or empty subsets, Me U0, hence M is dense with no first and 
no last element, Me K, and we know {i: Pi : 0}. So without loss of gener- 
ality. Pi : 0 for every i and also M : 0, Pi is dense. Let p UTh'(M, P) = 

<S1, S2, com>, so we should compute com, S1, S2. 
Part ( 1 ) com: As Me K, and as clearly the rational order is embeddable 

in M, M cannot be complete. 
Part ( 2 ) S1: It suffices to prove that any dense subset P of M can be 

split into two disjoint dense subsets of M. 
So we shall prove more. 

( * ) If M is a dense order, I_- I MI is a dense subset, 

then we can partition I to two dense subsets of M. That is, there are J1, J2, 
I= J1 U J2, J1 2 0 and J1, J2 are dense subsets of M. 

We define an equivalence relation E on I: a E b if, a -b or there are 
a,<a, b<b, and a,<a'<b'<b, implies I{ceI:a'<c<b'}I = I{cGI: a<c<b}I 
(and they are infinite by assumption). Now for every E-equivalence class alE 
with more than one element, let X = I {a e I: b' < a < c'} I for every b' < c' e alE. 

Case I. I a/EI =X > 0. 
Then let {<bi, ci>: i < XI be an enumeration of all pairs <b, c> such that 

b, c e a/E, b < c. Define by induction on i < X, a', ai e a/E. If we have defined 
them for j < i, choose 

al e {d e I: bi < d < ci} - {a~: j < i} 
a2 e {d e I: bi < d < ci} - {a: j i} 

By cardinality considerations this is possible. Define J1(a/E) = {a': i <>4. 
Case II. X < I a/El. 
Then clearly I alE I = X+, and we can partition alE into X+ convex sub- 

sets Ai, i < X+, each of power X. So on each we can define J1(AJ) such that 
J1(Ai), Ai - J1(A) are dense subsets of Ai. Let J1(a/E) = Ui<2+ J1(Ai). 

12 There is some overlapping between S1 and S2. 

This content downloaded from 169.230.243.252 on Sat, 22 Nov 2014 00:43:08 AM
All use subject to JSTOR Terms and Conditions

Sh:42

http://www.jstor.org/page/info/about/policies/terms.jsp


408 SAHARON SHELAH 

Case III. X =0, so I alE =1. 
Let J1(a/E) = 0. LetJ1 = UaeI J(a/E), J2 I- J1 

It is easy to check that J1, J2 are the desired subsets. 

Part (3) S2: By (2) it suffices to find the possible UTh0(M/E, P*), where 
=: <... P<1,1,82> 

..*. >9 P<l,81,82> = {a/E; th(a/E, P) = <1, sl, S2>}, and (M/E, 
P*) e U0(K); so WE = {<l, s1, S2>: Pl,81,82> : 01} contain all relevant informa- 
tion. Clearly WE # 0 and <1, sl, 82> G WE I > 0 and we can also discard the 
case <1, sl, 82> e WE 1 = 1. Also if <1, Sl, 82> G WE, then <1, Sl, 82> is formally 
possible. 

Suppose W satisfies all those conditions, and we shall find a suitable E 
such that WE = W. Let W= {<I, s%, s>: i < q < o}. Choose a J-'IMl, 
countably dense in itself, unbounded in M from above and from below, such 
that each P3 n J is a dense subset of J, and for no a e I Ml-Jis there a first 
(last) element in {b e J: b > a} ({b e J; b < a}). Jdefines 21, Dedekind cuts, but 
as Me K, only ? A, of them are realized. Let {an: n < a} be a set of 
representatives from those cuts (that is, for every a e M - J there is n < c 
such that [a, aJ] or [a", a] is disjoint to J). Let J {b,: n < oj). Now we 
define by induction on n a set He of convex disjoint subsets of M, such that: 

(a) H, _ H, + 1; He is finite. 
(b) If I, X 12 e H, then I, < I2 or 12 < 1 and between them there are 

infinitely many members of J. 
(c) If I E Ha, I has no last element, then for every a e I MI - J, a > I, 

there is b e J. I < b < a, and also J f I is unbounded in I. 
(d) The same holds for the converse order. 
(e) If I1 < 12 X Ha, i < q then there are Ic Hly th(I, P) = <li, si, s2>.'2 

(f) and beUg {I IH.J- 
(g) If Ie H[ has a first (last) element then this element belongs to J. It 

is not hard to define the Hn's. Clearly Un UI,6n I = I MI. So define E as 
follows: 

a Eb if and only if a = b or for some n < o, IeH", a, bc l. 

It is not hard to check that WE = W. So we finish the proof. 

Along similar lines we can prove 

THEOREM 6.3. Suppose M is a dense order with no first nor last ele- 
ments, M is a submodel of the reals, and for every perfect set P of reals, 
P I * Ml is countable, or even <2R0. Then the monadic theory of M is the 
monadic theory of rationals. 

13 Also, I, < I < I2, and lo e Hn implies th(1o, P) G W. 
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THE MONADIC THEORY OF ORDER 409 

Remark 1. We can integrate the results of 6.2, 6.3. Always some M 
satisfies the hypothesis of 6.3. If 2Xo > k, any dense M _ R, I MI < 2xo, 
and if 2Xo = R, the existence can be proved. 

Remark 2. In 6.3 we can demand less of I MI: For all countable, disjoint 
and dense sets Y1, * * *, Ye, (n < o) there is a perfect set P of reals such that 
Yi is dense in P for 1 < i < n and Pn I MI is <21o (see Section 7 for definition). 

The proof of 5.6 is easily applied to the monadic theory of the reals. 
(We should only notice that R is complete.) 

Conclusion 6.4: If we can compute the UThn(R) for n < o then the 
monadic theory of the real order is decidable. 

Remark: Similar conclusions hold if we add to the monadic quantifier 
(or replace it by) (3<'1X) (i.e., there is a countable X). Notice that if E is a 
convex equivalence relation over R, then {a/E: I alE I > 1} is countable. 

Grzegorczyk [Gr 1] asked whether the lattice of subsets of the reals with 
the closure operation has a decidable theory. One of the corollaries of Rabin 
[Ra 1] is that the theory of the reals with quantification over closed sets, and 
quantification over Fq sets is decidable. 

By our methods we can easily prove 
THEOREM 6.5. The reals, with quantifications over countable sets, has 

a decidable theory. (We can replace "X countable" by "I X I < 28o" or "(VP) 
(P closed nowhere dense - I P n X I< 2Ko).") 

As every closed set is a closure of a countable set, this proves again the 
result of Rabin [Ra 1] concerning Grzegorczk's question. We can also prove 
by our method Rabin's stronger results, but with more technical difficulties. 

7. Undecidability of the monadic theory of the real order 

Our main theorem here is 
THEOREM 7. (A) (CH) The monadic theory of the real order is unde- 

cidable. 
(B) (CH) The monadic theory of order is undecidable. 
The method gives some variation of this result. 
THEOREM 7.2. (CH) Themonadictheory of K ={(R, Q1S**Qn): Qi CR}, 

where the set quantifier ranges over countable sets, 1 < n, is undecidable. 
(We can even restrict ourselves to sets of rationals.) 

Let 2`0 be the set of sequences of ones and zeros of length <?; let < be 
a partial ordering of 2`0 meaning that it is an initial segment, -< the lexico- 
graphic order. 
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410 SAHARON SHELAH 

THEOREM 7.3. (A) (CH) The monadic theory of (2'w, <, <) is unde- 
cidable. 

(B) (CH) The monadic theory of K, - {(2"Op <, <, Q1 . . . , Qn): Qi _ 2!!} 
where the set quantifier ranges over countable sets, 1 < n, is undecidable. 
(We can even restrict ourselves to subsets of 2`w). 

Instead of the continuum hypothesis, we can assume only: 
( * ) "The union of <20o sets of the first category is not R" . 

This is a consequence of Martin's axiom (see [Mr 1]) hence weaker than 
CH, but also its negation is consistent, see Hechler [He 1] and Mathias [Mat 1] 
and Solovay [So 1]). Aside from countable sets, we can use only a set con- 
structible from any well-ordering of the reals. Remember that by Rabin 
[Ra 1] quantification over closed and Fq sets gives us still a decidable theory. 

Conjecture 7A. The monadic theory of (2`0 <, <), where the set quan- 
tifier ranges over Borel sets only, is decidable. 

This should be connected to the conjecture on Borel determinacy (see 
Davis [Da 1], Martin [Mr 1] and Paris [Pa 1]).'4 This conjecture implies 

Conjecture 7B. The monadic theory of the reals, where the set quantifier 
ranges over Borel sets, is decidable (by Rabin [Ra 1]). 

Conjecture 7C. We can prove 7.1-7.3 in ZFC. 
Theorems 7.1(A), (B), 7.3(A) answer well known problems (see e.g., Biichi 

[B 5, p. 38, Problem 1, 2a, 2b, 4a]). Theorem 7.3(B) answers a question of 
Rabin and the author. 

Unless mentioned otherwise, we shall use CH or (*). 

Notation. R denotes the reals. A perfect set is a closed, nowhere dense 
set of reals, with no isolated points and at least two points (this is a some- 
what deviant definition). We use P to denote perfect sets. Let x be an inner 
pointofPif xeP, andforeverys >0, (x-&, x)flP 0, (x, x+s)flP0. 
Let DZR be dense in P if for every inner point x < y of P, there is an inner 
z e P n D, x < z < y. Note that if D is dense in P, P is the closure of PnD. 
Real intervals will be denoted by (a, b) where a < b, or by I; (a, b) is an in- 
terval of P if in addition a, b are inner points of P. 

LEMMA 7.4. Let J be an index-set, the Di (i e J) countable dense subsets 
of R, and D= Uiej Di; and for every P, IJDnPJ< 2o0. Then there is 
Q R-D, Q = Q{D,: i e J}, such that 

(A) if PnflTh Di (i e J) and Di is dense in P (P is, of course, perfect) 

14 Meanwhile Martin proved the Borel determinacy. 
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THE MONADIC THEORY OF ORDER 411 

then Pfl QI <2Vo; 
(B) if for no (interval) I of P, and i e J, PnDnI (-I Di but D is dense 

inPthenPflQ 0. 

Proof. Let {Pa: 0 < a < 2o0} be any enumeration of the perfect sets. We 
define xa, a < 20o by induction on a. 

For a = 0, xa e R is arbitrary. 
For any a > 0, if Pa does not satisfy the assumptions of (B) then let 

xa = xo and if P satisfies the assumptions of (B) let xa e Pa - U {PA: < ra, 
(3i E J)(PA n D C Di and D is dense in PA)} = D. 

This is possible because for any A, i, if PA nD D_- Di, D is dense in PB, 
PA n Pa is a closed nowhere dense subset of Pa. As otherwise for some in- 
terval I of Pa, PAnfPa is dense in Pa, so by the closedness of PBA Pa, 
Pi n Pa n I= Pa n I; therefore 

Di D Pi n D 2 Pa n I n D, 

a contradiction of the assumption on Pa. So by (*) and the hypothesis 
I Pa n DI < 28o there exist such Xa. 

Now let Q = {xa: a < 2o0}. If P satisfies the assumption of (A), then 
Pe {Pa: 0 < a < 2*o}. Hence for some a, P = Pa, hence PU D _ {xx: f < Ka}, 
so 0 Pn DI < 2o0. If P= Pa satisfies the assumption of (B) then Xa G Pa, Xa G Q, 
hence Pa n Q # 0. So we have proved the lemma. 

LEMMA 7.5. There is a dense D _ R and {Di: i e J}, I J I = 2Ro such that 
(1) IDUn P < 28o for every perfect P. 
(2) The Di are pairwise disjoint. 
(3) Di - D, Di is dense. 
Proof. Let {Pa: a < 2o0} enumerate the perfect subsets of R, and let 

{In: n < A4 enumerate the rational intervals of R, and if a = a + n (n < w, 
a a limit ordinal) choose xaG In - U <a PAi-{x: G9<a} and let D= {x: K<28o), 
Da = {IXa+a: n <@}. 

Notation. Jwill be an index set; [Jn {U: U( J, IJU = n}, and if Di 
is defined for i e J, let Du = Use u Di. Subsets of [J]n, i.e., symmetric n-place 
relations over J, are denoted by S; and if we know {Di: i e J}, Q, will be 
Q{Du: Ue S U [J]n-1} from 7.4. 

Definition 7.1. Let Tpf(X, D, Q, I*) be the monadic formula saying 
(A) X is a dense set in I* and X_ D. 
(B) For every interval I_ I*, and sets Yi, i = 1, n + 1, if Yi n iC X 

and the Yi are pairwise disjoint and each Yi is dense in I then there is a 
perfect set P, P n Q = 0, and each yi U I is dense in P. 
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412 SAHARON SHELAH 

Remark. We can represent the interval I, as a convex set. 

LEMMA 7.6. Let D, {Di: i e J} be as in 7.5, I* an interval, S c [JVn, 
Qs= Q{D: UeSU[J]n-'} asin 7.4. Then for any set X_ R. R , 9n[X D, 
Qs, 1*] if and only if 

(A) X is dense in I*, X _ D, 
(B) for any interval I I* there is a subinterval I, and Ue S U [J]n-l 

such that X n I, : Du. 
Proof. (I) Suppose R ( qjX, D, Qs, I*]. Then by (A) from Definition 

7.1, X is dense in I*, X _ D so (A) from here is satisfied. To prove (B) let 
I _ I* be an interval, and suppose that for no subinterval I, of I and for no 
UG Su [J]n1, does Xn I1 i Du hold, and we shall get a contradiction. Now 
we define by induction on 1, 1 < I < n + 1, distinct i(l) e J and intervals 
It, 0 < I < n so that I' == I, I'+' C I, and Xn Di(l, n It is dense in It. 

If we succeed, in Definition 7.1(B), choose I"+' as I, and X n Di(,) nf I,+ 
as Y}. So necessarily by wa's definition there is a perfect P such that 
X nDi()l n I1+1 is dense in P for I = 1, n + 1, and P n Qs = 0. But this 
contradicts Lemma 7.4(B) by the definition of Qs. So for some I < n + 1 we 
cannot find appropriate i(l + 1), l+1'. So if we let Y = (X -Uks, l Di (k)) n Il, 
for no I+ _ZII and no i e J is Y nDi n + dense; i.e., for every i C J, Y nQD 
is nowhere dense. 

If I = n , but {i(l), *.., i(n)}l S let Di(n) n Q n IX = Ye U 1, where Ye, 
Y1+j are dense subsets of It, and Y = xn Di(k) n I, and we get a contradic- 
tion as before. 

If Y is not dense in It, it is disjoint to some I+_I-, so xnf I+ Uk<l Di(k) 

So U = {i(O), ..., i(l)} G S U [Jn-', xfn I+ _ Du, contradicting an assumption 
we made in the beginning of the proof. Hence Y is dense in I. 

As (Vie J) YnD, is nowhere dense also for every finite U_ J, YnDu 
is nowhere dense. So we can chose inductively distinct im e J and distinct 
Xm e Yfn Di. such that {X(n+3)m+k: m < w} are dense subsets of It, for 0 < k < 
n + 2. If we let Yk {x(n+3)m+k: m < a} for k < n + 1, by Definition 7.1 there 
is a perfect P, such that Y2 is dense inP, P fn Q = 0, and we get a contra- 
diction by 7.4(B) and the choice of the Xm'S. 

As all the ways give a contradiction, we finish one implication. 

(II) Now we want to prove that R # 94X, D, Q, I*] assuming the other 
side. 

Clearly X _ D, and X is dense in I* (by condition (A) of Lemma 7.6). 
So condition (A) in Definition 7.1 holds. For condition (B) of that definition 
let I _ I* be an interval, Ykfn I c X, Yk dense in I for k = 1, n + 1 and 
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THE MONADIC THEORY OF ORDER 413 

k # I Yk nl = 0. We should find a perfect P such that P n Yk is dense 
in P and PnQ = 0. We can choose a Ue S U [J]'n- and I, C I so that 
xn IjIDu (by the hypothesis). Choose a perfect P such that each Yk is dense 
in P. As D is as in Definition 7.4, either case gives i P I DI < 2o0. 

(*) Now we can find perfect P,, (a < 20o) such that each Yk (1 < k < n + 1) 
is dense in Pa and a # a implies Paf n P,5 C Uk-I Yk. 

Proof of (*). For C a finite sequence of ones and zeros X, will be a set 
of closed-open intervals and singletons with endpoints in U"Z+I Yk, which are 
pairwise disjoint. We define X, by induction on 1(C). Let X< > {[a, b)}, 
where a, b e Y1, and if X, is defined, for each interval [a, b) C XC, choose a 
decreasing sequence xa(i <a) whose limit is a, and xa<b and xt c Yk if and 
only if 1(C) = k mod n + 1, 1 < k ! n + 1. Let, for m = O 1, 

Xr^<m> = {(x+?1, x~): for some b, [a, b) e X, and i = m mod 2} 
U {{a}: for some b, [a, b) C XC, or {a} C XJ} 

For C a sequence of ones and zeros of length a), P, nfl< (U x,,) 
Because Pfn D I < 2o0 for some a, Pal n D _ UkZl Yk; so by 7.4 (and the 

choice of Q's), i Pa n Q, i < 2wo. We can find PR (,a < 280) such that each Yk is 
dense in PR and i a- Pa n Pf C -U + Yk. So for some A, Pf n QC 

Uk-iYk D, but Q R - D hence Paf n Q = 0, and we finish. 

Definition 7.2. Let *n(X, D, Q, I*) be the monadic formula saying 
(A) T.(X, D, Q, I*), 
(B) for any interval I, _ I*, if Y is disjoint to X and dense in I, then 

Tn(X U Ys D, Q. IJ - 

LEMMA 7.7. Let D, J, Di, S, Q, be as in 7.6. Then for any X C R 
R t A,[X, D, Qs, I*] if and only if 

(A) X is dense in I*, X D, 
(B) for any interval I I 1* there is a subinterval I, and U e S U 

{VG [J]n-': (vi e J)(VU {i} X S)} such that X n Ii = Du n Ii. 

Proof. (I) Suppose R t *A[X D, Qs, I*], then clearly condition (A) holds. 
For condition (B) let Ih I* be an interval. By Definition 7.2(A), R t 9n[X, D, 
QsI*], hence by Lemma 7.6(1)(B), Ihas a subinterval I, such that Xnf -- D1 
where Ue S U [J]n1' If (Du -X) n i, is somewhere dense, let it be dense in 
I, C I,, and let Y = (D -X) n I1, which gives us a contradiction to Definition 
7.2(1) (B). If U e [J]n-1, and for some i e J, V = U U {i} G S, we can get a similar 
contradiction by Y = (D, -X) n Io in the interval I, (as D ( D - X, Y 
is dense). We can conclude that: Ue S or Uc [J]n-1 and U U {i} ( S for 
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414 SAHARON SHELAH 

every i e J and that (D,-X)) l 1i is nowhere dense. Hence for some I, (I, 
(Du-X)ni = 0 henceXnli =Dun I1. 

(II) Now suppose that conditions (A), (B) hold; by Lemma 7.6 it is easy 
to see that R #= t,[X, D, Q8, I*]. 

Definition 7.3. Let X1(D, Q, I*) be the monadic formula saying: 
(A) D is dense in I*, I* an interval; 
(B) if I _ I*, X, Y are dense in I and 

R #= J1[X, D, Q, I] A *JeY, D, Q, I] 

then for some I, C I, 

XnYnI= 0 or X n I1 = Yn I1 

LEMMA 7.8. (A) If D, {D%: i e J}, are as in 7.5 then for any interval 
I*, R l= XJ[DI QjI I*]. 

(B) If R t X1[D, Q, I*] then we can find I_ I*, and Xi, i < a,, such 
that 

1) each Xi is a dense subset of I and R t ,l[Xi, D, Q, I], 
2) i + j#Xi fl Xj is nowhere dense, 
3) if I, _ I, and X_- I, is dense in I, and R * J1[X, D, Q, IJ] 

then there are i < a and I, C I, such that X n I1 = Xi n Ii. 
(C) In (B), Ia,,I is uniquely defined by D, Q, I. 

Proof. (A) By 7.7 it is immediate. 
(B) Let {Xi: i < } be a maximal family satisfying (1) and (2) for I = I*. 

If for some interval I there are no subintervals IF and dense X* _ Xn if such 
that (Vi < 0) (Xi n x* is nowhere dense)"5 we are finished. Otherwise we can 
choose inductively on n intervals In _ I* disjoint to U,<" It and X* _ xfn In 
such that (Vi < a0), Xi n X: is nowhere dense', and such that Un<,, In is dense 
in I. Then we could have defined X,0 = UK<WD*, a contradiction. 

(C) Easy. 
Definition 7.4. Let X"(Q1, D, Q, I*) be the monadic formula saying 
(A) D is dense in I*, which is an interval. 
(B) Suppose I _ I*, Xl - Io (I < n) and R # A,<, 1,(Xi, D, Q, IO). Then 

there is I, _ Io such that for all I2 _ I, 

R *JnUl1 Xi, D, Q11 IJ) _ JnUl1 X11 DI Q11 I2) . 

LEMMA 7.9. If D, {Di: i e J} are as in Lemma 7.5, S ( [J] then for 
any interval I*, R l= xN[Q8, D, Q, I*]. 

15 and R k =,[X*, D, Q, I']. 
le and R k V i[X*, D, Q, In]. 
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THE MONADIC THEORY OF ORDER 415 

Proof. Immediate. 

THEOREM 7.10. The set Ar is recursive in the monadic theory of order; 
where Ar = {t: 8 is a first order sentence which has an (v-model i.e., a model 
Msuch that (IMI, R1) is isomorphic to (v, x + 1 = y)}. 

Conclusion 7.11. True first order arithmetic is recursive in the monadic 
theory of order. 

Proof. It suffices to define for every first order sentence 0, a monadic 
sentence G(8) so that R # G(8) if and only if 8 has an v-model. 

By using Skolem-functions and then encoding them by relations, we can 
define effectively the sentence G1(8) such that 8 has an (v-model if and only if 
G1(8) has an (v-model and 

G1(8) = (Vxl *, xfl(0))(3xf(o0)+1, . * Xn(l)) (Vi A3 Oi) ) 

8ij Lis 'an atomic, or a negation of an atomic, formula; only the relations 
R * .., * R.2, appear in it; Ro is the equality; and Ri has m(i)-places. 

Define (where X, Y, D, Q are variables ranging over sets, I is a variable 
ranging over intervals and x, y are individual variables): 

( ) G2(Xk = X2) =(vi _ I*)(7I- _ I')(Xk, n 12 = Xil n2), 

( 1 ) G2[Rl(Xk(l,), * * Xk(m(l)))] = (3Y)(Y _ D - D* A A/\i1II2(Xc(i) U Y. D, 
Q, I*) (for 1 < O), 

( 2 ) G2[ - Rl(Xk(l) . * Xk(mM= G2[Rl(Xk(l), , * Xk(m)] (for I > 0), 
(3) G3(8) = (VX1 *.., * Xn(0))(3xn(o)+1, *.., * X.(1)) 

(WI? I)(3I* _I?)[A-`_?l *,(XiP D, Q*P I*)A\ A\n( CD 

-> A 0(0)+1 X, _ D* n A 12n')(0)+1 A,(X,, D, Q*, I*) A Ai V, G2(8iM)] 
(4) Let X* be the conjunction of the following formulas: 

(a) D, D* are dense in I, D* _ D, 
(i8) X1(D, Q*, I), 
(Zx) X2(Q', D, Q*, I). 

Let us denote 
R,(X YSQt Q1I) =(X C D* A Y C D* A X n Y = 0 A 

*1(XP D, Q*, I')A*1(Yp D, Q*A, I')A(3Z)[Z_-D-D*A*1(Z, DP Q*, I')A 

*2(XU Z, D, Q1, I') A *2(YU Z, D, QP, I)] 
and 

(6) *,(X0, D, Q*,I) A Xo _ D* A (VY)[r,(Y, D, Q*, I) A YZ D* 
(3Y,)R1(Y, Y1)] A (VI' C I)(VY) -R-(Y XO, Q1, Q1, I') A 

(VY1Y2Y3)(VI0 _ I)[R1(Y,, Y2, Q1, QI, I) A R1(Y1, Y3, Q1, Q12, 1) 
(VI1 C I?)(3I2 I1) Y2 n 12 Y3 n 12]. 
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416 SAHARON SHELAH 

(s) The formula saying that if (6) holds when we replace Q1, Q2 by 
Qt, Q2 resp. then 

(VX)(VY)(VI' _ I)[R1(X, Y, Q1, Q2, I') -2 R1(X, Y,Qt, Q2, I')]. 
(5) G(O) = (3Q*, D, D*, Xo, ..1, *)(VI)[X* A G3(0)]. 

Now we should prove only that 0 has an c-model if and only if R t G(O). 
(I) Suppose Mis an c-model of 0, and without loss of generality I MI = c. 

Let J = cw + w, Di(i < w + c) be countable, pairwise disjoint, dense subsets 
of R. Choose symmetric and reflexive relations S' on w + cw so that 

M = R(x1, *.* *, Xk(l)) (Y E c) + 0)) A_ <y, xi> E SoA ye w X ) 

To prove R t G(O), let D = Ui<o+(o Di, D* = Ui<, D, Qi = Q(si)g Xo = Dog 
and Q* = Q,,+,,. Let I be any interval. It is not hard to check that under 
those assignments R t x* A G3(0). 

(II) Now suppose R t G(0). Let Q*, D, D*, X0, Qi be such that R t 

(VI)(X* A G3(O)). By (4) (,a), clearly R t (VI)X1(D, Q*, I). Hence by Lemma 
7.8(B) there are I and Di, i < a satisfying (1), (2), (3) from 7.8(B). As 
R t (vI)(X* n G3(O)), then in particular R t X* A G3(A). By (4) (6), R t 

e1(X0, D, Q*, I), so we can choose Do = X,. (See the proof of 7.8.) By (4)(a) 
we can also assume that R t Ri(Dn, Dni+) for n < c. By (4) (s) necessarily 
Di (-D* i < co. 

Let {1 1: 1 < wt} enumerate all sequences j = <j(l), ..., j(n(O))> of natural 
numbers. As R t G3(A) for every JI we can choose Xi = Djl(i), and so there 
is an assignment Xi - Dl i for n(O) < i ? n(l) showing that R t G3(0). So 
we can define by induction on n < c intervals In so that: In,, C In, 1, C I, 
and for every n(O) < i ? n(l) for some jn(i) < a0, Di n flIn,+ = Dj,(i) n In+1. 

Now we define a model M: I MI = oi, and M tl RJlj(l), ..., j(m(l))] for 
some n, R t (3Y)[YcP D - D*/A /\ T`)2(Dj~if n Y, D, Qt, I)]9 

It is easy to check that R t 0. 

Remark. By some elaboration, we can add to the definition of Ar also 
the demand 

"R2 is a well-founded two-place relation" 

(also for uncountable structures). Thus, e.g., there are sentences On, such 
that MA implies: R t 0 if and only if 29o = 

THEOREM 7.11. The set of first-order sentences which has a model, is 
recursive in the monadic theory of {(R, Q): Q C R} where the set-variables 
range over subsets of the rationals. 

Remark. Notice that a quantification over P such that D is dense in P 

This content downloaded from 169.230.243.252 on Sat, 22 Nov 2014 00:43:08 AM
All use subject to JSTOR Terms and Conditions

Sh:42

http://www.jstor.org/page/info/about/policies/terms.jsp


THE MONADIC THEORY OF ORDER 417 

can be interpreted by a quantification over Pn D, as the property "x in the 
closure of X" is first-order. Hence q)n n are, in fact, in our restricted mo- 
nadic theory. 

By 7.10, 7.11, Theorems 7.1, 7.2, and 7.3 are in fact immediate. Theorem 
7.1(B) can also be proved by the following observation of Litman [Li 1], which 
is similar to 3.6(B) (1): 

LEMMA 7.12. The monadic theory of the real order is recursive in the 
monadic theory of order. 

Proof. For every monadic sentence 0 let G(0) be the monadic sentence 
saying: 

"If the set X is completely ordered, is dense and has no first nor last ele- 
ments then some Y C X has those properties and in addition (Y, <) t 0." 

As every complete dense order contains a subset isomorphic to R, and 
any complete dense order (ZR with no first nor last element is isomorphic to 
R, clearly R l= G(0) if and only if 0 is satisfied by all orders so our result is 
immediate. 

Conjecture 7D. The monadic theory of R and the (pure) second-order 
theory of 2`0 are recursive in each other.'7 

Conjecture 7E. The monadic theory of {R, Q): Q C R} with the set- 
quantifiers ranging over subsets of the rationals; and the (pure) second-order 
theory of k0 are recursive in each other. Gurevich notes that if V = L the 
intersection of 7D, E holds. 

Conjecture 7F. The monadic theory of order and the (pure) second-order 
theory, are recursive in each other. 

In conjectures 7D, E, F use (*) or CH if necessary. 

Conjecture 7G. If D, is a dense subset of R, and for every P, ] Pfn D1l < 
2wo, for I = 1, 2 then (R, D1), (R. D2) have the same monadic theory.'8 
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