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ABSTRACT 

It is proved that if T is an unstable (first-order) theory, 2 > I TL + No, 
then T has exactly 2 ;t non-isomorphic models of cardinality 2. In fact we 
have stronger results: this is true for pseudo-elementary classes, and for 
almost every 2 >_ IT I + NI. 

Suppose T is a (first-order) complete theory in the language L, T1 ~ T, and 

I(2, T1, T) is the maximal number of non-isomorphic models of T of cardinality 2, 

which are L-reducts of models of  T1. Our main theorem is 

THEOREM 0.1. I f  2 > [ 7"1 [ + No, and T is unstable then 1(2, T1, T) = 2 i. 

In fact we can replace 2 > I Tx[ + No by 2 > I T  l[ + N1, except in the case 

there is a family of 21 subsets of 4, each of cardinality 4, such that the intersection 

of any two sets from the family is finite. But this case is very rare (see Lemmas 

3.2, 3.3). 

CONJECTURE. If  2 ~> ] T 1 I q- ~1, and Tis  not superstable, then 21 = 1(4, T1, T). 

Moreover, this is the best possible result. 

There are many partial results toward this conjecture; some of them appeared 

in the notice [10], where a result weaker than Theorem 0.1 also appears. It holds 

for regular 2 > I T  I. 

In the proof, we shall use Ehrenfeucht-Mostowski models (see [2], or the 

exposition Morley [6]). Ehrenfeucht in [1], using a property a little stronger 

than unstability, proves that if 2 = 2" > ] Ta 1, then 1(2, T1, T) > 2 (the property 

was the existence of  an infinite set in a model M of T, and an antisymetric con- 

nected relation q~M(xl, ..., x,) on it). Morley [-5] improves his result, and improving 
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this in Shelah [-8] Theorem 2.13, it was proved that I(N~, T1, T ) > [ ~ -  fl[ if 

[ T1 [ = Np. Here we shall also use the theorem of  Shelah [,9], which says that if T 

is unstable, then there are n < co, and an infinite set of  sequences of  length n from 

a model M of T, and a relation ~bu(~, 37) which orders them (by [,9], Theorem 4.7, 

this is weaker than Ehrenfeucht's demand). Other results on I(2, T1, T) can be 

found in Keisler [4], Theorem 5.6, and Morley [-7"]. See [-9, §OE, G] for a list 

of  results. In Section 1 we define the Ehreufencht-Mostowski models, and show 

that we can, without loss of  generality, assume additional assumptions on T1 

and T. 

In Section 2 we prove a combinatorial theorem about  ordered sets. 

In Section 3 we prove that if 2 > I T1 [, I()~, T1, T) < 2 i, then there is a family of  

2 a subsets of  2 of  cardinality 2, the intersection of  any two of them is finite. We 

also show that this implies there is a regular N~ < 2, such that 2 bl + 2 ~° = 2 ~. 

In Section 4 we show that 2 > N~ > { T1 ] + No, N~ regular, implies I(2,T1,T) >= 2 I~1 

+ 2 ~° , and so prove the main theorem. 

NOTATIONS. Infinite cardinals will be denoted by 2,/t, rc, X; ordinals by 

i,j, k, l, ~, fl, ~,; limit ordinal by fi; natural numbers by m, n, r. Ordinal is the set 

of  the smaller ordinals, and a cardinal is an initial ordinal. M, N are models, 

a, b, c elements of  models, x, y, z variables and ~b, ~, formulas. I A] is the car- 

dinality of  A, 09 is the first infinite ordinal, and N~ is the ~th infinite cardinal. 

Sometimes we shall not differentiate between a predicate P and its interpretation 

pM in the models (similarly for function symbols and terms). 

1. For simplicity we assume that all the languages and theories will be infinite. 

A theory Tin a (first-order) language L i s a  consistent set of  sentences of  L. Let T 

be a fixed complete theory in L, and T1 a fixed theory in L1, and T c T1. Let 

PC(T1, T) be the class of L-reducts of  models of  T1 ; and 1(2, 7"1, T) the maximal 

number of  non-isomorphic models of  PC(T~, T) in the cardinality 2. The theory T 

is unstable if for every ,l there is a model M of T, and a set A ~ I MI ( =  the set 

of  elements of  M) such that the elements of M realize over A more than 2 complete 

types and [ A ] <  2 (see Shelah [8]). 

Our aim is 

THEOREM 0.1. I f  T is unstable, 2 > ] 7111 ( =  [ T1 1 + No) then 1(2, T1, T) = 2 a. 

(In fact, we shall prove there for most 2 it suffices to require 3~ > I Ti I + ~ql.) 

Since for every 2 > I TI, clearly 1(2, Ti, T) < 24, it suffices to prove 1 (2, T1, T) 

> 2 x. 
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It is easy to see that T t c  Tz implies I(2, T1, T) > I(2, T,2 T). As we want to 

to prove only I(2, 7"1, T) > 2 ~, we can without loss of generality assume 

ASSUMPTION 1. T1 is complete. 

By Shelah [9] Theorem 2.13: 

LEMMA 1.1. Tis  unstable i f f T h a s  a model  M, and there is a natural  number,  

n, and sequences d °, ,i I , ..., ~m, ... ~ I M,[ ,  and a f o r m u l a  0(Y~,37) o f  L, such 

that f o r  every m, l < co 

m ~ c~[dm,rd l] iff m < I. 

In fact we can use here the conclusion of the lemma as a definition of unstability. 

In fact we can assume that n = 1, because of the following construction. Let 

Fo, "" ,Fn-x  be function symbols not in L~, let M be a model of 7"1. We define a 

model M* as follows: its set of elements is I ~ l u  IM I °, and its relations will 

be the relations of M. The functions of M* are the functions of M, and the 
M* M* functions Fo , ..., F~_ 1 which are defined as follows: 

F k (a) = a i f a E [ M l ,  M* 

if a = < a o , . . . , a , _ ~ > ~ l M l L  M* F k (a) = a k. 

We define T* as the (first-order) theory of M*, and we define T* similarly. 

It is easy to see that for every 2, 1(2, T1, T) = 1(2, T*, T*). It is also easy to see 

that T* satisfies the conclusion of Lemma 1.1 for n = 1. 

So we can assume 

ASSUMPTION 2. In L there is a formula x < y such that 

A) T has a model M and elements ao, ax, az, ..., am, ... of M such that for 

every n , m  < co, M ~ a n  < am.eC.n < m  

B) (Vxy) (x  < y --* --1 y < x). 

REMARKS. 1) If  the formula ~b(x, y) satisfies (A), then qS(x, y ) / ~  --1 ~b(y, x) 

satisfies (A) and (B). 

2) By the context we shall know what is the meaning of < .  

A theory T 1 in a language L t contains its Skolem functions if for every formula 

¢(x,)7) in D,  there is a function symbol F in D such that 

(V37) [( 3x)(~(x, 37) -* (9(F(37), 37)] ~ T 1. 

It is well known that for every T1 in Lt  there is a theory T2 in a language 

L2, [L2 1 -<- I L, I, 7"1 c T2, such that T2 contains its Skolem functions. So we can 

assume, without loss of generality 
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ASSUMPTION 3. T1 contains its Skolem functions and is complete. 

By Assumptiona 2 and 3, T1 has a model M1 and elements ao, a l , . . ,  of  M1 such 

that M ~ an < am iff n < m ; and that T~ contains its Skolem functions. By the 

construction of  Ehrenfeucht and Mostowski [2] it follows (See e.g. Morley 

[6] ) :  

LEMMA 1.2. For every ordered set I, 7"1 has a model M~(I) and a s e l M:(I)[  

for every s e  I such that 

1) every element of MI(I)  is of the form z(as,,..., as.) where sl < "" < sne I 

and z is a term in L~. 

2) For  every s < t e I, Mi( / )  ~ a s < a t 

3) For  every formula #)(xl,..., xn) of L1, 

and sl < .-. < Sne I, t~ < "'" < t, e I 

M i ( I )  ~ #)[as,, "" ,  as.] - #)[at , , " ' ,  at.] 

4) For  every element b of M~(I) there are s: < - . .  <snGI such that: if 

tl, t 2e I ,  and l <<_k<_n =~tl < s k = t 2  <sk and l < k < n  =>tl = s k = t 2 = S k  

then Ml(I)~ b < at, = b < at2, M:(I)~ at~ < b = at2 < b. 

REMARK. Clearly (1) and (3) implies (4). 

DEFrNITION 1.1 

A) M(I) is the L-reduct of M1(1 ) 

B) <as: sGI> will be called the skeleton of  M1(1 ), and also of  M(I). 

REMARK. Ehrenfeucht [1] uses a similar construction. 

2. Let I, J denote non-void ordered sets (instead of ordered sets we shall say 

order). Their elements will be denoted by s, t and their orders by < .  When there 

is a danger of confusion, the order of  I is denoted by < J. I* is the converse of 

the order I. 

Many times we shall assume implicitly that different ordered sets have no 

common elements. In fact, this requires many times the exchange of ordered sets 

by isomorphs of  them, but we shall not mention it. I + J is the sum of  I and J, 

i.e. the elements of  I + J are the elements of  I and J ;  and the order between 

elements of  I remains, and similarly for J, and s e I, t G J implies s < t. We define 

similarly ~k<llk and ~ ,~j I  s. 

Ordinals and cardinals will also be considered sometimes as orders. 

So < is used as an order of  ordered sets; as an order between ordinals and 

cardinals, and also as a predicate of  L. Its meaning should be clear from the 
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letters we use. Note that  we shall write ¢l-d] instead of  M~ qS[d], if  it is clear 

what is M. 

The central concepts of  this section are 

DEFINITION 2.1. Let M be a model with the relation < ,  which is antisym- 

metric. The sequence (as: s ~ I )  of  elements of  M is called a nice sequence (in M) if 

A) s < t ~ I implies as < at 

B) For  every b lM I there are sl < ..- < sn~I  such that:  for every tt, t 2 ~ I  

i f  1 < k < n => tt < Sk - t2 "(  Sk and 1 < k < n ~ tl = s k - t 2 = S k then b < at1 

= b < at2 , at1 < b - at2 < b. 

Clearly, by (4) of  Lemma 1.2 

LEMMA 2.1. The  skeleton of  M( I )  is a nice sequence, when < is < f r o m  

Assumpt ion 2. 

DEEI~TION 2.2. The orders I,  J will be called contradictory if there are no 

orders I~, J :  without last elements such that:  there is a model M with a relation 

< and in it nice sequences (a , :  s ~ I~ + I * )  and (b~: s ~ J t  + J * )  such that:  

1) for every t ~ J* there is s o ~ I t ,  such that s t > s °, s t ~ I t implies there is 

S > S t ,  S G I I ,  as<  b t. 

2) for every t ~ I*  there is s o e J : ,  such that  s t > s °, s t s J t  implies there is 

S > S t ,  s G J 1 ,  b s <  at .  

REMARK. By the definition of nice sequence, (1) implies that  for every t e J* 

there are s ° e I : ,  s 1~1 . ,  such that s ° _ s < s :  (in I t + I * )  implies a s < b r  

Similarly for (2). We shall use this many times. Our aim in this section is to prove 

THEORE~t 2.2. For every 2 > No, there are 2 ~ orders o f  cardinal i ty  2 which 

are contradictory in pairs. 

We shall prove it by a series of  lemmas. 

DEFINITION 2.3. The cofinality of  an order 1, c f ( I )  is the smallest cardinal 2, 

such that there is an increasing sequence (Sk: k < 2) of  elements of  I such that  

for every s e I there is k < ,~ for which s < Sk. 

I f  I has a last element, c f ( I )  is not  defined. The sequence (Sk: k < 2) is called 

a cofinal sequence in I. Clearly c f ( I )  is a regular cardinal. 

LEMMA 2.3. I f  c f ( I )  ¢ c f ( 3 )  then I and J are contradictory orders. 

PROOF. Without loss of  generality c f ( J )  = I~ > 2 = c f ( I ) .  Suppose I and J 

are not contradictory, and we shall get a contradiction. By Definition 2.2, there 
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are orders I t ,  J1, a model M and nice sequences (as: s ~ I 1 + I*) ,  (bt:  t ~ J1 + J*> 

which satisfy the conditions mentioned in Definition 2.2. Let (Sk: k < 2> be a 

sequence cofinal in I, and (tk: k < ~> be a sequence cofinal in J. Let k < 2, then 

there is t k ~ J1 such that t ~ Ji ,  tk < t implies b t < ask As (bt: t E J1 -I- J*)  is a 

nice sequence, there is l =  l (k)< # such that (in J1 + J*) t k< t < h implies 

b, < as~. Hence l(k) < i < g implies bt, < a~. 

As 2 </~ and/~ is a regular cardinal, there is l ° </~ such that l ° _<_ i < / 4  k < 2 

implies bt, < % .  As (a~: se I1  + I*> is a nice sequence, (sk: k < 2> is cofinal 

in I, and for every k < 2 bt,o < as~, there is s o ~I~, such that s > s °, s EIx implies 

bto < as. This contradicts Condition 1 in the Definition (2.2) of nice sequences. 

So we get a contradiction and so prove Lemma 2.3. 

D~FINmON 2.4. (1) For  any cardinal 2, D x will be the filter on 2 whose basis 

is the set of  closed and unbounded subsets of 2 (closed by the order topology). 

(2) If  A, B c 2 ,  then A c B ( m o d D ~ )  means B U ( 2 - A ) ~ D ~ .  Similarly A 

= B(modD~) means A ~ B(modD~.), B c A(modD;.). 

REMARK. Solovay proved that for every regular 2, there are 2 subsets of  2, 

disjoint by pairs, and # 0 (rood Da); (He improves previous results). For  comple- 

teness we shall not use it, and prove a very weakened version of i t - 2 . 4 .  

REMARK. It is easy to see that Da is a filter, when c f (2)  > co, and D~ = {A: A 

2, and there is a closed set B ~ A, which is unbounded in 2}. Moreover, if 

# < c f (2) ,  then the intersection of  # sets from Da belongs to Dz. 

LEVtMA 2.4. There is a fami ly  of N o subsets of N1, disjoint in pairs, such 

that every one of them is ~ 0 (modO~) .  In fact we can replace N1 by any 

cardinality of cofinality > N o. 

PROOF. Let us first prove 

(*) if A = Nx, A # 0 (modD~) ,  then there is a set B c A, such that 

B ~ 0 (rood D~),  A - B ~ 0 (modDm) 

Suppose A does not satisfy (*). Then it is easy to see that {A c~ C: C ~O~} is 

an ultrafilter on A, which is closed under intersection of  No sets. As 

A ~ 0 (mod Din), I A [ =  N1 and so N~ is a measurable cardinal. Acontradiction. 

So (*) holds. Let us define by induction A, for n < o) such that N 1 - dm<,Am 

0 (modD~) .  For n = 0  the condition is satisfied. If  A~ is defined for m < n, 
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then by (*) there is A, c N 1 - ~_J m < hAm such that  A, • 0 (mod D~ t), (N 1 - U m  <,Am) 

- A n = N 1 - Um<n+lAm ¢ 0 (modDs, ) .  So the demand  for  n + 1 is satisfied. 

Clearly {An: n < co} is the required family. 

I f  we replace N 1 by 2, c f ( 2 )  > No, then there are two cases 

A) 2 is smaller  than  the first measurable  cardinal.  Then the p r o o f  is exactly as 

for  N1. 

B) 2 is not  smaller  than the first measurable  cardinal,  and hence > N,o. Then 

let A,, = {(5:(5 < ,t, and c f((5) = N,}. I t  is easy to see tha t  {A~: n < co} is the 

required family. 

LEMMA 2.5. I f  2 is a regular  cardinal  > N o, [ = ~k<;~I*, J-= ~ . k < Z J ~ ,  and 

{k < 2: Ik, J k are contradictory}  v ~ 0 (modDa)  

then I , J  are contradictory.  

PROOF. Suppose I ,  J are not  contradictory,  and we shall get a contradict ion.  

So there are a model  M,  orders I l, j1  wi thout  last e lement  and nice sequences 

( a ~ : s ~ I  1 + I* ) ,  (bt :  t ~ j 1  + j . )  satisfying the condit ions ment ioned in 

Definition 2.2. 

As Ik, Jk are non-void,  we can choose an element  f rom each o f  them:  Sk ~Ik,  

t k E J  k. NOW we shall  define the ordinal  k z = k(t) for  l < 2 such tha t :  

I) l < i < 2  implies k t < k ~ < 2  

I I )  for  a limit ordinal  6, ko is the least upper  bound  o f  {kt: l < 6} 

I I I )  i f  s EI* ,  s < Sk(l+l)( < -- in 11 + I* )  then a~ < bt~(, ) 

IV) if t e J * ,  t < tk(t+l) then b t < a,k(~ ) 

Let  us define k z by induct ion:  

A) k o = 0 

B) Suppose  k I is defined, and we shall  define k I + 1. As in the p r o o f  o f  L e m m a  2.3, 

there is s o ~ I *  such tha t  s ~I* ,  s < s o implies a~ < brat, ). Similarly there is t o E J*  

such tha t  t ~ J*,  t < t o implies b t < ask(t ). Let  kl+ ~ be the first ordinal  k such tha t  

s k < s °, t k < t o (in I ~ + I*, j1  + j .  respectively, o f  course).  

C) I f  (5 is a l imit  ordinal  < 2, and kl is defined for  every l < (5, then  ko will be 

the least upper  bound  o f  {kl: l < 6}. 

Clearly {kl: l < ,~} is a closed unbounded  subset o f  2, and so is {ko: (5 < 2, (~ is 

a l imit  ordinal}. Hence  {k~: (~ is a l imit  ordinal} eDx. As { k <  ,~: Ik, Jk are 

contradictory} ¢ 0 m o d  (Da), there is a (5 < 2 such tha t  Ik~, Jko are contradictory.  

Let  us define i Ik(~), ] = Jk(~), l l  * * ~- "= ( Z k < k ( 6 ) I k )  , J 1  * * = ( E k < , , ( ~ ) J k )  • 
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Let N be a model, such that INI--IMI, and ( a , b ) ~  <N iff ( b , a ) e  < M 

Now the sequences (as: s ~ is + i*) ,  (bt: t E ]1 + J*)  in the model N, and the 

orders i, o r, is, ]1 satisfy the condition mentioned in Definition 2.2; hence 

i = Ik(~), or = Jk(~) are not contradictory, in contradiction to the definition of ~. 

So I, J are contradictory, and we prove Lemma 2.5. 

LEMMa 2.6. There is a fami ly  K1 of 2 ~° orders of cardinality N1 which are 

contradictory in pairs. 

PROOF. By Lemma 2.4 there is a family {A~: n < co} of pairwise disjoint 

subsets of N~, each of which is ~ 0 (modDm). 

For every subset B of co and k < N 1 let us define I~ as co if k e A , ,  n e B ,  and 

as Ns otherwise. Let IB=  n * Nk<el(Ik) . We shall show K1 = {I~: B c co} is the 

required family. Clearly IK11 = 2~°' and I -- I t s  
Now suppose B, C c co, B ~ C, and we shall show Ie, I c are contradictory, 

K1 is the required family. As B ~ C ,  there is n < co such that n e B e * . n ~ C .  

By Lemma 2.3, co, It~ are contradictory, hence, for k ~ A,, I~, I c are contradictory. 

So 
{k < It t :  I f  I c are contradictory} = A, ¢ 0 (mod De, ). 

Hence by Lemma 2.5, I e,/Care contradictory, and so K1 satisfies our demands. 

Now we shall prove the main theorem of this section. 

THEOREM 2.2. For every ~ > No there is a fami ly  Kz of2X order of cardinality 

~. which are pairwise contradictory. 

PROOF. We shall define K~ by induction on ~. 

Case 1. l =  it~ 

Let S =U{2~:  e < Its}, i.e. S is the set of sequences of ones and zeros of 

length < N. Clearly [ S [ = 2 e°. As by Lemma 2.6 there is a family Kx of 2 e° 

pairwise contradictory orders of cardinality Ns, we can name them such that 

K t  = {In: t /eS}.  

Now for every t / e2  e'(i.e, t /is a sequences of ones and zeros of  length It1) we 

define 

k<e~ 

where ~/[ k is the sequence of the first k elements of ~/. 

Clearly ] J ,  [ = N1. Moreover if t/, ~ z , t / ¢  z, then there is k < N1 such that 

el  k ~ ~[k, hence 
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{1 < NI: I,~lt, I, lt are contradictory}m~ {I k < l < N1} ~ Ds, 

Hence by Lemma 2.5 J,,J,~ are contradictory. So clearly Ks,  = {Jn: t /~2 s '} is 

the required family. 
+ 

Case 2. 2 = / t  
In this case the proof  is, in fact identical to the proof  of  Case 1, with 2 instead 

of  N1, # instead of N 0, and Kj, instead of  K 1. 

Case 3. 2 is a limit cardinal of cofinality > No. Le t / t  be the cofinality of 2, 

and let 2 = ~k<la2k, where for k < 1 < / t ,  N o < 2 k < 21 < /~. Let /tk = 2a~- 

Clearly I I-It<k/tk I = 2a~" By the induction hypothesis for every k < / t  there is a 

family K k = {it: ~/E I-Iz<=k/tt} of 2 a~ pairwise contradictory orders of  cardinality 2k. 

Now for every t/~ [Iz<u/tt let Jr = Zl<uI*rll (q [ k is here the reduction of  ~/, which 

can be looked at as a function with domain/t,  to k = {l: l < k}). Clearly I J~ [ = 2, 

and IKz[ = lII,<./t,l =I/- .  where g z = {Jr: t/EI-It<u/t,}. Clearly by 

Lemma 2.5 every two different orders from K~ are contradictory, and so it is the 

required family. 

Case 4. 2 is a limit cardinal of cofinality No. Let 2 = ~n<,o2~ where n < m < co 

implies N O < 2n < 2" < 2. Let #n = 22". Clearly Irln<°/tnl--/t. By the induction 

hypothesis for every m < 09 there is a family K ~ =  {I~: t/eyIn<m/tn } of pairwise 

contradictory orders of cardinality 2,.. By Lemma 2.4 there is a family {An: n < ¢o} 

of pairwise disjoint subsets of N1, each of them # 0 (modDe,).  For simplicity 

assume Un<,oA~ = N1- Now 

I~: if k e An, I~ = Irln- 

Now for r/eI-[~<~pn let 

for every t/~M~<.#n, and k < N 1 let us define 

= x 

k<N1 

Clearly I Jr[ = 2, and 7/ # z implies Jr, J, are contradictory. Let 

a s  Case 4 

is proved, and so Theorem 2.2. 

3. DEFn~ITION 3.1 1) A family K of setsis a family  of 2-disjoint sets i fA,  B EK 

implies [A n B[ < 2 

2) A family K of subsets of A is (2,/t)-proper if it is a family of/t-disjoint sets, 

and B e K implies I B t >- 2. (We always assume 2 >/ t . )  

THEOREM 3.1. Suppose 2 >= 17"1 [ + N 1. Then at least one of the following 

holds: 
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A) 1(2, T1, T) = 2 z 

B) There is a (2, No)-proper fami ly  of 2 4 subsets of 2. 

PROOF. By Theorem 2.2, there exists a family K = {Ik: k:< 2 4} of pairwise 

contradictory orders of cardinality 2. 
I For every k < 2 4, l =< 2 let I~ be an order isomorphic to I,, and s, any element 

of I~. Let us define for k < 2 4, Jk = ~]~_<- Z(Itk) *, and M k = M(Jk). (M(J,) is defined 

by Definition 1.1.) and let (a~: S~Jk)  be the skeleton of M k. Clearly, for every 

k < 2 x, the cardinality of M k is 2. 

Suppose A is not satisfied, and we shall prove that B holds. Let/2 be any regular 

cardinal, ;[ </2 < 2 4. As A does not hold, 1(2, T1, T) < 2 4, and so there exists a 

model M such that K = {k < 2z: M k "" M} is of cardinality >/2. Let (b~: s ~ J k )  

be the image of the skeleton (a~: s ~Jk) of Mk, by the isomorphism from M k 

onto M. Clearly, by Lemma 2.1, (b~: s e J  k) is a nice sequence in M. For every 

k e K ,  let Ak = {b~: s = s~, l < 2} c IMI Clearly IM I is a set of cardinality 2, 

and {Ak: k E 2 4} is a family of >/2 subsets of l M 1, each of them of cardinality 2. 

(I Ak I = 2, because by the definition of a nice sequences < t e J  k implies b] < bt k 

hence not bt k < bs k, and so b~ ¢ btk.) 

We shall prove now that k ~ l :~ l Ak n At] < N o in order to prove Theorem 

3.1. So suppose I Ak ~ All >= No. Then there is a sequence (e.:  n < co) of different 

k s(n) = s~("); c, = bt(,), t(n) = s~ (~). Without elements of A k n A I. Let c. = b~(.), z 

lose of  generality, i(n),j(n) are increasing functions (otherwise we '~replace 

(c.:  n < co) by a suitable subsequence). Let 6 a = sup{/(n): n < co}, 62 

= sup{j(n): n < co}. It is easy to see (e,:  n < o~)"(b~: s~(I~'))* and 

(c,: n < co),, (b~: s~(If2) *) 

are nice sequences (in M). Looking at the conditions of Definition 2.2, it is clear 

that this implies 1~ ~, 1~ ~ are not contradictory. As I~ ' is isomorphic to I,,  and 

I~ ~ is isomorphic to It, it follows Ik, It are not contradictory, a contradiction. 

So if 1(2, T~, T) < 2 x, then for every regular/2 < 2 x there is a (2, No)-proper 

family of subsets of lM I of cardinality >/2, where II M I[ = 2. From this B can be 

proved easily. 

LEMMA 3.2. I f  there is a (2, No)-proper fami ly  of 2 z subsets of 2, 2>  No, 

then there is a regular N , <  2 such that 2 ~ = 2  N + 2  ~°. 

For proving this we shall first prove 

LEMMA 3.3. Let K be a (2,/2)proper fami ly  of subsets of ~c, and/2 be regular 

Sh:12



VO1. 9, 1 9 7 1  NON-ISOMORPHIC MODELS 483 

A) I f  tc"= ~, then I KI =< ~ Moreover, always I KI =< ~". 
B) I f  x ~ > re, but )~ < rc implies Z ~ < ~c, and 2 is greater than the cofinality of 

then I g l  -<- 
C) ~: = N~+ r, Z < N~ implies )~'< No~, and for every fl < 7, N~+a >=/t o + I~1.; 

and .~ >= #o + 171", then I11 =< ~, where Po = P + [cf(c0] +. 

PROOF OF LEMMA 3.3. Let K = {Ak: k < IKI~. 
A) Let for every k, Bk be a subset of  Ak of cardinality p. (As [ Ak [ > 2 > p, 

there is such a subset.) Now if k ¢ l, then B k n B t c A k n Al, hence ] B k n B~ ] < p, 

and, as I Bkl = I B, t -- ~, this implies B k ¢ B l. So [ K[ = [ {Ak: k < [K I~1 

--I{Bk: k < I K 1)1 -<- 1{~: B ~ K, I BI -- ~ --- ~ So clearly A follows. 

B) Let Z < 2 be the cofinality of ~:, and let x = E~<zx i. For every k clearly 

2 =< IA~I--IU,<~(Ak ~')1--< ~,<~1~ n w,l.ms clearly Z </~ < 4, Z < 4, there is 

i =  i(k) such that lag C3~:~[ > Z  + + # ,  and let B k be a subset of AknX~(R) of 

cardinality /~. Then clearly k C l  implies B k # Bt, and I g l - - I ~ : k  <lgl~ 1 

So B follows immediately. 

C) We shall prove it by induction on 7. 

Case 1. 7 = 0. This is Part B) of our lemma (or part A) 

Case 2. 7 = i + 1 .  

As N~+, > # o  + 1 i l  ÷, and N~+~+t is a regular cardinal, for every k there is 

j = j (k )  < N~+,+I such that ]A k n j (k ) [  > # o  + ]i]+. If ]K[ > N~+i+l, then 

there is j such that I {k < I K l: j(k) = j} 1 > N~+,+I > N~+,. So {Ak O j :  k < I K 1, 

j (k)  =j}  is clearly a (#o + I i ]+,#)-proper family of subsets of j, which is a set of 

cardinality N~+~. By the induction hypothesis we get a contradiction. Hence 

I g l  < N~+,+I = ~:. 

Case 3. 7 is a limit ordinal. 

Let k < I KI. If for e v e r y / <  7, [Ak c3 N~+, I </~o + 171 +, then as/~ is a regular 

cardinal {Ak N N~+r[ < #o + 17[ +. So there is i =  i(k) < 7 such that lAg ~ N~+~I 

=>~o +1714, If 111 > s~+, then there is i ° such that [ { k : i ( k ) = i ° } [ >  N~+r, 

and so {Ak n N~+io: k < [KI} is a (/~o + lTl+,~)-proper family of subsets of  

N~+~o, of cardinality > N~+ r > N~+~o. This contradicts the induction hypothesis. 

Hence I K [ =< N~+r = re. 

PROOF OF LEMMA 3.2. Clearly by Lemma 3.3A, 2a= 2 ~°. Let Na be the first 

cardinal such that N~°= 2 s°. Clearly N~ = No, or Z < Na implies Zs°< N¢. 
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In the first case, clearly N~= N1 satisfies our demand: it is regular and 

2 ~ = 2 to° = No ~° = N~ °. So assume N~ > No. By Lemma 3.3B, C for any Yo if for 

every 7=<70, N~+~> [7[, then N~+~<2.  Hence N~= N~+~+l is a regular 

cardinal < 2, and 24 > 2" + 2 ~° >__ 2 ~ > N~ ° = 2 x. So N~ is the required cardinal. 

From Theorem 3.1 and Lemma 3.2, it clearly suffices, in order to prove the 

main theorem, to prove that if N~ is regular, 1 > N~ > IT 1 I, then I( t ,  T~, T) 
_> 2~°+ 2 I~1. This will be done in the following section. 

4. The aim of this section is to prove 

THEOREM 4.1. I f  N~ is a regular cardinal, 2 > N~ > ] T1 l, then 1(2, T1, T) 
214 + 2 to°. 

As was said in the end of the last section, by Theorem 3.1 and Lemma 3.2, 

this will end the proof of the main theorem. 

PROOF. For every k < 2 let I O,k be order isomorphic to the order of  the rationals. 

Let I ~ = ~ k < l I  0'k, I ° = 1 °'1, j o  = (~k<t~ti0.k).. F o r  every A = N~ and k < N~, let Ik a 

be an order isomorphic to J o if k ~ A, and to I ° if k ~ A. Let I a = (~_,k<t~lk) +.4 i;t. 

Later we shall prove 

LEM~A 4.2. I f  A , B ~  N~, A # B(modDe~) then M(Ia), M(I B) are not 

isomorphic. 

Let us show that Theorem 4.1 follows from this 1emma. 

It is easy to see that i f  {Ak: k < #} is a family of  subsets of  N~, and any two of  

them are not equal (mod D~), then {M(Ia~): k </~} is a family of  non-isomorphic 

models of  PC(T~, T). It is easily seen that the cardinality of  each of  them is 2, 

hence 1(2, T1, T) > #. 

It is also easily seen that if {A k : k < /¢} is a family of  pairwise disjoint subsets of 

N~, each of  them ~ 0 (mod De.), then {[..JR~BAk: B c ~} is a family of  2 ~ subsets 

of  N~, any two of them are ¢ (mod D~.). By the previous paragraph this implies 

1(2, Tt, T) __> 2 ~. By Lemma 2.4 it follows I(2, T1, T) > 2 TM. 
Now for every regular cardinal Na < N~, let Ap = {c5 < N~: t5 is a limit ordinal 

of  cofinality Na}. Clearly Aa ~ 0 (mod De) ,  and fl ~ 7 implies Ap c3 A r = 0. 

(If e < o) it follows from 2.4.) Hence I(2, Tl, T) >_- 214. So we prove the theorem, 

and it remains to prove Lemma 4.2. 

PROOF OF LEMMA 4.2. Suppose A, B ~ N~, and M(I a) ~-M(IB). We should 

prove A = B(mod D~.). By the symmetry of our assumptions, it suffices to prove 

A = B (mod D~).  
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Let F be an isomorphism from M(I A) onto M(IB), and let ( a ( s ) : s e I  A) 

be the skeleton of  M(Ia), and (b(t):  t ~ I  e )  be the skeleton of  M(IB). For  every 

k < N~, let us choose sk ~ I~. It is known (Lemma 1.2) that, for any k, there is a 

term z of  L1 and tl < ... < tn(,)e I B such that 

F[a(sk) ] = zM(L')[b(tx), ..., b(tn(k))]. 

(In the future we shall write only z.) For  every Sk, we choose fixed such z and 

t l , . . . .  As N~ is a regular cardinal > [ T 1 [, there is a set C such that it satisfies 

Condition 1. C ~ N ~  [C[ = N~, and for every k ~ C ,  there are 
n B t~ < . . .  < t k ~ I  such that F[a(sk) ] = z[h(t~),...,b(t~)]. 

For simplicity we shall assume N 1 < N~. Clearly there is no decreasing 

sequence of  length N2 in I e, and also not  in I A. As N2 <- N,, every sequence of  

length N~ whose elements are from I ~ (or Ia), has a subsequence of  length N~, 

which is (strictly) increasing, or is constant. Also every sequence from I v of 

length N~ has a subsequence of  length N~, such that either all its elements are 

from 14 or from ~,k<~_Ik a. Applying this to (t~ : k ~ C), we find that there is 

C 1 c C, ] c l l  = N~ such that 

1) either k , l ~ C  ~, k < l  ~ t )  <t~,  or k , l ~ C  1 ~ t ~  = t ]  

2) either for every k e C 1.1 -4 1 Ek t¢ i~  , t k ~ l , o r f o r e v e r y k E C  z tk e 

Applying this to C ~ and ( t2:  k e CX), we can find C z c C t which satisfies (1) 

and (2) also for the t z's. We can continue n times, and so prove there is a set 

c N~, which we shall call again for simplicity C, such that 

Condition 2. C ~ N~, I C[ = N~, and for every 1 < m < n exactly one of  the 

following conditions is satisfied: 

A) for every k ~ C ,  m ~ m. t k ~ l  ; and l < k ~ C ~ t ' [ ' < t k ,  and l < k s C ,  t~'el  °'t 

B) there is t m such that k E C => t~' = t m 

C) for every k ~ C ,  t ' ~ E z < ~ ! ~ ;  and for every l <  k ~ C ,  t'~< t'~; and 

l <  k s C ,  t i n , I f *  t '~.I~.  

Similarly, by proving the existence of  suitable subsets of  C, we can assume that 

C satisfies also the following conditions: 

Condition 3. if m and r satisfy 1 < m < r < n then exactly one of  the following 

possibilities is satisfied: 

A) k < I s C implies t~' < t~ < t~' < t~ 

B) for every k, 1 ~ C, t~ < t[ 

Sh:12



486 SAHARON SHELAH Israel J. Math., 

ra r .  REMARK. Remember that for every k, tk < tk, and for every k < l ~ C, 
r < t~, rn < t ~ ,  t k tk = .  = 

Condition 4. if m satisfies (C) from Condition 2, l < k ~ C, t~ E I~, i < N~, 

then i < k (as ordinals) and tk ~ does not belong to ~j<iI~. 

It is obvious that C*, the set of accumulation points of  C, is a closed subset of  

N~ of  cardinality N~. Hence C* ~D~ .  As we want to prove A ~ B  (mod D~),  it 

suffices to prove A N C * c  B C~ C*. So we assume 6 E C*, 6 ~ A, but 6 ~ B. We 

shall get a contradiction and so prove Lemma 4.2. 

By Condition 4 it is easy to see that if t~ is any element we chose from 

I~, and m satisfies C from Condition 2, then k ~ C ,  k < 6  : ~ t ~ < t ~ ;  and 

t' (~ I~, t' < t~ implies there is k ~ C, k < 6 such that t '  < t~. As 6 ~ A, there is a 

decreasing sequence <s i: i < NI>, s% I~, such that there is no element of  I~ which 

is smaller than every sk Let F[a(si)] = z~[b(t~'l), ..., b(t~'"°))]. As in I~ there is no 

first element, for every i < N~ there is w(i) ~ I~ such that 

t"x, ..-, ti'"(i) ¢ {t: t ~ I~ n, t < w(i)} 

As ~ e B ,  = and so there is w zlffsuch that ]{i < NI: w(i) = w}[ = Nz. 

So without lose of  generality we can assume that for every i < Nx, w(i) = w. 

For  every m satisfying (A) from Condition 2 let 6 m be the least upper bound of  

{j < A: there is k < 6, t '~zI  °a c I x ~ IB}. As in the last paragraph, we can find 

W m ~ I °''~m for each 1 < m < n such that we can assume that for every i < N 1 

t ''1, -.-, t""(° ~ {t: t ~ I  °'~", t < w,,} 

Now it can be easily seen that there are t ~, . . . , t " ~ I  ~ such that: 

1) if m satisfies (B) from Condition 2 then t m has already been defined 

2) if m satisfies (C) from Condition 2 then t m < w, t % I~ 

3) if m < r, m, n satisfy (C) from Condition 2 then t" < t" 

4) if m satisfies (A) from Condition 2 then t ~ < Win, t m ~ I °'~m 

5) if m < r; m, r satisfy (A) from Condition 2 then t m< t ~. 

Let a = z[-b(tX), ..., a(tm)].. By the definition of  M(I  ~) (see Lemma 1.2, 3) it 

follows easily that:  for every k e C, k < 6 F[a(sk)] < a; and for every i < N1, 

a < F[a(s~)]. It  should be noted also that there is no s ~ I  a such that: i <  N1 

s < st; k ~ C, k < g =~ sk < s. It is easy to show that this implies (F[a(s)] : s ~ Ia> 

is not a nice sequence. But (a(s): s ~ Ia> is the skeleton of  M(la),  hence by Lemma 

2.1 it is a nice sequence (in M(Ia)). As F is an isomorphism from M(I  a) onto 

M(Ie),  this implies that <F[a(s)] : s ~ IB> is also a nice sequence. A contradiction. 
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So 6 ~ A, 6 ~ C* implies ~ ~ B, hence A n C* c B c3 C*, hence A = B(mod D~.). 

So A = B(mod D~,), and we prove Lemma 4.2. As has been said, this implies 

Theorem 4.1, and  so the ma in  theorem. 
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