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Abstract. R. Baer asked whether the group operation of every (totally) ordered group can be redefined, 
keeping the same ordered set, so that the resulting structure is an Abelian ordered group. The answer 
is no. We construct an ordered set (G, <) which carries an ordered group (G, . , <) but which is 
lawless in the following sense. If (G, *, <) is an ordered group on the same carrier (G, <), then the 
group (G, *) satisfies no nontrivial equational law. 

AMS (MOS) subject classifications (1980). Primary 06F15, 06A05; secondary 03E99. 

Key words. Ordered groups, varieties. 

0. Introduction 

An ordered group is a triple (G, * , <) such that (G, *) is a group, (G, <) is a totally ordered 
set,andforallx,y,z, w~G,x<yimpliesz*x*w<z-y-w.Inthiscasewewillsay 
the order (G, <) carries the group (G, -), and call (G, <) a carrier if for some group 
operation, (G, S) carries (G, 0). From a group theoretic standpoint, much of the interest 
in ordered groups centers around the question of what influence a group has on its 
carriers. For example, which groups have a carrier? Or, given a group, what are its possible 
carriers? In this paper, we study the reverse question. What influence does a carrier have 
on the groups it carries? 

To begin with an example in which the influence of the carrier is very strong, consider 
the naturally ordered set of integers (2, <). This carries (Z, +), and it is easily seen that 
any group carried by (Z, <) must be cyclic and, hence, Abelian. Another example is the 
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384 W. CHARLES HOLLAND ET AL. 

lexicographically ordered product Z X’Z which carries the product of two infinite cyclic 
groups, and is easily seen to carry only Abelian groups. More complicated examples 
which, again, carry only Abelian groups are the (dense) rigid homogeneous chains of 
[ 11. These carriers may be called AbeEian. 

A more liberal carrier is the naturally ordered set of rational numbers (Q, G). This 
carries the obvious Abelian group (Q, t). But it also carries every countable dense ordered 
group, including every noncyclic ordered free group. (It is well known that every free 
group has a carrier (see [2]). And it is easy to prove that the lack of center in a noncyclic 
free group forces its carrier to be dense.) Thus, although (Q, <) carries Abelian groups, 
it is not Abelian. 

At this point we note that in a certain sense the commutative law xy = yx is the 
strongest law a nontrivial ordered group can satisfy. For if the law ‘u = v’ is satisfied 
by some nontrivial ordered group, (where u and v are reduced words in a free group) 
then it is satisfied by an infinite cyclic subgroup of that group, hence also by all Abelian 
groups. Thus, the Abelian carriers described earlier belong to every variety of groups 
(defined by equational group laws) which contain a nontrivial ordered group, in the 
sense that all of the groups carried by these carriers belong to every such variety. The 
carrier (Q, G), while belonging to no variety, also avoids no variety since it carries an 
Abelian group. 

If none of the groups carried by a carrier (G, <) belong to a certain variety V we 
may say that (G, =G) is absolutely non-V, Whether there are any such carriers is implicit 
in an informal question of R. Baer (1961) (see [3], p. 248) which in our terminology 
can be expressed as follows: 

Does there exist an absolutely nonabelian carrier? 

The answer is yes, as we will show in this paper. In fact, we construct a carrier whose 
carried groups cannot obey any equational group law at all. Thus, our carrier will be not 
only absolutely nonabelian; it will be absolutely lawless. 

To begin, we observe that any absolutely nonabelian carrier must be uncountable. Any 
carrier is homogeneous - the group translations of any carried group act transitively - 
and so every+carrier is isomorphic (as an ordered set) to a lexicographically ordered 
product Za XD, where D is a singleton or a dense totally ordered set and Z” is a lexico- 
graphically ordered restricted product of copies of Z ([4] ; see [5], Chapter 8). If the 
carrier is countable, so is D, and then D is a singleton or is isomorphic to (Q, G). In either 
case, the carrier carries an Abelian group. 

We are looking for a carrier which enforces a rather strict control on the groups it 
carries (to prevent them from being Abelian, for example). It is instructive to see how 
(Z, <) controls the groups it carries. Let t denote the usual addition and let * denote 
some group operation on Z such that (Z, *, <) is an ordered group. For each n EZ, the 
mapping rn :x ++x * n is an order-preserving permutation of (Z, G). Moreover, the 
mapping n* t, embeds (Z, *, <) in the group A(Z, =G) of all order-preserving permuta- 
tions of (Z, <) in such a way that IZ < m implies xl, < xtm for all x E Z (xt denotes the 
image of x under the mapping t). But every fE A(Z, <) has the form xf = x t p for some 
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p EZ. Hence, A(Z, <) is isomorphic to (Z, t) and so (Z, *), isomorphic to a subgroup 
of A(Z, <), must be cyclic as well. The key here is that every order-preserving permuta- 
tion of (Z, <) is definable in (Z, +). 

In general we cannot expect such tight control. For example, if (G, . , <) is any non- 
abelian ordered group, and if g E G, the mapping $J : x*g-’ =x .g is an order-preserving 
permutation of (G, <) (generally nontrivial), and since g$ =g, we may splice @ to the 
identity map at g, producing $ such that 

d={ 
xf#~ ifx>g 
X ifx<g ’ 

Then J/ EA(G, <) but # is only piecewise definable in (G, -). 
The general idea behind our construction is the following. We construct a certain large 

ordered group (G, * , <) such that (G, *) is a free group and every order-preserving per- 
mutation of (G, <) is piecewise definable in (G, *) (precise definition follows in next 
paragraph). The lawless carrier we seek is then (G, <) because if (G, * , <) is any ordered 
group on the same carrier, the mapping g* tg, where xrg = x *g, embeds (G, *) in 
A(G, <). But knowing that the members of A(G, <) are piecewise definable in the free 
group (G, *) is enough to ensure (although with some difficulty) that no nontrivial 
group laws are satisfied by any large subgroup. 

1. A Criterion for Lawlessness 

Let (G, . , <) be an ordered group. We will write f * g = fg. It will also be convenient to 
consider the Dedekind completion (G, <) of the ordered set (G, <). We note that every 
@ EA(G, <) has a unique extension to $EA(G <), and there is no need to distinguish 
@J and 6 notationally. 

DEFINITION. If (G, * , <) is an ordered group, 1 an interval of (G, <), and $I E A(G, <), 
C/I is definable OIZ Z iff there exist a, b E G such that for all x E I n G, x@ = axb; and 4 
is piecewise definable iff every nontrivial open interval Z of (G, <) contains a nontrivial 
open interval I’ of (G, S) such that @ is definable on I’. 

THEOREM 1.1. $(G, . , <) is an uncountable ordered group, and (G, *) is a free group 
on generators Y C_ G, and Y contains a countable subset which is dense in (G, <), and 
every @ E A(G, <) is piecewise definable then (G, <) is lawless; that is, if (G, *, <) 
is an ordered group with carrier (G, <), then (G, *) belongs to no proper variety of 
groups. 

In the second part of this paper, we construct an ordered group satisfying the hypo- 
theses of the theorem. Before starting the proof of the theorem, it may help the reader 
understand the argument if we sketch the proof under the (false) assumption that every 
permutation of (G, <) induced by a translation in (G, *) is actually definable (via (G, s)) 
on the entire interval (G, <) - not just piecewise definable. For each g E G, choose 
a*, b,EG such that for aHxEG, x *g=agxbg. Let Y(g) denote the unique finite set 
of free generators from Y which occur in the reduced expression for g as a member of 
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the free group (G, -). Let us now show, for example, that (G, *) is not Abelian. Since G 
is uncountable, there are f; g E G such that either (i) Y(af) Q Y(u,) and Y(Q) P Y(+), 
or (ii) Y(bf) Q Y(&) and Y(b,) P Y(bf). Then either aglajlagaf# e (in case (i)) or 
bfbgbjlb;’ # e (in case (ii)). Choose 

c E Y\( Y(q) u Y(bf) u Y(ug) u Y(b,)). 

Then 

in either case. Therefore, f * g * f -’ *g-’ # e, so (G, *) is not Abelian. 
To prove the theorem we must struggle with the problems posed by the less generous 

hypothesis of piecewise definability. If we are given some w(xi , x2, . ..,x,) = w(X), a 
nontrivial reduced group word in variables x r , x2, . . . , xP , we wish to find g, , g, , . . . , gP E 
G such that the substitutiongi++ Xi results in w(g) # e in (G, *). Since (G, *) is embedded 
in A(G, <), we will compute w(g) in A(G, <) as successive applications of the piecewise 
defineable maps which are the right translations in (G, *) determined by the various gi. 
Because we want to refer the computation back to (G, -), we will need to find a sequence 
of intervalsK,, K2, . . . . Kk of (G, <) such that among the substitution we are interested 
in, each gi (or gi’, as appropriate) is defineable on each Ki and maps Ki into Ki+ 1. For 
example, consider again the word w(X) = x~x~x;~x;~. We need intervals K, , K2, K3, K4 
such that for some large subset F C_ G, and for eachg f F, right translation by g (in (G, *)) 
is definable on K1 and K1 * g C_ K 2 ; right translation by g is definable on K2 and 
K2 *g C_ K3 ; right translation by g-’ is definable on K3, and K3 *g-l C_ K4 ; and right 
translation by g-’ is definable on K4. Then for any substitutions g*xi , f++xz, with 
f, gEF, we can compute K, *g*f *g-l *f-l in (G, *). Indeed, ifx *g=aixbi for 
xEK,, x *f=a2xb2 for xEK,, x *g-l =a3xb3 for xEK,, and x *f-l =a4xb4 
forxEK4,thenforxEKr,x*g*f*g-’ *f-l= a4 a3 a2 al x bl b, b3 b4, these products 
computed in (G, -). Another difficulty should now be apparent. We can choose,f, g so 
that either ai and a2 are very different, or bl and b2 are very different. But we have no 
independent control over a3 and a4, nor b3 and b4, since for example, ai and a3 are both 
associated with the same g. 

Our first goal is to produce a rather long (relative to w(X)) sequence of intervals 1i 
such that for a large subset F C_ G, if f E F then f is definable on Ii and Ii * f C_ Ii+ 1. We 
will worry later about f -‘. 

LEMMA 1.2. Suppose the hypotheses of Theorem 1 are satisfied. Let n be a positive 
integer, and let F be an uncountable subset of A(G, <). Then there is an uncountable 
subset H of F, and nontrivial intervals IO, I,, . . . . I, of (G, <) such that for each 0 < 
i < n, and each h E H, h is definable on Ii, and for i < n, Iih c Ii + 1. 

Root Let f E F, and let X be a countable dense subset of (G, <). It will suffice to 
show that there are intervals lj with end points in X such that f is definable on 1i and 
Ii f C_ Ii + r . For then, as there are only countably many arrays IO, . . . ,I, of such intervals, 
the same array works for some uncountable subset H of F. First, the definability. Let 
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J, be any nontrivial interval such that f is definable on J, . Proceeding by induction, let 
Ji + t be any nontrivial subinterval of .Zif such that f is definable on Ji+ 1. Next, the 
containment. Let Z, be any nontrivial subinterval of J, with end points in X. Proceeding 
by ‘reverse induction’, let Ii _ r be any nontrivial subinterval of Zif-’ with end points 
in X. 0 

Now we want to compute w(g) by traveling among subintervals of Ii for some suitably 
long sequence Z, , . . . , In satisfying the conclusion of Lemma 1.2. We will need to be able 
to start at a more or less arbitrary Z, (m not too close to 0 or n), and we will step up or 
down in a manner determined by the form of w(X). Specifically, we can write w(xr , . . . , 
Xp) = zppT.. ze4 - 1) where each zjE{x,,..., xn) and e(j)E{-1, 1). The se- 
quence (e(O), . . . , $(q - 1)) determines the direction of travel. If we begin in K,, C-Z, 
then we want (the substitution for) z,, to map: Kc, * z$‘) C-Z, +r if e(O) = 1 and 
K, *z$~)CZ~-~ if e(O) = -1. Generally, if we have arrived in Ki C_ I,,, , then we want 
ZC/ *z~"'CZ~'+~~). Thus, if ~(j)=Ci<j e(i) then after j steps we will be in I,,, + 0u). 

LEMMA 1.3. Suppose the conclusion of Lemma 1.2 holds for Ii, 0 < i < n and H. Let 
(40), -*a> e(q - 1)) be a sequence such that e(j) E { -1, 1) for each j, let a(O) = 0 and 
o(i) = z;<ie(i). Further assume u(q) = 0. Let m be an integer such that 0 <m t 

u(j) < n for all j, 0 <j < q. Then there is an uncountable subset S of H and there are 
nontrivial intervals Kt, 0 <j < q such that KZ C I,, f m ‘au), and for every f E S, f 40 is 
defneable on Kj, and Kif CO’1 C KZ+ 1 ifj < 4. 

Proot As before, it suffices to show that for each f E H there is a sequence of Ki’s 
with end points in X satisfying the desired conclusion. Let K, be any nontrivial sub- 
interval of I, f m with end points in X. If we have found Kq, K, _ r , . . . . Kq _ r, satis- 
fying the conclusion then let Kq _ r _ r be any nontrivial subinterval of Kq _ t f -‘(Qmt- I) 
with end points in X. Note that whenever f is definable on Z as xf = axb, then f -l is 
definable on Zf as yf -’ = a-‘yb-’ . We now have Kq _ t- 1 C_ Z, +o(q _ t- 1j and 
K,-,-, fe(q---lk _ Kq _ t. Also, f is definable on Kq -t-1. Moreover, if e(q - 
t - l)= -1, then K,-,-, C_ Kqmt f C_ Z, +O(q _ sf, and so f -’ is definable on 
Kq-t-1. q 

We now prove Theorem 1.1. We wish to show that (G, *) satisfies no law of the form 
w(X) = e. We consider the form w = z:(O) . . . z$lf. r ‘1, zi E {xl, . . . , xp }, e(j) E { -1, 1 }, 
and let u(O) = 0 and u(j) = ISi<i e(i). We may assume u(q) = 0, for otherwise any sub- 
stitution of a nontrivial g E G for each of the xi shows that w(g, g, . . . ,g) =g’(Q) # e 
since (G, *) is torsion free. We may also assume Zi # zi+ r , 0 <j < 4 - 1, for we can 
replace each xi by a product xilxiz of two independent variables (so that all xik are 
different) producing w’, and if a group satisfies w = e then it satisfies w’ = e as well. 

Since u(q) = 0, 4 = 2s for some integer s. Let n = (s + I)*. The right translations 
x -+x *g form an uncountable subset F of A(G, <), and so there are intervals Ii, 
0 < i <n, and an uncountable subset H of F satisfying the conclusion of Lemma 1.2. 
Fix a dense set Y of free generators of (G, *). For each h E H and each 0 < i < n, h is 
definable on 4, and so for all x E 4, x * h = az?x bp for certain aI!, bz! E G. For each 

Sh:216



388 W. CHARLES HOLLAND ET AL. 

h EH, let Y(h) be a finite subset of Y such that for all i, a:, b: E (Y(h)) = the subgroup 
of (G, a) generated by Y(h). Applying the A-lemma ([6] ; p. 49) and passing to an 
uncountable subset of H we may assume all the Y(h) have the same cardinality and there 
is a finite set A such that for ffg, Y(f) rl Y(g) = A. Again passing to an uncountable 
subset, we may assume if for some f and i, afE (A) then for all g, af = ~if, and likewise if 
for some f and i, bf E (A> then for all g, big = b[. 

We note that translations x *g and x *f by different g, f must differ at every point. 
Hence, no two members of H agree at any point. In particular, if f fg then for each i 
either uf # af or bf # bf (otherwise f and g agree on Ii). A consequence of our choices 
in the previous paragraph is, therefore, that if bf E (A) then af 4 (A), and vice-versa. 
This leads to the consideration of two cases. 

Case 1. Suppose that for some integer r, 0 <r < r t s < n, and if r < i < r t s then 
bf6? (A) for all f E H. That is, there is some stretch of s t 1 integers for which all the 
b’s are outside (A). We are going to compute w = a$‘) . . . z$“; ‘1 = a$‘) . . zEZ(sZS; l) be- 
ginning at the point m = r t s - max u(j). Note that since o(O) = 0 = o(q), and o(j) - 
u(j + 1) = + 1, max a(j) - min u(j) < s. Hence, m t min a(j) > r and, therefore, r <m t 
u(j) <r + s for all j. The hypotheses of Lemma 1.3 are satisfied. Therefore, S and Kj of 
the conclusion of Lemma 1.3 exist. We now substitute gi ++ xi where fg, , . . . , gP } are 
different members of S. Then w(g) = f:(O) . . .f:ci- ‘) where fi E {gi , . . . ,gP } and 
fi #$+i, 0 <j < 4 - 1. Observe that fjE”‘) is definable on Ki &I,,, +ou) and since 
rSmtu(j)<r+s, if x*fi’oJ= ag.jxbu) for all x EKi, then bg.) 4 (A). Choose 
cE(KenY)\UY(gJ. Thenc*w(~)=~(~_~)...a(~)cb~~)...b~~_~). But&i#fi# 
fi+ r, and so Y(& r) fl Y(fi) = A = Y(fi) n Y(fi+ r). Moreover, bg.) E (Y(fi))\(A). 
Therefore, some member of Y(4) appears in the reduced form of bg.) but not in that of 
btiel) nor that of bg.+lj. Since this is true for each j (with appropriate modification at 
j=O andj=q-I), b(u)... b(, _ i) # e. It follows that c * w(g) # c. The substitutions 
were taken from an isomorphic copy of (G, *) in A( G, <). Hence, (G, *) does not satisfy 
w(X) = e in this case. 

Case 2. For every integer r with 0 < r < r t s < n there exists r < i <r t s and f E H 
such that bf E (A>. It follows that for all f EH, af6!! (A). Consider an uncountable set 
H’ consisting of elements g such that g = fg, o fg, r . . . fg, S with fg, j E H and all &, j 
different. 

Let Ii)=Zjs+i, 0 < i<s. Then for g E H’, g is definable on Z/ and 1/g c Ii+ r . For 
xEIi, x *g=cfxdf where d~=b(is”~b(isfi”)...b (iS+i+S) is a product of bg corre- 
sponding to various f = fg, j on intervals fis+i+j, and likewise, cf is a product of ats. By 
assumption, for some k, is t i < k < is t i t s, ag @ (A). It follows that cf 4 (A). We now 
have the hypotheses of Case 1 for Ii, H’, and r = 0, but with cf 6! <A) instead of bf 4 (A). 
The Y(g)‘s, g E H’ form a A-system with the same A as before. The proof can now be 
completed just as in Case 1, except that one will have to deal with the left multipliers 
cf instead of the right multipliers b[. 
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2. The Construction 

In this section we construct an ordered group (G, * , <) satisfying the hypotheses of 
Theorem 1.1. Because the construction is rather complicated, we begin with a general 
outline. First, we construct a certain ordered group (H, *, <) with (ZZ, *) a product of 
free groups and (ZZ, <) a dense ordered subset of the real line (R, <). We then construct 
(G - , 9) as a certain dense ordered subgroup of (ZZ, *, <). The automorphisms of (G, <) 
will arise, therefore, as restrictions of automorphisms of (R, <). The automorphisms of 
(R, <) are listed { 6, : 0 < cr < 2No, (Y even}. We then construct G as a union of subgroups 
G, of (ZZ, *) with ; G, I < 2K~, where, in constructing G, + i , (Y even, we try to eliminate 
& from being an automorphism of the resulting (G, <), if possible. This is not always 
possible, of course, but the remaining automorphisms c$, will necessarily be of type ZZZ, 
which means that for ally in a certain large dense subset Y, of (ZZ, <),y& E (G,,y) and 
y E (G,, y&j, the angle brackets denoting generated subgroup of (ZZ, s). In Lemma 2.2, 
we prove that if @, is of type III, then & is definable at each point of Y,, that is, for 
each y E Y, there are a, b E G, such that y& = a * y”’ . b. In the discussion following 
Lemma 2.4, we show this implies 9, is piecewise definable on (G, *, <). 

Now for the details. First, we construct H. For each natural number n, let F,, be a 
free group on K,, 1 K, 1 = iz + 1, and let H= IIF,x. As mentioned earlier, any free group 
admits an order under which it becomes an ordered group. For each F, fix an arbitrary 
such order, and then order H lexicographically. The resulting structure (ZZ, *, <) is then 
an ordered group. It is clear that (ZZ, <) has a countable dense subset (the restricted 
product, for example), and so we may consider (H, <) to be an ordered subset of the 
real line (R, <). We list all automorphisms of (R, <) as ($a : 0 <(Y < 2”o ,‘(Y even}. 
We can also write the elements ofHasy = (y(O),y(l), . ..).y(n)E F,. 

Let U be a nonprincipal ultrafilter on w. Let Y= {y EH: {n :y(n)EK,} E U}, 
that is, y is ‘almost everywhere’ a free generator of F,, . We define an equivalence relation 
on H with classes Iv] such that [y] = [y’] if {n :y(n) =y’(n)} E U. It follows that 
every nontrivial open interval of (ZZ, 9) contains 2”o pairwise nonequivalent members 
of Y (see [7], p. 128, Theorem 3.12). Let s= (s(O), s(l), . . ..s(n)) be a finite sequence 
with each s(i)EF,, and let Z,={yEH:y(i)=s(i), O<i<n}. Then I, is an open 
interval of (ZZ, <) and the collection of all such I, forms a base for the order topology 
of (H, <). It is clear that each equivalence class [y] is dense in (ZZ, <). The equivalence 
relation E determines a quotient group H/E (an ultraproduct in which the classes ( [y]: 
y E Y} form a free generating set for the subgroup they generate. Hence, for each 
a E (Y), the set S(a) = { [y] : y E Y and [y] occurs in the reduced expression for [a] } 
is unique. For a 4 (Y), S(a) is empty. Moreover, any pairwise inequivalent subset of 
Y is free in H. 

We will inductively construct G, and R, for each 0 <(Y < 2Ko such that G, is sub- 
group of (ZZ, s), R, is a set of r-classes, ] G, ] < 2”0, 1 R, 1 <2Ho, and the following 
conditions hold: 

(1) Go is generated by a countable dense set of pairwise inequivalent members of Y 
andRe ={[y]:yEG, nY). 
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(2) For all (Y < 0, G, C_ Gp and R, C_ Rp. 
(3) For limit ordinals h, GA = U, < h G, and Rh = U, < h R,. 
(4) For all (Y, there exists b, E Y such that G, + r C_ (G,, b,) and [b,] E R, + 1\ R,. 
(5) If o is odd, G, + r = (G,, b,). 
(6) G = u G,. 
Any G constructed so that (l)-(6) are true will be uncountable (G contains the 

uncountable set {b, : a! odd}), and will be contained in the group obtained by adjoining 
to GO the independent elements {b,}. Thus, GO C_ G C_ GO * (b, : 0 <a < 2’0). The 
product * is a free product. By the Kurosh subgroup theorem (see [8]), G is a free group 
on a set including the free generators of GO. In particular, the free generating set for G 
contains a countable dense subset. 

It remains to ensure that every member of A(G, <) is piecewise definable. We arrange 
this by making the construction satisfy (l)-(6) in the following special way. Suppose 
that (l)-(5) hold for all ordinals less than QI, and (l)-(3) hold for all ordinals< CX. We 
are ready to find b, and construct G, + r and R, + 1. 

If (II is odd, let b, be any member of Y such that [b,] 6i R,, let G, + r = (G,, b,) 

and&+, =R,u{[b,lI. 
If cr is even there are three cases. 
Cizse I. Suppose there exists b E Y such that [b ] & R, and b&4 ( G,, b ). Then let 

b, =b, G&+1 = (G,, b), and R&+ 1 = R, U t PI > U S(W,). 
Cizse II. Suppose there is no b of the type in Case I, but there exists b E Y such that 

[b] @R, and b & (G,, b&j. Then let b, = b, G,+r = (G,, b&j, and R,+1 = R, U 

{ PI 1. 
Cizse III. Suppose there is no b of the types in Cases I or II. Choose any b E Y such 

that[b]4R,andletb,=b,G,+,=(G,,b),andR,+1=R,U{[b]}. 
Suppose now that G has been constructed in this way. We claim that every auto- 

morphism of (G, <) is piecewise definable, Because G is dense in R, it suffices to show 
that if $, restricts to an automorphism of (G, <) then $, is piecewise definable. 

Suppose & is of type I, that is, the construction of b,, G,+r , and R,+ 1 was as in 
Case I. Then 6, E G, + 1 - C G, so also b,@, E G. Since G is contained in a group generated 

by &+I and certain bh such that [bh] 6! R, + r , b,& is a product of elements of G, + r 
with such bh’s. If any such bh actually occurs in a reduced product for b,&, then 
[bh] E S(b,&). But this is impossible because S(b&,) C_ R, + r. Therefore, b&, E 
G o1 + r , a contradiction. Hence, @, is not of type I. 

Suppose Go, is of type II. Then b,$, E G, C G, so also b, = (ba&) @,’ E G. As before, 
b, is a product of elements of G, + r with bh’s such that [bh] & R, + r . But since S(b,) = 
{[b,ll~R,+,, no such b^‘s occur, and b, E G, + 1, a contradiction. Hence $, is not of 
type II either. 

Thus, if & restricts to an automorphism of G, $, is of type III, which implies that for 
every y e Y such that [u] 6? R,, bothyq& E(G,,y) andy E(G,,y@,). Lemmas 2.1-2.4 
and the ensuing discussion imply that for every nontrivial open interval I of (G, <) there 
is a nontrivial subinterval I’, E E { -1, 1 }, and a, b E G such that for all x t I’, X& = ax’b. 
Because $J~ preserves order, E = tl. Hence, q& is piecewise definable. 
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In order to show that any automorphism of type III is piecewise definable, we first 
need the following lemma which applies to any groups G and H. 

LEMMA 2.1 Let G be a subgroup of a torsion free group H; x E H; x free over G. If 
w~(G,~)andxE(G,w)thenw=g,x~g~whereg~EG,e=+l. 

proof. w = g,XE’g*XEZ . ..g.,x’ng,,+1’, ei=fl,giEG and if ei-iei=-l thengrfe. 
Then w is reduced as a word in the free product of G with (x). (*) x =hiwS~h2wG~ . . . 

hmW6mhm + 1 ,Sj=+l,hiEGandif6i_1Fi=-l thenhife. 
Let N = Xr=i ei and M= ZTz16j. Since x is free over G, a count of the x’s on both 

side of (*) shows that 1 = MN. Hence, N = f 1. This implies that n is odd, say n = 2p - 1. 
Rewriting (*) using the original expression for w gives an expression of the form 

( ( fi fJ k&j-I)+ixi,J 
j=1 j=1 

1) 

k2m+lX1,m+i=e(~) 

where xi, i E {x, x -’ }; each k is either one of the g’s or a product of one of the g’s with 
one or two h’s. 

Because we are in the free product of G and (x), the formal expression (t) must 
reduce by successive cancellation of adjacent letters, and each Xi,j must cancel with 
another xi: i’. Let $ denote some specific canceliation procedure which reduces the left- 
hand side of (t) to e and let xi, i $ Xi’, if, mean that Xi, j cancels with Xi’, j’ in the procedure 

$: 
Because of the way the cancellation must proceed, it has the following basic property: 

if a r#~ b and c @d and c is between a and b (in the natural sequence of letters in the expres- 
sion (t)), then also d is between a and b. 

Since w is reduced, for no i, i’, j does Xi, j@Xig,j. Now consider the ‘middle’ term 
Xp,j for each i<m. For no i doesxp,j$xi,j+i. For suppose it does. Each member of 
cx, j : r > p } must cancel with a unique member of {x, j+ r : s < i}. The first set has 
p - 1 members, the second i - 1. Therefore i =p. It follows from xP, j@xp, j+ i that 

$$+1 = -1, so that hi+l f e and for each i > p, xi, j C#I xp _ i, j+ r. In particular, x,, j 4 
Xi,j+i, which can only happen if knj+l =e. Either 6i= 1 and 6i+r = -1 or 6j=-1 
and hi+, = 1. We assume the former, both cases being similar. Then e = kni+ 1 = 

gn+lhj+l(gn+l)-‘> a contradiction. Thus the claim is established. 
At most, one of the middle xP, j, j < m cancels with x r, m + i. Hence, if m > 1, some 

xp, i, j < m must cancel some Xi, t, t <m. Between xP, i and Xi t will be a ‘nearest’ pair 
xp, j’ $Xi', *I. But then t' = j’ tl or j’ - 1, which we have shown impossible. Hence m = 1 
andx=h,w”lh, =hI(glx’l...x’~g,+l)Slh,. Since we are in the free product and w is 
reduced, it must be that w =gixElg2. q 

LEMMA 2.2. If & is of type III in the construction of G, then for each y E Y such 
that [y] 6? R,, there exist a, b E G, end E E { -1, 1 } such that y& = ay’b. 

Pro05 Immediate from Lemma 2.1 since y is free over G,. 0 

This lemma shows that r& is ‘pointwise’ definable on a large subset of H. Our next 
goal is to spread this to intervah. 
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LEMMA2.3. If Fis a freegroup on X=(x0,x1,...} with elementsa,,bO,a,,b, E 
(X\{x,, xl}),and there are a, b EFand e, eO, el E{-1, l} such that axib =a0x2b0 
andax~b=a,x:‘b,,thene=eO=el,aO =a,,andb, =b,. 

Proofi We can assume a, b are reduced words in X and ao, a,, bo, b1 reduced words 
in X\{xo, x1}. Since the right side of axgb =aOxzobo has no xi, the total degree ofx, 
in ab is 0. Similarly, the total degree of x0 in ab is 0. It follows that E = e. = er . By 
taking inverses if necessary, we can assume e = 1. If the displayed x0 on the left-hand side 
of ax0 b = aOxO b. does not cancel, then uxa b is reduced. Hence, a, b contain no x1 . There- 
fore, axr~ is also reduced, and so a = a0 = a, and b = b. = b, . We arrive at the same 
conclusion if the displayed xi on the left side of ax, b = alxl b1 does not cancel. 

In the remaining case, we may assume that the length of a is minimal for these equa- 
tions with given ao, bo, al, bl, and that both the displayed x0 and xi on the left-hand 
side cancel. Then either a = a’x,’ and b = x;‘b’ where a’ and b’ are reduced and a’ does 
not end in x0 and b’ does not begin in xi, or similarly with x0 and x1 exchanged. We 
assume the former. Consider axob =c~‘x;~x~x;~b’ =a’x;‘b’. Since a’x;‘b’ has no x1 in 
its reduced form (aoxobo) the displayed xi’ must cancel, and since x ;‘b’ = b is reduced, 
a’ =a”xl. Similarly, b’ = x0 b”. Then aoxobo =axob=a”xob” and alxlbl =axlb= 
a”x, b”. But the length of a” is less than the length of a, a contradiction. 

LEMMA 2.4. Assume 4, is of type III. Let I be a nontrivial open interval of c such 
that 4, is not definable on any nontrivial open subinterval of I. If IO and I1 are non- 
trivial open subintervals of I, there are nontrivial open intervals IA C_ IO and II C_ I1 
such thatifxoEI(,~Handx~EI~~H,andxo~,=ax~b(eE{-1,1})thenx,~,f 
ax;b. 

Proofi Choose any y. ~1, f~ Y such that [yo] 4 R,. By Lemma 2.2 yo& =aOy$bO 
for some ao, b,EG, andeeE{-1, l}.Choosey,EIrnYsuchthat [yi]@R,and 
[yo] # [yi]. Since [yl] n Ii is dense in II, #, cannot be defined the same way at each 
point of [yl], otherwise by continuity $, is definable on I1 . Hence, we may assume 
yl& #aoyTbO. Nevertheless, yl& =aly:lbl for some a,, bl EC, and el E{-1, 1). 
By the construction of G,, G, is contained in a group G’ generated by a set X, of pair- 
wise nonequivalent elements of Y such that for all x EX,, [x] E R,. Let Z be a finite 
subset of X, such that ao, al, bo, bl E(Z). Choose a natural number n such that ye(n), 
y1 (n), and all z(n) (z EZ) are distinct members of K,. For i = 0,l consider the finite 
sequences si = (si(j) : 0 <j < n) with 

si(j) = ai (ji(j))‘ibi(j) and yi 1 n = (vi(j) : 0 G j G n). 

Then 

yiEJj=~nIviln nlsifQ. 

Let Zi be any nontrivial open subinterval of Ji. Suppose, by way of contradiction, that 
for some xi EI: (i = 0.1) and some a, b, E, X& =axfb. Then xi(n) =yi(n) and X&a E Isi. 
Therefore, 

a(n) (yj(n))‘b(n) =ai(n) Ofi(n))‘ibi(n), i = 0,l. 
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But this contradicts Lemma 2.3. 

393 

Lemma 2.4 has an obvious generalization for any finite set of nontrivial open sub- 
intervals Ze , Zr , . . . , Z, of I. 

Under the assumption that $J~ of type III is not piecewise definable, we will get a 
contradiction by showing that Player I has a winning strategy in the following game. 

THE ULTRAFILTER GAME 

We are given the ultrafilter U. Players I and II alternately choose the terms of an in- 
creasing sequence of positive integers. Let m, = 0. Player I chooses any ml. Player II 
then chooses any m, > m, , etc. Player I wins the game if U, < w [m2n, mzn + 1) E U. 

This leads to a contradiction because there is no winning strategy in the ultrafilter 
game. (A proof of this fact is included as Lemma 2.6.) 

Here is a winning strategy for Player I under the assumption that & is of type III 
but not piecewise definable. While playing the game, Player I will simultaneously build 
a finitely branching tree r, consisting of finite sequences s such that s(n) E F,, for each 
n (where F,, is the free group on K, used in the construction of H.) Let 1 s 1 denote the 
length of the finite sequence s. The tree Twill be constructed in stages so that whenm, 
is a play of the game (by either player) Player I constructs Tmn = {s E T: I s 1 = m, }. 

We observe again that the intervals I,, for finite sequences s form a base for the topol- 
ogy of H. Let Z be a nontrivial open interval of H such that & is not definable on any 
nontrivial open subinterval of I. Player I begins by choosing a finite sequence s such that 
Z, C_ Z and then makes the first play, m r = I s 1, and sets T,,,, = {s}. In general, suppose 
Player I has played mzn _ r and has constructed Tm2,, _ 1, and that Player II responds by 
playing mzn. Then Player I first constructs Tmz, as the set of all sequences of length 
m2,, which extend sequences from T2n _ t and such that for each m2n _ 1 <i <m2,,, 
s(i) E Ki. Player I then considers the subintervals Z, C_ Z, t E TmZn. Applying Lemma 2.4 
(rather, its generalization) to this set of intervals, for each t E Tmzn, he can find an 
extension t’ so that Z, G Z, and such that if x0 E Zt; and xi E Zt; for to # tl , then if 
x0& = ux:b, then xi& #ax: b. It may be assumed that all t’ have the same length 
m2,, .! r, which Player I now plays. He then constructs Tmzn + 1 consisting of all t’, and 
awaits the next move of Player II. 

We now show that Player II cannot win this game. Suppose, by way of contradic- 
tion, that U [mzn, m2n+1)@K so that U[m2,+,. m2,, +a) E U. Consider the set B of 
branches of T, that is, those members y E H such that each initial segment ofy of length 
mi belongs to T. We see that B C_ Y and that each equivalence class of Y contains a 
member of B. There are 2Ko equivalence classes of Y which are not in R,, and if we 
choose a member. of B in each, we will have 2”o elements y E B such that [y] 6&R,. 
By Lemma 2.2, for each suchy there exist a, b E G,, eE { -1, 1) such thaty@, =&b. 
If y0 # y i then for some finite sequences tb # ti E T, y,, E Zr;l and y i E Zt; . These were 
constructed so that if ye& =a&obe and ~r#~ =alyTlbl, then (a*, e,, be) # (al, er, 
b,). Thus, we have a set of such (a, E, b) of cardinality 2No. But this is impossible, 
sincelG,1<2”0. 
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The contradiction shows that any $, of type III must be piecewise definable on G. 
We have proved: 

THEOREM 2.5. There exists an ordered group (G, *, <) such that any ordered group 
(G, *, <) on the same carrier is lawless. 

LEMMA 2.6. Neither player has a winning strategy in the ultrafilter game (when U is 
any nonprincipal ultrafilter). 

ProoJ: Since both cases are similar, we suppose Player I has a winning strategy. Player 
II can now win the game by playing two simultaneous games, the principal game, and an 
auxiliary game. Suppose Player I, following the supposed strategy, plays m i in the principal 
game. Then we insist that Player I begins the auxiliary game with the same play, k, = m 1 . 
Player II plays kz = k, t 1 in the auxiliary game, and Player I following the strategy 
responds with some k3 > kz > m i . Player II plays m, = k3 in the principal game. There- 
after, when Player I plays mai + t in the principal game, Player II plays kzi+a = mzit 1 in 
the auxiliary game, and when Player I plays kai+ 1 in the auxiliary game, Player II plays 
mai = kzi+ i in the principal game. Since Player I has followed the winning strategy in 
the auxiliary game, UFzo [ kzn , k2,, + i) E U. Since U is not principal, also Ul= 2 [ kzn , 
k,,+,)EU. But 

u [m2,+1 
n=O 

,m2n+2)2 nvl [m2n+1,mti+d= U [b,,b,+l)EU. 
n =2 

Hence,U,“=o [m2n+l,m2n+d E U, and Player II has won the principal game. 

3. Consistency Results 

In this section we discuss the number of separable lawless orders and whether there can 
exist separable lawless orders of cardinality < 2No. 

THEOREM 3.1. i’here are 22H0 pairwise nonisomorphic separable lawless orders. 
Root We must refine the construction in Section 2. The notation is the same. Choose 

8={E,:cr<2’o} such that for all 01, E, is a set of 2 ‘0 --equivalence classes; and if 
Q! #fl, then E, n Es = 0. Suppose SC_ 2’0. Let {v, : (Y < 2’0, (Y odd} enumerate S 
(possibly with repetition). We can now choose GS as in Section 2 where ‘(4)’ is replaced 
by ‘(4)s for all (Y there is b, E UaES U E,\U R, so that G,+i C_ (G,, b,), and 

[bal @&+I’ and ‘(5)’ is replaced by ‘(5)s if (Y is odd and b, is as above then [b,] E E, 
and Gf,, = CC:, b,)‘. We can assume for all S, S’, Gf = Gf’. Exactly the same proof 
shows the construction of GS yields a lawless order. Further, if S # S’ then GS # GS’. 

Since each G ’ is dense any order isomorphism from GS to GS induces an auto- 
morphism of R. So for any S C_ 2’0 there are at most 2”o S’ such that GS = GS’. 

For any unexplained set-theoretic notions and results in what follows, the reader may 
consult [6]. 

THEOREM 3.2. It is consistent that 2’0 > tC1 and for all HI GK =G ZHo there are 2“ 
pair-wise nonisomorphic separable lawless orders. 
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Proof. Let F,, and K,, be as in Section 2. Let P be the following partially ordered 
set: {{ae} x so, . . ..{cr.} x s,,, } is an element of P if for all i, cuj< 2’0 and there is 
some n so that each si is a sequence of length n and for all j < n, s(j) E Fi. P is ordered 
in the obvious way. (P is really the poset for adding 2”o Cohen reals.) Suppose F= 
{f,: a< 2”o) is a P-generic set. We work in V[F]. Let H= II F,. So for all cr,f& EH. 
Fix X an uncountable subset of F. Let Gx = (f : f E X) . View Gx as an ordered subgroup 
of H. We will show Gx, as an order, is lawless. More exactly we will show Gx satisfies 
the hypotheses of Theorem 1 .l . The genericity of X guarantees G, is a separable dense 
linear order. Also if we let Yf = {n : f(n) E K,, }, then { Yf : f E X} has the finite inter- 
section property (and can be extended to a nonprincipal ultrafilter). So Gx is a free 
group. 

It remains to show every order automorphism of Gx is piecewise definable. Suppose 
$ is a name so that 0 11 ‘$ is in order automorphism of Gx’. (We use Gx andfto denote 
the obvious names for G, and f.) To simplify the notation we will show there is a condi- 
tion p and an interval I so that p lj- ‘+ is definable on ?‘. It is easy to modify this proof 
to show the desired result. For each f choose Pf and a reduced word wf(fom . . . f,& 
so that pf It Ip<.fl= wf(f00 . . .Lc~)>. 

By passing to an uncountable subset Y and applying the A-lemma, we can assume 
there are w, fpo , . . . , fh , and fom, . . . , f,cf, so that: for all 

andiffff’, then{O(f) ,..., n(f)}n{O(f’) ,..., rr (f ‘)}= 0. Further we can assume that 
eachp~isofthefo~~~Po~x~p,,...,~P~~~sp,,~i(f)~~s,~O(f)~~s~,...,~~Cf)~~ 
s, } for fixed spO, . .., som, s, si , . . . . s,. (Here i(f) = o iff f = f,.) Note our definition of 
P implies all the sequences have the same length. 

We claim n = 0 and i(f) = O(f ). Suppose not. First since (p is the name of an auto- 
morphism n > 0. So we can assume i(f) # O(f) for all f E Y. We can assume s has length 
k>m-!+1tn.Takef#gEY.Letq={{j3,}~s~ ,...,{~,}xs~,,{i(f)}xs’,{i(g)}~ 

P 
s’, {O(f)> x sbu), . . . . {n(f)> x s;m, {O(g)) x socg), . . . . {n(g)) x s&g)l be an extension 
of pfUpg so that length (s’)=kt 1 and w(s&,(k),...,~&)(k))<w(s&~)(k),..., 
sicgj (k)). So 4 It Cp(f) < 9(g). But we can now choose 4’ extending 4 so that 4’ ltg <f. 
This is a contradiction. So if we take any f E Y, pf 11 ‘for all (Y if for all i < k, f,(i) = s(i), 

then (P(f,) = w(fp, , . -‘, fPm , fp)‘. Since the set of such f, must be dense in Z,, Pf ll- ‘for 
all x EL dx) = w(fpoI . . ..fpm. x)‘. Refining this argument slightly, we can show; for 
any order automorphism up of G and nonempty open interval I there is a nonempty open 
subinterval I’ and a word w (with coefficients from G) so that for all x E I’, q(x) = w(x). 
Consider any order automorphism p and open interval I. Choose intervals Z, C I and II 
and words we(x), w, (x) with coefficients in G so that: ~(1,) C_ Ii ; for all x E IO, q(x) = 
we(x); and for all x E I1 , p-‘(x) = w i (x). Choose 2 a finite subset of X such that every 
coefficient in w. and wi is in (Z). Let f E (X\Z) r‘l IO. Applying Lemma 2.1 to f and 
(Z), there are g, h E (2) so that w(x) =gxh. 

We have shown for any uncountable XC_ F, Gx is a lawless order. It remains to verify 
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that for all N, < K < 2No there are 2K nonisomorphic lawless orders. If G, is isomorphic 
to GY then there is a countable subset Z C_ F so that Y C_ V[X] [Z]. Hence, if the 
symmetric difference of X and Y is uncountable, then Gx + Gy. 0 

THEOREM 3.3. It is consistent with ZFC, that every separable carrier of cardinal@ 
< 2N~ carries an Abelian group and, hence, that there exist no separable lawless orders of 
cardinal@ < 2 ’ 0. 

ProoJ: By [9] we can assume 2 no = Nz and any two separable Hi -dense linear orders 
without endpoints are isomorphic. (An order is N i -dense if for alla < b, 1 {x : a <x < b } 1 = 
rC, .) Suppose G is a separable lawless order of cardinality Hi. Define an equivalence 
relation 5 on G by azb if I{x:a<x<b or b<x<a}l<H,. Since G is separable, 
each equivalence class is denumerable. Because G carries a group, Aut(G) is transitive. 
If some (hence every) equivalence class were not a singleton, then G would not be sepa- 
rable. Clearly there are nonlawless separable orders of cardinality Hi ; e.g., any subgroup 
of R of cardinality tsi . 

4. Concluding Remarks 

In this section we collect some remarks on generalizations and open questions. 
We first note that the proof of Theorem 1 .l actually shows not only that no (G, *) 

belongs to a proper variety, but also no uncountable subgroup of any (G, *) belongs to 
a proper variety. 

It is possible to associate laws of other structures (than ordered groups) with ordered 
sets. One immediate generalization concerns right ordered groups, structures (G, *, <) 
such that (G, <) is a totally ordered set, (G, *) is a group, and x <y implies x 0 z <y * z. 
In such a structure, right translation is an automorphism of (G, <), and this is enough 
to make all our theorems work. Thus, the ordered group (G, *, <) constructed in Sec- 
tion 2 has the property that if (G, *, <) is any right ordered group on the same carrier 
(G, <) then (G, *) satisfies no nontrivial group law. In [lo] we show how the construc- 
tion of this paper can easily he modified to produce a right ordered group (G, *, <) such 
that (G, <) carries no ordered group. 

Pursuing a somewhat different line, we may consider ordered semigroups. In the con- 
struction of Section 2 we begin with ordered free semigroups S, instead of free groups F,, 
and proceed as before. The result is an ordered semigroup (S, *, <) such that if (S, *, <) 
is any ordered semigroup on the same carries them (S, *) satisfies no nontrivial semigroup 
law. We omit the details, but note that one must deal with endomorphisms of (S, <) 
rather than automorphisms, and with the more complicated form of definability which, 
for groups, was simplified by Lemma 2.1. 

Ordered groups form a subclass of lattice ordered groups, a class whose language 
involves the group operation together with the lattice operations v and A. We might ask 
whether the order we construct is lawless even with respect to the laws of lattice ordered 
groups (except for those satisfied by all totally ordered groups). The answer is it will 
certainly depend on the orders chosen on the free groups F, which begin the construc- 
tion. For our original purpose, these orders were irrelevant. 
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Question: Is there an ordered group (G, * , <) such that every ordered group (G, *, <) 
on the same carrier is lawless in the language of lattice ordered groups (except for those 
laws satisfied by every ordered group)? 

Returning to the original question of Baer, it is easy to prove that the variety of 
nilpotent class 2 ordered groups is minimal over the Abelian variety. Is it possible to 
construct an order which is ‘just barely absolutely nonabelian’? 

Question: Does there exist a nilpotent class 2 ordered group (G, *, <) such that every 
ordered group (G, *, <) on the same carrier is nonabelian? 

We noted in the introduction that certain orders, such as (2, <) uniquely determine 
the group structures which they carry (to within isomorphism). The order we constructed 
in Section 2 does not uniquely determine the group it carries - if it did, we would have 
been done in a hurry since the group is free. In fact, it has many convex normal sub- 
groups and each of these gives rise to a different group structure obtained as the direct 
product of the normal subgroup with its quotient. 

Question: Is there an order which carries a unique group, and such that that group is 
nonabelian? 
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