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Abstract 

Abraham, U. and S. Shelah, A A$ well-order of the reals and incompactness of L(Q”“), 

Annals of Pure and Applied Logic 59 (1993) l-32. 

A forcing poset of size 2’“’ which adds no new reals is described and shown to provide a A: 

definable well-order of the reals (in fact, any given relation of the reals may be so encoded in 

some generic extension). The encoding of this well-order is obtained by playing with products 

of Aronszajn trees: some products are special while other are Suslin trees. 

The paper also deals with the Magidor-Malitz logic: it is consistent that this logic is highly 

noncompact. 

Preface 

This paper deals with three issues: the question of definable well-orders of the 
reals, the compactness of the Magidor-Malitz logic and the forcing techniques for 
specializing Aronszajn trees without addition of new reals. 

In the hope of attracting a wider readership, we have tried to make this paper 
as self-contained as possible; in some cases we have reproved known results, or 
given informal descriptions to remind the reader of what he or she probably 
knows. We could not do so for the theorem that the iteration of D-complete 
proper forcing adds no reals, and the reader may wish to consult Chapter V of 
Shelah [6], or the new edition [7]. Anyhow, we rely on this theorem only at one 
point. 
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2 U. Abraham, S. Shelah 

The question of the existence of a definable well-order of the set of reals, [w, 
with all of its variants, is central in set theory. As a starting point for the 
particular question which is studied here, we take the theorem of Shelah and 
Woodin [8] by which from the existence of a large cardinal (a supercompact and 
even much less) it follows that there is no well-order of I%! in L(R). 

Assuming that there exists a cardinal which is simultaneously measurable and 
Woodin, Woodin [lo] has shown that: 

If CH holds, then every E: set of reals is determined. Hence there is no 2: 
well-order of the reals. 

A J$ formula is a formula over the structure (N, 9(N), .9(??(N)), E, . . .) of 
type 3X, E 9(N) VX2 E p(N) . . . q(Xr, . . . ), where there are i alternations of 
quantifiers, and in Q, all quantifications are over N and 9(N). Equivalently, 9(N) 
can be replaced by (H = H(w,), E) th e collection of all hereditarily countable 
sets; this seems to be useful in applications. So a 2; formula has the form 
~X,GHVX,EH~(X,, . . . ), where Q, is first order over H and the Xi’s are 
predicates (subsets of H). 

A natural question asked by Woodin is whether this theorem cited above could 
not be generalized to exclude 2: well-order of [w : Perhaps CH and some large 
cardinal may imply that there is no _Z$ well-order of Iw. We give a negative 
answer by providing a forcing poset (of small size, 22x1) which adds no reals and 
gives generic extensions in which there exists a 2; well-order of [w. Since 
supposedly any large cardinal retains its largeness after a ‘small’ forcing 
extension, no large cardinal contradicts a .Z$ well-order of [w. 

Specifically, we are going to prove the following Main Theorem. 

Theorem A. Assume Oo,. Let P(x) be a predicate (symbol). There is a (finite) 
sentence I+!J in the language containing P(x) with the Magidor-Malitz quantifiers, 
such that the following holds. Given any P c ol, (1) there is a model M of q, 
enriching (wl, <, P) such that PM = P, and (2) assuming 2x0 = X1 and 2” = K2 
there is a forcing poset Q of size H2 satisfying the X2-C.C. and adding no reals such 
that in VQ M is the single model of I+O (up to isomorphism). 

Recall that the Magidor-Malitz logic L(Q”“) is obtained by adjoining to the 
regular first-order logic the quantifiers Qxy I&X, y) which is true in a structure iff: 
there exists an uncountable subset of that structure’s universe such that for any 
two distinct x and y in the set, q(x, y) holds (see [5]). 

Observe that if only CH is assumed in the ground model, but not Ow,, the 
theorem would still be applicable since Oo, can be obtained in such a case by a 
forcing which adds no reals and is of size X1 (see [3, Exercise 22.121). 

Let us see why Theorem A implies a Zg well-order of [w in the generic 
extension. Since CH is assumed, it is possible to find P E w1 which encodes in a 
natural way a well-order of [w of type or. For example, set P c w1 in such a way 
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A AZ well-order of the reals 3 

that P fl [w(u, OLY + o), the intersection of P with the crth o-block of oi, ‘is’ a 
subset, r,, of o and so that (r,: o < ol), is an enumeration of R. Now use 
Theorem A to find a formula r# and a model M of ‘1’ (with PM = P) and a generic 
extension in which M is the unique model of I&. In this generic extension, the 
relation r, < re, (Y < f3, can be defined by: 

There is a model K of 1/, where r, appears in PK before rs does. 

Now, for any formula Q, in the Magidor-Malitz logic, the statement: “there is a 
model K of q” is (equivalent to) a Zz statement (see below), and hence the 
well-order of I!3 is AZ in the generic extension. (Since any 2; linear order must be 

A:.) 
We can start with any relation P c o1 (not necessarily a well-order of the reals) 

and get by Theorem A a generic extension VQ in which this relation is AZ. 
To see the above remark, for any Magidor-Malitz formula cp, we encode the 

existence of K k Q, as a _Z$ statement concerning H(o,) thus: 

There is a relation E on H(w,) and a truth function which defines a model 
(H, E) of enough set theory, in which a$ is (isomorphic to) the real ol, and inside 
H there is a model K for the formula q, such that: For any subformula 6(u, v) of 
~1 with parameters in K, ifX c o1 is such that for any two distinct a, b E X, 6(a, b) 
holds, then there is such an X in H as well. 

Now this statement ‘is’ 222, and the model K of Q, found in H is a real 
Magidor-Malitz model of q, not only in the eyes of H. 

The second issue of the paper, the ‘strong’ incompactness of the Magidor- 
Malitz logic, is an obvious consequence of the fact that I# has no nonstandard 
models. 

The proof of the Main Theorem involves a construction of an ui sequence of 
Suslin trees at the first stage (constructing the model M of q), and then an 
iteration of posets which specialize given Aronszajn trees at the second stage 
(making M the unique model of q). The main ingredient in the iteration is the 
definition of a new poset Y(T) for specializing an Aronszajn tree T without 
addition of new reals. 

For his well-known model of CH & there are no St.&in trees (SH), Jensen 
provides (in L) a poset which iteratively specializes each of the Aronszajn trees. 
Each step in this iteration (including the limit stages) is in fact a Suslin tree. Both 
the square and the diamond are judiciously used to construct this o,-sequence of 
Suslin trees. Since forcing with a Suslin tree adds no new reals, the generic 
extension satisfies CH (see [2]). 

In [6, Chapter 51 this result is obtained in the general and more flexible setting 
of proper-forcing iterations which add no reals. In particular, a proper forcing 
which adds no reals and specializes a given Aronszajn tree is defined there. 

The poset Y(T) of our paper is simpler than the one in [6] because it involves 
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4 U. Abraham, S. Shelah 

no closed unbounded subsets of oi, and so our paper could be profitably read by 
anyone who wants a (somewhat) simpler proof of Jensen’s CH & SH. 

The paper is organized as follows. Section 1 gives preliminaries and sets our 
notation. Section 2 shows how to construct sequences of Suslin trees such that, at 
will, some products of the trees are Suslin while the others are special. Section 3 
is a preservation theorem for countable support iteration of proper forcing: A 
Suslin tree cannot suddenly lose its Suslinity at limit stages of the iteration. 
Section 4 describes the poset which is used to specialize Aronszajn trees. Section 
5 shows that the specializing posets of Section 4 can be iterated without adding 
reals. In Section 6 we start with a given family of Suslin trees and show how the 
iteration of the specializing posets obtains a model of ZFC in which this given 
family is the family of all Suslin trees; all other Suslin trees are killed. Sections 7 
and 8 are the heart of the paper and the reader may want to look there first to get 
some motivation. In Section 8 a version of Theorem A is proved first which 
suffices to answer Woodin’s question, and then the remaining details (by now 
easy) are given to complete the proof. 

Concerning the related question for models where CH does not hold, let us 
report that: 

1. Woodin obtained the following: Assume there is an inaccessible cardinal K. 

Then there is a C.C.C. forcing extension in which K = 2’” (is weakly inaccessible) 
and there is a AT-well ordering of the reals, and MA for a-centered posets. 

2. Extending the methods of this paper, Solovay obtained a forcing poset of 
size 22Ko such that the following holds in the extension: 

(a) 2% = 2” = X2. 
(b) MA for o-centered posets. 
(c) There is a AT-well ordering of the reals. 

3. Motivated by this result of Solovay, Shelah obtained the following: If K is an 
inaccessible cardinal and GCH holds on a cofinal segment of cardinals below K, 

then there is an extension such that: 
(a) 2’O = K, cardinals and cofinalities are not changed. 
(b) MA. 
(c) There is a AT-well ordering of the reals. 

Theorem A was obtained by Shelah during his visit to Caltech in 1985 and he 
would like to thank H. Woodin for asking this question and R. Solovay for 
encouraging conversations. We also thank Solovay for some helpful suggestions 
which were incorporated here. The result of Section 6 (a model of ZFC with few 
Suslin trees) is due to Abraham and appeared in fact in [l, Section 41. (However, 
there the machinery of Jensen iteration of Suslin trees was used, while here the 
approach of proper forcing is used.) The poset Y(T) for specializing an Aronszajn 
tree T was found by Abraham who proved that any Suslin tree S remains Suslin 
after the forcing, unless S is embeddable into T. As said above, Y(T) is simpler 
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A A’, well-order of the reals 5 

than the corresponding poset P of [6], but the closed unbounded set forcing 
involved in P is still necessary in order to make two Aronszajn trees isomorphic 
on a club. 

1. Preliminaries 

In this section we set our notations and remind the reader of some facts 
concerning trees and forcings. All of these appear with more details in the book 
of Jech [3], or Todorcevic [9] or in the monograph of Devlin and JohansbrHten 
[2] which describes Jensen’s results. 

In saying that “T is a tree” we intend that the height of T is ol, each level T, is 
countable (a < wl), and every node has X0 many (immediate) successors. We do 
not insist that the tree has a unique root. 

For a node t E T define its predecessor branch by 

(e, t) = {s E T ) s =cT t}. 

Usually it is required for limit 6 that (e, a) # (e, b) for a # b in T, but we allow 
branches with more than one least upper bound. 

For a node a ET, level(u) is that ordinal a such that u ET, (that is, the 
order-type of (e, a)). We also say that a is of height a: in this case. T r (Y is the tree 
consisting of all nodes of height <cy. 

For a node a E T, T, = {x E T 1 a =+x}, is the tree consisting of all extensions of 
a in T. 

A brunch in a tree is a linearly ordered (usually downward closed) subset. An 
antichain is a pairwise incomparable subset of the tree. An Aronszajn tree is a 
tree with no uncountable branches. It is special if there is an order preserving 
map f :T+ Q, (X <Ty implies f(x) <f(y)). A Suslin tree is one with no 
uncountable antichain (and hence no uncountable chain as well). A Suslin tree 
has this property that any cofinal branch (in an extension of the universe) is in 
fact a generic branch. The reason being that for any dense open subset D c T, for 
some LY, T, c D (see [3, Lemma 22.21). 

If G c T is a branch of length y, then for cx < y, G, denotes T, fl G, and 
G 1 a = G fl (T 1 a). 

Product of trees. The product T1 x T2 of two trees consists of all pairs 
(aI, u2), where for some cy, a, E Ti,. The pairs are ordered coordinatewise; 
(al, u2) < (a;, a;) iff ui -=c~,u~ for both i’s. The product of a finite number of trees 
is similarly defined. 

When (TE ) E < a) is a sequence of trees, and e = (E,, . . . , En) is a sequence 
(or set) of indices, then the product of these n trees is denoted 

T’“‘=X,,,T*=T~,X...XT~,. 

This notation should not be confused with the one for their union: 

T’=U{T515Ee}=T5’U...UT*n. 
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6 U. Abraham, S. Shelah 

The union of the trees is defined under the assumption that thier domains are 
pairwise disjoint. (It is to simplify this definition that we drop the requirement 
for a unique root.) 

A derived tree of T is formed by taking, for some LY < w,, n distinct nodes, 

4, . . . , a,, in T, and forming the product T,, x T,, x . . . x TO”. 
The product of a Suslin tree with itself is never a Suslin tree. And the product 

of a special tree with any tree is again special. 
In [2] Jensen constructs (using the diamond 0) a Suslin tree such that all of its 

derived trees are Suslin too. We will describe this construction in Section 3.1. 
Let T be an Aronszajn tree (of height ol). A function f :T* Q is a 

specialization (of T) if x cry +f(x) <f(y). When f is a partial function, it is 
called a partial specializing function on T. 

nTB denotes the set of all n-tuples 2 = (x0, . . . , x,-~) where xi E T, for all 
i < n. We also write R E TP instead of 2 E “TO. “T = lJ {“T, I/3 < height T}. For 
YE “T, Yy = Y n “T,. If x E TP and (Y G p, then x ] a denotes the unique y +x 
with YET,. Similarly, forZETp, Xfad~f(~gr~,...,~,-lr~)~T,. If a</3, 
and X E “T@, then X [ adgf {X ] (Y 1 f E X}. 

Also, if h : “TO + Q is a finite function, then for (Y < /3, if the projection taking 
x E “TB to x ] (Y is one-to-one, then h [ cy: T,+ Q is the function h’ defined by 
h’(x 1 (u) = h(x). And f or a set, H, of finite functions, H ] a: = {h 1 a: ) h E H}. 

Sometimes, we think of X E “T as a set rather than a sequence. For example, 
when we say that i1 and X2 are disjoint: in this case we refer to the range of the 
sequences, of course. More often, X refers to the sequence (x0, . . . , x,-1). For 
example, X1 +X2 means that length@,) = length(&) = IZ, and for i < n, xii =+ xzi. 
We do not demand that Xi #xi. 

A set of n-tuples, X G “TO, is said to be dispersed if for every finite t s TP there 
is an n-tuple in X disjoint to t. The following lemma is from [2, Lemma 7 in 
Chapter VI]: 

Lemma 1.1. Zf T is an Aronszajn tree and X CL “T is uncountable and downward 
closed (y +X E X 37 E X), then, for some /3 -=c wl, there is an uncountable 
Y E X such that: 

1. ForPsrO<vI<oI, Y,,=Y,, TrO- 
2. Yy = Y II “T, is dispersed for every p c y < o1 (equivalently, Y, is 

dzkpersed). 

2. Construction of Suslin trees 

The diamond sequence, 0, on wi, enables the construction of Suslin trees with 
some degree of freedom concerning their products. For example, the construction 
of two Suslin trees A and B such that the product A x B is special; or the 
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construction of three Suslin trees A, B and C such that A x B x C is special, but 

A x B, A x C and B x C are Suslin trees. This freedom is demonstrated in this 

section by showing that, given any reasonable prescribed requirement on which 

products are Suslin and which are special, the diamond constructs a sequence 

(S(c) 1 c < toI) of trees satisfying this requirement. ‘Reasonable’ here means that 

no subproduct of a Suslin product is required to be special. 

None of the ideas in this section is new, and we could have shortened our 

construction by referring to [2], and leaving the details to the reader. We decided 

however to give a somewhat fuller presentation in the hope that some readers will 

find it useful. The constructions are presented gradually, so that for the more 

complex constructions we can concentrate on the main ideas and claim that some 

of the technical details are as before. In the following subsection we use the 

diamond to construct a Suslin tree such that all of its derived trees are Suslin as 

well. (Recall that a derived tree of T has the form T,, x . . . x Tan where 

a,, . . . 3 a,, E T, are distinct members of the cuth level of T for some (Y < wl.) 

Then we show the construction of two Suslin trees A and B such that A x B is 

special; and the last subsection gives the desired general construction. 

For the rest of this section we assume a ‘diamond’ sequence (S, ( lf < q) 

where S, E 5 and for every X G ol, (5 IXnc=S,> is stationary in wl. 

2.1. A S&in tree with all derived trees S&in 

Let us recall the construction of a Suslin tree. The ath level of the Suslin 

tree A, is defined by induction on a. In order to be able to apply the diamond to 

A we wish to see A’s universe as w1 and assume that the subtree A 1 a consists of 

the set of ordinals woz For (Y < j3 we shall require that the tree A l/3 is an 

end-extension of A 1 a (the reader is asked to forgive us for using the notation 

A l/3 even though the tree A itself has not yet been constructed). 

At successor stages, the passage from A 1 (p + 1) to A r (,u + 2), that is, the 

construction of A, +1, requires no special care: only that each node in AP has 

countably many extensions in A,,,. 

At limit stage, 6 < ol, first set A r 6 = Uac6 A r a, and then the 6th level As 

is obtained by defining (as follows) a countable set of branches, {bi 1 i E o}, and 

putting one point in A6 above each bi. The branch bi is cofinal in A 1 6, and each 

node in A 1 6 is contained in at least one bi. 

If we only wish to construct a Suslin tree, then the diamond set S, G A r 6 is 

used as usual: Each node a in A r 6 is first extended to some x03 a in S, (if 

possible), and then, in o steps, an increasing sequence, x0 <x1 < . . . , is defined 

SO that level(xi), i < CO*, is cofinal in 6. This sequence defines one of our 

countably many branches. We see now the need for the following statement to 

hold at every stage 6 < ol. 

For any CO < fI < 6 and a E A,,, there is some b E A,, extending a. 
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8 U. Abraham, S. Shelah 

Now let us require a little more of A and ask that each of its derived trees is 
Suslin too (see [2]). This variation is manifest in the construction of A6 for limit 
6, and is perhaps better described by means of a generic filter over a countable 
structure as follows. 

Let P?= $‘(A r S) be the poset defined thus: 

9= {a 1 for some n, (5 = (ao, . . . , u,_~) and, for some LY< 6, 

for all O~i<n, u,EA,}. 

The level of ti E 9 is the a: such that ai E A,, for all i < length(C). A 
partial-order, 6 extends a, is defined: 

6 extends a iff level(Z) < level(h), length(Z) c length(h), and 

Vi <length(Z), a, < bi (in A r 6). 

It is not required for 5 E 9 to be one-to-one: aj = uj is possible, although by 
genericity, they will split at some stage. 

Now let M be a countable model (of a sufficient portion of set-theory) which 
includes 9 and A r 6 and the diamond set S, ; and let G be a P-generic filter over 
M. Using suitably defined dense sets, it is easy to see that for each fixed i < co, 

bj = {x ) for some ti E G, x = ui} is a branch in A 1 6 going all the way up to 6. 
The collection {bi 1 i < o} determines A6 and this ends the definition of A. 

LetT=A,x***xA,_, be any derived tree of A; we will prove that T is Suslin. 
Let (Y be the level of (to, . . .,t,-,) inA(sotieA,foralli<n). LetEsTbe 
any dense open subset. By the diamond property, using some natural encoding of 
n-tuples of ordinals as ordinals, for some limit 6 > (Y, E n (T 1 6) = E fl6 = S,, 
and E fl6 is dense open in T 1 6. We must prove that every X E T6 is in E, in 
order to be able to prove that an arbitrary antichain in T is countable. X E T6 has 
the form X = (x0, . . . , x,_,) where xk E A,. Since the tk’s are distinct, the &‘s 
give distinct branches of A r 6. Recall the 9’(A 1 6) generic filter G (over M) 
used to define Ag, and let bj(k) be the branch of A 1 6 which gave xk. If for some 

a = (a(), . . . ) u~_~) E G the n-tuple (a+,), . . . , a,~,_,,) is in the dense set E, then 
X which is above this n-tuple must be in E too. 

The existence of such 5 in G is a consequence of the following density 
argument: Let D contain all those ti E P(A 1 6) for which (1) i(k) < length(a) for 
every k <n, and (2) either the subsequence s = (ai( . . . , u~~,_~,) of ii is not in 
T, or else s E E. D is dense in 9’ and D EM, because S, is in M. So that 
D fl G # 0, and any ci E D fl G of height > (Y is as required. 

2.2. The case of two trees 

The construction in the previous section is combined now with the construction 
of a special Aronszajn tree to yield two Suslin trees A and B such that: 

1. Each derived tree of A and of B is Suslin. 
2. A x B is a special tree. 
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A AZ well-order of the reals 9 

commence by recalling the construction of a special Aronszajn tree A 
together with a strictly increasing f : A + Q. In the inductive definition, A r a and 

f1a=fl(A14, CC < wi, are defined so that the following hold: 

(1) For any a E A r LY and rational E > 0, and ordinal t < LE such that 
height(a) < r, there is an extension b > a in A, such that 0 <f(b) -f(a) < E. 

This condition is needed at a limit stage (Y, if we don’t want our cofinal 
branches to run out of rational numbers; it enables the assignment of f(e) E Q for 
e E A,, but it requires some care to keep it true at all stages. 

There is nothing very special at successor stages: Since we assume that each 
node has X0 many successors, condition (1) above may be achieved by assigning 
to these successors of e all the possible values of rational numbers >f(e) (a 
forcing-like description of the successor stage is also possible-see below). 

For a limit CC < ol, it seems again convenient to formulate the construction of 
A, and f 1 A,, in terms of a generic filter G over a countable structure M. So 
given A 1 a and f 1 a’, a countable poset 9 = $(A 1 a, f r a) is defined first. 

Definition 2.1. Let 9 be the collection of all pairs (a, 4) of the form ti = 

(ao, . . . , a,_I), S = (q(O), . . . , q(n - 1)) such that: 
1. ti is an n-tuple in A, for some 5 < LY. 
2. q(i) E Q and f(aJ <q(i) for all i < n. 

Intuitively, q(i) is going to be the value of f(b) for b E A, defined by the 
‘generic’ branch {ai 1 (~3, (r) E G}. The order relation on 9 is accordingly defined: 

(&, &) extenN_i, a ql) iff Gi2 extends G1 and (5i is an initial sequence of q2 (that is, 

length(q,) s length(&), and for i < length(q,), qI(i) = q2(i)). 
Now we turn to the construction of two Suslin trees A and B such that all the 

derived trees of A and B are Suslin and yet A x B is special. In this case both 
A 1 a, B r a and the specializing function f : (A 1 a) x (B 1 a) + Q are simul- 
taneously constructed by induction. There are three jobs to do at the limit ath 
stage: (i) To ensure that the cofinal branches of A r (Y and of its derived trees all 
pass through the diamond set S,. (ii) To ensure the similar requirement for B 1 a. 

(iii) To specialize (A r (Y + 1) x (B r cx + 1). It turns out that it suffices to take 
care of (iii) in a natural way-and genericity will take care of the two other 
requirements, thereby ensuring that A and B and their derived trees are Suslin. 

The inductive requirement (1) is needed here too, but in fact an even stronger 
requirement will be used: 

(2) If ii, 6 are n- and m-tuples in A 1 CY and B 1 a, and for 8 < CY, c is an n-tuple 
in A0 extending a, and if q : n X m + Q is such that Vi, j f (ai, bj) < q(i, j), then 
there is an n-tuple d in Be, extending 6 such that Vi, j f (ci, dj) < q(i, j). (A similar 
requirement is made for E in Be.) 
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10 CJ. Abraham, S. Shelah 

In fact, by taking smaller q(i, j), it even follows that for any finite D t Be there 

is an n-tuple d in Be, extending 6 and disjoint to D, such that Vi, j 

f(ci, di) = q(i, j). (A similar requirement is made for E in Be.) Again, we only 

describe the limit case, and leave the details of the successor case to the reader 

(take care of condition (2)). So assume cr < w1 is a limit ordinal and A r (Y 
(=U,<,A rcl), B 1 a and f 1 cy are given. 

Let R = R((A r CL) X (B 1 a), f r a) be the poset defined in the following: 

(a, 6, 4) E R iff f or some p < (Y, 5 is an n-tuple in A,, 6 is an m-tuple in B,, and 

q:n x m-Q, are such that for all O~i<n, O~j<m, f(ai, bj)<q(i, j). 
Extension is defined naturally. 

If M is now a chosen countable structure containing all the above, and the 

diamond S, in particular, then pick an R-generic filter, G, over M and define the 

&h levels A, and B, and extend f on A, x B, in the following way: For each i, 

ui = a node above the branch {x 1 for some (ti, 6,q) E G, ai =x}, 

vi = a node above the branch { y ( for some (ti, 6,4) E G, bi = y }, 

f(4, vj)= 4(&j), where (5, 6, 4) E G for some a, 6. 

By condition (2), it is clear that this local forcing adds branches above every 

node, and that condition (2) continues to hold for cx + 1. So the product of the 

trees A and B thus obtained is special; but why are A and B and each of their 

derived trees Suslin? To see that, we argue that if we restrict our attention to A, 

for example, then it is in fact the construction of a Suslin tree given in Subsection 

2.1 which describes A. For this aim we will define for each limit CY a projection 

& from the poset R used in the construction of (A 1 a + 1) x (B 1 a + 1) onto 

the poset P(A r a) used in 2.1. Simply set &,(a, 6, 4) = ~5. We must check the 

following properties which ensure that the projection of the R-generic filter is a 

PP(A 1 a)-generic filter: 

1. &, is order preserving: x0 cR x1 + II,&v~) s9 I&&X,). 

2. Whenever p E 9 extends &(x0), there is an extension X, of x0 in IF8 such 

that H&z,) = p. 
This is not difficult to prove by (2). 

2.3. O_rl many trees 

In this section (waving our hands even harder) we extend the previous 

construction to w1 many Suslin trees with any reasonable requirement on which 

trees are Suslin and which are special. 

Theorem 2.2. Assume OW,. Let sp (for special) be a collection of non-empty 
finite subsets of o, closed under supersets, and let su be those non-empty finite sets 
e c o1 which are not in sp. Then there is a sequence of WI-trees (A5 1 5 < co,) such 
that for a finite set e = {f,, . . . , 5‘,}: 

1. If e E sp, A”‘~fAc~ x * + + x ACn is special. 
2. IfeEsu,Ae~fAALIIU.- . U ACn and all of its derived trees are Suslin. 
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Proof. By induction on cu< wi, the sequence {A5 1 cy + 1 1 < < (Y} is defined 

together with specializing functions fe 1 (Y + 1 for e E sp, e G (Y. fe is, of course, a 
specializing function from A”’ into Q. It is convenient to require that fe 1 a + 1 is 

only defined on the /3 levels of the product tree for /I > max(e). 
The definition of the trees requires some notations and preliminary definitions. 

Let a < o1 be any ordinal-successor or limit, and assume that (AC r CX) for 
f < (Y, and fe 1 a for e c a in sp are given. 

Let us define, for any finite d c CX, 

inthefollowing.a=(~~~~~d)~~(Ad~~)ifforsome~<~forall~~d,a~is 
an np-tuple in AZ enumerated as follows: a5 = (af 1 i E Z,) where Z, = Z,(a) c 0 is 
a finite set of size nE. 

Extension is naturally defined in 9(Ad 1 a): b extends a iff for all 5 Ed, 
Z,(u) G Z,(b) and for every i E 4(u), uf < bf in AE r (Y. 

We need one more definition. For a E 9P(Ad 1 a), and e E d with e E sp, let us 
say that qe bounds a iff qe is a function 

qe : I”’ = x 4(u)-+ Q 
E- 

such that for every i = (i, 1 5 E e) E I”‘, 

f,((ui5, I 5 E e)) <@X9. 

Now we can formulate the inductive property of the trees and functions at the 
ath stage: 

(3,) Zf a E GP(Ad r a), where d E a is finite, and if (q’ 1 s c d, s E sp) is such 
that each qS bounds a, then for every e E d with e E su, and b extending a r e in 
9(A’ 1 a), there is bl > a in P(Ad 1 CY) such that each qS bounds bl, and 
b, r e = b. 

Observe that this property makes sense for LY’S which are limit as well as for (Y’S 
which are successor ordinals. 

Let us now return to the inductive definition of the trees. 
Case 1: (Y is a limit ordinal. In this case we first take the union of the trees and 

functions obtained so far. So for each c < a, and e E a in sp: 

Then we add the &h levels and extend fe according to the following procedure. 
A countable poset R = R, is defined as a convenient way to express how the 

a-branches are added to each (AC 1 a), enabling the definition of A$ and of the 
extensions of the fe’s. 
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A condition in R gives finite information on the branches and the values of the 

appropriate fe’s. So a condition r E R has two components: r = {a, tj}, where for 

some ~1 = ~(a) < a, a gives information on the intersection of the (locally) generic 

a-branches with the p level, and 4 tells us the future rational values on products 

of these branches. Formally, we require that for some finite d = d(r) E a: 

1. a E 9’(Ad 1 a), 

2. 4 = (@ 1 e c d, e E sp), and for each e E d in sp, qe bounds a. 

In plain words, r E R, has a finite domain d s (Y on which it speaks. For I; E d, a! 
is the intersection with Ai, of the proposed ith branch added to A” r a, and qe 

gives information on how to specialize those trees required to be special. So if 

e E d is in sp, then qe gives rational upper bounds to the range of the specializing 

function fe on the branches added to A’“’ 1 a. 

We write d = d(r), ii = C(r), q = q(r), ,u = y(r) etc. to denote the components 

of re[W. 

A countable M is chosen with R,, S,, the trees so far constructed and so on in 

M, and an KY, generic filter G over M is used to define the branches and the new 

values of fe. 

1. For ~<LY and i<o,uf={xIforsomerEG,aF=x}, is the ith branch 

added to A5 1 a. This determines Ai. 

2. For e E sp, we define fe on the ath level of A”), as follows. Any a-level 

node, w, of A’“’ has the form (u:I, . . . , ~2) where e = {cl, . . . , cn}; then 

h(w) = q%, . . . , i,), where qe comes from G (that is qe = q(r)” for some r E G). 

As evidenced by fe, A’“’ becomes a special tree for e E sp. When e $ sp, A’ is 

Suslin and so are all of its derived trees. It is here that the assumption 

e $ sp 3 for e’ G e, e’ $ sp is used. We must prove that for e 4 sp, the 

construction of A’ follows the specification described in Subsection 2.1. To do 

that, observe that for e $ sp the map fl taking r to (iiLl ) 5 E e) is a projection 

of [w onto 9(A’ 1 cu). 

Case 2: (Y is a successor ordinal. Put m = p + 1. Not only the cuth level has to 

be defined for all existing trees, but a new tree, A4 and new functions must be 

introduced. The definition of the new functions fe with p E e is somewhat 

facilitated by our assumption that these are only defined on the ath level. 0 

3. Suslin-tree preservation by proper forcing 

In this section it is shown that any Suslin tree S remains Suslin in a countable 

support iteration of proper forcings, if each single step of the iteration does not 

destroy the Suslin property of S. We assume our posets are separative: If q does 

not extend p then some extension of q is incompatible with p. 

Let 9=(gal cr< /3) be a countable support iteration of length /?I (limit 

ordinal) of proper forcing posets; where 9,+, = 9?a * ??a is a two-step iteration: 

9, followed by Z&. The following preservation theorem holds for @. 
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Theorem 3.1. Let S be a Suslin tree of height 0,; suppose for every /3’ < p, S 
remains Sudin in VPfi’. Then S remains Suslin in VP0 as well. 

Proof. To show that every antichain of S is countable, it is enough to prove that: 

For any dense open set E E S there is a level SA, A < w, , such that S, 5 E. 

So let & be a PO name of a dense open subset of S. Fix some countable 

elementary submodel, M -K H(K), such that S, p, ?P@, 5 etc. are in M, where K is 

‘big enough’. (H(K) is the collection of all sets of cardinality hereditarily <K. In 

fact, all that is needed is that M reflects enough of V to enable the following 

constructions and arguments to be carried out.) 

l Let A = M rl w,. A is a countable ordinal. 

l Let (p(i)li<w) b e an increasing w-sequence of ordinals in /3 rl M and 

cofinal in p rl M. 
l Let {b, ) n E w} be an enumeration of SA. 

We will produce a condition q E PO (extending some given condition) such that 

for every n E w, q Ik b, E E, and thus 

q It S, E E. 

First, a sequence qn E LPPCnj, and p,, is inductively constructed such that the 

following holds: 

1. qn is an M-generic condition for PfiC,) and qn+l 1 /3(n) = qn. 
2. pn is a name in V9fi@), forced to be a condition in ~9’~ n M. 

3. <a) qm Itfi(,) “pn 1 PC n is in the canonical generic filter, G,“. 1 
(b) qn ItPfiCnj “p,, extends pn.-i in PO’,. 

(c) qn It- 9Cn, (p,, ItP6 “b, is above some member of E”). 

(Recall that the canonical generic filter G is defined so that q It q E G for every 

4.) 
Suppose for a moment that we do have such sequences, and this is how q is 

obtained: q = U,,, qn. Then q E PO extends each qn, since qn+l r P(n) = qn is 

assumed for all it. We also have the following: 

Claim 3.2. q II,, SA G &. 

Proof. This is a consequence of l-3 above obtained as follows. Let I; be the 

name of the PO canonical generic filter. It is enough to show that for each IZ 

(*) 4 l~,,p, E I;, 

because then we use 3(c) to deduce that q forces b, to be in @. To prove ( * ) we 

observe that 

1. qlt Pe “p,, extends pm in PO for m < n”, and 

2. q It,, “km 1/3(m)) E I;, for all m < 0”. 
Hence: 

q Itq “(p, r P(n)) E Gn for all m < n”. 
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From this it follows that for any q’ extending q in LP’, if q’ determines pm, that 

is for some p E CPL3, q’ It& =p, then q’kp r P(n) E G,, and hence q’ extends 

p r P(n), for all n’s, and thus q’ extends p. Thus q’ lt,TR~,,, E G. This is so for an 

arbitrary extension of q which determines pm, and hence ( *): q ltPp~, E I;, 
follows. 0 Claim 3.2 

Return now to the construction of the sequences. Suppose p,, and qn are 

- constructed (or that we are about to start the construction). 

In order to describe pn+l and qncl (in that order), imagine a generic extension 

V[GJ of our universe v, where G,, E PPBcnj is a generic filter containing qn. Then 

M[G,] can be formed; it is the G,-interpretation of all PP,+) names in M. Then 

MGI -=c ff(K)[Gnl. s is still a Suslin tree in V[Gn] by our assumption. 

In V[G,], p,, is realized as a condition denoted p,,; p,, E CT0 n M, and 

pn r B(n) E G in y th e inductive assumption in 3(a). 

Since & is forced to be dense in S, for any s E S and p E 9$, there are s cs s’ 

and an extension p’ of p in PO such that 

(* *) p’Ik,,&& 

Moreover, by genericity of G,, we may require that 

Thus, the set F of s’ E S for which there is p’ E 9” extending p,, with 

p’ 1 p(n) E G,, and satisfying ( * *) is dense in S and is (defined) in M[G,]. 

Now S is a Suslin tree in M[G,], and hence every branch of S 1 il of length A is 

M[G,] generic. (Recall A= w1 fl M.) Thus brtcl (the (n + 1)th node of S,) is 

above some node in F; and it is possible to pick P,,+~ in PO n M extending p,, 
with pn+l 1 P(n) E G,, and such that pn+l II-,, b,+l E Z$ 

This description of pn+l made use of the LP’p(nj-generic filter G,. Back in V, we 
define pn+l to be the name of that pn+, in VPo@) (and so, evidently, in VP@(n+t)). 

Next-we define qn+,. We demand the following from qn + , : 

1. 4n+l is an M-generic condition for LP)B(n+lj, and qn+l r/3(n) = qn. 

2. qn+1 11 ~~~n+,)pn+l 1 P(n + 1) E G+I. 
The existence of qn+l satisfying 1 and 2 is a general fact about proper forcing. 

It is a consequence of the following statement, which can be proved by induction 

on P2. 
Suppose /3i < &== /?, and q1 is an M-generic condition over PP,, and p is a 

name in VPfil such that q1 Ikpp’pl “p E B,, fl M and p r PI is in the canonical Pots, 

generic filter.” Then there is an M-generic condition over PP2, q2, such that 

q2 1 PI = 41, and q21bpp2 “p 1 PZ is in the canonical Pfiz generic filter.” 

0 Theorem 3.1 

Sh:403



A Ai well-order of the reals 15 

4. How to specialize Aronszajn trees without adding reals 

The forcing notions which turn a given Aronszajn tree into a special tree, 
naturally fall into two categories: those which use finite conditions and satisfy 
properties such as the c.c.c., and those which use infinite conditions and have nice 

closure properties. 
In this section we describe how infinite conditions can be used to specialize an 

Aronszajn tree, without addition of new countable sets, and how to iterate such 
posets. 

In a moment we will define the poset Y(T) used to specialize an Aronszajn tree 
T. Meanwhile, let us see what are the problems with the direct approach, which 
takes the poset 9, of all specializing functions f defined on some downward closed 
countable subtree of the form T 1 LY + 1. To see that this poset collapses cc)r in 
forcing, look at the following dense open sets, defined for IZ < o: 

D,={fE9’11fisdefinedonTrcu+1, and 

for every x E T,, f(x) 2 n}. 

Clearly D, is dense open. So for every n < o there is an a < or such that some 
f E D, defined on T r (Y + 1 is in the generic filter G. But if or is not collapsed, 
the generic filter must contain a condition which is simultaneously in every D,, 

and this is a contradiction. 
Thus, there must be some limitation on the growth of the generic specializing 

function. We may try the following poset: 9, consists of all specializing 
f:T r cu+l-~Q, (~<q, such that 

VQ < (Y VX E T,,,, if f(Z) < S then for some jj ET,, 

X<J andf(y)=q. 

Here, X is an n-tuple of nodes, 4 is an n-tuple of rational numbersand f(Z) < 4 is 
a shorthand for: f(q) < qi for all 2s. 

If we assume that every node in T has infinitely many successors, it is not 
difficult to see that any condition in Y2 can be extended to any height. Therefore 
forcing with Y2 specializes T. If T is a Suslin tree such that each derived tree of T 
is Suslin too, then Y; adds no new countable sets. If T is an arbitrary Aronszajn 
tree, however, .Y2 may collapse ol. Such is the case when T has the form T, U T2, 
a disjoint union of T, with a copy T2 of itself. Let i : T, -+ T, be the map which 
takes a node in T, to its copy in T,. Define 

D,={fe~2~dom(f)=T~a+1andVx~T1,, 

f(x) > n or f(i(x)) > n}. 

Again, D,, is seen to be dense open; and since the generic function contains a 
condition in D, but there is no condition in the intersection of all the Dn’s, q 

must be collapsed. This shows that the limitations one imposes on the growth of 
the generic specializing function must have a different character. 
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We are now going to define the poset Y= Y(T) used to specialize a given 

Aronszajn tree T. A condition p E Y’ is a pair p = (f, r) where f is a countable 

partial specialization of T, called an ‘approximation’; and r is an uncountable 

object, called a ‘promise’. Its role is to ensure that Y is a proper poset. r consists 

of ‘requirements’, so we have to explain what these are first. Throughout, T is a 

fixed Aronszajn tree. 

Definition 4.1. (1) We say that H is a requirement (of height y < wr) iff for some 

)2 = n(H) < o, H is a set of finite of the form h : T,-+ Q, with 

dam(h) E nT,,. 

(2) An approximation (on T) is a partial specializing function f : T 1 (a + l)+ 

Q; that is, an order-preserving function defined on lJSI_TI. into the rationals. 

The countable ordinal a: is called last(f). 

We say that a finite function h : T,+ Q bounds f iff Vx E dom(h)(f(x) < h(x)). 
More generally, for /3 2 a = last(f), h : T6 + Q bounds f iff Vx E dam(h) 

(f(x ] a) < h(x)) (’ i.e., if h 1 a is defined, then h 1 a bounds f). 

(3) An approximation f with last(f) = (Y is said to fuljill requirement H of 

height (Y iff for every finite t c T, there is some h E H which bounds f and such 

that dam(h) is disjoint to t. 

(4) A promise r (for T) is a function (I’(y) ) p c y < o,) (p is denoted P(r)) 

such that 

(a) T(y) is a countable collection of requirements of height y. There is a fixed 

n such that 12 = n(H) for all y and H E T(y). 
(b) For y 2 p, each H E T(y) is dispersed. That is, for every finite t ET,, for 

some h E H, t f~ dam(h) = 0. 

(c) ForeverypGaOb<r<w,, 

Q&J = {(X 1 a”) ( x E T(4). 

(5) An approximation f fulfills promise r iff last(f) 2 P(r), and f fulfills each 

requirement H in r(last(f)). 

Definition 4.2 [of Y(T)], F or any Aronszajn tree T define Y = Y(T) by 

p=(f,r)EYifff is an approximation on T, r is a promise, and f fulfills r. 

The partial order is naturally defined: p1 = (fi, &) extends pO = (fo, &J iff fo c_ fi 
and r, 1 ( co1 - last( fi)) G G. That is, any requirement of height y Z= last( f,) in r, is 

also in r,. 

If p = (f, r) is a condition in Y we write f = f (p), r = T(p). In an abuse of 

notation, we write last(p) for last(f(p)), and p(x) instead of f(x). We also call 

last(p) ‘the height’ of p. (Recall that f(p) is defined on T 1 last(p) + 1.) 

Remark. If our only aim is to obtain a model of CH & SH, it is enough to 

assume that T(y) is a singleton. The assumption that T(y) is a countable 

collection of requirements will be used in order to show that this forcing preserves 

certain Suslin trees. 
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Remark. If p =(f, ~)EY, y is the height of p, and g:T r y+ 1-Q is a 

specializing function satisfying: Vx E dom(f)(g(x) cf(x)), then g fulfills the 

promise F which f fulfills. 

This simple remark is used in the following way. Suppose that p, extends pO; 
put pi = last@,), J =f(Pi) for i = 0, 1. 

Let 6 be an order-preserving map of the set of positive rationals Q’ into Q’ 

such that 6(r) G r for all r. Then define, for any x E T,, where p0 < LY G pl, 

In words: g uses 6 to compress fi on T r p1 + l\T r p. + 1. 

Extend further g and, for x E T r p. + 1, define g(x) =fO(x). Then (g, T(pJ) is 

also an extension of p0 of height pl. 

Our next aim is to show that it is possible to extend conditions to any height, 

and to enlarge promises. Then we will show properness of 9’. In the following 

subsection, 9’ is shown to specialize only those trees it must specialize. Then, in 

the next subsection 9’ is proved to satisfy the condition which allows us to 

conclude that a countable support iteration of such posets adds no new countable 

sets. 

Lemma 4.3 (The Extension Lemma). Zf p E Y and last(p) < p < wi, then there is 
an extension q of p in Y with p = last(q), and such that r(q) = T(p). Moreover, if 
h : T, + Q is finite and bounds p, then h bounds an extension q of p of height p. 

Proof. The ‘moreover’ clause of the Lemma is, in fact, a direct consequence of 

the first part and the Remark above. Indeed, if h bounds p as in the Lemma, pick 

first any extension p1 of p with p = last(pl), and then correct p1 as follows to 

obtain q. 
Put ,uO = last(p), f = f (p). For some d > 0, Vx E dam(h) 

h(x) >f (x r/4 + d. 

Let 6 be an order-preserving map of Q + into the interval (0, d) such that 

6(x) <x for all x. Now use the Remark to correct p1 and to obtain an extension 

q of p which satisfies for every x E T 1 ((p + 1) - p,J, q(x) -p(x [ pO) < d. Hence 

h bounds q. 
The proof of the first part of the Extension Lemma is done by induction on p. 

Since the proof is quite easy, only the outline is given. 

Case 1: p = p0 + 1 is a successor ordinal. By the inductive assumption, 

last(p) = p0 can be assumed, and we have to extend f = f (p) on Tp,,+l, fulfilling 

all the requirements in F(p) (F = T(p)). G iven any requirement H E F(p), we 

know that H [ y, = Ho E I&) is fulfilled by f. So, Ho contains an infinite pairwise 

disjoint set of functions h which bound f. This allows plenty of time to extend f, 
in w steps, and to keep the promise Fat the level ,u. 
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Case 2: p is a limit ordinal. Pick an increasing sequence of ordinals ,ui, i < w, 
cofinal in p. We are going to define an increasing sequence pi E 9’ (beginning with 

p0 = p) and finite hi : T,, + Q which bound pi, by induction on i < w. Then we will 

set 4 = (f, 0 bY f = U {f(Pi) I i<w}UIJ{h,(i<w}, and T=T(p). 
last(p,) = pi, and the passage from pi to pi+l uses the inductive assumption for 

~i+l. The role of the hi’s is not only to ensure that f is bounded on the p branches 

determined by T,, but also to ensure that the promise made in T(p) = T, namely 

r(p), is kept by h = Ui<o hi. Each requirement H E r(p) must appear infinitely 

often in a list of missions, and at each step, i < w, of the definition, hi+l takes 

care of one more h E H, so that finally an infinite pairwise disjoint subset of H 
consists of functions which bound f. It is here that we use the assumption that 

%4) = %) ] Pi* i.e., that r(pi) = {(H Ipi) 1 H E T(p)}. 0 

Next we show that promises can be added. 

Let p = (f, T) E Y be a condition of height p, and let Y be any promise. We 

say that p ‘includes’ Y iff for all y such that p c y < w1 

Y(Y) E T(Y). 

That is, any requirement HE Y(y) is already in T(y). If p includes Y then, 

obviously p fulfills Y. Otherwise, it is not always possible to extend p to fulfill Y. 

However, if the following simple condition holds, then this can be done. 

Lemma 4.4 [Addition of Promises]. Let p E 9’, put p = last(p). Let Y be a 
promise with p < p = f3( Y). Suppose for some finite g : T, + Q (called a basis for 
Y), g bouna’s f (p) and 

Vysf3VH~ Y(y)VhEH(h [p=g). 

Then there is an extension p1 of p in 9’ of height f3 which includes Y. 

Proof. This is an easy application of the Extension Lemma. Put f = f (p), then 

for some rational d > 0, Vx E dam(g) g(x) > f (x) + d. 
Now every H E Y(p) is a dispersed collection of functions h with h 1 p = g. Let 

p, be any extension of p of height p; set fi = f (PI). The desired extension of p 
will be obtained by correcting fi so as to fulfill Y(p) and then to add Y. This is 

done as follows. 

Let 6 be an order-preserving map of the positive rationals into the rational 

interval (0, d), such that 6(r) < r for every r. Define now for x E T,, p < a < p: 
h(x) = f (x [ p) + S(fi(x) -f (x [ p)). Then f2 Uf fulfills each H E Y(p), and thus 

gives the desired extension. 0 

The properness of 9’ is not so easy to prove, and it is here that the need for the 

promises appears. Given an elementary countable substructure M < H(K), such 

that YE M, and given a condition p,, E M, we have to find an ‘M-generic’ 

condition q extending p,,. In fact, we will find q with a stronger property which 
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implies that no new reals are added: for every dense open set D G 9’ in M, q E D. 
As in the definition of q in the Extenison Lemma (the limit case), here too an 

increasing sequence pi E 9’ fl M of conditions and finite functions hi : T, 4 Q are 
defined; where p = o1 rl M. But now we are faced with an extra mission in 
defining pi+i: to put pi+1 in D, the ith dense open subset of 9’ in M (in some 
enumeration of the countable M). The problem with this mission is that perhaps 
whenever r extends pi is in D, then hi does not bound r. 

To show that this bad event never happens, requires the following main lemma. 

Lemma 4.5. Let T be an Aronszajn tree. Let M <H(K) be a countable elementary 
substructure, where K is some big enough cardinal; T, Y = Y(T) E M. Let p E M be 
a condition in 9, y = 6.1~ II M and h : T, + Q be a finite function which bounds p. 
Let D G 9, D E M be dense open. Then there is an extension of p, r E D fl M, 

such that h bounds r. 

Proof. Assume for the sake of a contradiction that this is not so, and let 
T, M, p, h etc. be a counterexample. Let p,, = last(p); i = dam(h) enumerated in 
some way; so X E “T,, Z = (x0, . . . , x,-1). Put 4 = h(Z); that is, qi = h(xJ. 
Denote ij =i 1 y,; then 6 E “T,,, and we may assume ui # Vj for i # j (or else, 
extend p above the splittings of 2). In M: 

If r E D n M extends p, then h does not bound r. 

Put g, = h [ uO. Then g, E M. Say that a finite function g : T, + Q is bad iff: 

1. PO SY<~-Q, andgrpo=go. 
2. Whenever r E D extends p and y 2 last(r), g does not bound r. 

In other words, g is bad if it mimics h 1 y, but it may live on other n-tuples of T. 
Of course, h 1 y itself is bad for any y with p. < y < y. It follows that, in M and 
hence in H(K), there are uncountably many bad g’s. Indeed, if there were only 
countably many bad functions, there would be a bound y, in M, for {height(g) ( g 
is bad} ; and as y < p, h [ y would not be bad. 

Observe that if g is bad and ,uo s y. < height(g), then g [ y. is bad too. 
Now put 

B = {dam(g) 1 g is bad}. 

Then B is an uncountable and closed downwards (above po) subset of 

U posy<w, nT,. As T is an Aronszajn tree, Lemma 1.1 implies that for some p > ,uo 
and some B” G B, if we put B”, = B” n nTy, then 

1. for p s y. < y1 < o,, Bto = BF, [ yo, and 
2. BOB (and thus every Boy, /3 < y) is dispersed. 
We may find B” in M, since only parameters in M were mentioned in its 

definition. For p 6 Y-C wi, let Y(y) consist of H,, = {g 1 g is bad and dam(g) E 
BF}. By Lemma 4.4 (Addition of Promises), there is an extension p. of p in M of 
height /3 which includes Y. That is, if & = T(po), then for every y 2 last(po) = /3, 

Hy E G(Y). 
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Now let I E Y be any condition extending p0 and in D. Let y = last(r). Since r 
fulfills I& for some g E H,,, g bounds r. But this contradicts the fact that g is 
bad. Cl 

4.1. Specialization, while safeguarding St.&in trees 

Suppose that we care about a Suslin tree S, and wish to specialize an 
Aronszajn tree T while keeping S Suslin. Obviously, this is not always possible: 
for example if S is T, or if they contain isomorphic uncountable subtrees. We will 
show in this section that, if T remains Aronszajn even after the addition of a 
cofinal branch to S, then the poset Y(T) specializes T while keeping S Suslin. 

Theorem 4.6. Let S be a S&in tree, and T be an Aronszajn tree such that IIT is 
Aronszujn]]S = 1. Then IIS is Susfin~IqT)= 1. 

Proof. The forcing poset Y= Y(T) was defined in the previous subsection and 
shown there to be proper. To prove the theorem we let Q be a name in Y forcing 
of a dense open subset of the tree S. We will find a condition p E Y (extending an 
arbitrarily given condition in 9’) such that for some p < ol, p It9 S, E D. This is 
enough to show that Y does not destroy the Susliness of S. The framework for 
the construction of p is similar to the one for showing the properness of Y, and 
the following lemma suffices for the proof of the theorem. 

Lemma 4.7. Let S and T be as in Theorem 4.6. Let D be a name in Y = Y’(T) 
forcing of a dense open subset of S. Let M < H(K) be a countable elementary 
substructure, containing T, S, Q, and let pO E 9’ II M be a condition. Let ,u = CO, f~ 
M, and ho: Tel * Q be a finite function which bounds pO. For any b E S, there is 
an extension p E Y fl M of p,, such that ho bounds p, and p ItY b E D. 

Proof. Assume that this lemma does not hold. Let M, pO, h,, etc. be a 
counterexample. Put ,uO = last(pJ, and g, = ho ] ,uLo. 

The Suslin tree S is a C.C.C. forcing notion which adds no new countable sets. 
We are going to define first a name @, in S forcing, of an uncountable tree of 
‘bad’ functions, and derive a promise r out of this L3, a promise which, when 
adjoined to pO, will give the desired contradiction. 

Forcing with S, extend b E S, to a (generic) branch G of S, and let V[G] be 
the extension of the universe V thus obtained. We have: 

M[G] < H(K)[G] = H(K)“[~]. 

In V[G], and hence in M[G], T is still an Aronszajn tree by the assumption of 
Theorem 4.6. The following definition is carried out in V[G], but all its 
parameters are in M[G]: 
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Definition 4.8. A finite function h : T, 4 Cl! is bad iff: 

1. PO cy<o,, andh]p,,=g,. 

2. Whenever p E 9’ extends p. and y 2 last(p) and G,, = e, if p Eye E Q then h 

does not dominate p. (Recall that GY is the unique node in G rl S,.) 

For any p0 < y < p, ho 1 y is bad. (If not, by elementarity of M[G], there is, in 

M, an extension p of po, of height y and such that ho 1 y bounds p and 

p IF9 (G,) E 0. But then, as b > GY, p ItY b E Q, in contradiction to our assump- 

tion.) Hence the set of bad functions is uncountable. 

Obviously, if h, of height y, is bad and ,uO < y’ < y, then h [ y’ is bad too. 

We know how to find (in M[G]) an ordinal p0 < fl< or, and a collection B(y), 

/3 c y < o,, such that B(y) is a set of bad functions of height y, and 

1. for P s y. < y1 < ol, B(Y,) = B(yJ 1 YO, 
2. B(P) is dispersed. (See Definition 4.1(4)(b), and Lemma 1.1.) 

Let BEM be a name of B in Vs, and let b. < b be a condition in S which 

forces these properties of B. In particular, b, forces “all functions in Q(y) are 

bad”. 

Now, back in V, we define the promise r. For every countable y 2 /3, T(y) is 

the collection of all requirements H of height y such that ]]H = @(y)]]” > 0. Again 

r~ M. Since S is a C.C.C. poset, T(y) is countable, and since S adds no new 

countable sets, T(y) is non-empty (some condition in S above b. ‘describes’ 

B(y)) and T(y) is countable. 

Since go is a basis of r, and go bounds po, there is an extension p, of po, in 

Y fl M, which includes r. (See the Addition of Promises Lemma 4.4.) 

Next, find a node d E S, with b. < d, such that pz ltY d E r) for some extension 

p2 of p, with p2 E Y n M. This is possible since Q is assumed to be a name in V9 
such that 11-1) is dense in S]IY= 1. 

Let y = last(p,), and let d, > d be a node in S which forces “H = B(y)” for 

some requirement H of height y. Then H E T(y) and so some h E H bounds p2 (as 

p2 fulfills r). But dl Its “h is bad,” contradicts pzItyd E Q. 0 Lemma 4.7, 

Theorem 4.6 

5. a-properness and o,-D-completeness of Y 

In Chapter V of [6] (Sections 3, 5 and 6) the notions of a-properness and 

D-completeness are defined, and an <or-proper, simple D-complete forcing 

which specializes an Aronszajn tree is described. Section 7 there shows that the 

iteration of such forcings adds no reals. In Chapters VII and VIII different 

notions of chain conditions are introduced: the X,-e.c.c. and the X2-p.i.c. Any of 

them can be used to show that our iterations satisfy the X,-cc. (The second is 

particularly useful in 2 Xl > X,.) We shall review here these definitions, but will not 

give proofs for the preservation theorems which may be found in the Proper 

Forcing book. 
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To use the theory of proper forcings which add no reals we will show that (1) 

the specializing poset Y = Y(T) is a-proper for every a: < w,, and that (2) for 

some simple o,-completeness system D, Y is D-complete. 

By ‘a tower of length (Y + 1 of substructures of H(A)’ we mean here a sequence 

N = (N; 1 i s a) of countable Ni < H(A) such that: 

1. N is continuously increasing. (Ns = Ui<6 Ni, for limit 6 =Z a.) 

2. (Nj Jj<i) ENi+i* 

Definition 5.1. P is a-proper (a: =C ml), iff for every large enough A and tower 

(N; 1 i s (u) of countable substructures of H(A) of length (Y + 1, if P E NO and 

p E P II NO, then there is an extension q of p in P such that q is an (Ni, P)-generic 

condition for every i c a. 

Theorem 5.2. Y is a-proper for every a < ml. 

We only indicate the proof since there is not much to say which was not said 

for the case a = 1. The proof is by induction on (Y. The case of a successor 

ordinal is an obvious application of the inductive assumption and the properness 

of 9’. In case CY is a limit ordinal, given a tower (Ni ( i 6 a) as in the definition, 

pick an increasing o-sequence i,, < a, n < w, converging to LY. We will define an 

increasing sequence p,, E N,+, such that pn is (Njj P)-generic condition for every 

j d i,. The inductive assumption and the assumption that ( Nk 1 k s i,) E N,“+, are 

used to get p,, in the elementary substructure N,,,. We must be careful so that 

f efU,<wf (p,) ’ 1s b ounded on every branch of T 1 a determined by points in T,, 

and that f fulfills every requirement in I( CY) for r = T(pn), n < CO. But we learned 

how to do it when proving properness of 9’. 

The D-completeness of Y is equally simple, if only the definition is clear. Let 

us review it on the informal level first. 

Think on the difference between the poset 9, for adding a new subset to w1 

with countable conditions on the one hand, and the poset T, a Suslin tree, on the 

other hand. Both posets add no new countable sets, but while posets like 9’ can 

be iterated without adding reals, an iteration of Suslin trees can add a new real 

(see PI). 
Pick a countable M < H(A) with 9, T E M and look for B-generic and 

T-generic filters G9 and GT over M which have an upper bound in 9, and in T 

(this is what it takes to show “no new countable sets are added”). While G9 can 

be defined, in a sense, from within M, the definition of GT requires knowing T,. 

To clearly see this difference, let 17: M +&I be the transitive collapse of M onto 

the transitive structure A?. If we only have A? at hand (and a countable 

enumeration of fi), then we can define a p-generic filter over M, and any such 

filter has an upper bound in 63’. However, for T the situation is radically different: 

even though any branch of T n M is M-generic, there is no way to know which 

branches have an upper bound in T, unless T, is given to us. 
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For the poset Y(T) (T now an Aronszajn tree) the situation in subtly in 

between 9 and T: It seems that we need to know T, (and more) to define 

M-generic filters over Y, but in fact this is less crucial: there is room for some 

errors. Let us make this more precise in the following. Recall the properness 

proof, and suppose that M i H(A) and the collapse 17: M-+ &f are given. We 

seek to find a generic filter G over &l such that 17-iG has an upper bound in Y. 

Besides &f, the only parameters of importance were Tp (,u = u1 fl M) and the 

function r which assigns to each p E 9’ fl M, the countable set T(p)(p) of 

requirements (in the sense of TI) of height ~1. Suppose that not the real T, and r 

are given, but just a countable set of cofinal branches of T n &f (called TI) and 

any function r’ such that T’(p) is a countable collection of requirements of 

height ,u, and for every p E Y f~ M and /3 E cc), rl M, P(p)(P) = {X [p 1 X E 

T’(p)}. Then the increasing, G-generic sequence of conditions, pi E Yrl &I, 
i < o, could be defined to give a filter G. Of course, if TI, and r’ are arbitrary, 

then we cannot be sure that 17-l of the filter G thus obtained has an upper bound 

in 9’. However, the following observation comes to our rescue: given a countable 

collection {(T’,, z-i) 1 i < w}, it is possible to find a generic G which is good for 

every (Ti, r”). ‘Good’ in the sense that if some (Ti, r’) were the real thing, then 

G would have an upper bound in the external 9. This is the essence of the notion 

of simple D-completeness. For completeness, we give now the definition from 

Chapter V of Shelah’s Proper Forcing [6]. The reader can then see that Y is 

indeed D-complete for an w-completeness simple system. The theory developed 

there shows that the countable support iteration of a-proper (LY < wJ and simple 

D-complete posets adds no new countable sets. 

Definition of D-completeness (see Definitions 5.2, 5.3 and 5.5 in [6]). For any 

structure N, let JC : N+ N denote the Mostowski collapse of N to a transitive 

structure. When enough set-theory is present in N, the forcing relation can be 

defined in @. So, given a poset p E N, if ii’ is countable, an N-generic filter over ij 

can be found, and the generic extension N[G] can be formed. We let 

Gen(N, P, p) = {G c p ( G is N-generic filter over P, and p E G}. 

The function D is called an X,-completeness system iff: 

For every countable transitive model i? (of enough set-theory) and p E I’ E IV, 
D(N, P, p) is a family of subsets of Gen(ii’, I’, p) such that every intersection of 
countably many sets in that family is non-empty. 

Thus if G E A E D(N, P, p) then G is an N-generic filter over P with p E G, 

and if A’ E D(N, P, p) then niCoA’ is non-empty. 

Given a completeness system D, we say that the poset P is D-complete iff for 

some large enough K the following holds: For every N i H(K), with p EN and 

for every p E P, let 7~: N+ @ be the transitive collapse of N; put P = n(P), 
jj = n(p). There is some A E D(N, P, p) such that for every G E A: 

T’(G) = {C’(g) 1 g E G} contains an upper bound in P. 
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Finally, let us say that the completeness system D is simple iff it is given by a 
formula $$G, P, p, x) in the following way: 

D(N, P, p) = {A, 1 x c N}, where 

A, = {G E Gen(N, p’, Is) 1 (N U P(N), E) k q(G, P, p, x)}. 

In our case, the parameter x describes T, and the function p - T(p)( (u), where 
CY=& 

As for the X,-chain condition of Y, it follows from CH by the obvious remark 
that if two conditions have the same specializing function (but different promises) 
then they are compatible. In Chapter VIII of [6] the notion of X,-p.i.c. (X, proper 
isomorphism condition) is defined, and it is shown that countable support 
iteration of length w2 of such posets satisfies the X2-C.C. if CH is assumed. Our 
posets Y clearly satisfy the K,-p.i.c. and hence that result may be applied to 
conclude that the X2 chain condition holds for the iteration. 

6. Models with few Suslin trees 

Suppose S and all the derived trees of S are Suslin trees. We shall find now a 
generic extension in which the only Suslin trees are S and its derived trees, and 
such that no new countable sets are added by this extension. The extension is 
obtained as an iteration of length 2” = XZ of posets of type Y(T) described as 
follows. 

By the result of Section 3, we know that if S and its derived trees remain Suslin 
at each stage of the iteration, then this also holds for the final limit of the 
iteration. We know that no new countable sets are added by the iteration of 
Y(T) forcings, and that the X,-chain condition holds. The definition of the 
iteration is such that if, for some cy < w2, LPa is defined, then $P,+1 is obtained as 
an iteration Pa * L& where (in VP-) 22, has the form Y(T) for an ‘appropriate’ 
Aronszajn tree (T is appropriate if for any derived tree S1 of S, IIT is 
Aronszajn(ls’ = 1). Then, by Theorem 4.6, (la11 derived trees of S are 
Suslinll . WV = 1 

When care is taken of all appropriate T as above, the final extension V[G] 

satisfies 
1. S and its derived trees are Suslin. 
2. For any Aronszajn tree T, either T is special, or for some derived tree S1 of 

S, IIT is not AronszajnllS’ > 0. 
The latter possibility implies, as the following lemma shows, that T contains a 

club-isomorphic copy of a derived tree of S. 

Lemma 6.1. Assume that S and its derived trees are all S&in. Supose T is an 
Aronszajn tree, and I]T is not Aronszajn IIs’ = 1 for a derived tree S’ of S. Assume 

further that S’ is of least dimension with this property. Then S’ is embeddable on a 

club set into T. 
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Proof. Let us fix first some notation. S’ has the form S,, x - . . x San for some 
n-tuple (aI, . . . , a,) of distinct elements of S,, for some y < wt. n is called the 
dimension of S’. Now, when we say that e E S1 is of the form e = (e,, . . . , e,) it 
is assumed that ei > ai in S. 

For this lemma, we assume that any node of limit height in T is determined by 
its predeccessors. Let b be a name in Vs’ such that 

JJb is a coiinal branch in TJJS’ = 1. 

For any e, E S’ and IX< o1 there is an extension e2 of e, which determines 
6, = b II T,. That is, for some x E T,, e2 ltslx E 6. The set D, of all conditions in 
S’ which thus determine b, is a dense open set in S’. Since S’ is Suslin, there is a 
club set E c wl of limit ordinals such that for a, E E, if e E (S’), then e E Dp for all 
/3 < (Y. That is, e determines 6, for all /3 < (Y. But then e must determine b, as 
well, since there is a single node in T, above all those determined b,‘s. So, we 
have that for (Y E E, (S’), L D,; hence for every e E (S’), there is some f(e) E T, 
with e Ital b, =f(e). As we will see, f is an embedding of S1 on some club into T. 
Clearly f is an order preserving map of S’ 1 E into T 1 E. We will find a club set 
D E E such that, on S’ f D, fis one-to-one. The basic observation is that, as T is 
Aronszajn (and any node in S’ has extensions to every higher level), every 
e E S’ r E has two extensions, e, and e2 such that f(el) #tf(e2). The following is a 
slight strengthening of this, which is obtained from the minimality of the 
dimension n of S’. 

Claim. For every e E S1, and for every set of indices h c (1, . . , n} (strict 
inclusion) there are two extensions, e’ = (e;, . . . , e;) and err= (e;l, . . . , ez) of e, 
such that f (e’) ff (e”); and et! = el for i E h. 

Proof. Suppose this is not so, and for some h = {h(l), . . . , h(k)} G (1, . . . , n} 

withk<n,forsomee=(e,,..., e,) for every two extensions e’ and err of e with 
the same restriction on h, f(e’) =f(e”). Th is means that restricted to SJ, the 
function f actually depends on S2 = Seh(,) x * * . x S_+). This enables us to define a 
name, in S2 forcing, of a branch in T. But the dimension k of S2 contradicts the 
minimality of n. 0 Claim 

Now the proof of Lemma 6.1 can be concluded by showing that the embedding 
f defined above is one-to-one on a club set. This follows from the Claim since not 
only S’ but any other derived tree of S is Suslin. Take for example a countable 
elementary substructure, M, of some H,, and put S = M II wl. We claim that if 
e1 #e2 are in (S’), then f(e’) #f (e”). Confusing sequences with sets, put 
e = e1 U e*. then for some k with n <k ~2n, e is a k-tuple. e ‘is’ in fact an 
M-generic’branch of a derived tree of S of dimenson k. What the Claim implies 
is that for a dense open set of k-tuples of the form e’ U e” in that derived tree, 
f (e’) ff (e”). Since e is in that dense set, f (e’) ff (e”). 0 Lemma 6.1 

Sh:403



26 U. Abraham, S. Shelah 

The generalization of our discussion to any collection of trees poses no 

problems. Suppose we are given a collection % of Suslin trees such that if S E % 

then all derived trees of S are Suslin. Assume: 2Kn = X1 and 2”1= Hz. Then iterate 

Y(T) posets, just as before, so that all trees in Q and their derived trees remain 

Suslin. We know that this is possible, for any Aronszajn tree T, unless ]]T is not 

Aronszajn]lS’ > 0 for some S’ which is a derived tree of a tree in 4% In such a 

case, we know that T must contain a restriction to a club set of a derived tree of 

some S E T. 

7. The uniqueness of simple primal Suslin sequences 

This section sets the preliminaries needed to prove the main theorem: the 

notions of simple and primal sequences of Suslin trees are defined, and the 

uniqueness of such sequences is proved. Using this material and the machinery 

developed to construct Suslin trees and to specialize them at will, the Encoding 

Theorem will be easily demonstrated in the following section. 

We will deal here not only with o,-sequences of Aronszajn trees, but also with 

Z-sequences, 5 = (T’ ) I; E I), of A ronszajn trees, where I is an w,-like set of 

indices. 

A linear order (I, <) is said to be o,-like iff it is uncountable but all proper 

initial segments are countable. In this paper we need a slightly stronger version, 

and add to these requirements of w,-like that any point has a successor, and that 

a first element exists. 

We say that a E Z is a ‘limit’ point if it is not a successor (so the first element is 

a limit). A point a E Z is said to be ‘even’ iff it is a limit or it has the form 6 + it, 

where 6 is a limit and it < w is an even integer. Similarly ‘odd’ points of I are 

defined. 

We will call the members of Z ‘indices’, since this is how they will be used. In 

some cases, Z is or is isomorphic to ol, but in general an w,-like order need not 

to be well-founded. Indeed, an important point of our argument is that, in some 

universe, the Magidor-Malitz quantifiers can force Z to be well-founded. 

Let $=(T’) <EZ) b e a sequence of Aronszajn trees. Recall that for 

d E [I]‘” - {0} (a finite non-empty subset of Z), Td = UC&T’ is the disjoint union 

of the Aronszajn trees with indices in d. A derived tree of Td is thus a product of 

derived trees of the T5’s. One of these derived trees is TCd) = X 5& Tr. 

Let su be a collection of non-empty finite subsets of Z which is closed under 

subsets, and let sp = [I]‘” - {0} - su be the complement of SU. (sp is closed 

under supersets.) We then say that (su, sp) is a pattern (over I). 

Definition 7.1. We say that the Z-sequence Y of Aronszajn trees has the pattern 

(su, sp) iff: 

1. For d E su, every derived tree of Td is Suslin. 

2. For d E sp, TCd) is a special tree. 
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Definition 7.2. 1. A collection % of Suslin trees is primal iff all derived trees of 

trees in 49 are Suslin, and for any Suslin tree A there exists some S E % such that 

a derived tree of S is club-embeddable into A. 

2. The sequence Y with Suslin-Special pattern (su, sp) is called primal iff the 

collection % = {Td 1 d E su} is primal. 

We may summarize our results obtained so far in the following: 

Theorem 7.3. 1. Assume OW,. Given any pattern (SU, sp) over ml, there exists 

an w,-sequence of Aronszajn trees 3= (T” 1 c E ml) with this pattern. (Section 

2.3) 

2. Assume 2’” = X1 and 2” = KZ. Let % be a collection of S&in trees such that 
for S E % all derived trees of S are Suslin as well. There is then an X2-CC. generic 
extension which adak no new countable sets, and in which % is a primal collection 
of Suslin trees. (Section 6) 

7.1. Simple patterns 

Let Z be an o,-like order. We will have to refer to quadruples c1 < & < C3 < f4 

of indices given in increasing order in Z, with some simple properties called 

types. For example, 5 = ( C1, . . . , <,) is of type (odd, even, odd, even) if c1 and 

& are odd, and c2, c4 are even. Similar notations are obvious. 

Now we define when the pattern pair (su, sp) is said to be simple: if su 

contains all tuples in the column Suslin, and sp contains all tuples in the column 

Special, in the following Table 1. In case Z = oi, for each limit ordinal 6, pick a 

canonical well-order E6 of w of order-type 6. By standard encoding, we assume 

that E6 c w. 
In Table 1 we used the sets E6 E w; these are required only in case Z is 

well-ordered. 

It should be checked that if d E Z appears in the Suslin column of the table, 

and e E Z appears in the Special column, then e $ d. The Suslin tuples are closed 

Table 1 

Suslin Special 

all triples, pairs, and singletons 

(even,even,even,even) 

(odd, odd, odd, odd) 

(odd, even, odd, even) 

(odd, even, even, odd) 

(limit 6, even, odd, odd) 

(C, 5 + 1, odd, odd) 

(S+l, 6+3, 6+4, S+(S+i)) 
where i E E,, 6 a limit 

all quintuples 

(even, odd, even, odd) 

(odd, even, even, even) 

(non-limit even, even, odd, odd) 

((Y, p, odd, odd) where (Y and /3 have 
different parity, and (Y + 1 < fi 

(S+l, 6+3, 6+4, S+(5+i)) 
where 6 is limit and i 6 En 
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under subsets, and even after closing the special tuples under supersets, disjoint 

sets are obtained. 

The following theorem explains the use of simple sequences (sequences of trees 

with simple patterns). In fact, as the reader may find out, there are other notions 

of simplicity which can be used to derive the conclusion of the theorem. 

Theorem 7.4 (Unique Pattern). Suppose that Y= (TC 1 c E w,), and dl = 

{AC 1 f E I} are w1 and o,-like sequences of S&in trees with simple St.&in-Special 
patterns. Zf .Y is primal, then I is isomorphic to ml, and .!F and ti have the same 

S&in-Special pattern. 

Proof. We are going to define an order isomorphism d : I-+ wl, and show that 

for every I; E I, A’ contains a club-embedding of a derived tree of TdcC). This 

suffices to derive the equality of the patterns of 9 and &. We shall use the 

following easy observations: If A is special and B is any tree, then A x B is 

special too. If h : A-+ B is a club embedding of the tree A into B, then: 

1. B is special 3 A is special (on a club set of levels and hence on all levels, see 

PI). 
2. A is special 3 B is not Suslin. 

Let (su,, sp,), (su2, sp2) be the patterns of 5 and & respectively. Since F is 

assumed to be primal, for every Suslin tree AC there is d = d(E) E sul such that AC 

contains a club image of a derived tree of Td. Our aim is to prove that 

d(E) is a singleton, and d establishes an isomorphism of I onto 0,. 

This will be achieved in the following steps. 

(a) There is no quintuple E1, . . . , ij5 such that, for all indices i, j, d( &) = d( gj). 
Suppose, for the sake of a contradiction, that for some d E su,, d = d(&) for five 

indices Ei, . . . , Es. Then there are club embeddings, hi, from derived trees of Td 

into A”, 1~ i < 5. We may combine these embeddings into a club embedding of 

a derived tree of Td into X rsis5 A”. But since the product of a quintuple of trees 

is a special tree, this derived tree of Td cannot be Suslin. 

(b) There are not uncountably many 5’s with Id(E)1 > 1. To see this, suppose 

the contrary, and let an uncountable set X CZ be such that for E EX, d(g) 
contains more than one element. We may assume that the finite sets d(E), ,$ E X, 
form a A-system, and that either all members of X are odd or all are even. 

Hence, for all quadruples d c X, Ad is Suslin. We will get the contradiction by 

considering the two possibilities for the A-system. If the core of the system is all 

of d(E), i.e., d = d(E,) = d(g2) for gl, c2 E X, then a contradiction to (a) is 

obtained. 

If the core of the system is strictly included in d(g), for 5 E X, then for a 

quadruple E,, . . . , E4 in X, d = U1~j~4 d( &) contains 25 indices. NOW Xi.d T’ is 

a special tree, and has a derived tree which is club embeddable into X ,GiG4 A” 

Sh:403



A A: well-order of the reals 29 

which is a Suslin tree. This is clearly impossible since a derived tree of a special 

tree is special. 

Now that we have proved that on a co-countable set d(g) is a singleton, we 

proceed to show that d(E) is a singleton for every E. 

(c) For every Zj E I, Id(E)1 = 1. This will enable us to change notation and write 

d(E) E CL), (instead of d(c) G wi). A ssume, for some E,, Id( >2. Suppose, for 

example, that E1 is even. We can find (in the co-countable set of (b)) even indices 

&, g3, & such that c = lJlsis4d(&) contains 25 indices. Since e = 

{E,, . . . > Ed E -=JZ~ all derived trees of A’ are Suslin, and in particular B = 
Xi,, Ai is Suslin. On the other hand, there is an embedding of a derived tree of 

T’ on a club into B, but this is impossible as any such derived tree of T” is special 

(as lcl 2 5). 

(d) d is one-to-one. Suppose that E1 < E2 but d(E,) = d(c2). Consider the four 

possibilities for (E,, g2). (1) both are even, (2) both are odd, (3) ,$-I is even and 

c2 is odd, (4) E, is odd and E2 is even. 

In each case, it is possible to find cl, c2 such that e = {E, , &} U {Cl, &} E sp2. 

(For example, if both c1 and c2 are even, find odd cl, c2 such that E, < c, < E2 < 

&.) Yet t = {d(E) 1 E E e > contains at most 3 indices, and a club embedding of a 

derived tree of T’ into X E,,A5 is obtained. This contradicts the fact that the first 

tree is Suslin and the latter is special. 

At this stage we don’t know yet that d is order preserving; but as d is 

one-to-one from an o,-like order into an w,-like order, for any (Y, if /3 > a is 

sufficiently large, then d(P) > d(a). This simple remark is used below. 

(e) 5 is even if and only if d( 5) zs even. Let us first check this: Could it be that 

there are both uncountably many even 5’s with d(c) odd, and uncountably 

many odd c’s with d(c) even? No, because in such a case (using the remark made 

above) we will find a quadruple ( E1, . . . , &) of type (even, odd, even, odd) 

with d-image of type (odd, even, odd, even). But this is impossible since the first 

type is in the Special column, and the second in the Suslin column of the 

simplicity table. 

It follows now that there are not uncountably many odd 5’s for which d(E) is 

even. For otherwise, using our result above, on a co-countable set of even E’s, 

d(E) is even. Then a quadruple of type (even, odd, even, odd) has d-image of 

type (even, even, even, even). Again this is impossible. Similarly, there are no 

uncountable many even 5’s with d(g) odd. 

So there can be at most countably many changes of parity. In fact even if a 

single odd 5, is with even d(E,), we get a contradiction by finding even E2, &, &, 

so that (Ei, . . . , &) is of type (odd, even, even, even), but its d-image is of 

type (even, even, even, even). Likewise, there is no even Zj with odd d(E). 

(f) d is order preserving. Since d is one-to-one, it is order preserving on an 

uncountable set. First we prove that if ,$, < c2 is of type (even, odd) or of type 
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(odd, even), then d(E,) cd(&). A ssume this is not the case, and d(E,) > d(&). 

Then find &, & such that ( E1, . . . , &,) is of type t, = (even, odd, even, odd) or 

of type t2 = (odd, even, even, odd) and such that only 5, and & change places. 

Then, since the first two coordinates change their place, the d-image of this 

quadruple is (respectively) of type t2 or tl. But since tl and t2 are in different 

columns, a contradiction is derived. 

To see now that d is order preserving on any pair, pick g1 < & with the same 

parity. Then, since E1 + 1 is of the other parity, d(E,) < d(E, + 1) < d(E,). 

(g) 6 is limit iff d(6) is limit. Th is o f 11 ows from the fact that (limit, even, odd, 

odd) is of type Suslin, while (even but not limit, even, odd, odd) is of type 

Special. 

(h) For every 5, d(g + 1) = d(g) + 1. This is a consequence of the assumption 

that (5, 5 + 1, odd, odd) is of type Suslin, while (d(E), d(E + l), odd, odd) is of 

type Special in case d(E) + 1~ d(E + 1). 

(i) d is onto q. Since d preserves the order, Z is well-ordered as well. Now, 

since for limit 6 E I, d(6) is limit, d maps the block [6, 6 + w) onto the block 

[d(6), d(S) + CO); thus the order-type of 6 is the same as the order-type of d(6) 
(use E,). Hence 6 = d(6) and d is onto. 

So we have concluded that d is the identity, and thence the Unique Pattern 

Theorem. 0 

8. The encoding scheme 

We now have all the ingredients for the main result-to show how to encode 

subsets of o1 with simple patterns of Suslin sequences. The Magidor-Malitz 

quantifiers provide a concise way to describe our result. 

Recall [5] that the quantified formula Qxy cP(x, y) holds in a structure M if 

there is a set A G M of cardinality K,, and for any two distinct x, y E A, M satisfies 

944 Y). 
Let us see what can be stated in this language. We may say that the set A (a 

unary predicate) is uncountable, simply by stating Qxy (A(x)). To say that a 

linear order relation < is w,-like we just say that it is uncountable, and any initial 

segment {x ( x < y} is countable (and the obvious first-order properties). 

Let us accept a slightly freer notion of WI-trees: that of o,-like trees. These are 

trees with set of levels, not wl, but WI-like. The predecessors of a node in an 

or-like tree form a countable chain which is not necessarily well-ordered. Since 

an w,-like order embeds ol, any WI-like tree contains an w,-tree. 

The notions of w,-like Suslin trees, and o,-like special trees can be defined 

and characterized in the Magidor-Malitz logic. There is a sentence o (in the 

language containing a binary relation <) such that T F o iff (T, <) is an w,-like 
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Suslin tree. cr will simply state that T is an uncountable tree (with obvious 

properties), and there is no uncountable set of pairwise incomparable nodes in T. 

Going one more step, we describe now a sentence, q, which holds true only in 

simple @,-like sequences of or-like Suslin trees (TC 1 C E I) where Z is an or-like 

ordering <. For this we may have to introduce a one-place predicate symbol I, 

and a two-place predicate T(a, i) which, for a particular i E I, describes the tree 

T’. There is need also for a function which specializes those products that must 

be specialized. Giving more information on how v looks may annoy the reader 

who can find these details for herself; so we stop and state our theorem. 

Theorem 8.1 (Encoding Theorem). There is a sentence W in the Mugidor-Maltiz 
logic which contains, besides the symbols -C etc. described above, a one-place 
predicate P(x) such that the following holds: Assuming oo,, for any X E wl, 

1. There is a model M k q for which ZM = w, and PN = X. 
2. Assume 2” = X2. There is a generic extension of the universe which adds no 

new countable sets and collapses no cardinals, and such that in this extension: 
ZfNisany modelsatisfying v, thenZNhas order-type ol, and (identifying IN with WJ 

PN=X. 

Proof. Let us first remark that the assumptions Oo, and 2” = X2 are not crucial, 

since these assumptions can be obtained with a forcing of size 2”‘. 

The sentence $J is the simple-sequence sentence Q, partially described above 

with the addition of 

Vg E Z ((3, 5, 6, C) E su iff P(c)). 

Given X s w1 (assume that X contains only ordinals >6), let (su, sp) be a 

simple pattern such that X = { 5 E o1 1 (3, 5, 6, C) E su}. Then use O,, to 

construct an w,-sequence 9 = ( T5 1 c E ml) of Suslin trees which has the pattern 

(su, sp). This takes care of 1. 

The generic extension is a countable support iteration of specializing posets 

which keeps every derived tree of {Td 1 d E su} Suslin but specializes any 

Aronszajn tree, when possible. As we showed (Section 6), an iteration of length 

Hz suffices to make Y a primal sequence: Any Aronszajn tree A in the extension 

is either special or it contains a club-embedding of a derived tree of some Td, 

d E su. Now we have the required uniqueness. Let N be a model of 3. Then Z = IN 

is an or-like ordering, and for each i E I, a Suslin tree A’ can be reconstituted 

from the set of a’s for which T(a, i) holds in N. The sequence ti = (A’ 1 i E Z) is 

simple and with pattern ( suN, sp”). The Unique Pattern Theorem 7.4 can now 

be applied to 9 and ti to yield IN = or. And su = suN. That is, the two 

sequences have the same pattern. From this it follows that X = PN. 0 
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8.1. The complete proof of Theorem A 

To obtain the AZ encoding of any subset of R, Theorem 8.1 is sufficient. 

However, the statement of Theorem A in the Preface is neater because it 

provides a categorical sentence, while Theorem 8.1 only establishes the unique- 

ness of PN. The sentence q described above contains predicates and function 

symbols other than P, and they too must be encoded by the unique pattern 

sequence of trees. 

To prove Theorem A, we ‘catch our tail’ in the following way. Not only the 

tree sequence (TC 1 a + 1 ( 5 E a) is constructed inductively, but so is the simple 

Suslin-Special pattern itself. More precisely, at the limit CY stage, we encode the 

countable structure so far defined (the trees and P etc.) as a subset of the 

ordinal-interval (a, (Y + CO), and we put (3,5,6, <) E su for 5 E ((u, a + CO) so 

that it encodes that countable structure. The categorical sentence 9’ tells us this 

fact as well. The proof continues just as before: any model M for r+!~’ determines a 

Suslin-Special pattern which must be the unique such simple pattern, but it 

determines in turn M, and hence the uniqueness of M. 
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