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Abstract

A class K of structures is controlled if for all cardinals �, the relation of L∞; �-equivalence
partitions K into a set of equivalence classes (as opposed to a proper class). We prove that no
pseudo-elementary class with the independence property is controlled. By contrast, there is a
pseudo-elementary class with the strict order property that is controlled (see Arch. Math. Logic
40 (2001) 69–88).
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1. Introduction

It is well known that the class of models of an unstable theory is a rather complicated
beast. Perhaps the most familiar statement of this complexity is that every such theory
T has 2� nonisomorphic models for every �¿|T | (see e.g., [[7]]). In fact, much more
is true. For instance, in [[6]] the second author proves that if K is an unsuperstable
pseudo-elementary class (for de=niteness K is the class of L-reducts of an L′-theory
T ′) then for every cardinal �¿|T ′|; K contains a family of 2� pairwise nonembeddable
structures, each of size �.
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Despite these results, our aim is to give some sort of ‘classi=cation’ to certain
unstable classes, or to prove that no such classi=cation is possible. Clearly, because
of the results mentioned above, what is meant by a classi=cation in this context is
necessarily very weak. Following [[4]], a class K of structures is controlled if for
every cardinal �, the relation of L∞; �-equivalence partitions K into a set of equivalence
classes (as opposed to a proper class of classes). In [[4]] we show that this notion has
a number of equivalences. In particular, in [[4]] we prove the following proposition
(see [[2]] or [[4]] for de=nitions of the unde=ned notions):

Proposition 1.1. The following notions are equivalent for any class K of structures.
(1) K is controlled;
(2) for any cardinal �, there is an ordinal bound on the L∞; �-Scott heights of the

structures in K;
(3) for any cardinal �, there is an ordinal bound on the �-Karp complexity of the

structures in K;
(4) for any cardinal �, there is a cardinal � such that for any M ∈K, there are at

most � distinct L∞; �+-types of subsets of M of size at most � realized in M .

The whole of this paper is devoted to the proof of the following theorem (see
De=nition 2.5).

Theorem 1.2. No pseudo-elementary class with the independence property is con-
trolled.

To place this result in context, recall that in [[7]], the second author proves that every
unstable theory either has the independence property or has the strict order property.
Paradigms for these theories are the theory of the random graph and the theory of
dense linear order, respectively. In [[4]] we prove that the pseudo-elementary class
of doubly transitive linear orders (which is a subclass of the class of dense linear
orders) is controlled. By contrast, it follows immediately from Theorem 1.2 that every
pseudo-elementary subclass of the class of random graphs is uncontrolled. That is,
with respect to the relation of L∞; �-equivalence, classes of reducts of extensions of
the theory of the random graph are sizable more complicated than certain classes of
reducts of extensions of the theory of dense linear order.

The history of this paper is rather lengthy. The statement of Theorem 1.2 was con-
jectured by the second author almost ten years ago. From the outset it was clear that
Theorem 1.2 should be proved by embedding extremely complicated ordered graphs
into structures in K using the generalization of the Ehrenfeucht–Mostowski construction
given in Theorem 2.4. It was also clear (at least to the second author) that the com-
plexity of the ordered graph should come from a complicated coloring of pairs from a
relatively small cardinal (see Theorem 2.6). However, the road from these ideas to a
formal proof was not smooth. There were a great many false attempts by both authors
along the way. The obstruction was not the in=nitary combinatorics. Rather, it was the
very =nitary combinatorics that arose from passing from a well-behaved skeleton to its
de=nable closure that proved diIcult.
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In Section 2 we develop three notions that arise in the proof of Theorem 1.2. The
proof of the theorem is contained in Section 3, with many de=nitions and easy lemmas
relegated to the appendix. As the results in the appendix are wholly self-contained,
there is no circularity.

2. The independence property and complicated colorings

We begin this preliminary section by proving a fundamental theorem (Theorem 2.4)
about Skolemized theories with the independence property and discussing its conse-
quences for pseudo-elementary classes. Following this, we discuss many complicated
colorings of certain uncountable cardinals. We close the section with a short discussion
of well-founded trees.

De�nition 2.1. A formula ’(Jx; Jy) has the independence property with respect to a the-
ory T if for each n∈! there is a model M of T and sequences 〈 Jbi : i¡n〉; 〈 Jaw : w⊆n〉
from M such that M |=’( Jaw; Jbi) if and only if i∈w.

A formula  (Jz1; Jz2) codes graphs if for every (symmetric) graph (G; R) there is a
model MG of T and { Jcg : g∈G} from MG such that for all g; h∈G; MG |=  ( Jcg; Jch) if
and only if R(g; h).

A theory T has the independence property if some formula ’(Jx; Jy) has the indepen-
dence property with respect to T .

The next lemma tells us that if a theory T has the independence property, then there
is a formula that both codes graphs and has the independence property with respect
to T .

Lemma 2.2. Let T be any theory.
(1) If  (Jz1; Jz2) codes graphs, then  (Jz1; Jz2) has the independence property with

respect to T .
(2) If ’(Jx; Jy) has the independence property with respect to T , then the formula

 ( Jx1 Jy1; Jx2 Jy2) := ’( Jx1; Jy2) ∨ ’( Jx2; Jy1)

codes graphs.

Proof. (1) Fix n and let G={gi : i¡n}∪ {hw :w⊆n} be any symmetric graph with
n + 2n vertices that satis=es R(gi; hw) holds if and only if i∈w. Let 〈 Jbi : i∈n〉; 〈 Jaw :
w⊆n〉 be sequences from some model MG of T that codes G. Then MG |=  ( Jaw; Jbi) if
and only if i∈w.

(2) It suIces to show that every =nite graph can be coded, so =x a =nite (symmetric)
graph (G; R) where G={gi : i¡n}. For each i¡n, let wi ={j¡n :R(gi; gj)}. Choose
a model M of T and sequences 〈 Jbi : i¡n〉; 〈 Jaw : w⊆n〉 from M exemplifying the
independence property for ’(Jx; Jy). Let Jci = Jawi

Jbi for each i¡n. It is easily veri=ed that
M |=  ( Jci; Jcj) if and only if R(gi; gj) holds.
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Although coding graphs is a desirable property in its own right, its utility for con-
structing models is greatly increased when it is combined with an appropriate no-
tion of indiscernibility. With this objective in mind, we generalize the construction of
Ehrenfeucht and Mostowski (see e.g., [[3]]) to admit skeletons that are indexed by
structures that are more complicated than linear orderings. We de=ne an ordered graph
to be a structure G=(G;6; R), where 6 is interpreted as a linear order on G and R
is a symmetric, irreLexive binary relation.

What makes the class of ordered graphs desirable as index structures is the presence
of the NeMsetMril–RNodl theorem. The version stated below is suIcient for our purposes,
but is less general than the statement in either [[1]] or [[5]].

Theorem 2.3 (NeMsetMril–RNodl Theorem). For every e;M ∈! and every ;nite ordered
graph P, there is an ordered graph Q such that for any coloring F : [Q]e→M there
is an ordered subgraph Y ⊆Q that is isomorphic to P such that F(A)=F(B) for any
A; B∈[Y ]e that are isomorphic as ordered graphs.

The proof of the theorem below is virtually identical with the proof of the classical
Ehrenfeucht–Mostowski theorem, with the NeMsetMril–RNodl theorem taking the place of
Ramsey’s theorem. Recall that a theory T is Skolemized if every substructure of every
model of T is an elementary substructure.

Theorem 2.4. Let T be any Skolemized theory with the independence property and
suppose that the formula ’(Jx1; Jx2) codes graphs. For any ordered graph G there is
a model MG of T and { Jag : g∈G} from MG such that
(1) The universe of MG is the de;nable closure of { Jag : g∈G};
(2) If f :H1→H2 is any ordered graph isomorphism between ;nite subgraphs of G,

then

MG |=  ( Jag : g ∈ H1) ↔  ( Jaf(g) : g ∈ H1)

for all formulas  ; and
(3) For all g; h∈G; MG |=’( Jag; Jah) if and only if G |=R(g; h).

Proof. If we expand the language to L(G) by adding a sequence of new constant sym-
bols Jcg for every g∈G, then Conditions (2) and (3) can be expressed by sets of L(G)-
sentences. The consistency of these sentences follows immediately from Lemma 2.2,
Theorem 2.3 and compactness.

As notation, we call { Jag : g∈G} the skeleton of MG. Next we extend the notion of
independence to pseudo-elementary classes.

De�nition 2.5. Fix a language L. A class K of L-structures is a pseudo-elementary
class if there is a language L′⊇L and an L′-theory T ′ such that K is the class of L-
reducts of models of T ′. Such a class has the independence property if some L-formula
’(Jx; Jy) has the independence property with respect to T ′.
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Note that as we can always assume that T ′ is Skolemized, the conclusions of Theo-
rem 2.4 apply to any pseudo-elementary class. The caveat is that in Clause (1), every
element of MG will be in the L′-de=nable closure of the skeleton, where L′ is the
language of the Skolemized theory.

Our method of proving Theorem 1.2 will be to use the theorem above to produce a
family of elements of K that code some very complicated ordered graphs. To make this
complexity explicit, we discuss some properties of colorings that were developed by
the second author. See [[9]] for a more complete account of these notions. As notation,
for x a =nite subset of a cardinal �, let xm denote the mth element of x in increasing
order.

Theorem 2.6. Suppose that �=�++ for any in;nite cardinal �. There is a symmetric
two-place function c : �×�→� such that for every n∈!, every collection of � disjoint,
n-element subsets {x% : %∈�} of �, and every function f : n×n→�, there are %¡&¡�
such that

c(xm% ; x
m′
& ) = f(m;m′)

for all m;m′¡n.

The existence of such a coloring c is called Pr0(�; �; �;ℵ0) in both [[9,10]]. The same
notion is called Pr+(�) in [[8]]. Theorem 2.6 follows immediately from the results in
[[8]] for all uncountable � (since the set S�+ ={%∈�++ : cf (%)=�+} is non-reLecting
and stationary). The case of �=ℵ0 is somewhat special and is proved in [[10]] by a
separate argument.

We close this section by recalling the de=nition of a well-founded tree and proving
an easy coloring lemma.

De�nition 2.7. An !-tree T is a downward closed subset of ¡!� for some ordinal �.
We call T well-founded if it does not have an in=nite branch. For a well-founded tree
T and )∈T, the depth of T above ); dpT()) is de=ned inductively by

dpT()) =

{
sup{dpT(*) + 1 : )l *} if ) has a successor;

0 otherwise

and the depth of T; dp(T)=dpT(〈 〉).

The most insightful example is that for any ordinal +, the tree (des(+);l) consisting
of all descending sequences of ordinals less than + ordered by initial segment has
depth +.

Lemma 2.8. If T⊆¡!� is well-founded and has depth �+, then any coloring f :
T→�, there is a sequence 〈an : n∈!〉 of elements from T such that lg(an)=n and
f(am|n)=f(an) for all n6m¡!.
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Proof. For each n∈! we will =nd a subset Xn⊆�+ of size �+ and a function
gn :Xn→T∩ n� such that Xn+1⊆Xn, every element of gn+1(Xn+1) is a successor of
an element of gn(Xn); dpT(gn(%))¿%, and f|gn(Xn) is constant.

To begin, let X0 =�+ and let g0 :X0→{〈 〉}. Given Xn and gn satisfying our demands,
we de=ne Xn+1 and gn+1 :Xn+1→T∩ n+1� as follows: For %∈Xn, let & be the least
element of Xn greater than %. As dpT(gn(&))¿&, we can de=ne gn+1(%) to be a
successor of gn(&) of depth at least %. Since Xn has size �+, let Xn+1 be a subset of
Xn of size �+ such that f|gn+1(Xn+1) is monochromatic.

Now for each n∈!, simply take an =gn(&n), where &n is the least element of Xn.

3. Proof of Theorem 1.2

Fix any pseudo-elementary class K with the independence property. For de=niteness,
suppose that L⊆L′ are languages and T ′ is an L′-theory such that K is the class
of L-reducts of models of T ′. Without loss, we may assume that T ′ is Skolemized.
Let �= |T ′|++. Fix an L-formula ’(x1; x2) that codes graphs (see Lemma 2.2). For
notational simplicity we assume that lg(x1)=lg(x2)=1.

Now assume by way of contradiction that K is controlled. It follows from Proposi-
tion 1.1(4) that there is a cardinal � such that for any M ∈K there are fewer than �
distinct L∞; �+-types of subsets of size at most � in M . Fix, for the whole of the paper,
such a � and put + :=�+.

Our strategy for proving Theorem 1.2 is to de=ne one speci=c structure M+∈K. This
M+ is constructed using Theorem 2.4 and is the reduct the Skolem Hull of an ordered
graph I+. The ordering on I+ is a well-order, but the edge relation on I+ is extremely
complicated as it codes a coloring c given by Theorem 2.6. The de=nition of I+ and the
construction of M+ are completed in the paragraph following De=nition 3.6. Following
our construction of M+ we use the bound on the number of L∞; �+-types to form an
!-sequence 〈Bn : n∈!〉 of �-sequences of pairs of elements from M+ that are rea-
sonably coherent. Then, by combining several of the results from the Appendix with
properties of the coloring c we establish three claims whose statements follow Def-
inition 3.7. These claims collectively imply the existence of an in=nite, descending
sequence of ordinals below +. This contradiction demonstrates that the class K is not
controlled.

De�nition 3.1. The expression des(+) denotes the set of all strictly decreasing se-
quences of elements from +. The set of all =nite sequences from des(+) is denoted by
des¡!(+).

Every element of des(+) is clearly a =nite sequence. It is an easy exercise to
show that des(+) is a well-ordering with respect to the lexicographic order ¡lex.
As noted in the remarks following De=nition 2.7, the !-tree (des(+);l) has depth
+=�+.
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De�nition 3.2. A function g : /→des¡!(+) is uniform if !6/6�; lg(g(%))=lg(g(&))
for all %; &∈/; and (letting lg(g) denote this common length) for all i¡lg(g), the
sequences 〈g(&)(i) : &∈/〉 have constant length and are either constant or ¡lex-strictly
increasing. Let lg(g(−)(i)) denote the length of g(&)(i) for some (every) &∈/. If the
sequence 〈g(&)(i) : &∈/〉 is constant we let gi denote its common value. Let U denote
the set of all uniform functions.

De�nition 3.3. The universe of I+ is the set of all t=〈/t ; )t ; g t ; pt〉, where
(1) /t∈�;
(2) )t∈des(+);
(3) gt : /t→des¡!(+) is a uniform function; and
(4) pt∈{0; 1}.

We well-order I+ as follows. First, choose any well-ordering ¡U on the set U of
uniform functions. Then, de=ne the ordering on I+ to be lexicographic i.e., s¡I+ t if
and only if either /s¡/t ; or /s =/t and )s¡lex)t ; or /s =/t and )s =)t and gs¡U gt ;
or /s =/t and )s =)t and gs =gt and ps¡pt .

In order to de=ne the edge relation on I+ we require some preparatory de=nitions.

De�nition 3.4. Two uniform functions g and h (possibly with diQerent domains) have
the same shape if the following four conditions hold:
(1) lg(g)=lg(h);
(2) For each i¡lg(g); lg(g(−)(i))=lg(h(−)(i));
(3) For each i¡lg(g), the sequence 〈g(&)(i) : &∈dom(g)〉 is constant if and only if

〈h(&)(i) : &∈dom(h)〉) is constant;
(4) For all i; j¡lg(g) such that 〈g(&)(i) : &∈dom(g)〉 and 〈g(&)(j) : &∈dom(g)〉 are

both constant, gi =gj ⇔ hi =hj and gilgj ⇔ hilhj.

De�nition 3.5. Two pairs (s; t); (s′; t′)∈(I+)2 have the same type if the following con-
ditions hold:
(1) /s¡/t ⇔ /s′¡/t′ and /s¿/t ⇔ /s′¿/t′ ;
(2) lg()t)=lg()t′);
(3) ps =ps′ and pt =pt′ ;
(4) The uniform functions gs and gs′ have the same shape;
(5) For all i¡lg(gs); g s(/t)(i)=)t ⇔ gs′(/t′)(i)=)t′ and gs(/t)(i)l)t ⇔ gs′(/t′)(i)

l)t′ .

Evidently, having the same type induces an equivalence relation on pairs from I+
with countably many classes. We let tp(s; t) denote the class of pairs that have the
same type as (s; t) and let E denote the set of equivalence classes. Let H denote
any countable collection of (total) functions from E to {0; 1} such that for any partial
function f :E→{0; 1} whose domain is =nite there is an h∈H extending f.

Using Theorem 2.6 choose a symmetric, binary function

c : � × � → H
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such that for every k∈!, for every collection of � disjoint, k-element subsets
{x% : %∈ �} of �, and for every function f : k×k→H, there are %¡&¡� such that
c(xm

% ; xm′
& )=f(m;m′) for all m;m′¡k. (Here, xm

% denotes the mth element
of x%.)

We are now able to complete our description of the ordered graph I+ by de=ning
the edge relation R(x; y) on I+.

De�nition 3.6. For s; t∈I+; R0(s; t) holds if and only if the following conditions are
satis=ed:
(1) /s¿/t ;
(2) lg()s)¡lg()t);
(3) ps =1; pt =0; and
(4) c(/s; /t)[tp(s; t)]=1.

We say R(s; t) holds if and only if R0(s; t) or R0(t; s) holds.

Let M ′
+ |=T ′ be a model satisfying the conclusions of Theorem 2.4 with respect to the

ordered graph (I+;6I+ ; R) de=ned above. To ease notation, we identify the I+ with the
skeleton {ag : g∈I+} of M ′

+. In particular, every element of M ′
+ is an L′-term applied

to a =nite sequence from I+. Let M+∈K be the L-reduct of M ′
+.

As notation, let g%
〈 〉 denote the function whose domain is % and g(&)=〈 〉 for all &∈%.

For *∈des(+), let A*; %∈M 2
+ denote the pair of elements 〈(%; *; g%

〈 〉; 0); (%; *; g%
〈 〉; 1)〉 from

I+ (recall that we are identifying I+ with the skeleton) and let A* denote the sequence
〈A*; % : %∈�〉.

As the number of L∞; �+-types of subsets of M+ of size at most � is bounded by � and
lg(A*)6� for all *∈des(+), there is a function f : des(+)→ � such that f(*)=f(*′)
if and only if lg(*)=lg(*′) and tp∞; �+(〈A*|l : l6lg(*)〉)=tp∞; �+(〈A*′|l : l6lg(*)〉).
Since the depth of the !-tree (des(+);l) is +=�+, it follows from Lemma 2.8 applied
to this function f that there is a sequence 〈*∗n : n∈!〉 of elements from des(+) such
that for all n∈!; lg(*∗n )=n and the sequences 〈A*∗n |l : l6n〉 and 〈A*∗m |l : l6n〉 have
the same L∞; �+-type in M+ for all m¿n.

Thus, one can construct by induction on n an !-sequence 〈Bn : n∈!〉 in M+ such
that:

• Each Bn is a sequence 〈Bn;% : %∈�〉, where each Bn;% is a pair of elements from M+;
• B0 =A〈 〉; and
• The sequences 〈Bl : l6n〉 and 〈A*∗n |l : l6n〉 have the same L∞; �+-type for every

n∈!.

Fix sequences 〈*∗n : n∈!〉 and 〈Bn : n∈!〉 satisfying the properties described above.
As notation, we write a% for the element (%; 〈 〉; g%

〈 〉; 1)∈I+ (i.e., the second coordinate
of A〈 〉; %). For n¿0 we write an; % for (%; *∗n ; g

%
〈 〉; 0) (the =rst coordinate of A*∗

n ; %) and
write bn; % for the =rst coordinate of Bn;%. We let 4n =tp(a%; an; &) for all %¿& from �.
So, for example, when %¿& then

M+ |= ’(a%; bn;&) ⇔ M+ |= ’(a%; an;&) ⇔ c(%; &)[4n] = 1:
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Next we use results from the appendix to obtain subsequences of the sequences
〈a% : %∈�〉 and 〈bn; % : %∈�〉 with desirable regularity properties. It may be helpful to
the reader to skip ahead to the appendix at this point in order to become familiar with
the de=nitions therein. Speci=cally, iterating Lemma A.9 yields a descending sequence
Y1⊇Y2⊇ · · · of stationary subsets of � such that for all n¿0 the sequences 〈a% : %∈Yn〉
and 〈bn; % : %∈Yn〉 form a clean pair (see De=nition A.8). As notation, for each n¿0
=x a number m(n), an L′-term 6n, and for each l¡m(n), tidy sequences 〈bl

n; % : %∈Yn〉
of elements from the skeleton I+ such that for all %∈Yn,

bn;% = 6n(bl
n;% : l ¡ m(n)):

Let /l
n; %; )l

n; %; gl
n; %, and pl

n; % denote the four components of bl
n; %.

Fix an n¿0. Let Y ∗
n ={(%; &)∈(Yn)2 : %¿&}. It follows from the remarks following

De=nition A.6 that

b0
n;&;¡I+ b1

n;&;¡I+ · · · ¡I+ bm(n)−1
n;& ¡I+ a%

for all (%; &)∈Y ∗
n and that R(bl

n; &; b
l′
n; &)↔R(bl

n; &′ ; bl′
n; &′) for all &; &′∈Yn and for all

l; l′¡m(n). Thus, the only freedom we have in determining whether ’(a%; bn; &) holds
or fails for various (%; &)∈Y ∗

n is whether or not R(a%; bl
n; &) holds or fails for various

l¡m(n). Accordingly, we call a subset Z⊆m(n) true for n if

M+ |= ’(y; 6n(xl : l ¡ m(n)))

for all ¡I+ -increasing sequences x0; : : : ; xm(n)−1; y from I+ such that R(xl; xl′) holds
if and only if R(bl

n; &; b
l′
n; &) holds for &∈Yn and R(y; xl) holds if and only if l∈Z .

A subset Z⊆m(n) is false for n if it is not true for n.
We call an index l∈m(n) n-constant if /l

& =/l
&′ for all &; &′∈Yn. Let &∗

l denote this
common value. As 〈a% : %∈Yn〉 and 〈bn; % : %∈Yn〉 form a clean pair, it follows that
for every n-constant l, the values of both c(%; &∗

l ) and tp(a%; bl
n; &) are constant for all

(%; &)∈Y ∗
n . Thus, for all n-constant l,

R(a%; bl
n;&) ↔ R(a%′ ; bl

n;&)

for all (%; &); (%′; &′)∈Y ∗
n . Let Pn denote the set of all n-constant l’s such that R(a%; bl

n; &)
holds for all (%; &)∈Y ∗

n .
Switching our attention to the non-constants, let Jn denote the set of non-constant

l∈m(n). Let

Vn = {l ∈ Jn : /l& = & and tp(a%; bl
n;&) = 4n for all (some) (%; &) ∈ Y ∗

n }:

There is a natural equivalence relation En on Vn de=ned by En(l; l′) if and only if
)l
& =)l′

& for all &∈Yn. (It follows from Condition 4 of De=nition A.6 that whether or

not )l
& =)l′

& is independent of &.) We are now able to state the crucial de=nition for
the argument that follows.
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De�nition 3.7. An En-class C is n-interesting if there is a union of En-classes X ⊆Vn

such that Pn ∪X is false for n, while Pn ∪X ∪C is true for n.

In what follows, we will prove the following three claims.

Claim 1. For every n¿0 there is an n-interesting En-class C.

Claim 2. For every n¿0 and for every n-interesting En-class C there is an )C∈des(+)
of length n such that )l

& =)C for all l∈C and all &∈Yn.

Claim 3. For every n′¿n¿0 and for every n-interesting En-class C there is an n′-
interesting En′ -class C′ such that )Cl)C′

.

Clearly, one can deduce a contradiction from the three claims by building an in=nite,
descending sequence of ordinals. Thus, to complete the proof of Theorem 1.2 it suIces
to prove the claims. The proofs of all three appeal to the complexity of the coloring
c. The =rst application is direct, but the other two involve constructing appropriate
surrogates to the a%’s before invoking the properties of the coloring.

Proof of Claim 1. Fix n¿0. Let J%={%}, let J&={&}∪ {/l
& : l∈Jn}, and choose k¿| J&|.

Note that by Condition 5 of De=nition A.6, %¿/l
& for all (%; &)∈Y ∗

n . Let <1 : Jn→k

be the function de=ned by <1(l)= t if and only if /l
& is the tth element of J&. For

each l∈Jn let 4l =tp(a%; bl
n; &) for all (%; &)∈Y ∗

n . (As ga% is the trivial function and as
〈bn; % : %∈Yn〉 is clean, it is easily veri=ed that there is only one such type for each
l∈Jn.)

Let h; h′ : k×k→H be any functions that satisfy:
(1) h(0; <1(l))[4l]=0 for all l∈Jn;
(2) h(0; 0)[4n]=0; and
(3) h′=h EXCEPT that h′(0; 0)[4n]=1.

It follows easily from the properties of the coloring c that there is (%; &)∈Y ∗
n

such that c(%; /<1(l)
& )=h(0; <1(l)) for all l∈J (n). Fix such a pair (%; &) and choose

(%′; &′)∈Y ∗
n such that c(%′; /<(l)

&′ )=h′(0; <1(l)) for all l∈J (n). It is readily veri=ed that

{l ∈ m(n) : R(a%; bl
n;&) holds} = Pn;

while

{l ∈ m(n) : R(a%′ ; bl
n;&′) holds} = Pn ∪ Vn:

But, as c(%; &)[4n]=0 and c(%′; &′)[4n]=1,

M+ |= ¬’(a%; bn;&) ∧ ’(a%′ ; bn;&′);

so Pn is false for n, while Pn ∪Vn is true for n.
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Let 〈Cj : j¡s〉 be an enumeration of the En-classes of Vn. Choose j¡s such that
Pn ∪

⋃
i¡j Ci is false for n, while Pn ∪

⋃
i6j Ci is true for n. Then Cj is n-interesting.

Proof of Claim 2. Fix n¿0 and an n-interesting En-class C. Choose X ⊆Vn; X a union
of En-classes, such that Pn ∪X is false for n, while Pn ∪X ∪C is true for n.

Using Lemma A.13, choose a stationary subset W ⊆Yn and a uniform function g : �→
des¡!(+) that satis=es

g(&) = 〈)l
n;& : l ¡ m(n)〉 for all & ∈ W:

For all %∈W , let e% denote the element (%; 〈 〉; g|%; 1) from the skeleton I+ of M+. By
applying Lemma A.9 and possibly shrinking W , we may additionally assume that the
sequences 〈e% : %∈W 〉 and 〈bn; % : %∈W 〉 form a clean pair. The e%’s should be thought
of as being a surrogate for the a%’s that carry just enough data from the bn;&’s.

Let 4∗
l =tp(e%; bl

n; &) for all %¿& from W . The fact that the values of these types does
not depend on our choice of (%; &) follows from our choice of the functions ge% and
Condition (4) of De=nition A.6 applied to 〈bn; % : %∈W 〉. To elaborate, the crucial point
is that from our de=nition of ge% |W , relations such as ‘ge%(/l

&)(l′)=)l
&’ are essentially

unary (depending only on &) when restricted to pairs %¿& from W . Note that for each
l¡m(n) the type 4∗

l (x; y) contains the relation

)y = gx(/y)(l): (1)

Let 4∗
C =4∗

l for any l∈C.
As 〈an; % : %∈W 〉 realizes the same L∞; �+-type as 〈bn; % : %∈W 〉, we can choose

〈d% : %∈W 〉 such that the sequences

〈d% : % ∈ W 〉̂〈bn;% : % ∈ W 〉 and 〈e% : % ∈ W 〉̂〈an;% : % ∈ W 〉 (2)

have the same L∞; �+-type.
By applying Lemma A.9 we can =nd a stationary subset Z⊆W such that the se-

quences 〈d% : %∈Z〉 and 〈an; % : %∈Z〉 form a clean pair. Let Z∗={(%; &)∈Z2 : %¿&}.
For each %∈Z say

d% = ?(dr
% : r ¡ r(d));

where ? is an L′-term and 〈dr
% : r¡r(d)〉 is a strictly ¡I+ -increasing sequence from

I+. As notation, let /̂ r
% denote the /-component of dr

% . Let Jd ={r∈r(d) : /̂ r
% is not

constant}. For each r¡r(d), let @r =tp(dr
% ; an; &) for any (%; &)∈Z∗. Note that since

gd%(−)(r) is strictly increasing or constant for each %∈Z and )an; & =*∗n for all &∈Z ,
both of the relations

gd%(&) = )an;& and gd%(&)l)an;&

concentrate on tails for all r¡r(d) (see De=nition A.10). Thus, it follows from
Lemma A.11 that by possibly trimming Z further, we may assume that for each
r¡r(d), the value of @r is independent of our choice of (%; &)∈Z∗.
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Subclaim. There is an r∈Jd such that /̂ r
% =% for %∈Z and @r =4∗

C .

Proof. Let J%={%}∪ {/̂ r
% : r∈Jd}, let J&={&}∪ {/l

n; % : l∈Jn} and choose k¿|J%|; | J&|. Let
<0 : Jd→k be the function that satis=es <0(r)=s if and only if /̂ r

% is the sth element
of J% and let <1 : Jn→k be the function that satis=es <1(l)= t if and only if /l

n; % is
the tth element of J&. Since the sequences 〈d% : %∈Z〉 and 〈bn; % : %∈Z〉 are clean, the
lengths of J%; J& and the values of <0 and <1 do not depend on our choice of %∈Z .

Now, if the subclaim were false we could =nd two functions h; h′ : k×k→H that
satisfy the following conditions:
(1) h(<0(r); <1(l))[@r]=h′(<0(r); <1(l))[@r] for r∈Jd and l∈Jn;
(2) h(<0(r); 0)[4∗

l ]=h′(<0(r); 0)[4∗
l ]=1 for r∈Jd; l∈X ;

(3) h(<0(r); 0)[4∗
l ]=h′(<0(r); 0)[4∗

l ]=0 for r∈Jd; l∈Vn\X \C;
(4) h(0; 0)[4∗

C ]=0; h′(0; 0)[4∗
C ]=1.

From the properties of the coloring c, choose (%; &) and (%′; &′) from Z∗ such that

c(/̂
<0(r)
% ; /<1(l)

& ) = h(<0(r); <1(l)) and c(/̂
<0(r)
%′ ; /<1(l)

&′ ) = h′(<0(r); <1(l))

for all r∈Jd and all l∈Jn. Thus,

{l ∈ m(n) : R(e%; bl
n;&) holds} = Pn ∪ X;

which is false for n, while

{l ∈ m(n) : R(e%′ ; bl
n;&′) holds} = Pn ∪ X ∪ C;

which is true for n. Hence

M+ |= ¬’(e%; bn;&) ∧ ’(e%′ ; bn;&′);

so it follows from Eq. (2) that

M+ |= ¬’(d%; an;&) ∧ ’(d%′ ; an;&′): (3)

However, as 〈d% : %∈Z〉 and 〈an; % : %∈Z〉 form a clean pair, the sequences 〈an;&〉̂〈dr
% :

r ¡r(d)〉 and 〈an;&′〉̂〈dr
%′ : r¡r(d)〉 are both ¡I+ -strictly increasing. As well,

R(dr
% ; d

r′
% )↔R(dr

%′ ; d
r′
%′ ) holds for all r; r′¡r(d) by the remark following De=nition

A.6. Since c(/̂ r
% ; &)[@r]=c(/̂r

%′ ; &
′)[@r] for all r∈Jd, R(dr

% ; an; &)↔R(dr
%′ ; an; &′) holds

for all r¡r(d) as well. That is, the pairs (%; &) and (%′; &′) generate isomorphic or-
dered subgraphs of I+. Hence

M+ |= ’(d%; an;&) ↔ ’(d%′ ; an;&′);

which contradicts Eq. (3).

To complete the proof of Claim 2 choose any r¡r(d) such that @r =4∗
C and /̂ r

% =%
for all %∈Z . As well, =x %¿&¿&′ from Z , let Jg denote the g-component from dr

% ,
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and choose any l∗∈C. Since tp(dr
% ; an; &)=tp(dr

% ; an; &′)=4∗
C , it follows from Eq. (1)

that

Jg(&)(l∗) = *∗n = Jg(&′)(l∗):

Since Jg is uniform, the function Jg(−)(l∗) must be constant. As well, this information
is part of the shape of Jg. However, since tp(e%; bl∗

n; &)=tp(dr
% ; an; &), the function ge% has

the same shape as Jg, so the function ge%(−)(l∗) must be constant as well. But the
l∗th coordinate of ge%(&) was chosen to be )l∗

n; & for all &∈W . That is, 〈)l∗
n& : &∈W 〉 is

constant. But, as the sequence 〈)l∗
n; & : &∈Yn〉 forms a A-system, it too must be constant.

Let )C denote the common value of )l∗
n; &. That )l

n; & =)C for all l∈C and all &∈Yn

follows immediately from Condition (4) of De=nition A.6 and the de=nition of En.
Finally, since tp(a%; bl

n; &)=4n for all l∈Vn and all (%; &)∈Yn, lg()l∗
n; &)=n as

required.

Proof of Claim 3. Fix n′¿n¿0 and an n-interesting En-class C. By reindexing, we
may assume that the index sets Jn and Jn′ are disjoint. Choose X ⊆Vn; X a union of
En-classes, such that Pn ∪X is false for n, while Pn ∪X ∪C is true for n.

As we are choosing between =nitely many possibilities, by shrinking Yn′ further, we
may assume that for all l; l′∈Jn ∪ Jn′ the truth values of the relations

‘)l
% = )l′

/l%
; ′ ‘)l

% l )l′
/l%
; ′ and ‘)l′

/l%
l )l

%;
′

are invariant among all %∈Yn′ . By analogy with the argument in Claim 2, use Lemma
A.13 to =nd a stationary subset W ⊆Yn′ and a uniform function g : �→des¡!(+) that
satis=es

g(&) = 〈)l
n;& : l ¡ m(n)〉̂〈)l′

n′ ;& : l′ ¡ m(n′)〉 for all & ∈ W:

For all %∈W , let e% denote the element (%; 〈 〉; g|%; 1) from the skeleton of M+. (These
e%’s are not the same as in the proof of Claim 2 as the function g is diQerent.)

Let 4∗
n; l =tp(e%; bl

n; &) and let 4∗
n′ ; l′ =tp(e%; bl′

n′ ; &) for all %¿& from W . As was the
case in the proof of Claim 2, the values of 4∗

n; l and 4n′ ; l′ do not depend on our choice
of (%; &). The veri=cation of this depends on Condition (4) of De=nition A.6 and
the further reduction performed above. Note that for each l¡m(n) the type 4∗

n; l(x; y)
contains the relation ‘)y =gx(/y)(l),’ while the type 4∗

n′ ; l′(x; y) contains the relation
‘)y =gx(/y)(m(n) + l′),’ for all l′¡m(n′). As well, note that if En(l1; l2), then 4∗

n; l1
=

4∗
n; l2

. Le 4∗
C =4∗

l for any l∈C.
As 〈an; % : %∈W 〉̂〈an′ ; % : %∈W 〉 realizes the same L∞; �+-type as 〈bn; % : %∈W 〉̂〈bn′ ; %:

%∈W 〉, we can choose 〈d% : %∈W 〉 from M+ such that

〈d% : % ∈ W 〉̂〈bn;% : % ∈ W 〉̂〈bn′ ;% : % ∈ W 〉

has the same L∞; �+-type as

〈e% : % ∈ W 〉̂〈an;% : % ∈ W 〉̂〈an′ ;% : % ∈ W 〉: (4)
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Using Lemma A.9, choose a stationary subset Z⊆W such that both pairs of
sequences {d% : %∈Z〉; {an; % : %∈Z〉 and {d% : %∈Z〉; {an′ ;% : %∈Z〉 are clean pairs.
Let Z∗={(%; &)∈Z2 : %¿&}. For each %∈Z say

d% = ?(dr
% : r ¡ r(d));

where ? is an L′-term and 〈dr
% : r¡r(d)〉 is a strictly ¡I+ -increasing sequence from

I+. As notation, let /̂ r
% denote the /-component of dr

% . Let Jd ={r∈r(d) : /̂ r
% is not

constant}. As in the proof of Claim 2, we can use Lemma A.11 to shrink Z so that
the values of tp(dr

% ; ak; &) is independent of the choice of (%; &)∈Z∗ for all r¡r(d) and
all k∈{n; n′}. Let @r =tp(dr

% ; an; &) for all (%; &)∈Z∗.
Let

J% = {%} ∪ {/̂r% : r ∈ Jd}; J& = {&} ∪ {/ln;% : l ∈ Jn} ∪ {/l′n′ ;% : l′ ∈ Jn′}
and choose k¿|J%|; | J&|. (Recall that we chose the index sets Jn and Jn′ to be disjoint.)
Let <0 : Jd→k be the function that satis=es <0(r)=s if and only if /̂ r

% is the sth element
of J% and let <1 : Jn ∪ Jn′ →k be the function that satis=es <1(l)= t if and only if l∈Jn
and /l

n; % is the tth element of J& OR l∈Jn′ and /l
n′ ; % is the tth element of J&. As was

the case in the proof of Claim 2, the lengths of J% and J& and the functions <0 and <1

do not depend on %∈Z .
Suppose that @(x; y) is any type that satis=es lg()y)=n. We call a type B an exten-

sion of @ if there are s; t; t′ from I+ such that lg()t)=n; lg()t′)=n′; tp(s; t)=@; tp(s; t′)
=B, and )tl)t′ . Note that any type @ has only =nitely many extensions. As well,
note that one of the types 4∗

n′ ; l′ is an extension of 4∗
C , then necessarily l′∈Vn′ .

We call a function h : k×k→H closed under r-extensions if

h(<0(r); 0)[@r] = h(<0(r); 0)[B]

for all r∈Jd and all of the (=nitely many) types B extending @r .
Since tp(x; an′ ; &) is an extension of tp(x; an; &) for any & and any x from I+, it follows

easily that if h is closed under r-extensions and some (%; &)∈Z∗ satis=es

c(/̂
<0(r)
% ; /<1(l)

& ) = h(<0(r); <1(l)) and c(/̂
<0(r)
%′ ; /<1(l)

&′ ) = h′(<0(r); <1(l))

for all r∈Jd and all l∈Jn ∪ Jn′ , then

R(dr
%; an;&) ↔ R(dr

%; an′ ;&) for all r¡r(d)

(recall that if /̂ r
% is constant then it follows from cleaning that &¿/̂r

% for all &∈Z , so
R(dr

% ; an; &) and R(dr
% ; an′ ; &) both fail). So, the ordered graph with universe {dr

% : r¡
r(d)}∪{an;&} is isomorphic to the ordered graph with universe {dr

% : r¡r(d)}∪ {an′ ; &},
hence

M+ |= ’(d%; an;&) ↔ ’(d%; an′ ;&) (5)

for any such (%; &)∈Z∗. Let

D′ = {l′ ∈ Jn′ : <1(l′) = 0 and 4∗
n′ ;l′ extends 4∗

C}
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and let

X ′ = {l′ ∈ Jn′ : <1(l′) = 0 and 4∗
n′ ;l′ extends 4∗

n;l for some l ∈ X }:
Clearly, both D′ and X ′ are subsets of Vn′ and are unions of En′ -classes.

Now =x any function h : k×k→H that is closed under r-extensions and satis=es
the following conditions:
(1) For all l∈Jn

h(0; <1(l))[4∗
n;l] =

{
1 if l ∈ X;

0 otherwise;

(2) For all l′∈Jn′

h(0; <1(l′))[4∗
n′ ;l′ ] =

{
1 if l′ ∈ X ′;

0 otherwise;

(3) For all r∈Jd

h(<0(r); 0)[@r] =

{
1 if @r = 4∗

n;l for some l ∈ X;

0 otherwise:

It is a routine (but somewhat lengthy) exercise to show that there indeed is such a
function h. The key observations are that X and X ′ are unions of En and En′ -classes
respectively, and that for k=n or k=n′, for all l1; ln∈Vk ,

4∗
k;l1

= 4∗
k;l2

if and only if Ek(l1; l2):

Choose any (%; &)∈Z∗ that satis=es c(/̂<0(r)
% ; /<1(l)

& )=h(<0(r); <1(l)) for all r∈Jd and
all l∈Jn ∪ Jn′ . It follows from Conditions (1) and (2) of the constraints on h that

{l ∈ m(n) : R(a%; bl
n;&) holds} = Pn ∪ X;

while

{l′ ∈ m(n′) : R(a%; bl′
n′ ;&) holds} = Pn′ ∪ X ′:

But X was chosen so that Pn ∪X is false for n, hence

M+ |= ¬’(e%; bn;&):

It follows from elementarity and the fact that h is closed under r-extensions that

M+ |= ¬’(d%; an;&) ⇒ M+ |= ¬’(d%; an′ ;&) ⇒ M+ |= ¬’(e%; bn′ ;&);

so Pn′ ∪X ′ is false for n′.
But now, consider the function h′ : k×k→H, where h′=h EXCEPT that

h′(<0(r); 0)[4∗
C] = h′(<0(r); 0)[B] = 1

Sh:687



278 M.C. Laskowski, S. Shelah / Annals of Pure and Applied Logic 120 (2003) 263–283

for all types B extending 4∗
C . Note that h′ is also closed under r-extensions. Using

the properties of the coloring c, choose (%′; &′)∈Z∗ such that c(/̂<0(r)
%′ ; /<1(l)

&′ )=h′(<0(r);
<1(l)) for all r∈Jd and all l∈Jn ∪ Jn′ . It is easily veri=ed that

{l ∈ m(n) : R(a%′ ; bl
n;&′) holds} = Pn ∪ X ∪ C;

and

{l′ ∈ m(n′) : R(a%′ ; bl′
n′ ;&′) holds} = Pn′ ∪ X ′ ∪ D′:

But M+ |=’(e%′ ; bn; &′). So, arguing as above, it follows that

M+ |= ’(e%′ ; bn;&′):

Thus, Pn′ ∪X ′ ∪D′ is true for n′.
But now, simply write D={C′

0 ; : : : ; C
′
s−1}, where the Ci’s are distinct En′ -classes.

Thus, there is j¡s such that Pn′ ∪X ′ ∪ ⋃
i¡j Ci is false for n′, while Pn ∪X ′ ∪ ⋃

i6j C
′
i

is true for n′. In particular, the class C′
j is n′-interesting and )Cl)C′

j since C′
j ⊆D.

Appendix A. Cleaning Lemmas

In the appendix we de=ne a number of desirable properties of sequences and show
that if the original sequence was indexed by a stationary subset of � (which is regular)
then there is a subsequence that is also indexed by a stationary set that has this desirable
property. Many of these properties are unary, which makes the situation easy. For
example, if every element of the sequence has one of fewer than � colors, then there
is a monochromatic stationary subsequence. It would certainly be desirable to extend
this to pairs, i.e., if S⊆� is stationary and every pair (%; &)∈S2 with %¿& is given
one of fewer than � colors, then one could =nd a subsequence that is homogeneous
in this sense. However, for an arbitrary coloring, this would require � to be weakly
compact. In fact, the existence of the coloring of pairs given by Theorem 2.6 can be
viewed as a strong refutation of the existence in general of such a homogeneous set.
However, if we restrict to relations that concentrate on tails (see De=nition A.10) then
Lemma A.11 provides us with a stationary homogeneous subset.

Nothing in this appendix is at all deep. The arguments simply rely on standard meth-
ods of manipulating clubs and stationary sets, with Fodor’s lemma playing a prominent
role. The notation in the appendix is consistent with the body of the paper. In par-
ticular, the �; +; I+ and M+ that appear in the Appendix are the same entities as in
Section 3.

Lemma A.1. Suppose that S⊆� is stationary and f is any ordinal-valued function
with domain S. Either there is a stationary subset S ′⊆S such that f|S′ is constant
or there is a stationary subset S ′⊆S such that f|S′ is strictly increasing.

Proof. Choose +∗ least such that there is a stationary S ′⊆S such that f(%)¡+∗

for all %∈S ′. Without loss, we may assume that S ′=S, i.e., f(%)¡+∗ for all %∈S.
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Let

T = {% ∈ S : f(%) ¡ f(&) for some & ∈ S ∩ %}:

We claim that T is not stationary. Indeed, if T were stationary, then the function
g :T→� de=ned by g(%) is the least &∈S such that f(%)¡f(&) would be pressing
down. Thus, by Fodor’s lemma there would be a stationary T ′⊆T and &∗∈S such
that g(%)=&∗ for all %∈T ′. But then, %∈T ′ would imply f(%)¡f(&∗)¡+∗, which
contradicts our choice of +∗. Thus, T is not stationary. So by replacing S by S\T , we
may assume that f(%)¿f(&) for all %¡& from S. Let

U = {% ∈ S : f(%) = f(&) for some & ∈ S ∩ %}:

There are now two cases. If U is stationary then it follows from Fodor’s lemma that f
is constant on some stationary subset of U . On the other hand, f is strictly increasing
on S\U , so if U is non-stationary then the second clause of the conclusion of the
lemma holds.

De�nition A.2. For X ⊆�, a sequence J)=〈)% : %∈X 〉 of elements from des(+) forms
a A-system indexed by X if
(1) lg()%)=lg()&) for all %; &∈X . This common value, called the length of J), is

denoted lg(J));
(2) For each i¡lg(J)); 〈)%(i) : %∈X 〉 is either constant or strictly increasing;
(3) For all i¡j¡lg(J)); )%(i) �= )&(j) for all %; &∈X .

We call i¡lg(J)) constant if the sequence 〈)%(i) : %∈X 〉 is constant.

Lemma A.3. If S⊆� is stationary, then for any sequence 〈)% : %∈S〉 from des(+)
there is a stationary S ′⊆S such that 〈)% : %∈S ′〉 is a A-system indexed by S ′.

Proof. The =rst clause of De=nition A.2 follows easily from the fact that the count-
able union of non-stationary sets is non-stationary and the second clause follows by
iterating Lemma A.1 =nitely often. To obtain the third clause, assume that the original
sequence satis=es the =rst two clauses and =x i¡j¡lg(J)). By the de=nition of des(+),
)%(i)¿)%(j) for all %∈S. If both i and j are constant there is nothing to do. If i is
constant and j is strictly increasing then necessarily )%(i)¿)&(j) for all %; &∈S and
if j is constant then again )%(i)¿)&(j) for all %; &∈S. So assume that both sequences
〈)%(i) : %∈S〉 and 〈)%(j) : %∈S〉 are strictly increasing. It suIces to show that the set

T = {% ∈ S : )%(j) ∈ {)&(i) : & ∈ S ∩ %}}

is non-stationary. However, if T were stationary then for each %∈T , choose &∈S least
such that )&(i)=)%(j). Since )&(j)l)&(i)=)%(j) and since 〈)%(j) : %∈S〉 is strictly
increasing, %¿&. Thus, Fodor’s lemma would give us % �= %′ such that )%(j)=)%′(j),
which contradicts the fact that 〈)%(j) : %∈S〉 is strictly increasing.
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De�nition A.4. A sequence 〈s% : %∈X 〉 of elements from I+ is tidy if the following
conditions hold:
(1) The sequence 〈/s% : %∈X 〉 is either constant or is strictly increasing with /s%¿%

for all %∈X ;
(2) The sequence 〈)s% : %∈X 〉 is a A-system indexed by X ;
(3) The sequence 〈ps% : %∈X 〉 is constant; and
(4) The uniform functions gs% and gs& have the same shape for all %; &∈X .

Lemma A.5. If S⊆� is stationary and 〈s% : %∈S〉 is any sequence of elements from
I+, then there is a stationary S ′⊆S such that the subsequence 〈s% : %∈S ′〉 is tidy.

Proof. The =rst condition can be obtained by applying Lemma A.1 to the sequence
〈/s% : %∈S〉 to get a subsequence indexed by a stationary subset S1⊆S that is either
constant or strictly increasing. If the subsequence is strictly increasing, then it follows
easily from Fodor’s lemma that {%∈S1 : /s%¡%} is non-stationary so by trimming S1

further we may assume it is empty. The second condition follows immediately from
Lemma A.3 and the =nal two conditions can be obtained by noting that the union of
countably many non-stationary subsets of � is non-stationary.

De�nition A.6. A sequence 〈b% : %∈X 〉 of elements from M+ is clean if there is a term
6(x0; : : : ; xm−1) with m free variables and sequences 〈sl% : %∈X 〉 from the skeleton I+
for each l¡m such that

b% = 6(s0
%; : : : ; s

m−1
% ) for each % ∈ X

and satisfy the following conditions (as notation we let (/l
%; )

l
%; g

l
%; p

l
%) denote the four

components of sl%):
(1) For each l¡m the sequence 〈sl% : %∈X 〉 is tidy;
(2) For each %∈X the sequence 〈sl% : l¡m〉 is strictly ¡I+ -increasing;
(3) For all l; l′¡m and all %; &∈X; /l

%¡/l′
% ⇔ /l

&¡/l′
& and /l

%¿/l′
% ⇔ /l

&¿/l′
& ;

(4) For all l; l′¡m and all %; &∈X ,
• )l

% =)l′
% if and only if )l

& =)l′
& ;

• )l
% =)l′

/l
%

if and only if )l
& =)l′

/l
&
;

• )l
%l)l′

/l
%

if and only if )l
&l)l′

/l
&
;

• )l′
/l
%
l)l

% if and only if )l′
/l
&
l)l

&;

(5) For %¿&; %¿/l
& for all l¡m;

(6) For all l; l′¡m such that /l
%¿/l′

% for some %∈X , 〈c(/l
%; /

l′
% ) : %∈X 〉 is constant;

(7) For all l¡m and all ordinals &∗, if /l
& =&∗ for all &∈X then 〈c(/l

%; &
∗) : %∈X 〉 is

constant.
It is readily checked that if 〈b% : %∈X 〉 is clean and b% =6(sl% : l¡m) for all %∈X then
R(sl%; s

l′
% )↔R(sl&; s

l′
& ) for all l; l′¡m and all %; &∈X .

Lemma A.7. If S⊆� is stationary and 〈b% : %∈S〉 is any sequence of elements from
M+, then there is a stationary S ′⊆S such that the subsequence 〈b% : %∈S ′〉 is clean.
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Proof. Since M+ is an Ehrenfeucht–Mostowski model built from the skeleton I+, for
each %∈S there is a term 6% with m(%) free variables and elements s0

% ; : : : ; s
m(%)−1
% from

I+ such that b% =6%(sl% : l¡m(%)). Since |L′|¡�, we can shrink S to a smaller stationary
set on which our choice of 6 (and hence m) is constant. By applying Lemma A.5 to
〈sl% : %∈S〉 for each l¡m, we obtain Condition (1). As well, Conditions (2)–(4) and
(6)–(7) are obtainable since the union of fewer than � non-stationary subsets of � is
non-stationary. To obtain Condition (5), it suIces to note that the set

C = {% ∈ � : % ¿ /l& for all & ∈ S ∩ % and all l ¡ m}
is club in � (hence S ∩C is stationary).

Next we want to relate pairs of clean sequences from M+.

De�nition A.8. The (ordered) pair of sequences 〈a% : %∈X 〉 and 〈b% : %∈X 〉 of ele-
ments from M+ is a clean pair if both sequences are clean and the following two con-
ditions hold (suppose that each a% =6a(sl% : l¡m(a)) and each b% =6b(t l

′
% : l′¡m(b))):

(1) If /s% =%∗ for all %∈X , then &¿%∗ for all &∈X ;
(2) If /t& =&∗ for all &∈X then c(/s% ; &∗)=c(/s%′ ; &∗) for all %; %′∈X .

Lemma A.9. Suppose that S⊆� is stationary and that 〈a% : %∈S〉 and 〈b% : %∈S〉 are
arbitrary sequences from M+ indexed by S. Then there is a stationary S ′⊆S such
that the subsequences 〈a% : %∈S ′〉 and 〈b% : %∈S ′〉 form a clean pair.

Proof. It follows from Lemma A.7 that we may assume that each of the sequences
is clean. Now Condition (1) can be obtained simply be removing a bounded initial
segment from S and Condition (2) is obtained by noting that there are only countably
many choices for the value of c(/s% ; &∗) for each of the (=nitely many) &∗’s that are
relevant.

De�nition A.10. Suppose that X ⊆�. A relation D⊆X 2 concentrates on tails if, for
all %∈X there is &(%)¡% such that

D(%; &) ↔ D(%; &′)

for all &; &′∈X that satisfy &(%)6&; &′¡%.

Lemma A.11. Suppose that S⊆� is stationary and a relation D⊆S2 concentrates on
tails. Then there is a stationary subset S ′⊆S such that D(%; &)↔D(%′; &′) for all
%¿&; %′¿&′ from S ′.

Proof. Fix a function % �→&(%) with domain S that witnesses D concentrating on tails.
As this function is pressing down, it follows from Fodor’s lemma that there is a &∗ and
a stationary S1⊆S\&∗ such that D(%; &)↔D(%; &′) for all %∈S1 and all &; &′∈S ′ ∩ %.

Let T ={%∈S1 : D(%; &) holds for all %; & in S1; %¿&}. Either T or S1\T is stationary
and hence is an appropriate choice for S ′.
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We =nish this section with a type of ‘interpolation theorem’ for strictly increasing
ordinal-valued functions.

Lemma A.12. Suppose that S⊆� is stationary and E is any ordinal. For every strictly
increasing f : S→E there is a club C⊆� and a strictly increasing (total) function
f∗ : �→E such that f∗|S∩C =f|S∩C .

Proof. First, let B={%∈S : f(%)¡f(&) + % for some &∈S ∩ %}. If B were stationary,
then it would follow from Fodor’s lemma that there would be a stationary B′⊆B and
a &∗∈S such that %∈B′ implies

f(&∗) ¡ f(%) ¡ f(&∗) + %:

But then, for each %∈B′ one could choose E(%)¡% such that f(%)=f(&∗) + E(%).
Another application of Fodor’s lemma would show that this contradicts the fact that
f is strictly increasing. Thus, we can =nd a club C1⊆� such that f(%)¿f(&) + % for
every pair %¿& from S ∩C1. Now de=ne a total function g : �→E by

g(%) =

{
sup{f(&) + % : & ∈ S ∩ %} if S ∩ C1 ∩ % �= ∅;
% if S ∩ C1 ∩ % = ∅:

It is easy to verify that C2 ={%∈� : g(%)¿g(%′) for all %′¡%} is a club subset of �.
Let S ′=S ∩C1 ∩C2 and let D be the closure of S ′. De=ne a function h :D→E by

h(%) =

{
f(%) if % ∈ S ′;

g(%) if % ∈ D\S ′:

It is easily checked that the function h is strictly increasing on D. So, let j : �→D be
the enumeration map (i.e., j(%) is the %th element of D) and let f∗ : �→E be de=ned
by f∗(%)=h(j(%)). The function f∗ is strictly increasing as both h and j are. As well,
the set C3 ={%∈� : j(%)=%} is club in � and for %∈S ∩C1 ∩C2 ∩C3,

f∗(%) = h(j(%)) = h(%) = f(%)

so f∗ is as desired.

Lemma A.13. Let S⊆� be stationary and let g : S→des¡!(+) be any function. There
is a stationary S ′⊆S and a uniform function g∗ : �→des¡!(+) such that g∗|S′ =g|S′ .

Proof. First, by shrinking S if needed, we may assume that there is a number m so
that lg(g(%))=m for all %∈S. Similarly, for each i¡m we may assume that there is a
number n(i) such that lg(g(%))(i)=n(i) for all %∈S. Let desn(i)(+) denote the subset
of des(+) consisting of decreasing sequences of length n(i). Note that (desn(i)(+);¡lex)
is well ordered and hence order-isomorphic to an ordinal. So, by applying Lemma A.1
once for each i¡m we may assume that each of the sequences 〈g(%)(i) : %∈S〉 is either
¡lex-strictly increasing or constant. For each constant i¡m, let gi denote its common
value. By successively applying Lemma A.12 for each non-constant i¡m we obtain
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a stationary subset S ′⊆S and strictly increasing total functions fi : �→des¡!(+) such
that fi(%)=g(%)(i) for all %∈S ′. So de=ne g∗ : �→des¡!(+) by

g∗(%)(i) =

{
fi(%) if i is non-constant;

gi if i is constant:

Clearly, g∗ is uniform and g∗|S′ =g|S′ .
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