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ABSTRACT
We prove that % can be split into two homeomorphic parts each of which has
no autohomeomorphism except the identity. Moreover, this holds for many
separable normed vector spaces over the rationals.

MAIN THEOREM. We say that a topological space in X can be rigidly halved
if X can be partitioned to two homeomorphic rigid sets.

Let X be a separable normed vector space of power 2% over the field Q of all
rationals. X can be rigidly halved if it satisfies one of the following conditions:
(1) Xhasacomplete direction, i.e., thereisaz € X, z # 0, such that Rz C X,
where R is the set of all real numbers and forevery zEXand rER, rz is
defined in the completion X of X.
(2) X is meager.
(3) X has an autohomeomorphism of order 2 without fixed points.

COROLLARY. Let X be a separable normed vector space of power 2% over Q.
X can be rigidly halved if it satisfies one of the following conditions:
(8) X is complete.
(5) X has a nonvoid bounded clopen set.
(6) X has a nontrivial autohomeomorphism which is the identity outside
some bounded set .

History. In the 1982 North-Holland Calendar, van Mill asked whether R
can be rigidly halved.. Van Mill and Wattel have proved in [3] that the circle

' The author thanks Azriel Levy for completely rewriting this paper.
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and some related spaces can be rigidly halved. Van Engelen [2] and the author
[1] solved, independently, van Mill’s question. The present Main Theorem
extends this result to many separable normed vector spaces over Q.

We shall now proceed to prove the Main Theorem and then we shall show
how the Corollary follows from it.

NoTATION. We denote by Z the set of all integers. For a metric space
(X,d) and A, B C X we define d(4, B) = inf{d(x,y): xEA, yEB}.

THEOREM 1. (A) Let X be a Hausdorff space which satisfies the second
countability axiom, and let f, D,, D,, E,, E, be as in the following (1)-(7).

(1) E,C D,, E,C D,, and D,, D, are disjoint subsets of X.

(2) fis an homeomorphism of X — E, onto X — E,.

(3) fmaps D, onto D, and D, — E, onto D, — E,. (Notice that by (1) and (2)

D,, D,— E,CDom f, D,, D, — E, C Range f.)
(4) For every xEX and n EZ, if f¥"*(x) is defined then x # f*"*'(x).
(5) For every nonvoid open set U in X,

|U = (D, U Dy)| =2%.

(6) Every nonvoid open set U in X has a nonvoid open subset V such that for
eachn€Z, d(f"(V), Unez,msn S ™(V))>0.

(7) For every n€Z, n>0, and for every nonvoid open set U, there are
x; €UND,NDom f i <w, such that the sequence (x;:i <w) con-
verges to some point x, €D, but {(f**(x;):i <w) does not converge to
any point in X — D,.

Then X can be rigidly halved.

(B) The conclusion of (A) holds also if we replace requirements (5) and (6) by:
(6)® X —(D,U D,) is nowhere meager, even if we delete from it
< 2% points.

(C) The conclusion of (A) holds also if we replace requirements (6) and (7) by:
(6)¢ For every x&D, U D,, f3(x)=x.

PROOF OF THEOREM | — FIRST STAGE. In the first two parts of the proof
we assume only (1)-(4) and we set up a procedure for splitting X into subsets A
and Bsuch that 4 2 D, D E,, B 2 D, 2 E,, the given function fis the required
homeomorphism of 4 onto B and f also maps B — E, onto 4 — E,. The
procedure which we shall set up is sufficiently flexible to allow carrying out
steps which will ensure the fulfillment of additional requirements. We shall
also assume that, as a result of these additional steps, A4 is dense in X
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By (1)-(3) we can partition X into sets of the following four types:

Type (i). {x, fix), f¥x), ...}, where xEE};

Type (ii). { ..., f~%x), f ~'(x), x}, where x EE;;

Type (iii). {x, f(x), f¥(x),..., f™(x)}, where xEE,, f™"(x)EE);

Type (iv). { ..., f~4x), £ ~'(x), x, fx), f¥(x), ...}, where this set is dis-
joint from E, U E,.

Any of the sequences (iv) may contain repetitions, but by (4) its members in
the even places are different from those in the odd places.

By (1)~(3) we have, for n < w, for the sets of type (i) and (iii) f2"(x)ED,,
S+ Y(x)€E D,; for sets of type (ii) f ~?**Y(x)ED,, f ~**(x) € D,, and for sets of
type (iv) either the set is included in D, U D,, with the members alternating
between D, and D,, or else the set is disjoint from D, U D,.

We shall now construct two ascending sequences (4, :a<2%) and
(B, : a < 2%) of subsets of X such that for all « <2%:

(a) A4g=D,, By=D,.

(b) A, U B, — Ay U B, is a union of sets of type (iv).

(c) If a is a limit ordinal then 4, = U, _, 4;, B,=U,_, B,.

d) A,.NnB,=.

(e) fmaps 4, onto B, and B, — E, onto 4, — E,.

(f) |Aa— Dyl, | B, — Dy| = |a] + R,

® U,cx(4,UB)=X.

Wetake A = U, % A4,, B=U,,nB,, thend D4, =D,, B2 B,=D,, Aand
B are disjoint by (d), 4 U B = Xby (g) and, by (e), fmaps A onto Band B — E,
onA—E,.

We shall define A, and B, by recursion. 4, and B, are given by (a); for a limit
ordinal a, 4, and B, are given by (c). Given 4, and B, we construct 4, ,, and
B, ., as follows. We take for A,,, U B,,; — 4, U B, the union of any number
= R, of sets of type (iv), putting for each such sequence the members in the
even places in one of the sets 4, , , B, and the members in the odd places in
the other one. It follows now easily, by induction on «, that requirements (b),
(d)—(f) are satisfied. We shall refer to the step of going from 4,, B, t0 A4, ,, B, ,,
as the recursion step. We have considerable freedom in what we can do in the
2% recursion steps, and what we shall do in them will determine the properties
of the sets 4 and B.

By the second countability axiom |X| < 2%; let X = {x;: f <2%}. Let us
denote with P, the task of making sure that x; is in 4,., U B, . Py is carried
out in a recursion step as follows. If x; €4, U B, then nothing is done. If
x; €A, U B, then, by (a) and (3), x; is in some set of type (iv); in passing to
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A, 1, B, we add this set to 4, U B,. In the 2™ recursion steps we carry out,
among other tasks, the tasks Py, § < 2%_and hence also requirement (g) holds.

Before going on to the next step we need the following lemma, which will
enable us to carry out in the recursion steps a diagonalization over all
autohomeomorphisms of 4.

LeMMA 2. Let X be a Hausdor[f space which satisfies the second countabi-
lity axiom. Then there is a sequence (g, : a < 2% of one-one functions from
subsets of X into X such that for every autohomeomorphism g of a dense subset A
of X there is an a <2® such that g C g,.

ProOF OF THE LEMMA. Let (U,: n <w) be a basis for the topology of X.
Let g be an autohomeomorphism of a set 4 dense in X. We define now a double
sequence (V,, W,: n <w) as follows. For each n <w weset V,, = W,,,, =
U,. For each n <w we take for W,, some open set of X such that g maps
ANU,into W,, and 4 — U, into X — W,, (there is such a set, since g is a
homeomorphism and the topology on A is induced by that of X). Similarly we
take V,,,; to be an open set such that g~' maps 4 N U, into V,,,,and 4 — U,
into X — V,, .. Thus for all n < w the one~one function g maps 4 N V, onto
A N W,. Therefore, forall m,n <w

WnNv)ndnv,) =8 if@ANW)INUAUNW,)=J.

Since 4 is dense in X, UNV,)nANV,) = f V,nV,=, and
Unw)ndnw, =it W,NnW, =Z. As a consequence V, NV, =
SITW,NnWwW,=3d.

We say that a double sequence (V,,, W, : n < w) of open sets of X is special if
each one of the U,’s occurs among the V,’s and among the W,’s and if for all
mn<o,V,nV,=2 iff W, n W, = . For any special double sequence
(Va, Wo: <) we define a relation G on X as follows:

xGy iff, foreveryn <w, xE€EV,=yEW,.

We shall now prove that G is a one-one function by showing that for all
X1 X2, Yis ME X, if x,Gy, and x,Gy, then x, = x, iff y, = y,. Assume x,Gy,,
x,Gy,. If x; # x, then, since X is Hausdorff and the sequence of the V,’s
contains all U,’s, there are n, m such that x, €V,, x,EV,,and V, NV, = .
By the definition of G we have y,€ W,, y,€E W,,. Since ¥V, N V,, = & and the
double sequence is special we have W, N W,, = &, therefore y, # y,. Simi-
larly, if y, # y, then X, # x,. Thus G is a one-one function on a subset of X; we
shall now see that for the particular special double sequence defined above
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G D g. Since gis on A it suffices to prove G(x) = g(x) for each x EA. We saw
that, forall n, gmaps 4 N ¥V, onto4 N W, hence, since gis a permutation of 4,
XEV,=g(x)EW, and therefore xGg(x), i.e., G(x) = g(x). By the second
countability axiom the number of the open sets of X is at most 2%, hence the
number of the special double sequences in X is at most 2%, and the number of
the functions G obtained from them as above is at most 2%, We saw that every
g as in the statement of the lemma is included in one of those G’s.

PRrROOF OF THEOREM 1 — SECOND STAGE. Our present aim is to prevent 4
from having nontrivial autohomeomorphisms, or at least to have as few as
possible such homeomorphisms. We define now a task Qp, for § < 2%, which
tries to prevent the function g; of Lemma 2 from being an autohomeomor-
phism of A. Qy is carried out (at step a) as follows. If we have

(*) there is an x €X — B, — Dom(g;)

then let x, be some such x. If x,€ A4, we do nothing, if x,& A, U B, we add to
A, U B, the set of type (iv) which contains x;, putting X in 4, ,. In either case

XoEA,+, — Dom(gs) C 4 — Dom(gy),

hence g; (or, rather, g; [ 4) is not an autohomeomorphism of 4. If (x) does not
hold, then if

(»»)  thereisan x €X — B, such that gy(x)&A4, U {f*"(x): nEZ)

then let x, be some such x. If x,€ A4, and g;(x,) € B, we do nothing. If x, €4,
and gg(x)€& A, U B, then we add to 4, U B, the set of type (iv) which contains
8s(xo) putting ge(xo) in B, ,,. If X, A4, U B, and g(x)E B, we add to 4, U B,
the set of type (iv) which contains x,, putting x; in 4, . If x,&A4, U B, and
8(xp)&A, U B, U {f*(xy): n €EZ) then we add to 4, U B, the sets of type (iv)
which contain x, and gs(x,) putting x, in 4, , and gs(x,) in B, . . If the same set
of type (iv) contains both x, and gs(x,) then, since gy(xo) & {f**(x,) : n EZ},
8s(xo) = f*"*'(xp) for some nE€Z and when we put x, in Ay, g(x) is
automatically put in B, ;. Thus in all cases of (++) we get x,€A4,.,; C 4 and
8s(x0)E B, 1 C B, hence g;(xp) € A and g, is not an autohomeomorphism of 4.
We had to assume in (x*) that g5(x,) # f2"(x,), since if g5(x) = f2"(x) then, if
XoE Auy 1, also, by (€), g5(X0) = f (%) E A4,+, and we cannot put g(x,) in B, ,,
as we did in all the cases of (x). If neither (*) nor (*+) holds we do nothing.
Assume now that we have constructed the sequence {(A4,, B, : « <2%) and
have carried out, at the recursion steps, various tasks, which include all the
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tasks P;and Qp, B < 2%, Let g be an autohomeomorphism of 4. By Lemma 2
there are #, A < 2% such that g C ggand g~' C g;. Suppose task Q; was carried
out when we constructed A, ., B, from A4,, B,. If either (x) or (») held then,
as we saw above, g; would not include an autohomeomorphism g of 4, hence
both (x) and (++) fail and we have, for every x€X — B,, x EDom(g;) and
g(x)EA, U {f*(x):nEZ). Sinced =X — B C X — B, and g C g we have,
for every x €A, g(x)EA, U {f*(x): nEZ)}. Suppose that the task Q; was
carried out when we constructed A;.,, B;., from A;, B, then we have,
similarly, that for every x€4, g x)€4; U {f*(x):n€Z}. Let y=
max(a, ), then 4,, 4; € 4, and we have

(#) forallx€d g(x), 87 '(x)E4, U {f*(x):nEZ}.

If xE4, then by (e) {f**(x):nEZ} C 4,, hence the right-hand side of (#)
equals 4, and by (#) g~ (x)E4,. If x EA — 4, and g(x)E 4, then, by what we
have just seen, x = g~ '(g(x))E4,, contradicting x EA — A4,. Therefore, by
(#), for x€A — 4, gx)E(f*(x): nE€EZ)}, ie., g(x)=f*")(x). Thus we
have established that if we carry out the appropriate tasks then:

(h) for every autohomeomorphism g of 4 there is a y < 2% and a function n

on A — A, into Z such that for every x €4 — 4,, g(x) = f2"*(x).

ProOF OF THEOREM | — PART A. By (h) we have a good hold on g on
A — A,. Therefore we want to get:

(i) for every y <2®, 4 — 4, is dense in X.

This will also verify the assumption, which we have already used above, that 4
is dense in X. To obtain (i) we carry out, at the recursion steps, also the 2%
following tasks R;,, B <2%, n <w. R,, adds to 4, U B, a set of type (iv)
which contains x, putting x in 4,,,, where x is some point in U, — 4, U B,,
and U, is the n-th basic open set. There is such an x by (5) and (f).

Let gbe a nontrivial autohomeomorphism of 4. Then {x €4 : g(x) # x} isa
nonvoid open set in 4. Let U be an open set such that Un4d =
{xEA4:g(x)# x};clearly U # . Let V'be an open subset of U as in (6). Since
A — A, is dense in X there is an x,€E(4 —4,) NV, then x,€4 N U, hence
g(x0) # xo. By (h), g(xo) = f*)(x,); let us denote n(x,) with n. n # 0 since
g(xg) # xo. By (6) d(f *(V), Unmez, mn2a S ™(V)) > 0, therefore there is an open
set W* D f2(V) such that f™(V) N W* = for m # 2n. We have x, €V,
8(x0) = f*(xp)E f (V) C W*. Since g(x,) # X, there are disjoint open sets
W,, W, such that x, € W, and g(x;) € W,. Without loss of generality W, C W*
and W,C V. Since g is continuous there is an open set W, such that
X EW,C W, and g(W,NA)C W, NA. For every xEW,N(4 —A4,),
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gX)EW, C W* and g(x)=f2""Xx), hence, by our choice of W*,
n(x)=n. Thus g(x)= f2(x) for every x€EW, N (4 —4,). The functions
St (WynDom f* N 4) and g ' (W, N Dom f%" N A) are continuous func-
tions on W, N Dom f?" N A which coincide on the set W, N (4 — 4,) which is,
by (i), dense in W, N Dom f2" N A. Therefore

g (W,nDom f N A)= f2t (W,N Dom f N A).

By (7) for W, and n there are x; €E W, N D, N Dom f?", i < w, such that the
sequence (Xx;: i <®) converges to some point x, ED, but (f¥(x;):i <w)
does not converge to any point in X — D,. Since

x;€EW,NnD,NDom f*»C W,NA4ANDom f",
we have, by what we have just now shown, g(x;) = f?"(x;) for i < w, hence
(8(x):i<w)=(f*(x):i<w).
Since x, €D, C A4 and g is continuous

lim f2'(x;)=lim g(x)) = g(x,).

g(x,)EA C X — D,, contradicting what we said about (f*(x;): i <w).

PROOF OF THEOREM 1 — PART B. Let (Uj, C5: B <2%) enumerate all
pairs (U, C) where U is a nonvoid open set and C is a countable union of
closed nowhere dense subsets of X, each pair appearing 2% times. In the
construction of (A4,, B,: a <2%) we replace the tasks R, , by the tasks Ry,
B < 2%, where the task Ry is to take an x € Uy — (4, U B,) — C; and put in
A.+1 U B, the set of type (iv) which contains x, putting x in 4,,,. U; —
(4,UB,)—C; +# & since, by (6)® and (f), U; — (4, U B,) is not meager.
Having carried out the tasks R;, 8 < 2%, we get that for every y < 2% and every
nonvoid open set U, U N (4 — 4,) has a point outside each meager set. Thus

@) for every y <2% and every nonvoid open set U, U N (4 N 4,) is not
meager.

In particular we know that A4 is dense in X.

Let g be an autohomeomorphism of A which is not the identity. Since
{x€EA:g(x)=x} is a closed subset of A there is a nonvoid open set W such
that WNA C{xEA:g(x)+ x}. Let y <2% and the function n be as in (h),
then for xEW N (4 — 4,), n(x) # 0 and
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Wnd—-4)= U {(xEWNU—-4):nkx)=n).

n€EZ n+0

Since W N(4 —4,) is not meager, one of the sets (xEW N —4,):
n(x) = n} is not nowhere dense; hence there is a nonvoid open set U such that
for a dense subset V of U, f>"! V=g! V. As in the proof of Part A we
conclude that

g ({UNDom f* N A)=f1(UnNDom f* N A).
Using (7) as in the proof of Part A we get a contradiction.
PrOOF OF THEOREM 1 — PART C. This is left to the reader.
PROOF OF THE MAIN THEOREM — FIRST STAGE

Proof of (3). Let U be an open nonvoid subset of X. Since X is separable,
X is the union of R, translations of U. Therefore, since | X| = 2% also |U|
must be 2%,

Let fbe an autohomeomorphism of X of order 2 without fixed points. Take
D, = D, = . By the remark which we have just made, all the requirements of
Theorem 1(C) are fulfilled and X can be partitioned to two homeomorphic
rigid sets.

Proof of (1). We shall now prove the theorem under the assumption that
(1) holds but X is not meager, since the case where X is meager is dealt with by
(2). We shall prove later (Lemma 4) that the hypothesis of Theorem 1(B) holds
for the case where X is the real line R together with the additional demand that
D, U D, is meager. Building on this we shall prove case (1) of the Main
Theorem, and first we shall prove the following lemma.

LEMMA 3. Let X be a nonmeager normed vector space over Q of cardina-
lity 2%,

(a) X is not the union of a meager set and a set of cardinality < 2%,

(b) No nonuvoid open set U in X is the union of a meager set and a set of
cardinality <2%.

PrROOF OF LEMMA 3. (a) Let M be a meager set and W C X, | W | <2,
Let W-={y—y :y,y’EW};clearly | W~ | <2, Since | X| = 2™ thereisa
zE€X — W~.Byourchoiceof z, W + z = {y + z: y € W} is disjoint from W,
hence W+zCX—-W. If MUW=Xthen W+zCX— WCM, hence
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W + zis meager and also its translation W is meager. Since X = M U Walso X
is meager contradicting our hypothesis.

(b) Without loss of generality 0EU. Assume that U=U,c, M, U W,
where each M, is nowhere dense, and |W|<2™, Then X=
U tnew kM, U Uy, kW where, for Y C X, kY = {ky | y €Y). Since each M,
is nowhere dense U, ¢, kM, is meager. We have | kW | < 2% and since a set of
cardinality 2% is not the union of X, sets of smaller cardinality, | U,e, kW | <
2%, Thus X is the union of a meager set and a set of cardinality < 2%,
contradicting (a).

PROOF OF THE MAIN THEOREM — FIRST STAGE (continued). Let f*, D¥,
D¥, E¥, E¥be the respective function and sets which satisfy the hypothesis of
Theorem 1(B) for the real line R siich that D¥ U D# is meagerin R. Let Xbe a
separable normed vector space over Q and let Rz, z # 0, be a complete
direction in X. By the Hahn-Banach theorem there is a bounded linear
functional Pon X such that P(z)=1.Let D, =P~ 'D* E, = P~ 'E*fori=1,2
and let, for xEX — E,,

J(x)=x +(S*(P(x)) - P(x))z.

Aided by the observations that for all x € X — E,, P(f{x)) = f*(P(x)), and that
for x€EX — E,, f ~'(x)=x + (f* (Px) — Px)z, we can easily show that D,,
D,, E,, E, and fsatisfy conditions (1)-(4) of Theorem 1.

We shall now prove that (6)® holds too. Let S be nowhere dense in R then we
shall see that P~'(S) is nowhere dense in X. Let U be a nonvoid open set in X
and let x€U, then for some r >0, {x +z: |t| <r} C U, hence the open
interval (P(x)—r, P(x)+ r) is a subset of P(U). Since S is nowhere dense
(P(x)—r, P(x)+ r) has a nonvoid open subset V' such that ¥ NS =& . We
have P~'(V)N P~'(S)=F. Since P is continuous, P~'(V) is open. Let
P(x)+t*€V, |t*| <r,thenx + t*2€P (V)N Uand thus P~-'()NUisa

nonvoid subset of U disjoint from P~!(S). As a consequence of what we have
just proved, since D U D¥ is meager in R, D, U D, = P~ !(D* U D¥) is meager
in X. For every nonvoid open set Uin X, |U — (D, U D;)] = 2% by Lemma
3 (b), thus also congition (6)® holds.

We shall now see that condition (7) of Theorem 1 holds too. Let U be a
nonvoid open set in X and let x€U. Then there is an r >0 such that
{x +1tz:|t] <r} C U. Since (7) holds for the open interval (P(x) — r, P(x)+ r)
in R, it lifts easily, by P!, to hold for the open set U in X.
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Since X satisfies requirements (1)—-(4), (6)® and (7) then, by Theorem 1(B), X
can be partitioned into two rigid homeomorphic sets.

Now we shall make the preparations needed in order to continue proving the
Main Theorem.

NoTtaTiON. Let X =(X,d) be a metric space and let ®* be the set
of all positive reals. For x€X, rER* let the open ball B(x,r) be
{z€X:d(x, z)<r}. For abounded set Vin X, diam(}V) denotes the diameter
of V. For any set U, Bd(U) is the boundary of U.

LEMMA 4. Assume that:

(1) X = (X, d) is a complete separable metric space without isolated points.

(2) F is an autohomeomorphism of X such that

(a) for every x€X and n >0, F*"*(x) # x, and
(b) every nonvoid open set U has a nonvoid open subset V such that for
eachn €Z, d(F*(V), Upez msn F"(V)) > 0.

(3) Every nonvoid open set U has two nonvoid disjoint open subsets Vand W
and a homeomorphism g from V onto W such that for every closed set C, if
C C V then also g(C) is closed, and if C C W then also g~ (C) is closed.
Then there are f, D,, D,, E,, E, which satisfy the hypotheses of Theorem 1(B)
and such that D, U D, is meager .

We shall first give a definition and prove a lemma (lemma 6) and then we
shall prove Lemma 4.

DEFINITION 5. An approximation T consists of:
(«) Four sets DT, DI, ET, ET such that ET C D], ETC D], ET and E7 are
closed, and DT and D7 are nowhere dense disjoint sets.
(8) A homeomorphism f; from X — EJ onto X — E].
fr, DI, ET, DI, ET are such that the following (y)-(¢) hold:
() frmaps DT onto DY and DI — ET onto D] — ET, hence DY U D{ is closed
under frand f7'.
(0) Every nonvoid open set U has a nonvoid open subset V C
X — (DT U D)) such that the sets f2(V), n EZ, are open, forevery n €Z,
d(f V), Upez men SE(V)>0, and for all m,n€Z and for every
closed set C C f7(V), fH(C) is closed too.
(¢) Forevery x€Xand n =0, if f2"*! is defined then /3" *+!(x) # x.
Such a T is called an approximation because DT, DI, El, EI, f; are an
approximation to D,, D,, E,, E,, fin the conclusion of Lemma 4.
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LEMMA 6. For every approximation S, ¢ >0, k > 0 and nonvoid open set
U there is an approximation T such that:

(1) There is a sequence (z;: i < w) of points of DI N U which converges to a
point of DI N U and for every m # 0 the sequence {f#(z}):i <w) is
defined but does not converge.

Q) EFCE}, DFCDf and (Ef —Ef)NDf =& for |=1,2; hence
Dom f; € Dom f;, Dom f7! C Dom f5'.

(3) fragrees with fg on D{ U Ds.

(4) For every x €Dom fr, d(fr(x), f5(x)) = ¢ -min(1, d(f5(x), EY)).

(5) For every x€Dom f7!,

d(f7'(x), fs' () = e-min(1, d(f7'(x), f5' (X))
<e-min(l, d(fs ' (x), EY)).

(6) Foreveryl1 <i =kand x€Dom f{, d(f5(x), x)= (1 —e)d(fi(x), x).
NHDINnU+Z

PrOOF OF LEMMA 6. Let S, ¢, k, U be given. By Definition 5(4), U has a
nonvoid open subset ¥ C X — (D{ U D5) such that the sets V,, = f2(}),
m EZ, are open, and for every m EZ, d(V,,, Uiez i »m Vi) >0, and for every
closed set C C V,, also f5(C) is closed. We shall now shrink V so that also the
following conditions (i)-(v) will be satisfied:

(i) d(V,E)>0.

@) d(V,, ED)>0.

(iii) For i = — 1, 1, diam(V;) < ¢ -min(1, d(V;, E5)).

(iv) Fori =0, 2, diam(V;) < ¢-min(1, d(V}, E})).

(v) diam(V), diam(V)) S¢-min_; ;20 d(V;, Unez msj Vim)-

Let us notice that if we replace ¥ by a nonvoid open subset V’ of V, what we
have assumed above about V holds also for V'’ and those requirements among
(i)~(v) which are satisfied by V are also satisfied by ¥”; therefore we can deal
with each one of (i)-(v) separately. First let us check one point. f; is a
homeomorphism of X — Ej onto X — E7, by Definition 5(y) Df U D5 is closed
under f;, and V C X — (D§ U D5); hence, for m EZ, fT is a homeomorphism
of V onto f7(V). Since V” is open f£(V’) is open in the relative topology of

&(V), and since f (V) is open so is also f7(V").

Now let us deal with (i)—(ii). In each one of those cases we have to shrink V'so
that two sets which we know already to be disjoint will have positive distance
between them. For (i) this is immediate and for (ii) this follows from the
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continuity of f;. Now we shrink V further to meet requirements (iii)—(v): also
this is possible since each one of the functions f;, f2, fs! is continuous.

By Lemma 4(3) ¥ has nonvoid disjoint open subsets M, N and a homeomor-
phism g from M onto N such that for every closed set C, if C C M then also
g(C) is closed, and if C C N then also g ~'(C) is closed. Choose X € M and let
¢c=d(x, X — M), y = g(x). Since X has no isolated points there is a sequence
c>r_,>ry,>r> .- of positive reals and a sequence z_,, 2, 2;, . . . of points
of X such that lim;., 7 =0 and d(z;,Xx)=r;, for i <w. For i,/ <w let
si=¥ro+n), M;=B(,s), N=g(M), M,=f M), N,=rim),
P,=Bd(M)), Q;=g(P), P,;=f5(P), Qi =/s(Q). We now define T as
follows:

Ef=Efu U Pu U Qu({xy}

i<w i<w

ulU P,u U @, U{fix), fip)

i<w i<w

Ef=Efu U P;U L<J Q. U {fs(x), 500)}

i<w

u U P_l_;U U Q-l,iU{fs_l(x),fs—l(y)}'

i<w i<w
For x € ET we set

(f3(fs'(x)) ifx€ U My — M1~ Pioivy)

i<w

fi'(fs'(x))) ifxe U (Nigi — Nigivr— Quais1)s

i<w

fr(x) = 2 g(fs(x)) ifxe 9 M_y 2 —M_y5i41— P_y2i41),
g7 '(fs(x) ifxe L<J (No12i = Nopier — Q- 12i+1)
kf:s(x) otherwise;

DI=Dju U (U Py U U 0y, U {f¥x), f¥0)}

leZ i<w i<w

U (HE): i <o) U (fF ),
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DI=D§u U (U Pyoy U U Quans U (SR, SE41 )

ez i<w i<w

U E () i <w} U {f%’(z_,}) .

Let us prove now that T is an approximation, i.e., it satisfies requirements
(a)—(¢) of Definition 5.

(@, B) First we prove that ET and E7 are closed nowhere dense sets. For
i <, P;is the boundary of B(x, s;), hence it is a closed nowhere dense set. It
is also easily seen that U,.,P,U{x} is closed. For each i<w,
d(P;,U;., i P)is so—5>0fori=0and

min(s;_, —8;,8 — 8,+1)>0 fori>0.

As a consequence U, , P; is nowhere dense.

For a subset P of an open set W, P is obviously nowhere dense if it is
nowhere dense in the relative topology of W, and we shall use this fact tacitly
from now on. f; is a homeomorphism of ¥ on V; and V, V, are open, hence
since U, ., P;is nowhere dense, also U, ., P, ; = f5(U, ., P;) is nowhere dense.
For the same reason also U,_,P,,, j=—1,2, U,.,0Q;, and U,_, Qiis
i,j=—1,1,2, are nowhere dense. E{ and E; are nowhere dense, since S is an
approximation, therefore E] and E] are nowhere dense, being finite unions of
nowhere dense sets. By Definition 5(8), f;and f5 ! map closed subsets of V onto
closed sets hence

fs< U p u{x})= U P, U {f0x)}

i<w i<w

is closed. Similarly also U, ., P;; U {f{(x)}, j = — 1, 2, are closed. By our
choice of g, g maps closed subsets of M onto closed subsets of N hence

(U Pum)- U aup)

i<w i<w
is closed, and as we saw just now, also

#(U euo))- U guon, j--112

i<w i<w

are closed. E{ and Ej are closed by Definition 5(a), hence also ET and E7 are
closed.
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Our next aim is to prove that fr is a homeomorphism of X — ET onto
X — EI. Looking at the definition of fr we see that Dom f; decomposes
disjointly to the sets
Ml,2i _M1,2i+l - Pl.2i+l: Nl,2i - Nl,2i+l - Ql,2i+l’

M_ i —M_ 5= Poigiv, Noppi—N_j5ip1— Qi fori<o
and
Y = the complement in X — E7 of the union of these sets.
[r, as defined, is a homeomorphism on each of these sets, being equal either to
fs or else to a composition of homeomorphisms from among f;, f5', 2, 27"
The images of the sets (+) under f7 are, respectively, the pairwise disjoint sets
N2,2i - N2,2i+l - Q2,2i+l’ M2,2i - M2,2i+l - P2,2i+1,
N2i _N2i+l - Q2i+h M2i _M2i+l —'P2i+l

and

(*)
Z = the complement in X — E7 of the union of these sets.

This is easily seen since f; is a bijection of X — E§ onto X — E}, and
Ss(ET — E§) = E] — E}. Therefore, in order to establish that f; is a homeomor-
phism it suffices to show that each one of the sets of (x) and (x#) is clopen in
X — ET and X — E7, respectively. The set My, — My, ., — P ., is open. The set
M,; U P,;, — My, ., is closed. By our choice of g, Ny; — Ny, — Qyi 41 1S Open
and N,; U Q,; — N,;,, is closed. By Definition 5(8) and (d) and our choice of
U, also all the sets M, ,; — M; 5, — P, +, are open and the sets M5, U P, 5; —
M; 5; ., are closed. Clearly
M,Zi - Alj,ZH-l - P',2i+l

J

=My VP — M, )N(X— E]) forj=-1,1

hence the sets M;,; — M, — P24, are clopen in X — Ef for j=—1,1,
and similarly also the sets Njj — N5+ — @2+ are clopen in X — E7.
Similarly also the sets M;,, — M;,; 11 + P; 241 and Nj5; — Nj 341 — Qj2i41, for
j=0,2, are clopen in X — E7. As easily seen, the closure of the union
Ui <o (My; U Py — My, () of closed sets is U, ., (My U Py — My, ) U {X})
and hence also its images
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U Mju UPo — M)V {f5(), j=-112

i<w

and U,; ., (N5 U Py — N2y ) U {(F50)}, j=—1,0,1,2, are closed. For
j=—1,1, U, (M5 — M5, — P;5)) is open, being the union of open
sets. Since

U (-Af{j,Zi - Alj,2i+l - Pj,2i+l)

i<w

= U M5 UP,— M)V {f(X))N(X—E]

i<w

these sets are also closed in X — E7, hence they are clopen in X — E7. Similarly
also the sets U, -, (N5 — Nj2i+1 — Q)2 +1) are clopen in X — E7 and therefore
also the set Y of (¥) is clopen in X — ET. Similarly also the set Z of (+#) is clopen
in X — ET. This establishes our claim that f; is a homeomorphism of X — ET
onto X — ET.

Now let us see that D7 and D are nowhere dense. By Definition 5(x), Df is
nowhere dense. We proved above that E7 is nowhere dense, thus its subset
Uico P, UU,; ., Q; U {x, 7} is a nowhere dense subset of V. Therefore, also
its image by f¥, U, o Py U U, 0, Oy U {f¥(x), fZ(p)} is a nowhere dense
subset of V5. Since each of the different V;’s has a positive distance from the
union of the other ones also Ujez (U, <, Por; U Uicp, Qo U {(fE(X), f2()} is
nowhere dense. As easily seen from the definition of f;, for every m # 0, 1

{(ff@):i<ow)=ffg{ziii<w}VU[fF{zss:i<w)},
andform=0, —1
(fFG):i<w)=fF{z:i <o)

Since, as can be easily seen, {z;: i <w} is nowhere dense we have, as above,
that the set U,z {f¥*'(z):i <w} is nowhere dense. Similarly, also
{f¥(z_,):I€Z} is nowhere dense. Thus D] is nowhere dense, being the
union of finitely many nowhere dense sets. Similarly also DY is nowhere dense.

(y) To see the effect of applying f;-to DT and DY we shall see where f; differs
from f;. By the definition of f7 it coincides with f; outside

MUNUM_UN_CVUV_,.
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By our choice of ¥, V N (Df U D) = &, and since D{ U D5 is closed under f;
also
vinOfubDs)=Z and V_ N(D{UDs)=,

hence
DiuDHNuv.)=4g.

All the components of DT and D7 given in their definitions, other than Df and
D3, are included in some V;, for i # 1, — 1, and hence disjoint from ¥, U V_,,
except for {f(z_)}, (fs'(z-D} P Quis Poris Q-ris {(X), 500},
(51, S50, (frla) i <o), (f7(z) i <w), and fi(z_)EV; — Mg,
fsz_)EV_y— M_,,. Looking at the definition of DI and D] we see now
eadily that f(D7)= fo(DT)= D], and since, as easily seen, f5(E] — E§)=
ET — ES, we get also f(Df — ET)= DT — ET.

(6) Let Ube a nonvoid open set, we have to prove that it has a nonvoid open
subset ¥ as required by (J). Since S is an approximation, U has a nonvoid open
subset V' * which satisfies (&) for S. Since, as we have seen, D] U D] is nowhere
dense we can take V* N (D7 U D)= . We shall now distinguish several
cases. Case a: V* has a nonvoid open subset ¥ such that f2(V) NV = for
every n €Z. If Case a does not hold then, for some n€Z, f¢(V*)NV + .

V=(V-M—P,—No—Q)U U PU U QU{x}uU({p}
i<w i<w

(*)
) UU (M=M= PradU U (N =Ny — Qi)

i<w i<w

Since f2(V*) N V is open and nonvoid and

U ruU Quixiup

i<w i<w

is nowhere dense, f2(7*) must have a nonvoid intersection with one of the
other sets which make up (x), i.e., with one of the open sets V' — M, — P, —
No—Qp, Mi—M; ., —P;,,, N—N;,,—Q,,,, where i <w. Let W be the
nonvoid intersection of f2(V*) with one of these sets, deleting from it one of
the z’s, for iE{—1}Uw, if this z is in it. W is obviously open.
Let V= fs"(W)C V*. Since f¢" is an autohomeomorphism of the open
set U,z Vi, Vis open and f2(V) = W. We distinguish now also the following
cases. Case b: f2(V)C V —M,— P,— N,— Q, or for some i <w, f2(V)C
My — My — Py — {23} or f§(V)C Nyi_, — Ny — Q. Case c: For some
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i<w, fAV)CMy— My, —Py, —{2,). Cased: For some i<,
fg(V) - N2i _N2i+l - Q2i+1-

Cases a,b: Inthese cases, by the definition of f7, f; agrees with f; on every
set f2(V). Hence forall m €Z, f7(V) = f#(V), and (6) follows easily from the
fact that V* satisfies (d) for S.

Case c¢: In this case f3(V) C My — My, — Pyiy, — {25} and hence

VEM_ 0 —M_ 51— P_piivi — {fs(Zy))

Thus for every mEZ, fF(V) CMp-p2 CVi-n O fF(V)C Np_02i € Vi
and hence V satisfies the first part of (§). Powers of f; preserve the property that
a subset of ¥V, is closed, for m €Z, and so do gand g~ ! for subsets of M and N,
respectively. Since f7(V)C M or f(V)C N and powers of f; are compo-
sitions of powers of f; and g also powers of f; preserve the property of being
closed for subsets of f4(V), for kEZ.

Case d: Similar to Case c.

(€) f x @& U,z Vi, then if f2'+!(x) is defined then f2"+!(x) is defined and
then f#*!(x)=f2*!(x). Since § is an approximation, f#'*!(x)=
fE*r(x) # x. If x EV,, for some m EZ, then clearly f#*'(x)EV,, , 22+1, and
since Vyions1 NV =G, f2H(x) # x.

Having shown that T is an approximation, we have to show that it satisfies
requirements (1)-(7) of Lemma 6.

(1) The sequence (z;: i <w) convergesin D] N UtoxE€DI N U.Forn #0

f¥g(z;) ifiiseven,
f¥(z) = o
(z) if i is odd.

Since lim, . , z; = X we have

lim  f(z)=lim f¥g(z) = [Fe) = 20),

i—o0,iiseven

Llim fr)=lim f3() = 13G).
Since XEM, yENand MNN=@, X #y and f¥(x) # f#(p), thus the
sequence (f#(z;): i <w) does not converge.

(2) and (3) follow immediately from the definition of T.

(4) If x&V_, UV, then fr(x) = f5(x), hence d( fr(x), f5(x))=0.If xEV,,
i =—1,1, then fr(x), f5(x)EV,,,, and hence d( fi(x), f5(x)) = diam(V,,,),
d( fs(x), E¥) = d(V,,, EY). By (iv), at the beginning of this proof,
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diam(V; ) = & -min(1, d( fs(x), EY))

hence d( fr(x), f5(x)) < diam(V;,,) < & -min(l, d( fs(x), E?).
(5) This is similar to the proof of (4), using the inequality (iii) instead of (iv).
(6) Let1 =i =k.Iff{(x)=fi(x)then(6) holds trivially. This is always the
case unless xEV_; or xEV_,,, in which case fi(x), f+(x) are in V, where
1€(0,1}.

d(f1(x), x) 2 d(f§(x), x) — d(f§(x), fr(x)) Z d(f§(x), x) — diam(V)),
and by the inequality (v) at the beginning of the proof

zd(fi(x),x)—¢- ini_nod(lf}, U V,,,)
—k<jz

meEL, mw»j
zd(fs(x),x)—¢e-d(V_;, V)

Zd(f5(x), x) —e-d(f5(x).x) =(1 —e)d( f§(x), x).

() z_,€DIN U.
This completes the proof of Lemma 6.

PrROOF OF LEMMA 4. Let {U,: n <w} be a basis of the topology of X. We
define a sequence of approximations (7(n): n <) such that for every n,
T(n +1) is related to T(n) as T is related to S in Lemma 6, with U = U,,
k=n and ¢ =2""*?, T(0) is defined by D@ = DJO = ETO = ETO = ¥
Sro=F. It is easily seen that T(0) is an approximation. Now we define
D,=U,.,DI™ E =U,.,EM™forl=1,2.Forx &E, we set f{(x) =lim,_
Jrm(x). This limit exists since, by Lemma 6(4),

A(frm+1(X)s fro(x)) S 27043,

hence the sequence ( fru:n <w) is a uniformly convergent Cauchy se-
quence, and it has a limit f. Let us check now that conditions (1)=(5), (6)® and
(7) of Theorem 1(B) are satisfied.

(1) That E,CD,, E,CD, and D,Nn D,= follows immediately from
Definition 5(a) and from the fact that (D™ : n <) and (D™ :n <w) are
ascending sequences (by Lemma 6(2)). By Lemma 6(1) D, is dense in X, since
every basic open set U, contains points of D/™ C D,. Similarly, by Lemma
6(7) also D, is dense in X.

(2) First let us prove that fmaps X — E, into X — E|. Let x EX — E,, then
f(x) is defined, as we saw above. Assume f(x)EE, = U, ., ET™, then for some
n <o, f(x)EET™. d( fru(x), ET™) > 0since ET™ is closed and fr,(x) € E]®
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as fr, maps X — E]™ onto X — E[™, and x€EX — E, C X — E]™. We shall
prove soon that for all m = n we have

m—1
) d( frm(x), E[™) 2 (1 ) 2*"'“’) + d(frX), ET™).

Therefore d( from(x), ET™) > 4d( frix), ET™). Letting m — ¢ we get
d(fix), ET™) 2z 4d( frm(x), E{™) >0,

contradicting f(x)€ET™. We prove now () by induction on m = n. For
m = n, (*) is trivial. We assume now (x) for m and prove it for m + 1. By
Lemma 6(4)

d(frm 41 ET™) Z d( frmfx), ET™) = d( frm +1(); from(¥))
2 d(frmyx), ET™) — ed( fremyx), ET™)
2 d(from(x), ET™) — ed( frm(x), ET™)
= (1 — &)d(fremx), E[™)

and by (*) for m we have

> —e)(l - 2—““’) « A fyonfX), EF®)

i=n

m
2(1- § 27009 d( ), B
i=n

We saw already that ( fr», : # <) is a uniformly convergent sequence of
continuous functions, hence its limit fis also continuous. Similarly, by Lemma
6(5) also the sequence ( 74 : n <w) is a uniformly convergent sequence of
continuous functions; let f be its limit, then Dom( /)= X —E, and fis a
continuous function. Exactly as we proved above for f we get that f maps
X —E, into X — E,. Since the sequences (fru:n <w) and (f7,) :n <)
are uniformly convergent sequences of continuous functions we have

ff=Hm fr} - im froy=lim f7.) fre =lim identity = identity,
n—+w n—w n—+w i—w

and similarly ff=identity, hence /= f~'! and f is a homeomorphism of
X—E,onto X —E,.

(3) By Definition 3(y), each fr,, maps D] onto D™ and DJ™ — E]™ onto
D™ — ET®_ By Lemma 6(2) and (3) the sequences (D™ :n <w) and
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(D™ — ET™: n < w) are increasing and for each n, fr, ., agrees with fr,, on
D™ y DI™, Therefore for each m > n, fr.,) agrees with fy,, on DJ™ U D™,
hence also fagrees with fr,) on DT® U D™, Thus fmaps D]® onto D™ and
DI™ — ET®™ onto D™ — ET™, Our definition of D,, D,, E,, E, easily implies
that F maps D, onto D, and D, — E, onto D, — E,.

(4) By (&) fH5'x)#x whenever it is defined. Since the sequence
(frm) : n <) is a uniformly convergent sequence of continuous functions, we
have lim,_, f#}! = f%**!. Thus we have to prove that lim,_, f#}'(x) # x
whenever it is defined. By Lemma 6(6) we have, for m = 2k + 1,

AfES0,0 2 T (=272 EEL (0, %)

i=2k% 1

Q0

z I Q-2""Yd(f#5: p)(x), X)

i=2k+1

= Yd(f 3k 4 (), %)
>0

Thus we have shown that for every m = 2k + 1, d( f%.5(x), x) is greater than
some fixed positive number, hence also the limit d( f%*!(x), x) is at least that
number and f*+(x) # x.

(6®) Assume V # & is an open set and V — (D, U D,)=A U B where A4 is
meager and | B| <2%. D, U D, is meager by Definition 3(«). Therefore, by the
Baire category theorem and since X is complete and has no isolated points,
V — (D, U D, U 4) C B included a perfect set, contradicting |B| <2%.

(7) Given U let n be such that U, C U. By Lemma 6(1) there is a sequence
(z;: i <w) of points of D™ N U N Dom f37, which converges to a point of
D™ N U, € D, N U but where ( f#7,(z,):i <w) does not converge. Since
z;€ D™ we have, by Definition 5(p), that all f{,,)(z;), forj < 2nand i <w, are
in D™y D™ C D, U D,. Since, as we saw above, f coincides with fr, in
D™y DI™ also f2™ coincides with f#: on D™ U DJ™ and thus the
sequence {f™(z;): i <w) does not converge.

LEMMA 7. Assume that the assumptions of Lemma 4 hold with assumption
(1), that (X, d) is a complete separable space without isolated points replaced by
(1Y, (X, d) is a meager separable metric space without isolated points in which
every nonvoid open set is of cardinality 2%,

Then there are f, D,, D,, E,, E, which satisfy the hypotheses of Theorem 1(A).
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ProoOF. The proof is similar to that of Lemma 4, and we shall only point
out the differences. First we shall prove Lemma 8 which is a strengthening of
Lemma 6.

LEMMA 8. For every approximation S, € > 0, k > 0 and nonvoid open sets
U,R,,...,R,, where each R;, 1 =j =1 is such that f§(R)) N f§(R;) =& for
m,n€Z, m # n,and a nowhere dense set C, there is a nonvoid open set VC U
and an approximation T such that:

(1), (2), (4)~(7), as in Lemma 6.

(3%) fragrees with f;and f 7' agrees with f5' on Df U D5 U C.

(8) Forall n€Z, d(f3(V), Upez,msn fF(V)) > 0.

9) IfC*C C, C* N (Df UDs)= and C*is closed under f; and f ' then

C*n(DfuDf)=0.
(10) Wesay that aset R C X is confined by the transition from S to T if for all
nE€EZ, f2(R)C fE(R). The given sets R,, ..., R, and the set V are
confined by the transition from Sto T.

ProoF oF LEMMA 8. The proof is like the proof of Lemma 6, with the
following changes. We choose the set V'so that V, V|, V, and V_, are disjoint
from C and this takes care of (3*). The set V of the proof of Lemma 6 indeed
satisfies (8). Since C N V=@, C* C Cand C*is closed under f;and f5!, we
have also C*NV, = for all n €Z. Therefore C* N (Df —Df)=G for
i =1,2 and since C* N D =& we have C* N D7 = &, and (9) holds. To
satisfy (10) we add to requirements (i)—(v) on ¥ at the beginning of the proof of
Lemma 6 the requirement:

(vi) For each 1 =j =/ either for some n€Z, V C f§(R;) or else for every

nEZL VNfIiR)=0.
To make sure that V satisfies (vi), for every 1 = j </ separately, we proceed as
follows. If ¥ N f§(R;) = & for every n EZ then V already satisfies (vi) for j,
otherwise for some n€Z, V' N f§(R;) # & . Since f; is a homeomorphism of
the open set X — E, onto the open set X — E| it preserves open sets. Similarly
also ' preserves open sets. Thus f§(R)) is an open set and we shrink ¥ to
VN f3(R;) getting V C f3(R)). To see that (10) holds let us recall that f;
coincides with f; outside V_, U ¥, and that, by the definition of f7, f(V_,) =
Vo—ET and fr(V))=V,—ET, f7' coincides with f5'' outside V,U V,,
f'(V)=Vi—E] and f7'(V))=V_, — E]. Thus f}(V) C f3(V) for every
n€Z, 1=j=! we have, by (vi), one of the following two cases. If
VN f3(R;)= D forevery n EZ then also /i (V) = V; are disjoint from the sets
Sf3(R)), hence fr and f;! coincide with f; and f5!, respectively, in all sets
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S(R;), hence f}(R;) = f#(R;). The other case is that V' C f}(R;) for some
n€Z. Since fF(R;), for m EZ, are pairwise disjoint, fr coincides with f;
outside V_, U V,, f7! coincides with f5! outside V, U V,, f(V}) C f5(V;) for
i=—1,1and f7'(V)C fs'(V) for i=0,2, we have fF(R)C fF(R)
formeZ.

ProoOF OF LEMMA 7 (continued). We define the sequence (T(n):n <w),
of approximations as in the proof of Lemma 4, with the following differences.
For n <w, V" is the set V of Lemma 8 obtained in the passage from T(n) to
T(n + 1). In this passage we take / =n — 1 and R, = ¥’ for j <n. Since X is
meager let X = U, ., C,, where for every n < w, C, C C,,, and C, is a closed
nowhere dense set. When we construct the open set V, in the passage from
T(n)to T(n + 1) we add the following step. By our hypothesis, since V is open
and nonvoid, | V| =2%. Since V' =U,_, ¥ N C there is, by the Zermelo-
Konig inequality, a k < w such that | V' N C| =2™. ¥V N C, C C, is nowhere
dense, and so is each set f{(V N C,) for jEZ. Since, for every jEZ,
d(fE(N), Upcg ny; f3(V)>0also C, = U, , f{(V N C,) is nowhere dense.
U,nC,2VNC, hence |U,NC,| =2%. We shrink V further so that
VNnC,=. We take for C in the passage from T(n) to T(n + 1) the set
C,UCyU - - - UC,. Notice that C, is closed under f; and f 5! and is disjoint
from D} U Dj (since Vis disjoint from Df U D5 and D{ U D5 is closed under f;
and fs').

Let x €EX — E,. For some m < w, x € C,, hence, by our choice of C and (3*),
the sequence (fr(x):n <w) is constant from n = m onwards and we can
define f=1lim,_ ., fru) as in the proof of Lemma 4. (1)-(4), (7) of Theorem
1(A) hold as in the proof of Lemma 4. To see that (5) holds let U,, be a basic
open set. We saw above that | U,, N C,,| = 2%, that C,, N (Df™ U D]™) = &
and that C,, is closed under fr,, and f 7;»,). Therefcre, by (9) of Lemma 8 also
C, NI uDI™ = for all n>m hence C,, N(D,UD,)=2. Thus
| U, — D, U D,| = 2%, To prove (6), given a nonvoid open set U, let m be such
that U,, C U, then V,, C U,, and by Lemma 8(8) for all i €Z,

d(f;(rn)( V), U _ S rom( I7»:)) >0.
kEZ ki

By our choice of the R;’s, for each stage in the construction of the T'(n)’s we
have, by Lemma 8(10), that V,, is confined in each transition from T(n) to
T(n + 1), thus foreach i €Z,
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Srm(Vm) 2 f1m+ (V) D fimin(Vm) 2 -.

Since fis the limit of the fr,’s in the strong sense stated above we have
f;'(m)( I-/m) 2 fl(Vm) Therefore also d(f'(Vm)a Ukez,k#ifk(vm)) > O

PROOF OF THE MAIN THEOREM — SECOND STAGE. If X is a nontrivial
complete separable normed vector space over Q, then it clearly satisfies the
conditions of Lemma 4, where we take for F any nontrivial translation and for
g an appropriate translation. By Theorem 1(B), this establishes part (4) of the
Corollary to the main theorem. In particular the consequences of Lemma 4
hold for the case where X is the real line R. This is what was still needed in the
first part of the proof of the Main Theorem to establish part (1) of the Main
Theorem.

Lemma 7 and Theorem 1(A) imply similarly part (2) of the Main Theorem.

PRrOOF OF THE COROLLARY TO THE MAIN THEOREM. We have proved (4)
directly, but it is also a particular case of (1). We shall establish (5) and (6) by
showing that (5) implies (3), and (6) implies (1) or (3).

THEOREM 9. Let X be a normed vector space over Q with a nonvoid
bounded clopen subset, then X has an autohomeomorphism of order 2 without
fixed points.

PROOF. Let zEX, z # 0. Since X has a nonvoid bounded clopen set V'
we can assume, without loss of generality, that 0€ V and that V is of small
enough diameter so that ¥V N (V + z) = &. Clearly U,cz+ nV = X, where Z*
is the set of all positive integers. We define now for every n €Z* a bounded
clopen set C, and an automorphism f, of C, of order 2 with no fixed points, so
that C,,, 2 C,and f,., 2 f,. For n =0 we take C; =, fy = &. Given C,,
since it is bounded there is an m €Z* such that C, C mV. We set C,,, =
mV U (mV —C,)+ mz). Since VNV +2z)= also mVNn(mV+mz)=
. We set

Suix), x€C,

LisiX)=3<x+mz, x€EmMV-C_C,,
x—mz, Xx€EmMV-C,)+ mz,

then clearly f, , , is as required. Since U,ez+ C, = U,,ez+ mV = X, the
jefunction f=U,z+ f, is an autohomeomorphism of X of order 2 with no
fixed points.
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THEOREM 10. Let X be a normed vector space without any complete
direction and let fbe a nontrivial autohomeomorphism of X which is the identity
outside a bounded set, then X has an autohomeomorphism of order 2 without
fixed points.

ProOF. Since fis nontrivial there is an x, € X such that f{x,) # x,. Without
loss of generality we have f(0) # 0, since otherwise we can replace f by f*
given by f*(x) = fix + x;) — x,, and f *is clearly an autohomeomorphism of X
which is the identity outside a bounded set and such that f*(0) # 0. We can
also assume that || f(0) || = 1, since otherwise we can replace the norm || x ||
by the norm || x ||* given by || x ||*= || x ]|/ || f(0) || without changing the
topology of X. Let r be such that

(1) for all x such that f(x) # x, || x ||, | x — O | <r.

LEMMA 11. For every ¢ >0 there is a 6 >0 such that for every real
t,0<t=1,

@) if | x | <o/t then | fix) = IO || <et,

(3) if | x — O) || <&/t then || f~'(x) || <elt.

Proor. We shall prove only (2), since (3) follows from (2) by substituting
in (2) x — f(0) for x and the function f ~'(x 4+ f{0)) — f(0), which satisfies the
same hypotheses as f, for f.

Let ¢ > 0. Since f'is continuous there is a , > 0 such that, for || x || <4,

| fix)— A0) || <e. Let

5=min(%, E)>O;
Ir 3

we shall see that J satisfies (2). Let 0<t =1 and | x || <d/t. We shall
distinguish the following three cases.

Case 1. t=e/3rand || x || =r.Byourchoiceofr, || f{0)|]| =r,andsince
x| =r also | fix)|| =r. Therefore || fix)— A0 = || fix)] +
[| f(0)|| =r+r=2r.In the present case ¢ < &/3r hence 2r <3r < ¢/t, thus
| flx)—fO) || <elt.

Case 2. t=e¢/3rand | x| >r.Since || x || >r, fix)=x. Therefore
=0 = 1/ + 1O = §x| +r<d/t+r.

By the definition of 4, /¢ < &/3t; by the hypotheses of the present case ¢ < &/3r
and hence r = ¢/3¢; therefore
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| fix)—f0) )| <o/t +r=el3t+el3t<elt.
Case 3. t>¢/3r. Therefore 1/t < 3r/e and thus
| x | <o/t <é(3rie) =4y,

by the definition of . By the choice of d;, || fix)— f0)| <e& = e/t (since
0<t=1).

ProoF oF THEOREM 10 (continued). We define a sequence k, of positive
integers by induction as follows: k, = 1; for n = 0, k, ., is such that k, ., >k,
and forall0 <t =1

@) if || x || <rltk,,, then || fix)— fO) )| <rltk,;

(5) if | x — fO) | = r/thy sy then || £=1x) || <ritk,.

The existence of k, , , follows from Lemma 11.

We define, for n = 0, a, = (r + 1)/k,; clearly lim, ., a, = 0.

Since no direction in X is complete, there is a real 0 < g < 1 such that gf(0) is
in the completion X° of X but not in X. Let ¢, be an ascending sequence of
rationals such that ¢,=0, lim,_._ g, =¢ and ¢ —gq, <1/2k,,,. Let z, =
4, f(0), then zy=0and z =lim,_, z, =g fIO)&X, ||z, — Zm | = |Gs — gm |,

| z—z, || =4 — g, Letp, =gy — gy, then

6) Pr=0Gns1— 4 <q— . <12ky .

We have now

(7) aps1>rpy,

since
Dy < ! < 1'—l ! <la
" 2kinst Kivr T o kyyy T "o
and also
(8) an+l>r/kn +pn
since
Dy < < L a ' <a !
n T = Gpyy T T +17 -
2k4n+l kn+l " n+1 " kn

We shall construct a sequence g, of autohomeomorphisms of X of order 2 such
that
(9) z,is the only fixed point of g,,
(10) if n>0and | x —z, || Za,, then g, (x) = g,(x),
(11) forall m Z n, if || x —z, | <riky. s, then || g,(x) —z, || <rlk,.
We shall first show that the theorem follows from the existence of this
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sequence. Let 4, = {xEX:||x—z | >a, + g —q,}; 4, is an open set and
A, CA,,,. We have

x€4,~||x—-z|| za,+q— ¢,
(12) —x—zl zlx—zl ~ 22
gan"'q_qn—(q'_'qn)=an

hence by (10)

(13) xEA, = 8,(X) = gu+.1(x).
For every x€X let n(x)=min{n:x€A4,}; n(x) exists since
lim,..(a, + ¢ —¢,)=0 and z€& X. Let G be the function on X given by
G(x) = gux(x)- By (13) G coincides with g, on 4,, hence G is continuous
on A,, and since X = U, ., 4,, G is continuous on X, and since the g,’s are of
order 2 so is also G. Any fixed point of G has to be a fixed point of some g,
hence, by (9), it has to be z, for some n, but, by (9), z, is not the fixed point
of any g,, with m # n, hence G has no fixed points and is as required by the
theorem.

Now we define the sequence g,. g, is defined by gi(x) = — x. g is clearly an
autohomeomorphism of X of order 2 and it satisfies (9) and (11). In order to
define g, ., from g, we define an autohomeomorphism 4, of X by

o) = p,f(" . z") 2.

n

h, is an autohomeomorphism, being a composition of autohomeomorphisms.
By definition of the z,’s 4,(z,) = z,,,. We have

(14) “ X =2, “ = rp,,=?h,,(x)=x,
since

X — 2z, — ép -

L
p’l pll n
X—2,
= D» +2z,=X.
DPn
We shall now prove

(15) | x —zasill Zroa=h'(x)=x.

Let y = h,'(x); it follows immediately from the definition of 4, that
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y=p,.f“(x_z">+2..-

By our assumption that || x — z,., | Zrp, and since z,,, —z, =¢,,, f(0) —
4. f0) = p, f(0) we get

X =2z, zn_zn+l_zn

X —
Dn D

~so| -|

H X = Zy4
Py

1§r.
n

By our choice of 7, || x — fl0) || Z r= f(x) = x, hence also f ~!(x) = x and we
have

- - x—z
f—l<x z,.)=x “ and y=p, —+z,=x,
P P P

thus A, !(x) = x, which is what we set out to show.
We show also that

r

r
16 x—z, | < = || h,(x) — 2, <—,
(16) I ! Py Il 2a(X) = Znsi || s

I AnX) = Zas il = 1| Ba) = ho(2) |

- H paf (x;nz")—pnf(o) H =P,

X — z,
1(=2)-r0|.
Pn
By the hypotheses of (16)

r
pnkm+l .

H X =z,
Dn

Substituting in (4) m, (x — z,)/ p, and p, for n, x and ¢ we get

r —

r
hn — 4y = Dn "
| An(X) — 2o 1 | = p ok ko

(2 - =)~ 10 H <o,

n

5o (16) holds. Similarly,

r r
= A (x)—z, || <—.

m+1 m

(17 I x =zl <

Since

b= p s (2) 2

n
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we have

I hy'(x) — z, | = = Dn

ps~ (=) (=)

p’l p’l
Substituting in (5) m, (x — z,)/ p, and p, for n, x and ¢, and recalling from the
proof of (15) that

X —Z, _f(0)=x—zn+l

n n

x—z
5
p
thus (17) holds.

We define now g,., = h,g.b,'. Since g,., is a conjugate of g, in the
autohomeomorphism group of X, g, ., is also of order 2 and its single fixed
point is 4,(z,) = z,.+;. Thus all we have to do in order to finish the proof of
Theorem 10 is to show that g, ,, satisfies (10) and (11). We prove now

we get

A7 (x)— 2, || =pn

<p I
" Dkw Ky

(18) “x—zn+l" Zay = "g,,(X)'_Z,, “ =D,
Assume that the conclusion of (18) does not hold, i.e., if y = g,(x) then
"y =2y " <rpn = r/k4n;

by (6). Therefore, by (11),
" gn(y) — 2y “ <r/kn-
But since g, is of order 2, g,(y) = x, hence || x — z, || <r/k,, hence by (8)

r
")C""Z,,.H" = "'x_zn " + " Zn_zn-H" §;+pn<an+h

contradicting the hypotheses of (18).
To prove (10) for n + 1 assume || x —z,,, ]| = a,+,. By (18)

" gn(x) — Zy " = IDn,s
and by (14)

hogn(X) = g4(x).

Also from || x —z,4, || Z @+, (7) and (15) we get A, '(x) = x, hence
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8n+1(X) = hoguhy 1 (x) = hag,(x) = g4(x),

which establishes (10) for n + 1.
To prove (11) for n + 1 assume

| X = zZasr | <rlkmisnsery

By (17)
WA ) =z || <rlkmssmeny-1-
By (11) forn
r r
" g,,h,,"(x)—z,, " = = ’
km+3(n+1)—1—3n km+2
hence by (16)
| Angabta ' (x) = 241 || < < —

’
k2,..+2—l km+l

i-e~’ “ gn+l(x)_zn+1 " <r/km+l-
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