
The Cofinality of Cardinal Invariants Related to Measure and Category
Author(s): Tomek Bartoszynski, Jaime I. Ihoda and Saharon Shelah
Source: The Journal of Symbolic Logic, Vol. 54, No. 3 (Sep., 1989), pp. 719-726
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2274736 .

Accessed: 19/12/2014 19:04

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The
Journal of Symbolic Logic.

http://www.jstor.org 

This content downloaded from 128.235.251.160 on Fri, 19 Dec 2014 19:04:44 PM
All use subject to JSTOR Terms and Conditions

Sh:348

http://www.jstor.org/action/showPublisher?publisherCode=asl
http://www.jstor.org/stable/2274736?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


THE JOURNAL OF SYMBOLIC LOGIC 

Volume 54, Number 3, Sept. 1989 

THE COFINALITY OF CARDINAL INVARIANTS 
RELATED TO MEASURE AND CATEGORY 

TOMEK BARTOSZYNSKI, JAIME I. IHODA, AND SAHARON SHELAH 

Abstract. We prove that the following are consistent with ZFC: 
1. 2'? = SCOl + KC = N. + KB = KU = 02 (for measure and category simultaneously). 
2. 2'? = X= Kc(ff) + KC(w#) = 02. 

This concludes the discussion about the cofinality of KC. 

?0. Introduction. In this work we will study the cofinalities of the cardinals 
associated with the ideal of the measure zero sets of reals and with the ideal of the 
meager sets. These type of problems are very interesting because they give us the 
possibility of thinking about the continuum when 2'0 is a singular cardinal. 

In general these cardinals are defined as follows: 
Let 3 be a a-ideal of Borel sets of R. Then we define 

KA(3) = the least K such that (]C E [3Z]K)(UC 0 3), 
KB(3) = the least K such that (3 E [3]K)(UC = R), 
Ku(3) = the least K such that [R]K\3 # 0, 

Kc(3) = the least K such that (3] E [3]K)(VA E Z3)(3B E R)(A c B). 

Usually we drop the letter Z3 if it does not lead to any confusion. 
The following theorem is part of the folklore. 
0.0. THEOREM. (a) KA < KB n KU < KB U KU < Kc. 
(b) KA is regular. 
(c) cof (Ku) rn cof(Kc) > W). N 
0.1. THEOREM (D. FREMLIN [F]). cof(Kc) ? KA. 

PROOF. Suppose a = U ja<K Roe where Ha C 35 K < KA, and I Ral < K. Since R. fails 
to cover 3, there is A. E 3 not contained in any member of Ra. Then Ua<KAa EA 3 

and is not contained in any member of R. N 

0.2. THEOREM [F]. cof(Ku) ? KAY 
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720 TOMEK BARTOSZYNSKI, JAIME I. IHODA, AND SAHARON SHELAH 

PROOF. Let A E [R]KU\Z3; then 

A= U A, 
a < cof (Ku) 

satisfying for every a < cof(Ku), IAaI < KU. Therefore A. E 3, and if cof(Ku) < KA 
then A E 3, a contradiction. U 

Let ? and ./ denote ideals of measure zero sets and of meager sets respectively. 
The relations between the corresponding eight cardinals are given succinctly by 

Cichon's diagram (see [F]): 

KB(Y) KU(,#) KC(X#) KC(y) 
I I 
b d I 
T T 

KA(f) KA(,#) KB(f) KU(y) 

where an arrow (-+) between two cardinals indicates " <" can be proven in ZFC. 
In view of 0.0, the following question about the cofinalities of these cardinals 

appears: Are any of the following consistent? 
1. cof (KB) < KA, 
2. cof (Kc) < cof(KB), 
3. cof(Kc) < cof(Ku), 
4. cof (Kc(Y)) < cof (Kc(,-#)), 

where 3 is equal to the ideal of measure zero sets (meager sets). In ?4 we will give a 
model for 2 and 3 (for both cases, measure and category) and in ?5 we will give a 
model for 4. Question 1 remains open for the moment. In ?1 we will give a result 
involving measure zero sets. We will explicitly construct a measure zero set asso- 
ciated with a function from wo to w, such that if the union of such sets has measure 
zero then the sets of their respective functions is c-bounded. 

In ?2 we show the parallel result of ?1 for category. This result was previously 
proved by T. Bartoszynski, but we present a new proof. 

The results from ??1 and 2 also appear in [F], with a different proof. 
In ?3 we will give some results involving forcing and finite support iterated forcing. 

We will introduce the concept of "strong scale", and show that this property is 
preserved by 

(1) ww-bounding forcing notions (i.e. random reals forcing, Sacks real forcing, 
etc.), 

(2) Cohen real forcing, and 
(3) Finite support iteration of forcing notions preserving this property. 
In ?4 we first add NW, Cohen reals to L and then iterate 02 times alternatively 

Cohen and random reals. We use our previous work in order to show that in this 
model the following holds, simultaneously for measure and category: 

KB = KU = N2 and KC = N,. 

In ?5 we add NW, random reals followed by an wO2-iteration of dominating forcing 
to get a model where Kc(.I/) = w-)2 and Kc(Y) = Nwt, 
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COFINALITY OF CARDINAL INVARIANTS 721 

The notation used in this article is standard, and a good reference may be [Mi]. 
The real numbers will be '2 (= 2w), the set of all wo-sequences of zeros and ones. A 
perfect tree T c `<2 is a tree satisfying the following condition: 

v e T- (]1 v)(n1 A <O> e TA AA< 1> e T). 

If T is a tree, then T c '2 is defined by 

T= {xew2:(Vnec-))(xrne T)}. 

If i e T, we define T'11 by 

T[?] = {v e T: l c v v v c il. 

If f, g are functions from wo to wo then f <* g iff (3nVm ? n)(f(m) < g(m)). If r e `2 
then we define [i] < '2 u '2: 

[fl] = {x e-'`2: l c x}. 

?1. Technology for measure. 
1.0. DEFINITION. Let T c 2<w be a perfect tree. We define the following set An(T) 

c wo and the following function fT: 

An(T) = {k: Vil e (k-n2 n T)(3v e h2)(f lAv 0 T)}, 

fsupAn if 0 # 
IAn(T)l < No, 

(a) fT(n) = 0 if 0 = IAn(T)I, 
L oo if IAn(T)j = No. 

1.1. Fact. (a) If T1 c T2 then fT,(n) ? fT2(n). 
(b) If ,u(T) > 0 then, for every n e w), fT(n) < oo. 
PROOF. (a) Easy. 
(b) Assume that An(T) is infinite; then it contains an infinite sequence <ki: i < w0> 

satisfying V'ki+ 1 > k -i+ n. By induction on i we show ,u(T r ki2) < (1 - 1/2f)i. This 
is clear for i = 0. For i ? 0 and any s ki+,-n2 nr T we have 

card({t e ki+12: t s, t e T}) < 2n _ 1; 

hence 

M(T r ki+12) < ,(T n ki+1 n2).(1 - 1/2 ) 
< M(T n ki2) . (1 - 1/2n). 

The result follows. * 
1.2. Fact. If g e ww)" and g(O) = g(l) = g(2) = g(3) = 0 and, for n > 3, g(n + 1) 

> n + 1 + g(n), then there exists a perfect tree T = Tg satisfying 
(i) g = fT9, 

(ii) M(Tg) > 0, and 
(iii) for every l e Tg, if T= TV'1 then (V'n)(fT(n) = g(n)). 
PROOF. Let Tg be defined by 

Tg = {v e w'2: if 3 < n < wo and lg(v) ? g(n) 
then (3i)(g(n)-n < i < g(n)- 1 A v(i) = 1)}. 
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722 TOMEK BARTOSZYNSKI, JAIME I. IHODA, AND SAHARON SHELAH 

Clearly Tg is a perfect tree. Now we need to show that this tree satisfies (i), (ii) and (iii). 
Checking (i). Fix n E w; then clearly g(n) c An(7g). It is sufficient to show that if 

m > g(n) then m i An(7g); but this is obvious (it is necessary to consider by cases, 
g(n + k) < m < g(n + k + 1)). 

Checking (ii). x 0 Tg iff there exists n E c - 4 such that x r [g(n) - n, g(n)) = 

0 r [g(n) - n, g(n)). Hence (l(Tg) ? 1 - EnZ=4 1/2n > 0. 

Checking (iii). Left to the reader. U 
1.3. DEFINITION. Let g, Tg satisfy the requirements of 1.2. For every v E `2 

we define 
T fIr: v'tj E- 7g} if v E- 7g, 
g T9 if vX T g. N 

1.4. Fact. ,u(UV T, V) = 1. * 
1.5. DEFINITION. Ag = 2- Uv T1,v. 
1.6. Fact. For every v there exists m(v) such that (V'n)(fT9,,(n) - g(n) - m(v)). 
PROOF. If v ? Tg then m(v) = 0. If v e Tg then use 1.2(iii). U 
1.7. LEMMA. If <ga: a e I> is a sequence of functions such that for every a e I, ga 

satisfies the conditions of 1.2, and i(UaeI Ag.) = 0, then there exists g. w -+ w such 
that for every e I, there exists n ec w satisfying g,(m) < g(m) for every m ? n. 

PROOF. By hypothesis there exists a measure zero set A such that Ag c A for 
every a e I. Therefore there exists perfect trees Tn c `'2 such that (T7) = 1 - 1/n 
and A = `2 -Un Tn. From this we obtain 

(02 -U 1g., v : '02 -U Tn; 
v n 

hence U Tn ' Uv 1g.,v and thus T3 c Uv 1g. v, which implies that there exists 
v = vc(a) e `<2 such that T[17 c 7g v (if not we can build a branch of T3 which is not 
in UV 1lgo). 

Therefore T[1'1 c TlV. By 1.1(a) and 1.6 we have 

f ga - m(v). 

Now let f dominate {fT[l + m(v): il e T3 and v e w'2}. Then f* ? ga for every 
a e I. (This simplified version of our original proof was suggested by the referee.) 

. 
1.8. REMARK. The reader may obtain easily, using 1.7, the following result of 

A. Miller: "Additivity of measure implies dominating reals". U 

?2. Technology for categoricity. 
2.0. DEFINITION. Let f: -) -+ ) be increasing. We define Af c 102 by 

Af = {x e (2: (]mVn ? m)(I{i e f(n): x(i) = 1}1 ? n)}. 

2.1. Claim. Af is a meager set. U 
2.2. LEMMA. Let <Af: f e F> be given. Then UfeF Af is a meager set iff there 

exists g: ws -+ ) such that for every f e F, f <* g. 
PROOF. (-+) Suppose that Uf eF Af is a meager set. Then there exists < Ti: i < wo>, a 

sequence of nowhere dense trees, such that 
(i) T c 0<2, and 
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COFINALITY OF CARDINAL INVARIANTS 723 

(ii) UfeF Af C Unix n> 
Now we define the following function g': o -* c)w. 

g'(k) = inf{l: for every q E k2 there exists v E '2 rn [q] 

such that [v] U Tj = 0}. 
j<k 

Let g be such that g(n) = g'(n) + n + 2. 
2.3. Claim. For every f E F, f <* g. 
Proof. If not, fix f E F and A c co satisfying the following conditions: 
(i) IAI = o. 
(ii) If n E A then g(n) < f(n). 
(iii) If n E A then A - (n + 1) c c - (f(n) + 1). 
Let A = ink: k < w}, nk increasing, then we define by induction Klk: k < w> 

satisfying the following conditions: 
(i) Ilk e f (nk)2 

(ii) Ilk O Ui<nki T. 
(iii) For every f(i) < nk, I Ii e f(i): fk(j) = 1il ? i. 

(iV) lk C nk+ I 
The induction. Suppose we have ilk satisfying (i), (ii), (iii), and (iv). We define 

rk e nk+12 o [Ilk] and, for every i E nk+1 - nk, (i) = 1. Then ik satisfies (iii) for 
f(i) < nk+ I We define ik e g'(nk + )2 n [qk] such that 

lk'; U Tie 
i<nk + 1 

Now we define flk+1 ef(kn+1)2 r [k] satisfying fk+(l ) = 1 for every ie f(nk+l) 

- g'(nk+ J). Then clearly Ilk+ 1 satisfies (i), (ii), and (iv); but g'(nk+ 1) + nk+ I + 2 < 
f(nk+l), and so fk+1 satisfies also (iii). Let x = UkIk; then xe Af - Ui< , a 
contradiction. U 

The other direction is easy. This completes the proof of the lemma. X 

REMARK. This lemma was proved independently by T. Bartoszynski. N 

?3. Technology for forcing. 
3.0. DEFINITION. F = <gi: i E I> is a strong scale iff gi E OWW) for every i E I, and for 

every f E 'a), I i E I: gi <* f }l < No and III > No. U 
3.1. Fact. If F e V is a strong scale and r is a random real over V, then V[r] I= 

"F is a strong scale". 
Proof. Use the wo-)bounding of random real forcing. U 
3.2. Fact. If F E V is a strong scale and r is a Cohen real over V, then V[r] I= "F is a 

strong scale". 
Proof. Let f be a Cohen-name for a function from co to w. For every q E Cohen, we 

define 

fq(n) = Min{k: qJ"f(n) # k"}. 

Now the result follows from the following 
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724 TOMEK BARTOSZYNSKI, JAIME I. IHODA, AND SAHARON SHELAH 

3.3. Claim. For every i E I, 

(Vq E Cohen)(gi 4*fq) (1k "gi g f 

3.4. THEOREM. Suppose <Pa; Qa: a < 6> is a finite support iterated forcing notion 
and F is a strong scale in V, and 

(a) for every a < A, Pa l= "c.c.c.", while 
(b) for every a < I, I p"F is a strong scale". 

Then JFP- is a strong scale". 
PROOF. Let f be a PR-name for a function from w to w; without loss of generality 

6 = co. For every i < co we define a Pi-name fi: For every Gi c Pi generic over V 

fi[Gi](n) = min{k: (3p E P,)(p r i E Gi and p Jkf(n) = k}. 

Now we have JFp- "fi E 'ao". Therefore 

(*) 1F-k "(3J ' I)(IJI = No and a E I-J ga i 

Hence there exists a Pi-name Ji witnessing (*). Set Ji = {x E I: 4-fp "a 0 Ji"}; then 
clearly I JiI < No, and J = Ui < W Ji is also countable, and for every a e I - J we have 
[-PI ga h f ", proving the lemma. U 

?4. The first model. 
4.0. LEMMA. Let V be a model of ZFC. Let P be the forcing notion adding N,, 

Cohen reals. (Without loss of generality each Cohen real is a function from co to w.) Let 
G c P be generic over V, and let <gi: i < w1> E V[G] be w1 Cohen reals from the 
generic object. Then 

V[G] 1 "<gi: i < w1> is a strong scale". 

PROOF. Well known. a 

4.1. LEMMA. Let Q = <Pa; Qa: a < w-2> be a finite support iteration satisfying 
(i) if a is even then JF-P. "Q, is a Cohen real forcing", and 
(ii) if a is odd then Jkp. "Q, is random real forcing". 
Let P, G be as in 4.0, and V l= CH, and let H be P(2-generic over V[G]. Then the 

following facts hold in V[G] [H]. 
(a) 2`o - (,, 
(b) KB = = X2 (for measure). 
(c) KB = KU = X2 (for categoricity). 
(d) KC = N*-, (for measure). 

(e) KC = , (for categoricity). 
PROOF. (a) Easy. (b) Use the w-)2 Cohen reals of PCJ,2 for KB-and the w-)2 random reals 

for KU. (C) Use the 0)2 random reals of P012 for KB and the w-)2 Cohen reals for KU. 
(d) This clearly follows from ??1 and 3 and 20 = - , (see (d)). (e) Clearly KC < N1. 
If KC < NO,25 then there exists <gi: i < wc1> c G such that Ui<(,1 Agj is meager; but 
this implies that <gi: i < 1> is not a strong scale (by ?2), a contradiction with-?3. 

. 

4.2. REMARK. As the referee remarked, (d) follows from (e), and for (e) it is (by 
Cichon's diagram) enough to prove d ? No,,, by 4.0. N 

This content downloaded from 128.235.251.160 on Fri, 19 Dec 2014 19:04:44 PM
All use subject to JSTOR Terms and Conditions

Sh:348

http://www.jstor.org/page/info/about/policies/terms.jsp


COFINALITY OF CARDINAL INVARIANTS 725 

?5. The second model. In this section we will construct a model in which Kc(S) 
=N,- and KC(Xi)= i1 )2. 

We use the following two theorems characterizing cardinals Kc(y) and Kc(Xk) 
which were proved independently by A. Miller, D. Fremlin, and T. Bartoszynski, 
and probably many others. 

5.1. THEOREM. Kc(y) is the smallest cardinal k such that there exists a family 
{In; a < k, n < w} satisfying the following conditions: 

a) In a c), II'l < n for a < k, n < c). 
b) Vf e wa'1x < k Vn f(n) E In(n). * 
The proof of this theorem is implicit in [Bal] and [F]. 
5.2. THEOREM. Kc(X/) = min{Ku(dk), d}, where d is the cardinality of the smallest 

family of functions in cage which dominates Wl)'. (See [Ba2].) * 
Let V be a model of ZFC and B a notion of forcing which adds N., random 

reals. Let0D-,2 be the finite support iteration of r-centered notion of forcing which 
adds dominating reals. Let G be generic for B * .D)2 Then the following is true' in 

V[G]: 
Claim 1. KC(X#) = Ot2 

Proof. Obviously in V[G] there is a family of functions in WoW of cardinality w-)2. 

which dominates WoW. There is also a nonmeager set of cardinality w-)2, since the set of 
generic Cohen reals added by C.2 is an wO2-Luzin set. This shows that Kc(Xkf) < CO2* 

To show that Kc(Xk) ? wo2 it is enough to notice that every subset of R of 
cardinality, w1 in V[G] is meager. N 

Claim 2. Kc(S) = No. 
Proof. Suppose not. Then by 5.1 there exists A < N. and a family {In: a < A 

satisfying conditions a) and b) of 5.1. 
We will find a function f E cow such that f(n) < 2n for all n E co, and such that 

Vca < A)Snf(n) 0 Ia, which will give a contradiction. 
Define IR = Ia n 2n for n < co, a < A. 
The following is well known. 
Claim. For every f E wo_ n V[G] and g E V[G n B] n co@, if Vnf(n) < g(n) then 

there exists h E V[G n B] n a)' such that ]inf(n) = h(n). 
Proof. This is due to the fact that the forcing D is a-centered. N 
Let f,(n) = IR for n < co, a < A. 
Functions fa for a < A correspond to bounded functions in l)@'. Therefore the 

above claim is applicable and we get, for every a < A, {In1: n E co} E V[G n B] such 
that 

(*) 3YinZn = Ian. 

Without losing generality we can assume that Z' c 2n and 13n1 < n for all a < i, 
n < co. This is because if Z' does not satisfy one of those conditions we are sure 
that x # I=a, so we can change it without affecting (*). Now let X = Hl 2n 
and y = Hk1 A where an is a measure on 2n such that Yn({i}) = 1/2n for i E 2 . 
Notice that the space (X, j) is essentially the same as the Cantor set with Lebesgue 
measure. Let W/4 = {x e X: Vlnx(n) 0 Sa} for a < A. Since 

Ma = u n {X X: x(m) o 3z} 
new men 
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726 TOMEK BARTOSZYNSKI, JAIME I. IHODA, AND SAHARON SHELAH 

we have 

,4ctj) 2 f I 2 no-y 1 for a < A. 

Therefore V[G n B] I= n< /a #0 0, since V[G n B] I= KB(fl) = (N., ran- 
dom reals are added). 

Let x e (a4?4a. It means that Vot < A Vln x(n) 0 3x, and by (*) 

Vot < A H'n x(n) 0 IPn 

Thus by the definition of Ina, a < A, we get Vca < A 3'n x(n) 0 IP, which finishes the 
proof. U 
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