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Abstract

The following results are proved:
(a) In a model obtained by adding ℵ2 Cohen reals, there is always a c.c.c. complete Boolean

algebra without the weak Freese-Nation property.
(b) Modulo the consistency strength of a supercompact cardinal, the existence of a c.c.c.

complete Boolean algebra without the weak Freese-Nation property is consistent with GCH.
(c) If a weak form of � and cof ([�]ℵ0 ;⊆) = �+ hold for each �¿ cf (�) = !, then the

weak Freese-Nation property of 〈P(!);⊆〉 is equivalent to the weak Freese-Nation property
of any of C(�) or R(�) for uncountable �.

(d) Modulo the consistency of (ℵ!+1;ℵ!) � (ℵ1;ℵ0), it is consistent with GCH that C(ℵ!)
does not have the weak Freese-Nation property and hence the assertion in (c) does not hold,
and also that adding ℵ! Cohen reals destroys the weak Freese-Nation property of 〈P(!); ⊆〉.
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1. Introduction

A quasi-ordering 〈P; 6 〉 is said to have the weak Freese-Nation property if there
is a mapping f :P→ [P]6ℵ0 such that:

For any p; q∈P with p6 q there is r ∈f(p) ∩ f(q) suchthat p6 r6 q:

A mapping f as above is called a weak Freese-Nation mapping on P.
The weak Freese-Nation property was introduced in Chapter 4 of [8] as a weakening

of a notion of almost freeness of Boolean algebras.
The weak Freese-Nation property of a quasi-ordering P can be characterized in terms

of �-suborderings: a subordering Q of P is said to be a �-subordering of P (notation:
Q6� P) if the following holds: for every p∈P there are a countable co:nal subset
U of Q �p and a countable coinitial subset V of Q ↑p.

Proposition 1.1 (see Fuchino et al: [4]). A quasi-ordering P has the weak Freese-
Nation property if and only if {Q∈ [P]ℵ1 :Q6� P} contains a club subset of [P]ℵ1 .

Note that various notions of almost freeness of Boolean algebras can be also char-
acterized in similar ways in terms of largeness of the family of subalgebras which are
“nice” in some sense (e.g. relatively complete subalgebras, free factor etc., see [8]).

In Ref. [4], it was shown that 〈P(!1); ⊆〉 does not have the weak Freese-Nation
property. If a complete Boolean algebra B does not have the c.c.c., then 〈P(!1); ⊆〉
can be completely embedded into B. Hence, in this case, B cannot have the weak
Freese-Nation property (see Proposition 1.3(1)).

It is easily seen that every quasi-ordering of cardinality 6ℵ1 has the weak Freese-
Nation property (see e.g. [4]). It follows that, under CH, 〈P(!); ⊆〉 has the weak
Freese-Nation property.

Similarly to the situation with P(!1) and non-c.c.c. complete Boolean algebras,
if 〈P(!); ⊆〉 does not have the weak Freese-Nation property, then no in:nite c.c.c.
complete Boolean algebra (and hence no in:nite complete Boolean algebra at all) can
have the weak Freese-Nation property.

To simplify the formulation of some of the results below, let us say that a model
of set-theory is neat if cof ([�]!; ⊆ ) = �+ for each �¿ cf (�) =! and the very weak
variant of � introduced in [5] (see the end of Section 4) holds.
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In Refs. [4] and [5], it was shown that if CH holds, then every c.c.c. complete
Boolean algebra of size ¡ℵ! has the weak Freese-Nation property; and in a neat
model, CH implies that every c.c.c. complete Boolean algebra has the weak Freese-
Nation property. The following questions remained unanswered in [5]:

Question 1 (Fuchino and Soukup [5; Problem 5]). Are the following equivalent?
(a) 〈P(!); ⊆〉 has the weak Freese-Nation property;
(b) every c.c.c. complete Boolean algebra has the weak Freese-Nation property.

Question 2 (Fuchino and Soukup [5; Problem 2]). Does ZFC+GCH imply that every
c.c.c. complete Boolean algebra has the weak Freese-Nation property ?

We give here negative answers to these questions: see Corollary 3.4 for question 1
and Theorem 4.2 for question 2. By the result in [5] mentioned above, we need the
consistency strength of some large cardinal to give a negative answer to question 2.
Indeed, the ground model V in the negative solution to this question is obtained by
starting from a model of ZFC with a supercompact cardinal.

In Ref. [4] it was shown that if CH holds, then adding less than ℵ! many Cohen reals
preserve the weak Freese-Nation property of 〈P(!); ⊆〉. By Ref. [5], in the generic
extension obtained by adding any number of Cohen reals to a neat model satisfying
CH, not only 〈P(!); ⊆〉 but every tame c.c.c. complete Boolean algebra has the weak
Freese-Nation property. Here, letting P = Fn(�; 2) ( = the standard p.o. for adding �
Cohen reals), a Boolean algebra B in a P-generic extension is said to be tame, if there
is a P-name 6̇ of a partial ordering of B and a mapping t :B→ [�]ℵ0 in V such that,
for every p∈P and x, y∈B, if p �P “x 6̇ y”, then p � (t(x)∪ t(y)) �P “x 6̇ y” (we
assume here without loss of generality that B is chosen so that its underlying set is a
ground model set).

These results suggest the following questions posed in [5]:

Question 3 (Fuchino and Soukup [5; Problem 3]). Assume that V [G] is a model ob-
tained by adding Cohen reals to a model of ZFC + CH. Is it true that P(!) has the
weak Freese-Nation property in V [G] ?

Question 4 (Fuchino and Soukup [5; Problem 4]). Assume that V [G] is a model ob-
tained by adding ℵ2 Cohen reals to a model of ZFC + CH. Is it true that every c.c.c.
complete Boolean algebra (not just the tame ones) has the weak Freese-Nation prop-
erty in V [G]?

The results of the present paper answer these questions in the negative: see Theorem
6.1 for question 3 and Corollary 3:3 for question 4.

By the result in Ref. [5] mentioned above, we need the consistency strength of
some large cardinal for a negative solution of Question 3. The ground model V in the
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negative solution of this problem given in Theorem 6.1 is obtained by starting from a
model of ZFC with a large cardinal slightly stronger than a huge cardinal.

After the negative solution of Problem 5 in [5] (listed here as Question 1), the
following question still remains:

Problem 1. For which Boolean algebras B, is the weak Freese-Nation property of B
equivalent with the weak Freese-Nation property of 〈P(!); ⊆〉?

The following trivial lemma can also be seen in connection with this problem:

Lemma 1.2. The following are equivalent:
(a) 〈P(!); ⊆〉 has the weak Freese-Nation property;
(b) 〈P(!); ⊆ ∗〉 has the weak Freese-Nation property;
(c) 〈P(!)=fin; ⊆ ∗〉 has the weak Freese-Nation property;
(d) 〈!!; 6 〉 has the weak Freese-Nation property;
(e) 〈!!; 6 ∗〉 has the weak Freese-Nation property.
(f ) 〈!R; 6 〉 has the weak Freese-Nation property.

Koppelberg [10] pointed out that the weak Freese-Nation property of the Cohen alge-
bra C(!) is equivalent to the weak Freese-Nation property of 〈P(!); ⊆〉. In the present
paper, we show that it is also equivalent to the weak Freese-Nation property of the mea-
sure algebra R(!) (Proposition 5.1) and moreover, in a neat model, also to the weak
Freese-Nation property of C(�) and=or R(�) for any �¿ℵ0 (Corollary 5.4). Here, we
denote by C(�) and R(�) the c.c.c. complete Boolean algebras Borel(�2)=meager(�2)
and Borel(�2)=null(�2), respectively. We show that some extra set-theoretic assump-
tions are really necessary in Corollary 5.4 by constructing a model of GCH and the
negation of weak Freese-Nation property of C(ℵ!) starting from a model of GCH and
Chang’s conjecture for ℵ!.

Assume that 〈P!; Q̇! : !¡!2〉 is a :nite support iteration such that the forcing with
Q̇! just adds a real to VP! . Then, as Geschke showed in Ref. [7], if this iteration
preserves the weak Freese-Nation property of P(!), then in many cases, we can con-
clude that for stationarily many ! the partially ordered set Q̇! just adds one Cohen
real. On the other hand, in any model obtained by adding ¿ℵ2 Cohen reals, there is
a c.c.c. complete Boolean algebra B without the weak Freese-Nation property (Corol-
lary 3:3). So there is no easy way to blow up the continuum while preserving the weak
Freese-Nation property of all c.c.c. complete Boolean algebras. This suggests that the
following question is quite a reasonable one:

Problem 2. Does CH follow from the assumption that every c.c.c. complete Boolean
algebra has the weak Freese-Nation property?

If b¿ℵ1 or if there is an ℵ2-Luzin-gap, then 〈P(!); ⊆〉 does not have the weak
Freese-Nation property (see [4] and [5]). The following question ([5, Problem 1]) was
raised against this background:
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Problem 3. Suppose that P(!) does not have any increasing chain of length ¿!2

with respect to ⊆∗ and that there is no ℵ2-Luzin gap. Does it follow that P(!) has
the weak Freese-Nation property ?

This can be solved negatively using results from [2] and [7]: Let V be a model of
CH and V [G] its generic extension by adding many random reals side by side. Using
results from [2] we see that, in V [G], there are neither increasing !2 chains in P(!)
with respect to ⊆∗ nor ℵ2-Luzin gaps. On the other hand Geschke [7] showed that, in
V [G], 〈P(!); ⊆〉 does not have the weak Freese-Nation property.

Consequences of the weak Freese-Nation property of 〈P(!); ⊆〉 were studied in
[10] and [6]. In the latter paper it was shown that a set-theoretic universe with the
weak Freese-Nation property of 〈P(!); ⊆〉 looks quite similar to a Cohen model. In
particular, under the weak Freese-Nation property of 〈P(!); ⊆〉, all cardinal invariants
which appear in [1] take the same value as in a Cohen model with the same size of 2ℵ0 .

Problem 4. Find a combinatorial (T1
1) characterization of the weak Freese-Nation

property of P(!).

The weak Freese-Nation property of a quasi-ordering 〈P; 6 〉 is actually a property of
the corresponding partial ordering 〈 UP; 6 〉 obtained as the quotient structure of 〈P; 6 〉
with respect to the equivalence relation “x6y∧y6 x”: 〈P; 6 〉 has the weak Freese-
Nation property if and only if 〈P; 6 〉 does (the :rst author thanks David Fremlin for
pointing out this fact).

The following criteria of the weak Freese-Nation property are used in the later
sections. A partial ordering Q is said to be a retract of a partial ordering P if there
are order preserving mappings i :Q→P and j :P→Q such that j ◦ i= idQ.

Q is said to be a �-subordering of P (notation: Q6� P) if, for every p∈P,
Q � p= {q∈Q : q6p} has a countable co:nal subset and Q ↑p= {q∈Q : q¿p}
has a countable coinitial subset. Note that if C is a complete subalgebra of a complete
Boolean algebra B (notation: C6c B) or a countable union of complete subalgebras of
B, then it follows that C6� B.

Proposition 1.3. (1) (Lemma 2:7 in [4]) If Q is a retract of P and P has the weak
Freese-Nation property then Q has the weak Freese-Nation property.

(2) Suppose that Q is a complete Boolean algebra and there is a strictly order-
preserving embedding f of Q into P (i.e. f preserves ordering and incomparability).
If P has the weak Freese-Nation property then Q also has the weak Freese-Nation
property.

(3) (Lemma 2:3 (a) in [4]) If Q6� P and P has the weak Freese-Nation property,
then Q also has the weak Freese-Nation property.

(4) (Lemma 2:6 in [4]) If P!, !¡& is an increasing sequence of partial order-
ings with the weak Freese-Nation property such that P!6� P!+1 for every !¡& and
P' =

⋃
!¡' P! for all '¡& with cf (')¿!, then P =

⋃
!¡& P! also has the weak Freese-

Nation property.
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Proposition 1.3 (2) follows easily form Proposition 1.3 (1): the mapping g :P→Q
de:ned by g(p) =

∑{q∈Q :f(q)6p} for p∈P witnesses that Q is a retract of P.

2. The partial ordering PS

In this section we introduce a construction of partial orderings PS and Boolean
algebras BS which will be used in the following Sections 3 and 4. For S ⊆ � and an
indexed family S= 〈S! : !∈ S〉 of subsets of �, let

PS = {xi : i∈ �} ∪ {y! : !∈ S};

where the xis and y!s are pairwise distinct, and let 6S be the partial ordering on PS

de:ned by

p6S q ⇔ p = q or

p = xi and q=y! for some i ∈ � and !∈ S with i∈ S!:

Let BS be the Boolean algebra generated freely from PS except the relation 6S. Note
that the identity map on PS canonically induces a strictly order-preserving embedding
of PS into BS.

Proposition 2.1. Suppose that cf (�)¿!2, S ⊆ � is stationary such that S ⊆{!¡� :
cf (!)¿!1 and S= {S! : !∈ S} is such that S! is a co>nal subset of ! for each !∈ S.
If PS is embedded into a partial ordering P by a strictly order-preserving mapping
then P does not have the weak Freese-Nation property. In particular, BS and its
completion do not have the weak Freese-Nation property.

Proof. Without loss of generality, we may assume that PS is a subordering of P.
Assume to the contrary that there is a weak Freese-Nation mapping f :P→ [P]6ℵ0 .
Let

C = {) ¡ � :∀* ¡ )∀p∈f(x*)

[∃!∈ S[x*6p6y!] → ∃!′ ∈ S ∩ )[x*6p6y!′ ]]}:

Then C is a club subset of �. Let !∈C ∩ S and let

A= {p∈f(y!) :∃*∈ S![p∈f(x*) ∧ x*6p6y!]}:

Since !∈C, for each p∈A there is !p¡! such that p6y!p . Let !∗ = sup{!p :p∈A}.
Since A is countable we have !∗¡!. Let ,∈ S!\!∗. Since x,6y!, there is a p∈A
such that x,6p6y!. Hence x,6y!p . But this is impossible since !p¡!∗6 ,.

Sh:712



S. Fuchino et al. / Annals of Pure and Applied Logic 110 (2001) 89–105 95

3. Cohen models

Consider the following principle:

(**) There is a sequence 〈S! : !∈Lim(!2)〉 such that each S! is a co:nal subset of !
and for any pairwise disjoint 〈x, : ,¡!1〉 with x, ∈ [!2]¡ℵ0 for ,¡!1, there are
,0¡,1¡!1 such that x,0 ∩ S! = ∅ for all !∈ x,1 ∩Lim(!2) and that x,1 ∩ S! = ∅
for all !∈ x,0 ∩Lim(!2).

Proposition 3.1. Let P = Fn(!2; 2). Then �P “(∗∗)”.

Proof. Without loss of generality we may assume P = Fn(
⋃

!∈ Lim(!2) !×{!}; 2). For
!∈Lim(!2), let Ṡ! be a P-name such that �P “Ṡ! = {,∈ ! : ġ(,; !) = 1}”; where ġ is
the canonical name for the generic function. By genericity, �P “Ṡ! is co:nal in !” for
every !∈Lim(!2). Let Ṡ be a P-name such that �P “Ṡ = 〈Ṡ! : !∈Lim(!2)〉”.

To show that Ṡ is forced to satisfy the property in (∗∗), let 〈ẋ, : ,¡!1〉 be a P-
name of a sequence of pairwise disjoint :nite subsets of !2. For each ,¡!1, let p,

and x, ∈ [!2]¡ℵ0 be such that p, �P “ẋ, = x,”. By thinning out the index set !1,
we may assume without loss of generality that dom(p,), ,¡!1 form a --system with
the root d and p, �d, ,¡!1 are all equal to the same p∈P. Since p,, ,¡!1 are
then pairwise compatible, x,, ,¡!1 are pairwise disjoint. Further, we may assume
that s,, ,¡!1 form a --system with the root s where s, = {' : 〈'; !〉 ∈ dom(p,) for
some !∈Lim(!2)}. Note that x,, ,¡!1 are pairwise disjoint since p,’s are pairwise
compatible.

Let ,0¡,1¡!1 be such that x,0 ∩ s= ∅, x,1 ∩ s= ∅, x,0 ∩ s,1 = ∅ and x,1 ∩ s,0 = ∅.
To take such ,0 and ,1, :rst :x a ,0 such that x,0 ∩ s= ∅. This is possible since s is
:nite and x,’s are pairwise disjoint. By the same argument we can :nd in:nitely many
,’s such that x,∩(s∪ s,0 ) = ∅. Now for such ,’s, since s,\s are pairwise disjoint, there
are in:nitely may ,’s among them with x,0 ∩ s, = ∅. Let ,1 be one of such ,’s.

Let

p∗ = p,0 ∪p,1 ∪ {〈〈,; !〉; 0〉 : ,∈ x,0 ; !∈ x,1 ∩ Lim(!2)}
∪{〈〈,; !〉; 0〉 : ,∈ x,1 ; !∈ x,0 ∩ Lim(!2)}

Then p∗ ∈P. Clearly p∗ �P “ẋ,0 ∩ Ṡ! = ∅” for all !∈ ẋ,1 ∩Lim(!2) and p∗ �P

“ẋ,1 ∩ Ṡ! = ∅” for all !∈ ẋ,0 ∩Lim(!2).

Proposition 3.2. Suppose that 〈S! : !∈Lim(!2)〉 is as in (∗∗). Let S = {!¡!2 : cf (!)
=!1} and S= 〈S! : !∈ S〉. Then BS satis>es the c.c.c.

Proof. Otherwise we can :nd I! ∈ [!2]¡ℵ0 , J! ∈ [S]¡ℵ0 for !¡!1 and t(!; i), u(!; ))∈
{+1;−1} for each i∈ I!, )∈ J! and !¡!1 such that

z! =
∏
i∈ I!

t(!; i) xi ·
∏
)∈ J!

u(!; ))y); ! ¡ !1

form a pairwise disjoint family of elements of BS+.
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By a --system argument, we may assume that I! ∪ J!, !¡!1 are pairwise dis-
joint. Applying (∗∗) to 〈I! ∪ J! : !¡!1〉, we :nd ,0¡,1¡!1 such that I,0 ∩ S) = ∅ for
all )∈ J,1 and that I,1 ∩ S) = ∅ for all )∈ J,0 . By de:nition of BS, it follows that
z,0 · z,1 �= 0. This is a contradiction.

Theorem 3.3. In a Cohen model (i.e. any model obtained by adding ¿ℵ2 Cohen
reals) there is a c.c.c. complete Boolean algebra B of density ℵ2 without the weak
Freese-Nation property.

Proof. By Proposition 3.1, (∗∗) holds in a Cohen model. Hence BS as in Proposi-
tion 3.2 satis:es the c.c.c. By Proposition 2.1, the completion of BS does not have the
weak Freese-Nation property.

Corollary 3.4. The weak Freese-Nation property of 〈P(!);⊆〉 does not imply the
weak Freese-Nation property of all c.c.c. complete Boolean algebras.

Proof. If we start from a model of CH and add ℵ2 Cohen reals, then 〈P(!);⊆〉 has
the weak Freese-Nation property in the resulting model (see e.g. [5]). On the other
hand, by Theorem 3.3, there is a c.c.c. complete Boolean algebra without the weak
Freese-Nation property in such a model.

Under CH, every c.c.c. complete Boolean algebra of size ℵ2 has the weak Freese-
Nation property ([4]). Hence it follows from the result above that CH implies the
negation of the principle (∗∗). This can be also seen directly as follows:

Proposition 3.5. CH implies ¬(∗∗).

Proof. Let 〈S! : !∈Lim(!2)〉 be any sequence such that each S! is a co:nal subset
of ! for !∈Lim(!2). To show that 〈S! : !∈Lim(!2)〉 is not as in (∗∗), let 2 be
suWciently large and let M ≺H(2) be such that |M |=ℵ1; 〈S! : !∈Lim(!2)〉 ∈M ;
!1 ⊆M ; !2 ∩M ∈!2 and, letting '=!2 ∩M , cf (') =!1. By CH—and since !1 ⊆M
and cf (') =!1, we have [']ℵ0 ⊆M .

Now, by induction, choose distinct !0
,, !1

,¡' for ,¡!1 such that (1) !0
, ∈ S',

and (2) {!0
) : )¡,}⊆ S!1

,
for all ,¡!1. (2) is possible: since {!0

) : )¡,}⊆ S' and

{!0
) : )¡,}∈M , we have

M |= ∃4¡!2[sup{!1
) : ) ¡ ,} ¡ 4 ∧ {!0

) : ) ¡ ,}⊆ S4]

by elementarity. Let x, = {!0
,; !

1
,} for ,¡!1. Then there are no ,0¡,1¡!1 such that

x,0 ∩ S! = ∅ for all !∈ x,1 ∩Lim(!2).
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4. The weak Freese-Nation property of c.c.c. complete Boolean algebras under GCH

In Ref. [5] it is proved that, assuming CH and a weak form of the square principle
at singular cardinals of co:nality !, every c.c.c. complete Boolean algebra has the
weak Freese-Nation property. In this section we show that even GCH does not suWce
for this result.

Hajnal et al. [9] showed that, starting from a model with a supercompact cardinal,
a model of GCH and the following principle can be constructed:

(***) There are a stationary S ⊆{!¡!!+1 : cf (!) =!1} and a family S= 〈S! : !∈ S〉
such that each S! is a co:nal subset of ! of ordertype !1 and that, for all distinct
!, ,∈ S, S! ∩ S, is :nite.

Proposition 4.1. Suppose that S= 〈S! : !∈ S〉 is as in (∗ ∗ ∗). Then BS satis>es
the c.c.c.

Proof. Otherwise we can :nd I! ∈ [!!+1]¡ℵ0 , J! ∈ [S]¡ℵ0 , !¡!1 and t(!; i), u(!; ))∈
{+1;−1} for each !¡!1, i∈ I! and )∈ J! such that

z! =
∏
i∈ I!

t(!; i) xi ·
∏
)∈ J!

u(!; ))y); ! ¡ !1

form a pairwise disjoint family of elements of B+
S.

By a --system argument, we may assume that I! ∪ J!, !¡!1 are pairwise disjoint
and each I! has the same size, say n.

For !¡,¡!1, since z! · z, = 0, either (I) there is *∈ J! such that I, ∩ S* �= ∅ or else
(II) there is )∈ J, such that I! ∩ S) �= ∅. If (I) holds then let us say that 〈!; ,〉 is of
type (I).

Now, one of the following two cases holds. We show that both of them lead to a
contradiction.
Case 1: There is an in:nite subset S of ! such that for every ,∈!1\!, {k ∈ S : 〈k; ,〉

is of type (I)} is co:nite in S. In this case, by thinning out the index set !1, we may
assume that, for any k ∈! and ,∈!1\!, 〈k; ,〉 is of type (1). For all ,∈!1\!,
since | I, |= n, there are 06 i0(,)¡i1(,)¡n + 1 such that I∗, = I, ∩ S!0(,) ∩ S!1(,) �= ∅
for some !k(,)∈ Jik (,) for k = 0; 1 by the pigeonhole principle. Hence we can :nd an
in:nite X ⊆!1\!, 06 i0¡i1¡n+1 and !0, !1 ∈!1, !0 �= !1 such that !0(,) = !0 and
!1(,) = !1 for all ,∈X . But then

⋃
,∈ X I∗, ⊆ Si0 ∩ Si1 . Since the set on the left side is

in:nite as a disjoint union of pairwise disjoint non-empty sets, this is a contradiction
to (∗∗∗).
Case 2: For any in:nite subset S ⊆!, there is ,∈!1\! such that for in:nitely

many k ∈ S, 〈k; ,〉 is not of type (1). In this case, by thinning out the :rst ! elements
of the index set !1, we may assume that for each k ∈!, there is )(k)∈ J! such that
Ik ∩ S)(k) �= ∅. Note that J! is :nite. So by thinning out further the :rst ! elements of
the index set !1, we may assume that there is )0 ∈ J! such that Ik ∩ S)0 �= ∅ for every
k¡!. Similarly we may also assume that there are )i ∈ J!+i for 16 i6 n such that
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Ik ∩ S)i �= ∅ for every k¡!. Then for each k¡!, we can :nd i0(k)¡i1(k)6 n such that
I∗k = Ik ∩ S)i0(k)

∩ S)i1(k)
�= ∅ by the pigeonhole principle. Since there are only n(n− 1)=2

possibilities of i0(k)¡i1(k)6 n, there are i0¡i16 n and an in:nite set X ⊆! such
that for every k ∈X , i0(k) = i0 and i1(k) = i1. It follows that S)i0 ∩ S)i1 ⊇

⋃
k ∈ X I∗k . As

S)i0 ∩ S)i1 is :nite, while
⋃

k ∈ X I∗k is in:nite as a union of in:nitely many pairwise
disjoint non-empty sets, this is a contradiction.

Theorem 4.2. It is consistent with GCH (modulo the consistency strength of a super-
compact cardinal) that there is a c.c.c. complete Boolean algebra of size ℵ!+1 without
the weak Freese-Nation property.

Proof. Let S be a family as in (∗∗∗). By Proposition 4.1, BS satis:es the c.c.c.
Hence the completion B of BS is a c.c.c. complete Boolean algebra of size ℵ!+1. By
Proposition 2.1, B does not have the weak Freese-Nation property.

The following weak form of the square principle was introduced in Ref. [5]. ∗∗∗
ℵ1 ; �

is the following assertion: there exists a sequence 〈C! : !¡�+〉 and a club set D⊆ �+

such that for !∈D with cf (!)¿!1

(y1) C! ⊆ !, C! is unbounded in !;
(y2) [!]¡!1 ∩{C!′ : !′¡!} dominates [C!]¡!1 (with respect to ⊆).
It can be easily seen that ∗∗∗

ℵ1 ; � follows from the very weak square principle for � by
Foreman and Magidor [3] (see Ref. [5]).

Proposition 4.3. ∗∗∗
ℵ1 ; � together with CH implies the negation of (∗∗∗).

Proof. In Ref. [5] it is proved that under CH and ∗∗∗
ℵ1 ;ℵ!

, every c.c.c. complete Boolean
algebra of cardinality ℵ!+1 has the weak Freese-Nation property. Hence the assertion
follows from the proof of Theorem 4.2.

By Proposition 4.3, we see that the consistency strength of some large cardinal is
involved in GCH + (∗∗∗).

5. The weak Freese-Nation property of c.c.c. complete Boolean algebras under very
weak square principles

In this section, we turn to the question for which c.c.c. complete Boolean algebras B
the weak Freese-Nation property of B is equivalent to the weak Freese-Nation property
of 〈P(!);⊆〉. Lemma 1.2 was already an easy observation in ZFC in this direction.
Koppelberg pointed out in Ref. [10] that the Cohen algebra C(!) is such a Boolean
algebra.

Note that 〈P(!);⊆〉 can be embedded in every complete Boolean algebra. Hence it
follows from Proposition 1.3(2) that, if 〈P(!);⊆〉 does not have the weak
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Freese-Nation property then no complete Boolean algebra can have the weak Freese-
Nation property.

Proposition 5.1. The measure algebra R(!) has the weak Freese-Nation property if
and only if 〈P(!);⊆〉 has the weak Freese-Nation property.

Proof. By the remark above and by Proposition 1.3(2) and Lemma 1.2, it is enough
to :nd a strictly order-preserving embedding of R(!) into 〈!R; 6 〉. We may replace
! by the countable set Clop(!2) where Clop(!2) denotes the clopen sets of the Cantor
space !2.

We de:ne e :R(!)→ Clop(!2)R by taking e(a)(c) = �(a∩ c) for c∈Clop(!2). Then
clearly e is an order-preserving map of R(!) into Clop(!2)R.

To show that e is strictly order-preserving, assume that �(a\b)¿0. Then there
is c∈Clop(!2) such that �((a\b)∩ c)¿�(c)=2. Then e(a)(c)¿�(c)=2¿e(b)(c), so
e(a) �6 e(b).

In a similar way, we can also show that R(!) is a retract of P(!) as a partially
ordered set though it is known that R(!) is not a retract of P(!) as a Boolean algebra:
the mapping e :R(!)→P(Clop(!2)×Q) de:ned by e(c) = {〈a; q〉 : a∈Clop(!2); q¡
�(a∩ c)} is easily seen to be a strictly order preserving embedding.

In general, the weak Freese-Nation property of C(�) or that of R(�) for arbitrary
�¿! is not equivalent with the weak Freese-Nation property of 〈P(!);⊆〉. In the next
section we shall give a model where 〈P(!);⊆〉 has the weak Freese-Nation property
while C(ℵ!) (and hence also R(ℵ!)) does not.

However the equivalence does hold if �¡ℵ! or some consequences of ¬0# are
available. To prove this, we need the following instance of Theorem 7 in [5]:

Theorem 5.2 (Theorem 7 in [5] for �=ℵ1). Suppose that �¿ cf (�) =!; cf ([9]ℵ0 ;
⊆) = 9 for co>nally many 9¡� and ∗∗∗

ℵ1 ; � holds. Then for any suAciently large
regular 2 and x∈H(2); there is a matrix 〈M!; i : !¡�+; i¡!〉 such that
(1) M!; i ≺H(2); x∈M!; i; !1 ⊆M!; i and |M!; i |¡� for all !¡�+ and i¡!;
(2) 〈M!; i : i¡!〉 is an increasing sequence for each !¡�+;
(3) If !¡�+ and cf (!)¿!1; then there is an i∗¡! such that for every i∗6 i¡!;

[M!; i]ℵ0 ∩M!; i is co>nal in 〈[M!; i]ℵ0 ;⊆〉;
(4) Let M! =

⋃
i¡! M!; i for !¡�+. Then M! ≺H(2) (by (1) and (2)). Moreover

〈M! : !¡�+〉 is continuously increasing and �+ ⊆ ⋃
!¡�+ M!.

For a complete Boolean algebra B and X ⊆B, let us denote by 〈X 〉cm
B the complete

subalgebra of B generated completely by X . The following theorem shows that in a
neat model (in the sence of Section 1) if every countably generated c.c.c. Boolean
algebra has the weak Freese-Nation property, then every c.c.c. Boolean algebra (with-
out the restriction on the size of its set of generators) has the weak Freese-Nation
property.
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Theorem 5.3. Let 9 be a cardinal. Suppose that for every �¡9 with �¿ cf (�) =!;
we have:
(i) cf ([�]ℵ0 ;⊆) = �+;
(ii) ∗∗∗

ℵ1 ; �.
Then for any c.c.c. complete Boolean algebra B with a set of complete generators
of size ¡9; B has the weak Freese-Nation property if and only if every complete
subalgebra of B generated completely by a countable subset of B has the weak
Freese-Nation property.

Proof. The “only if” part of the theorem follows from Proposition 1.3(3). The “if”
part of the theorem is proved by induction on the minimal cardinality of a subset X
of B completely generating B.

If X is countable, then there is nothing to prove. Let �= |X |¡9 and suppose that
we have the theorem for any c.c.c. complete Boolean algebra with a set of complete
generators of size ¡�.

If cf (�)¿!, let X = {x! : !¡�} and B, = 〈{x! : !¡,}〉cm
B for ,¡�. B, is a complete

subalgebra of B and hence B,6 � B for all ,¡�. By induction hypothesis, every B,,
,¡� has the weak Freese-Nation property. By the c.c.c. of B, we have B' =

⋃
,¡' B,

for all limit '¡� with cf (')¿! and B=
⋃

,¡� B,. By Proposition 1.3(4), it follows
that B has the weak Freese-Nation property.

If cf (�) =!, then there is 〈M!; i : !¡�+; i¡!〉 as in the previous theorem for x=
〈B; X 〉.

For !¡�+ and i¡!, let B!; i = 〈B∩M!; i〉cm
B and B! =

⋃
i¡! B!;i.

Claim 5.3.1. For every !¡�+; B! has the weak Freese-Nation property and B!6� B.

Proof. For every i¡!, B!; i has the weak Freese-Nation property by induction hy-
pothesis. Since B!; i is a complete subalgebra of B for every i¡! it follows that
B! =

⋃
i¡! B!; i6 � B. Also by Proposition 1.3(4) it follows that B! has the weak

Freese-Nation property.

Claim 5.3.2. If '¡�+ and cf (')¿!; then B' =
⋃

!¡' B!.

Proof. Suppose that a∈B'. Then, by the c.c.c. of B, there is an i¡! and s∈ [B∩
M'; i]ℵ0 such that a∈ 〈s〉cm

B . By (3) in Theorem 5.2, we may assume that s∈M'; i. By
(4), there is !¡' and j¡! such that s∈M!; j. It follows that s⊆M!; j and hence
a∈B!; j ⊆B!.

Claim 5.3.3. B=
⋃

!¡�+ B! .

Proof. By the last statement of (4) in Theorem 5.2 and (i), [X ]ℵ0 ∩ ⋃
!¡�+ M! is

co:nal in 〈[X ]ℵ0 ;⊆〉.
Suppose now that a∈B. Then by the c.c.c. of B, there is a countable s∈ [X ]ℵ0 such

that a∈ 〈s〉cm
B . By the remark above, we may assume that s∈ ⋃

!¡�+ M!, say s∈M!∗ ; i∗

for some !∗¡�+ and i∗¡!. Then s⊆B∩M!∗ ; i∗ and hence a∈B!∗ ; i∗ ⊆B!∗ .
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Now by Theorem 1:3(4) and the claims above, it follows that B has the weak
Freese-Nation property.

Corollary 5.4. Let 9 be as in Theorem 5:3 and !6 �¡9. Then the following are
equivalent:
(a) 〈P(!); ⊆〉 has the weak Freese-Nation property;
(b) C(�) has the weak Freese-Nation property;
(c) R(�) has the weak Freese-Nation property.

Proof. (1)⇒ (0) and (2) ⇒ (0) follow from Proposition 1.3(3).
For (0)⇒ (2) assume that 〈P(!); ⊆〉 has the weak Freese-Nation property. Since

R(�) has the set Clop(�2) of complete generators of cardinality �, it is enough by
Theorem 5.3 to show that every countably generated subalgebra of R(�) has the weak
Freese-Nation property. Let A be such an algebra. Then there is X ∈ [�]ℵ0 such that A
is a complete subalgebra of R(X ). Since R(X ) has the weak Freese-Nation property by
Proposition 5.1, it follows by Proposition 1.3(3) that A also has the weak Freese-Nation
property.

The proof of (0)⇒ (1) is similar.

Note that the conditions on 9 in Theorem 5.3 hold vacuously for 9=ℵ!. Hence we
obtain the following as a special case of the corollary above:

Corollary 5.5. The following are equivalent (in ZFC):
(a) 〈P(!); ⊆〉 has the weak Freese-Nation property;
(b) C(ℵn) has the weak Freese-Nation property for some=all n∈!;
(c) R(ℵn) has the weak Freese-Nation property for some=all n∈!.

6. Chang’s conjecture

In this section, we give the negative answer to Problem 3 mentioned in the intro-
duction (Theorem 6.1). We also show that Corollary 5.5 in the previous section is an
optimal result in ZFC (Theorem 6.2).

Theorem 6.1. Suppose that V0 is a transitive model of ZFC such that

V0 |= GCH + (ℵ!+1;ℵ!) � (ℵ1;ℵ0):

Let P be a c.c.c. partial ordering in V0 of cardinality ℵ1 adding a dominating real.
Let *∈ !! be a dominating real over V0 generically added by P and let V1 =V0[*].
Note that V1 |= GCH. In V1 let Q= Fn(ℵ!; !) and let Q̇ be a corresponding P-name.
Then we have:

V1 |=�Q “〈P(!);⊆〉 does not have the weak Freese-Nation property”:
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Proof. In the proofs of this and the next theorem, we shall denote by a dotted symbol
a name of an element in a generic extension. By the same symbol without the dot, we
denote the corresponding element in a :xed generic extension. Without further mention,
we shall identify P ∗ Q̇ names with the corresponding Q-name in V1 and vice versa.

Now toward a contradiction, assume that there is a Q-name Ḟ in V1 such that

(⊗) V1 |=�Q “Ḟ is a weak Freese-Nation mapping on 〈!!; 6 ∗〉”:

Let ’̇ be a P ∗ Q̇-name of the function ℵ! →! generically added by Q over V1. Let
V2 =V1[’]. By GCH, we can :nd in V0 a scale 〈f! : !¡ℵ!+1〉 in 〈∏n∈! ℵn; 6 ∗〉.
Without loss of generality we may assume that for every !¡ℵ!+1 and n∈!, f!(n)∈
ℵn\ℵn−1 (where we set ℵ−1 = ∅). For each !∈ℵ!+1, let g! :!→! be de:ned by

g! =’ ◦ f!:

Let 2 be suWciently large and let N≺〈H(2); ∈ 〉 be such that N contains everything
we need in the course of the proof—in particular 〈f! : !¡ℵ!+1〉 ∈N , | ℵ! ∩N |=ℵ0

and otp(ℵ!+1 ∩N ) =!1. The last two conditions are possible by the assumption of
V0 |= (ℵ!+1;ℵ!) � (ℵ1;ℵ0).

In V0, let {)n; k : k ∈!} be an enumeration of (ℵn\ℵn−1)∩N for each n∈!. Here
again, we use the convention that ℵ−1 = ∅. Let ḣ

∗
be a P ∗ Q̇-name of an element of

!! such that

�P∗Q̇ “ḣ
∗
(n) = max{’̇()n;k) : k6 *̇(n)} for all n∈!”:

Claim 6.1.1. For every !∈ℵ!+1 ∩N , �P∗Q̇ “ġ!6
∗ḣ

∗
”.

Proof. Since !∈N we have f! ∈N . Let e! :!→! be the function in V0 such that
f!(n) = )n; e!(n) for all n∈!. Since * is dominating, there is n∗ ∈! such that

V1 |= e! � (!\n∗)6 * � (!\n∗):

By de:nition of ḣ
∗
, it follows that

V2 |= g!(n) =’ ◦ f!(n) =’()n;e!(n))6 h∗(n)

for all n¿ n∗.

Let N0 =N; N1 =N0[*] and N2 =N1[’]. Then we have N2 ≺H(2)[*][’].
Let ḣl ∈N0, l∈! be P ∗ Q̇-names such that

�P∗Q̇ “{ḣl : l∈!}= Ḟ(ḣ
∗
)∩ Ṅ 2”:

For l∈!, let Sl ∈ [ℵ!]ℵ0 ∩N0 be such that, regarding ḣl as a P-name of Q̇-name,

V0 |=�P “ḣl is a Fn(Sl; !)-name”:
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This is possible since P has the c.c.c., �P “Q̇ has the c:c:c:” and by the elementarity
of N0. For each l∈!, let sl ∈

∏
n∈! ℵn ∩N0 be de:ned (in N0) by sl(0) = 0 and

sl(m) = sup Sl ∩ℵm

for m∈!\{0}. Since 〈f! : !¡ℵ!+1〉 was taken to be a scale on 〈∏n∈! ℵn; 6 ∗〉, there
is !l ∈ℵ!+1 ∩N0 for each l∈! such that sl6 ∗f!l . Since otp(ℵ!+1 ∩N0) =!1, we can
:nd an !∗ ∈ℵ!+1 ∩N0 such that sup{!l : l∈!}6 !∗.

Now, by the choice of ḣl, l∈!, the following claim together with Claim 6:1:1
contradicts to (⊗) and hence proves the theorem:

Claim 6.1.2. V1 |=�Q “ġ!∗ �6∗ḣl for all l∈!”.

Proof. Assume to the contrary that, in V1, we have

q �Q “ġ!∗ � (!\k)6 ḣl � (!\k)”

for some q∈Q and k; l∈!. We may assume that

sl � (!\k)¡f!∗ � (!\k)

and sup(dom(q))¡f!∗(m) for all m∈!\k as well. Working further in V1, let m∗ = k+1
and let q′6 q be such that

q′ �Q “ḣl(m∗) = j∗”

for some j∗ ∈!. Then q′′ = q∪ (q′ � Sl) also forces the same statement. Since f!∗(m∗)∈
ℵm∗\(sl(m∗)∪ dom(q)), we have

f!∗(m∗) =∈ dom(q′′):

Hence

q∗ = q′′ ∪ {〈f!∗(m∗); j∗ + 1〉}
is an element of Q and q∗6 q′′6 q. But

q∗ �Q “ġ!∗(m∗) = ’̇ ◦ f!∗(m∗) = j∗ + 1 ¿ j∗ = ḣl(m∗)”:

This is a contradiction.

A similar but slightly simpler proof yields the following:

Theorem 6.2. Suppose that V0; P; *; *̇; V1 are as in the previous theorem. Then

V1 |= C(ℵ!) does not have the weak Freese-Nation property:

Proof. Suppose to the contrary that F ∈V1 is a weak Freese-Nation mapping on C(ℵ!).
Let X = {x) : )¡ℵ!} be the canonical free subset of C(ℵ!) completely generating the
whole C(ℵ!). We have X ∈V0.
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Let 〈f! : !¡ℵ!+1〉 be as in the proof of the previous theorem. For n∈!, let cn = xn ·
−∑

m¡n xm. Note that {cn : n∈!} is a partition of C(ℵ!). For each !¡ℵ!+1 and n∈!,
let

b!;n =
∑
m¿n

(xf!(m) · cm):

Let 2 be suWciently large and let N ≺〈H(2);∈〉 be such that N contains everything we
need in the course of the proof, | ℵ! ∩N |=ℵ0, and otp(ℵ!+1 ∩N ) =!1. The last two
conditions are possible because of V0 |= (ℵ!+1;ℵ!)� (ℵ1;ℵ0). In V0, let {)n; k : k ∈!}
be an enumeration of (ℵn\ℵn−1)∩N for each n∈!. In V1 =V0[*] let

b∗ =
∑
n∈!


cn ·

∑
l6 *(n)

x)n;l


 :

Claim 6.2.1. For every !∈ℵ!+1 ∩N; there is n! ∈! such that b!; n! 6 b∗.

Proof. In V0, let t! ∈ !! be such that f!(n) = )n; t!(n) for all n∈!. Note that t! is well-
de:ned by f! ∈N . Since * is dominating, there is an n! ∈! such that t! � (!\n!)6 * �
(!\n!). By de:nition of b!; n and b∗, it follows that b!; n! 6 b∗.

Now, let N1 =N [*]. Note that we have N1 ≺H(2)V1 . Let 〈dl : l∈!〉 be an enumer-
ation of F(b∗)∩C(ℵ!) � b∗ ∩N1 and ḋl, l∈! be corresponding P-names. Since P is
proper, we can choose these names so that {ḋl : l∈!}⊆N .

By c.c.c. of P and elementarity of N , we can :nd Sl ∈ [ℵ!]ℵ0 ∩N for each l∈!
such that

�P “ḋl ∈ 〈{x) : )∈ Sl}〉cm
C(ℵ!)”:

For l∈!, let sl ∈
∏

n∈! ℵn ∩N be de:ned by sl(0) = 0 and

sl(m) = supℵm ∩ Sl

for m∈!\{0}. Since 〈f! : !¡ℵ!+1〉 was taken to be a scale on 〈∏n∈! ℵn; 6 ∗〉, there
is !∗l ∈ℵ!+1 ∩N for each l∈! such that sl¡∗f!∗l . By otp(ℵ!+1 ∩N ) =!1, we can
:nd an !∗ ∈ℵ!+1 ∩N such that !∗l ¡!∗ for all l∈!.

Since b!∗ ; n!∗∈N1 and b!∗ ; n!∗ 6 b∗ by Claim 6:2:1, the following claim gives the
desired contradiction:

Claim 6.2.2. In V1; b!∗ ;n!∗ �6dl for all l∈!.

Proof. For l∈!, let m∈! be such that
(1) n!∗¡m, and
(2) sl(m)¡f!∗(m).

Note that we have cm �6dl, since dl6 b∗ and cm �6 b∗ by de:nition of b∗.
By (2), f!∗(m) =∈ Sl (note that we also have !¡f!∗(m)). Hence xf!∗ (m) · cm �6dl.
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But xf!∗ (m) · cm6 b!∗ ; n!∗ by (1) and by the de:nition of b!∗ ; n!∗ . It follows that
b!∗ ; n!∗ �6dl.
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