
The Journal of Symbolic Logic
http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Time polynomial in input or output

Yuri Gurevich and Saharon Shelah

The Journal of Symbolic Logic / Volume 54 / Issue 03 / September 1989, pp 1083 - 1088
DOI: 10.2307/2274767, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200041761

How to cite this article:
Yuri Gurevich and Saharon Shelah (1989). Time polynomial in input or output . The Journal of
Symbolic Logic, 54, pp 1083-1088 doi:10.2307/2274767

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JSL, IP address: 128.210.126.199 on 21 May 2015

Sh:343

THE JOURNAL OF SYMBOLIC LOGIC

Volume 54, Number 3, Sept. 1989

TIME POLYNOMIAL IN INPUT OR OUTPUT

YURI GUREVICH AND SAHARON SHELAH

Abstract. We introduce the class PIO of functions computable in time that is polynomial in
max {the length of input, the length of output}, observe that there is no notation system for
total PIO functions but there are notation systems for partial PIO functions, and give an
algebra of partial PIO functions from binary strings to binary strings.

§1. Introduction. Bob Paige brought to our attention computability in time
linear in max {the length of input, the length of output} [Pa], [CP]. He argued that
it may be unreasonable to measure computational complexity in terms of input
only; a very simple algorithm may spend a long time printing out the output.

Unfortunately, the notion of linear time greatly depends on the model of
computation. (In this connection, we have introduced nearly linear time [GS].) On
the other hand, the notion of polynomial time is very robust. Let I, Et, S2 be
alphabets, and Z*, 27?, 27 f, respectively, be the sets of strings in them.

DEFINITION. A partial function / from 27? to 27f is PIO (or computable in time
polynomial in input or output) if there exist a Turing machine M and a polynomial p
such that:

(1) given any x in the domain of / , M outputs f(x) within time <
p(max{|x|,|/x|}), and

(2) M does not halt on any input outside the domain of / .
It does not matter whether the witnessing Turing machine has one or many tapes,

whether it has a special input tape, whether it has a special output tape, whether a
random access to input is allowed, and so on. To a great extent, the notion of PIO
functions is machine-independent.

DEFINITION. In this paper, a function / : If -> 27f will be called honest if there is a
polynomial q such that for every x in the domain of / , q(\fx\) > \x\.

In §3, we show that there is no notation system for total PIO functions but there
are notation systems for partial PIO functions. An alternative machine-independent
definition for the class of partial PIO functions from binary strings to binary strings

Received January 2,1988; revised August 30,1988.
The work of the first author was partially supported by NSF grant DCR 85-03275. The work of both

authors was partially supported by a grant of the US-Israel Binational Science Foundation. In the main,
the work was done during a week in Fall 1985 when both authors visited Rutgers University.

© 1989, Association for Symbolic Logic
0022-4812/89/54O3-0035/S01.60

1083

Sh:343

1084 YURI GUREVICH AND SAHARON SHELAH

is given in §5; it is shown there that partial PIO functions form the closure of some
simple initial PIO functions under some natural operations. A similar algebra of
honest partial PIO functions is given in §4.

One may want to study various analogs of PIO. The two theorems of §3 survive
many generalizations, but creating a reasonable algebra of partial functions is a
separate problem in each case (when there are notation systems for partial
functions). Here are few possible candidates for study:

(1) Functions computable in time that is polynomial in the length of output (PO
functions). There are two very different classes of PO functions, depending on
whether random access to input is allowed. Notice that in either case, honest PO
functions are exactly honest PIO functions.

(2) Functions computable in time linear in max {the length of input, the length of
output} (LIO functions); and functions computable in time linear in the length of
output (LO functions). One can identify some reasonable computational models
and study the proposed classes. In connection with LIO, see [CP].

§2. Composition of PIO functions. Even though it does not matter what kind of
Turing machine is. used to define PIO functions, one kind is especially convenient.

DEFINITION. In this paper, an off-line Turing machine is a Turing machine with a
read-only input tape, one or several work tapes, and a write-only output tape.

A separate output tape guarantees a legal output whenever the machine halts.
Every off-line Turing machine M with input alphabet Z\ and output alphabet Z2

computes some (not necessarily total) function from If to Tf
DEFINITION. Suppose that an off-line Turing machine M computes a partial

function / . M is PIO if there is a polynomial p such that, for every x in the domain of
/ , M spends at most p(max{|x|, \fx\}) steps for computing f(x).

Obviously, the function computed by any PIO off-line Turing machine is PIO,
and every PIO function is computed by some PIO off-line Turing machine. We use
off-line Turing machines to define versions of the classes PO, LIO and LO
mentioned in §1. For the sake of consistency, we give the name PI to the class of
partial functions computable in time polynomial in the length of the input.

DEFINITION. Suppose that an off-line Turing machine M computes a function / .
(1) M is PI (resp. PO) if there is a polynomial p such that, for every x in the

domain of/, M spends at most p(\x\) (resp. p{\fx\)) steps for computing f(x).
(2) M is LIO (resp. LO) if there is a linear polynomial p such that, for every x in

the domain of/, M spends at most p(max{|x|,|/x|}) (resp. p(|/x|)) steps for com­
puting f(x).

DEFINITION. A partial function / from some Z% to some £f is PI (resp. PO, LIO,
LO) if there is a PI (resp. PO, LIO, LO) off-line Turing machine that computes /

The empty string will be denoted e.
LEMMA 2.1. The composition of two PIO functions may be not PIO. Moreover, let

f be any function from some I\to some Z2 >
 a^d let FirstLetter(y) = [if y = e then e,

else the first letter of y] for every y in Z*. Then there is an LO function g such that
f = FirstLetter ° g.

PROOF. Let M be a Turing machine that computes / , and let m(x) be the number
of steps of M on inputs x. (If f(x) is undefined then m{x) is undefined.) The desired
g(x) = f(x)0m(x\ Q.E.D.

REMARK. The lemma reflects an observation conveyed to us by Bob Paige [Pa].

Sh:343

TIME POLYNOMIAL IN INPUT OR OUTPUT 1085

LEMMA. 2.2 Suppose that f and g are PIO functions. Then the composition
(9 ° f)(x) — 9(f(x)) °f f and g is computable (whenever it is defined) within time
bounded by a polynomial of |x|, \fx\ and \g(fx)\. Hence g ° f is PIO if \fx\ is bounded
by a polynomial of \x\ and \g(fx)\ (whenever \g(fx)\ is defined). In particular, g ° f is
PIO if f is PI or g is honest PO.

PROOF. Let Mi and M2 be off-line Turing machines that compute / and g
respectively, and let M3 be an off-line Turing machine obtained from Mx and M2 by
identifying the output tape of Mx with the input tape of M2. M3 starts by simulating
My; if and when the output y of M: is computed, M3 resets the head on the output
tape of Mt and then simulates M2 on y. Obviously, M3 computes (g ° f)(x) within
time bounded by a polynomial of |x|, \fx\ and \g(fx)\. Q.E.D.

§3. Notation systems.
DEFINITION. Let K be a collection of partial computable functions from some E\

to some Ef. A notation system for K is a triple (E, L, F) where L is a recursive subset
of E* and F is a recursive function that associates every L-string x with a Turing
machine Mx in such a way that:

(1) every Mx computes a /C-function, and
(2) every K-function is computed by some Mx.
REMARK (triggered by a question of Andreas Blass). In the case when K is defined

by a class W of Turing machines, it is natural to strengthen (1) by requiring that each
Mx belongs to W; for example, if K is the class of PIO functions, one may want to
require that each Mx is a PIO machine. One may also want to put some complexity
restrictions on L and F. We stick to our liberal definition because our main goal in
this section is to prove the following negative result.

THEOREM 3.1. Let Kbe a class of total functions from some E* to some E* which
contains all total LO functions from E\ to £*• There is no notation system for K. In
particular, there is no notation system for the class of total PIO functions from Ef to
E*, and there is no notation system for the class of honest total PIO functions from E*
to El

PROOF. For a contradiction, let (E, L, F) be a notation system for K. Without loss
of generality, E = Z\ and L = Ef.

Construct a Turing machine U that, given a I^-string x, executes the following
algorithm.

(1) Construct the machine Mx = F(x), counting the number of steps in unary
notation on the output tape.

(2) Simulate Mx on x until some result y is obtained, counting the number of steps
in unary notation on the output tape.

(3) Print another character on the output tape.
(4) Print y on the output tape and halt.
The machine U is LO and computes some total function g from E\ to £f. Hence

some Mx computes g. Let y be the output of Mx on x.
On one hand, g(x) = y because Mx computes g. On the other hand, g(x) is a

nonempty (because of (3), among other reasons) string followed by v because of the
way U computes g. This is a contradiction. Q.E.D.

THEOREM 3.2. For all E1 and E2,

(1) there is a notation system for the class of all partial PIO functions from EX to
E*, and

Sh:343

1086 YURI GUREVICH AND SAHARON SHELAH

(2) there is a notation system for the class of all honest partial PIO functions from
It to Zf

PROOF. For i equal to 1 or 3, let Kt be the class of off-line Turing machines with
input alphabet Ilt output alphabet £2>

 a n d i work tapes with alphabet Sx u
Z 2 u {blank}. Let Z = {0,1}.

(1) Let L comprise the binary codes for pairs (M, p) where M belongs to Kx and p
is a polynomial with nonnegative integer coefficients. The desired recursive function
F transforms the code for (M, p) into a K3-machine Mp which simulates M on one
work tape, counts the steps of M on another, and counts the length of output on the
third work tape. If and when M computes an output y on the given input x after
some number m of steps, Mp checks whether p(max{|x|, \y\}) > m. If yes, Mp outputs
y and halts; otherwise it enters an infinite loop.

It is easy to see that every Mp computes a partial PIO function from I\ to If, and
every partial PIO function / from X* to S* is computable by some Mp.

(2) The case of honest functions is similar, but the K3-machine checks also that
some polynomial q of \y\ exceeds |x|. Q.E.D.

COROLLARY. There are notation systems for partial PO, LIO, and LO functions
from I* to L*.

PROOF. Similar to that of Theorem 3.2. Q.E.D.

§4. An algebra of honest PO functions. In the rest of this paper, a function is a
partial function from {0,1}* to {0,1}*. Let u, v, w, x, y and z be binary strings. Recall
that the empty string is denoted e.

DEFINITION of the replace-and-extend function y = REU „ w(x). If u is not a sub­
string of x then y = x, and if x = xxux2, where the shown occurrence of u is the
leftmost occurrence of u in x, then y = x1vx2w.

The functions REe_„_„, REe e w and RE„_„_„ will be called AddPrefix,,, AddSuffix^
and Replace,,_„ respectively.

DEFINITION. The function y = Truncate„(x) is given by the following program:

y:=x;
while u is a suffix of y and (\y\ — \u\)2 > |x| do

y := [the unique z such that zu = y\.

REMARK. The condition (\y\ — \u\)2 > |x| is somewhat arbitrary. It ensures that
for any u, Truncateu is an honest PO function and compositions of Truncate„ allow
us to remove polynomially-long tails of u's.

DEFINITION of the conditional removal function CR„(x). If u is a suffix of x then
remove the last letter of x, else do nothing.

DEFINITION. The upper iteration of a function / is a function y = f*(x) given by
the following program:

while |/(x)| > |x| do x:= f(x);
y:=x.

LEMMA 4.1. (1) All functions REU „ w, Truncate„ and CR„ are honest and PO.
(2) The composition g ° / of a PIO function f and an honest PO function g is an

honest PO function.
(3) The upper iteration f* of any PIO function f is an honest PO function.
PROOF. (1) is obvious. (2) follows from Lemma 2.2. To prove (3), let / be a PIO

Sh:343

TIME POLYNOMIAL IN INPUT OR OUTPUT 1087

function. Since |/*(x)| > |x| for all x, it suffices to prove that / * is PO. There is a
polynomial p(i,j) such that p is monotone in both arguments and f(x) is comput­
able from x within time p(|x|, |/x|). Let x0 = x, each x i + 1 = f(x,), and m =
min{i": |x j + 1 | < |x(|}, so that f*(x) = xm. The obvious computation of f*(x) re­
quires time bounded by

I />(k-l,k-+,l)< E P(l*j,l*j)<p(|xj, |xj)-(|xj + 1). Q.E.D.
i<m i<m

THEOREM 4.1. The class of honest PO functions is the closure of functions REMil!tW,
Truncate,, and CRU by means of composition and upper iteration.

PROOF. By virtue of Lemma 4.1, it suffices to prove only that every honest PO
function / is constructible from functions RE„ „ „, Truncate,, and CR„ by means of
composition and upper iteration. There exists a one-tape Turing machine M such
that, for every input x,

(1) if x belongs to the domain of / then M computes f(x) within time bounded by
a polynomial in \fx\, and

(2) if / is undefined at x then M does not halt.
Without loss of generality, we may suppose that M satisfies the following

conditions. Initially the tape consists of the given input x followed by one blank
(which is different from either 0 or 1), and the head is in the leftmost cell. At each step
(until M halts), the tape acquires another blank on the right. In the halting
configuration, the tape is f(x) followed by blanks and the head is in the leftmost
blank cell.

It is supposed that state symbols differ from tape symbols. Let S be the set of all
state and tape symbols of M (including the blank). Let / = r log|I 'H and assign
different binary strings of length / to Z- symbols. If a is assigned b^ • • • bh let C(o)
= 11610ft2---0*,0.

If the tape of M is at • • • ak, the current state symbol is q and the head is in the ith
cell, then the string

C(ai) • • • Cia^CiqWatMa,^) • • • C(ak)

(with obvious modifications in case i < 2 or i > k — 1) will be called the binary
instantaneous description (BID) of M.

Let a, P, B and / be the codes for 0, 1, the blank and the initial state respectively,
and let IBID be the function

AddPrefix7 o (ReplaceBipB ° ReplaceBOaB)* ° AddPrefixB,

so that IBID(x) is the initial BID of M on input x.
Given the transition table of M, one can construct a composition Step of RE

functions such that if z is a nonhalting BID of M then Step(z) is the next BID of M,
and if z is a halting BID then Step(z) = z. Let FBID = Step* ° IBID. If f(x) is
undefined then FBID(x) is undefined, else FBID(x) is the final BID of M on x. Let x
range over the domain of / , and y = f(x).

Let H be the code for the halt state and

9 = R E H e B o [R E ^ i H 1 B o REaH>Ho,«]* ° FBID.

Sh:343

1088 YURI GUREVICH AND SAHARON SHELAH

Then g(x) equals y followed by some positive number of B's bounded by a poly­
nomial in \y\. Recall that / is honest. Hence there is a number k, depending on / but
not on x, such that if h is the composition h = Truncate^ ° • • • ° TruncateB ° g of g
and k copies of TruncateB then h(x) equals either y or yB. Finally, / is the
composition of h and a fixed number of CR functions. Q.E.D.

REMARK. We could define CRU in such a way that CRu(zu) = z for all z. That
would simplify the last step in the proof of Theorem 4.1 and make more complicated
the proof of Theorem 5.1.

§5. An algebra of partial PIO functions.
DEFINITION of the function y = CutTail(x):

While 1 is a suffix of x do x := [the unique x0 with x = x01];
if 0 is a suffix of x then y := [the unique x t with x = x t 0] .

LEMMA 5.1. Every PIO function f is the composition of some honest PO function g
and the CutTail function.

PROOF. The desired g(x) = y0\m, where y = f(x) and m is the minimal natural
number such that \y0lm\ > \x\. Q.E.D.

Unfortunately, PIO is not closed under composition; see Lemma 2.1.
DEFINITION of the upper composition g] / o f functions / and g. Given x, compute

y = f(x). If and when y is computed, compute z = g(y). If and when z is computed,
check whether (1 + |x| + |z|2) > |y|. If yes, output z; otherwise output y.

THEOREM 5.1. PIO is the closure of functions REU „ w, Truncateu, CR„ and CutTail
under upper composition and upper iteration.

PROOF. CutTail is PI and therefore PIO. Use Lemmas T.2 and 4.1 to check that
PIO contains all functions RE„ „„, Truncate,, and CR„ and is closed under upper
composition and upper iteration. It remains to notice that the upper composition
can replace the ordinary composition in the proofs of Theorem 4.1 and Lemma 5.1.
(The upper composition is not associative, but we may suppose that the proof
of Theorem 4.1 uses the right associative notation: f3 ° f2 ° / i abbreviates
f3°(f2°fi)-) Q-E.D.

REFERENCES

[CP] JIAZHEN CAI and ROBERT PAIGE, Binding performance at language design time, Conference record
of the fourteenth annual ACM symposium on principles of programming languages, 1987, pp. 80-87.

[GS] YURI GUREVICH and SAHARON SHELAH, Nearly linear time, Lecture Notes in Computer Science,
Springer-Verlag (to appear).

[Pa] ROBERT PAIGE, Private communication, Fall 1985.

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY

JERUSALEM, ISRAEL

DEPARTMENT OF MATHEMATICS

RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903

Sh:343

