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0. Introduction 

Shelah and Spencer [6] proved the O-l law for the random graphs G(n, p”), p,, = 
n-OL, a E (0,l) irrational (set of nodes is [n] = { 1,. . . ,n}, the edges are drawn inde- 

pendently, probability of edge is p,,). One may wonder what can we say on sentences 

+ for which Prob(G(n, pn) b Ic/) converge to zero, Lynch [3] asked the question and 

did the analysis, getting (for every $) 

(a) Prob(G(n, pn) F $) = cn -B + O(~Z-B-~) for some 8, E such that p > E > 0 

or 

(/?) Prob(G(n, p,,) k II/) = O(nvE) for every E > 0. 

Lynch conjectured that in case (/3) we have 

(p+) Prob(G(n,p,) k Ic/) = O(emn’) for some E > 0. 

We prove it here. 

Notation. Let 8, m,n, k be natural numbers; Let E, C, a, 8, y be positive reals; [n] = 

IL..., n}; R is the set of reals; and [w+ is the set of reals > 0. 

1. 

Theorem 1. (1) For any jirst-order sentence I,// in the language of graphs and ir- 
rational a E (0,l)~ we have (where pn = nP and Prob(G,,,, + t,b) + 0): either 
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Prob(G,,, + $) is cn -p +0( np-“) for some reals /I > E > 0 and c > 0 or Prob( G,,p. k 

$) is O(C”‘) fir some real E > 0. 

(2) However, this is not recursive. 

Proof. We change the context generalizing it. 

1. Definition of the probability context 

(a) Qn C{l , . . . , n}, G& a graph on Q,,. 
(b) We consider first-order sentences or formulas with vocabulary C r = {=, Q,R} 

(= is equality, Q is a monadic predicate, R is a symmetric irreflexive binary relation 
(will be “being an edge”)). 

(c) G = G,,,[G;] a graph on [n], G ] Q = G& and except this, G is random 
with edge probability p,, (i.e. for every pair not included in Q we flip a coin with 
probability p,, and do it independently for the set of pairs). We consider G a r-model 
with @ = Q, R the edge relation. 

Remark. The point is that IQ] will be required to be just < n” not say < log(n). 

Proof. We consider only graphs H in {H : H a graph whose set of nodes include 
Q; moreover, H ] Q = G;}. First, we repeat the proof in [6, Section 4, p. 1051. In 
our context we define “[Ho,Hl) has type (u,e)“, it holds if u = IHl\Ho\Q(, 
and 

e = I{{x,Y) E .&G,p) : {x,Y) GHl U Q, {x,Y) $ Ho U Q)l, 

where for a graph G, E(G) is the set of edges of G. 
Then define dense, sparse, safe, rigid, hinged as there adding “over Q and/or 

inside G” for definiteness. We also define cll(Ho; HI) as in p. 107, line 7. Later 
we write c&(Ho; Q). All claims hold, but arriving to Theorem 3 (bottom of p. 107) 
we should be careful. We consider only embeddings which are the identity 
on Q. 

Lemma 1. (1) Let e* E kJ. F’or every small enough E > 0, for some 5 > 0, for every 

n large enough, if IQ1 < I&, Q S [n] we have: if (Ho,Hl) is safe of type (u, e) and f 
embeaTs HO into G (and f is the identity on Q) and IHl\Ql < L’, then 

Prob(7[n”-ae-E <N(f,Ho,Hl) < n”--ore+a]) <e-“‘, 

where N(f ,Ho, HI) is the number of extensions g : HI --) G satisfying: x E HO + 

g(x) = f(n) and Ix, bl E E(HI 1, b 4 HO * {&),dy)) E E(G). 

(2) Let E E W and 8* E N be given, then for some 5 > 0 for every n large enough 

and any Q C [nl, IQ1 < nE and graph G: on Q we consider only embeddings which 
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are the identity on Q. Then 
(*) tfH* is a graph with ]H,\Q] < 8*, HO c HI, we assume f embeds HO into Q, f 

is the identity on HO and (HO, HI ) is rigid, then 

Prob(Wf ,Ho,Hl, G,,,r. ) > 0) < n+. 

Proof. (1) As in [6, Theorem 3, p. 1071 + extra computation by the central limit 

theorem or see [4, Section 51 for more. 

(2) As in [6]. 

Lemma 2. For any k,m E N there are e* and E* > 0 depending on k only such that 
the following holds: 

(*) For any formula I+& = @(xl , . . . ,x,,,) of quanti’er depth < k in the vocabulary 

{ =, Q, R} there is a formula BJ, = 8$(x, , . . . ,x,,,) in the vocabulary { =, Q, R} 

such that: 

(**) for every n large enough, Q C { 1,. . . ,n}, IQ] < n”, and graph GG on Q and 
G = G,,[G&] such that the small probability cases from Lemma 1 (l),(2) 

Cfor (HI, HZ) of type (v, e), v < 2/*), or just 8:. + @$. below do not occur, 
we have: 

(* * *) for every al,. . . ,a, E { 1,. . . ,n} we have 

({L...,n),Q,R> k ti[al,...,a,l ifs 
(Qu{a,..., ad,Q,R t (QU {al,...,a,))) k &h,...,aml, 

where 

8:. if (Ho, HI) is safe (so Q c HO) ]Hl\Q] < d*,Ho C G”,r,,[Gi] then we can extend 
idn, to an embedding g ofH1 into Gn,r.[G;] such that cle. (g(Hl), G,,r[GJ) = 

g(Hl ) u &*(f (Ho, G,,,” [Gil) 
@$* if (Ho,HI) is rigid, JHl\Ql < d*, HO = GT, then there is no extension of f of 

idn0 to an embedding of HI into Gn,r.[Gz]. 

Proof. Similar to the proof in [6], and is a particular case of [5, Section 21 (see 

related). 

Proof of Theorem 1. Part (1): Let 8+ be from the analysis (i.e. Lemma 2 for the + 

from Theorem 1) for the original sentence *. 

Case A: For somejinite graph G* on say { 1,. . . ,m*} we have G* k (A+. In this case 

the probability that G* can be embedded into Gn,p, is 2 O(n-b) for some j? E (0,~) 

if n > m* of course; so this means that one of the < nm’ possible mapping is an 

embedding, but more convenient is to consider the event G 1 [m*] = G* which also 

has probability > n-p for some /I. Now modulo this event the probability that the 

conclusion of Lemma 2 fails is (for n large enough) much smaller than nmm’. So we 
can assume that for G 1 [m*] Z G* and that the conclusion of Lemma 2 holds for 

Sh:551



100 S. Shelah I Annals of Pure and Applied Logic 82 (1996) 97-102 

this. Now check and if we succeed by Lemma 2, we are done, i.e. the probability that 
G,,p. k $ is quite high. 

Case B: For no jnite graph G*, G* k t$. Choose e* E N large enough st e* /2- 1 is 
needed for our sentence rl/ in Lemma 2. Let [ E Rf be such that: v E (0,. . . ,2d*}, e E 
k4 + Iv-ael > 5 and it satisfies the requirements on [ in Lemma l(2) (for 26* (readily 
follows)). (The 2k’* rather than /* is for the bound on Prob (&2).) Clearly, [ exists and 
if (&Hi) is rigid and IHl\Hol < !* and (&Hi) is of type (v,e) then v - ae < - 5. 

Let &(e* ), 5 be such that 
(a) E([*) E R+ and E(/*) c i/(28*),5 < c/2, 
(b) in Lemma l( 1) E(&*), 5 satisfies the requirements of E, l, respectively. 
We shall prove that for n large enough Prob(G,,, k $) is < e-(“‘), this is enough. 
For any G = G,,,p”, we define by induction on j < n, a subset Pj = Pj[G] of 

{ 1, . . . , n} as follows: 

PO = 0, 

Pi+, = Pj U {H : Pj C H c G, IH\PjI < zf*,H # Pj and (Pj,H) is rigid in G}. 

For some j(*) < n we have Pi(*) = Pi(*)+1 (hence Pj(*)+l = Pj(+)+z, etc.). If 
IPjc*)j <be*) and 8:. holds, then (as Pi(*) = Pj(*)+l) this implies 8:. and then 
by Lemma 2 we are done (Pi(,) is Q). So it is enough to give an upper bound of the 
form ewnE to the probability Prob(E1) + Prob(E2) were II is the event IPjc*,l > n@* ) 

and &2 is the event IPjc*,l < n”(e*)&[@~~ fails]. 
On Prob(E1): If IPjc*,l 2 n&cd*) then we GUI find aj,c for j < [r&*)/f*] and e <k’j < 8* 

such that (Hi n {ai,e : t < 8i}, {ai,/ : t < ti}) (in G) is rigid of type (ri,ei) where 
Hi =: {aj,! : j < i and 8’ < ej} (SO we may have not used all Pi(*)). Clearly, there is 
a real i > 0 depending on e*, a only such that Vi - eia < - c (simply, there are only 
finitely many possible pairs (v,e)). 

Let I be a sequence describing this situation, i.e. it contains 

(8i 1 i < [tZ”‘e”/e*]), 

There are II ~.+(I*),~~~(~* x (e* x i)“’ x 22d’) possible such sequences I (an overkill). 
[why? The ith term in the product is an upper bound on the number of choices in 
stage i, there e* is the number of possible ei,!* x i is an upper bound on the number 
I(C2j.f : j < i,l < fj}l, (d* X i)l* is an upper bound to the number of choices of 
(ai,/ : e < e*,ai,c E {aj,s : j < i,s < ej}), and 22d* is an upper bound to the number 
of possible G 1 {ai,d : e < ei}]. 

Now for some constants CO,CI depending only on f* (i.e. I&) this number is 
&lC t/e’ 

< co x [(n”‘O/e*)l]L* < ndOn@“. For each I the number of possibilities for 
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the ai,d is d IIinVZ, and the probability it holds in G is IIin-OLe~, hence the expected 

value is 

So the expected number of such (ui,e : i < n@*)/r!* and e < ei) for some I is 
< n(2E(e*)-iie’)n”“*’ and as we have E({*) < c/(2/*) the conclusion should be clear. 

Probabiliry of 82. Should be clear by Lemma l( 1); i.e. except suitably small prob- 

ability the number of extensions of f to embedding of Hi is much larger than the 

number of such extensions failing the requirement in ~3:~. 

Part (2). In non-trivial cases for some e and pair (J&Hi) we have Hi # Ho and 

Hi C cZe(Hs). Now for n large enough (if ]cle(He)] < log n), on cl~(Hs) in G”,Pn, 

we can interpret arithmetic on cle(Hs) (with parameters) and all subsets and all second 

place relations. Fix HO, e. 

For a sentence + speaking on N ] k, (or 2k) we can compute $* in the vocabulary 

of graphs saying 

(*) there is a copy Hi of Ho such that 

So for every function h : N 4 N converging to infinity 

lim inf,(Prob( Gn,p. k $*)/n-‘(“)) 2 1 iff j/[~ 1 k t= +I. 

k 

But the set {$ : (3k)[lN r kl k $1) is like the set of sentences having a finite model 

(i.e. same Turing degree) so is not recursive. 

Concluding remarks. (1) In fact, we have to consider Pj (in case B during the proof 

of Theorem 1) only for j d 2’, where r is the quantifier depth of the sentence + (for 

which we are proving Theorem 1). From [5, Section 21 this should be clear, but we 

lose generalization to stronger logics. 
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