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§0. Introduction

As, on the one hand this paper is only defining some concepts and
invertigating them; and on the other hand those investigations help in
solving some problems not mentioning them; instead of abstracting the
content of this paper, we shall give a list of all theorems and problems
connected to them. Those whose proof depends on this paper are de-
noted by *.

Some of the material in §2 and some other, is a repetition on Shelah
[B] because it is improved here, for completeness, and as also there some
proofs were only hinted. As in the introduction we do not review the
paper, this is done for every section separately in its beginning. The paper
is self-contained.

The list is divided to the following topics: (for completeness, each
part contain also results unconnected to stability)

(Definitions)

A) Stability

B) Seturativity and universality

C) Categoricity of theories

D) Homogeneity

E) The number of non-isomorphic models of a thecry

F) Categoricity of pseudo elementary classes

G) The number of non-isomorphic models of a pseudo-elementary

class

H) Keisler’s order and saturation of ultrapowers

1)  Other results

{Results not attributed to anybody neither in the list nor in the his-
torical remarks, are unpublished results of the author. Usually for every
result there is a reference, whereas the historical remarks are concentrat-
ed at the end of each part].

We should first define some concepts (for further explanation see
§1).

T is a complete first order theory in L = L(T"). M is A-saturated if
every (consistent) type over aset 4 C IMI, 1Al < X is realized in M. M is
A-compact if every type p over IM|, ipl < A is realized in M. M is max-\-
saturated if it is \-saturated but not \*-saturated, similarly for compact



Sh:10

80. Introduction 273

M is g-universal if every model of Th(M) = T of cardinality < y is iso-
morphic to an elementary submodel of M. Notice, that for A > ILI, M
an L-model, M is A-saturated iff it is A-compact.

M is saturated if it is 1M ll-saturated.

For Ty D T, PC(T,, T) is the class of reducts of models of T; to the
language of T. I(A, T, T) is thc (maximal) number of non-isomorphic
models in PC(T,, T) of cardinality X;and I(A, ) =I(\, T, 1.

7 is stable in A if for every model M of T, A € IMI, 141 < X\, the num-
ber of types elements of M realized over A (in M) is < X T is stable if it
is stable in at least one cardinality, superstable if it is stable in every
A2 2T

T is categorical in A if it has, up to isomorphism, exactly one model
of cardinality \.

T, <, T, provided that: if M, is a model of Ty, M, a model of T,
D a (8, \)-regular ultrafilter over A, M3/D is \*-compact then M} /D
is A*-compact. This is Keisler’s o:cer from [A]. D will always be a non-
principal ultrafilter. Let 7| <0 T, hold when for every A, T,<3, T,.

T has the f.c.p., if there is a formula ¢(x, y ), such that for every
n < w, T has a model M, sequencesa C, ...,a ™, (w> m = n) such that
{o(x, at): i < m} is not realized in M, but for every j < m,

{@x, a®): i< m, i+ j}isrealized.

u(A) is the first cardinality suci that: if 7' is a theory, p a type, | T,
Ipl < A, and T has a model omitting p of cardinality = (), then it has
such models of arbitrerily high pov er. (See e.g. Chang [A] for the values
of u(N)). ‘

D, (T) is the set of complete and consistent types with the variables
Xg» > X1 ONly (consistent - that is, consistent with 7.) Let D(T) =
Uncw D (D).

n<w

A. Stabiiity

1) For every stable theory T there are cardinals k(7) < ITT,
A(T) < 2T such that: Tisstable in N iff A =X(T) + Z, . nA*. We
stipulate that for unstable T, k(T) = ce.

There is a syntactical condition (C * \) which is equivalent to
k < k(T). [See Shelah [D] Th. 4.4],
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*2) If T is superstable A (T) < ID(T)I + 270,

3) Conjecture: For every stable TAN(T) = ID(TH)l or \N(T) =
ID(T)! + 270, (i.e., \(T) can be chosen in this way.) Proved in Shelah [N#*]

4)If Tisstablein \, Mamodel of 7, 4 C BC IMI I14AI< A< IBI,
then B has a subset of cardinality 2 A* which is indiscernible over 4.
(See Def. 5.2.) [See Shelah [D] Th. 3.1; [F] Th. 2.2, and here 5.8 are
generalizations. ]

*

There are some definitions of prime model; and proofs it exists under
certain stability conditions. For simplicity, assume all models we deal
with are elementary submodels of some very saturated model #f of 7,
and A C IM), 1Al is small.

Definition. M is A-prime over 4 if: A C M, M is A-compact, and if
A C N, N is A-compact, then there is an elementary embedding of M
into N, which is the identity on 4. The type p is A-isolated, if there is
g C p, lg! < A, such that every element realizing g realizes p. [We can
consistently repiace compact by saturated, and Igl < A by g is a type on
some A4, 141< X; then we get (A, 1)-prime models and (A, 1)-isolated type.
Note that every model is 8 j-compact.

5) Suppose T is stable in some u < 2*, or T is stable, A > I T,

(A) Onevery A, there is A-prime model (and also a (A, 1) prime
model). (See Ressayre [A] Th. 4.3, Shelah [B] Th. 35.)

{B) This model is unique, i.e., if M, N are A-prime models over 4,
then there is an isomorphism from M ontc N, which is the identity over
A,

{(C) If Misa N\-prime [(A, 1)-prime] model over 4, every finite
sequence in M realize over 4 a A-isolated [(A, 1)-isolated] type provided
that cf A 2 k(7). [See Ressayre [Al Th. 4.3.]

(D) If Misa (A, 1)-prime (or A-prime) model over 4, then in M
there is no indiscernible set (Def. 5.2) over 4 of cardinality > A.

(E) If T is superstable 4 C M, M is A-compact [A-saturated] and
satisfies the conclusions of (C), (D) then it is a A-prime [(A, 1}-prime]
model over A. For stable T there is a characterization of prime models.
See Shelah [Nx*], [G*].
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6) If T is stable, A 2 «(T) -+ ¥, then over every A thereisa (A, 1)-
prime model (which seemingly does not satisfy 5C, but satisfies 5D).
Conjecture: See Shelah [N#*], the model is unique.

7) Suppose T is stable and countable. Then for every A there is a
model M, A C M such that: if ¢ € M, o(x, y ) is a formula, then there
isf(x, b), b € A which satisfies, foreverya € 4, kylc,a ] =
E(VYx) [0(F, B)~ o(¥,a)],and EO[C, B].

8) Question: Is k(T) < R sufficient in (7)? Is there a stable T
which does not satisfy the conclusion of (7)?

9) If T is stable, M a model of T, 8, < IQM [ < M|, then for every
A2 u2 ITL T has a model N, INI =X, IQV | = u. [See Shelah [A] Th.
6.3.]

10) If T is stable and countable, N an elementary extension of M
which is a model of 7', N # M, QM = QN then there is an elementery
extension Ny of N, N; # N, Q"1 =Q~N = QM [See Lachlan [D*]]}

11) If T is stable in A, then it has a model M, IMIl =7\, A C IM|,
IA1= 1, and every permutation of 4 can be extended to an automor-
phism of M, and A is a maximal indiscernible set in M. Also if
A =2, N5 1, N < A; T statle in A, this holds. [See Harnik and
Ressayre [B] 1.11.]

*12) If T is unstable, then it has the f,c.p. [Here Th. 3.8.].

*13) T is unstable iff it has a formula ¢(x, ¥ ), a model M, and se-
guences {a": n< w} {romMsuchthat M Egpla?,am]len<m
[Here, Th. 2.13.]. [ A generalization - Shelah [F] §2.]

Remark: For other kinds of prime models see Shelah [D] §5; [D] proof
of 7.10; [C1; [K]. On totally transcendental theories (= N -stable) see
also Blum [A], Lachlan [B], [C], Baldwin [E].

Historical remarks

1) In Morley [A] it is proved that if T is countable and R ,-stable,
then it is A-stable for every A. Rowbottom [A], and Ressayre [A] prove
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(indep.) that if T is stable in A, A0 > A, then T is stable in every u > .
Rowbottom depend on G.C.H. In Shelah [B], (1) is proved for count-
able 7, and partially for every T, and Shelah [D] gives 1) and [N#] is
the full solution. A further conjecture appears here, §4 (conjecture 4E).

4) Morley [A] proves it for N -stable, countable theories. Rowbot-
tom has an unpublished weaker result than (4). In Shelah [B] it is
proved for A > ITl, and in [D] it is proved.

5) (A) For the case T stable in u < 22, it was proved (indep. and
successively) by Rowbottom, Ressayre [A], Shelah [A], [B]. The case
A > IT| (which is new only if 2* = 217"} js of Shelah [A], [B].

(B) For 141= IT1= A = &, this is due to Vaught [A]. This answers
a questijon of Sacks in Chang and Keisler [B].

(C) Due indep. to Rowbottom and Ressayre, for regular A. For
singular A it follows in fact from B3.

7) This is due indep. to Lachlan and Shelah (about the same time).

11)Morley [A] p. 537, (5) asked whether for every 8 -stable T,
K2 Ng, T hasamodel M, A C IM| 141= Ml = k, and every permuta-
tion of A can Le extended to an automorphism of M. Silver answers
affirmatively the question, for regular A, using saturated models. By B2,
it follows this is true for every A if T is stable in A. By Harnik and
Ressayre [B], we can take A as a maximal indiscernible set for regular A.
In fact it is a parcicuiar case of their theorem.

12) Keisler {A], 5.1 proves a little weaker theorem: the property
(E) implies the f.c.p. where (E) T has a model M, 4 C IM| is infinite,
¢ a formula, ¢ = ¢(x,, ..., X,,), and for every 11 different elements of
A4, ay, ..., a, there is a permutation 6 such that M k¢ [aom, e ao(n)} ,
and a permutation 8 such that M F Tpla,g,, ..., g4 1.

This property (E) was first defined by Ehrenfeucht [A]. Here 4.7B,
it is proved that there is unstable T which do not satisfy (E).
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B. Saturativity and universaiity

1) If M is an L-model, IMI < p=Z, _, p« + 2/L1 X regular, then M
has an elementary extension of cardinality u which is A-saturated. [See
Morley and Vaught [D].]

*2) If T is stable in A, then it has a saturated model of cardinality A.

*3) If M; i < § is an increasing elementary chain of models of 7, T is
stable A > ITl, every M, is A-saturated, cf 6 2 x(7) (see (a)) then
Ui M; is also A-saturated.

4) Conjecture: We can replace A > (T1by A 2 x(T). Proved in Shelah
[N#].

*5) If M; i < & is an increasing elementary chain of models of 7, T is
superstable, and every M, is A-saturated, then U, s M, is A-saturated.

6) If T is unstable, T has a saturated model of cardinality A > 1T iff
A= Z, ., N\« [See Shelah [D] claim 6.5.2.]

N IEA= 35 > 1T, of 6 < k(T) (unstability is sufficient) then T has
a model of cardinality A which has no elementary extension of | ower
\ which is (cf §)"-saturated. [See Shelah [D] Th. 6.4.]

8) Conjecture: We can replace cf § by k, and A =2, by A* > A,

9) For every T and regulcr A, 7 has a max A-saturated model. [See
Shelah [D], 6.3, 6.6.]

10) If T has a k(T)-saturated model M which is not A™-saturated,
M7 < MV then for every regular A, 7 has max A-saturated models of
arbitrarily great powers. [See Shelah [D], 6.9 [N*}. The condition
ATV < UM cannot be weakened to X < M. ]

#11) If T has a | TI*-saturated model, not \*-saturated; (\")'T"-universal
then for every u = A, A regular T has a p-universal, max A-saturated
model. (If T is unstable, or even if it has the f.c.p., the conclusion holds.)

*12) Every T satisfies exactly one of the following:
(i) For every 4= A = 2'7T!, T has a X"-universal model of cardinality
2 u which is not (2*)"-universal,
“#j) There is « model of T of cardinality 27", every elementary exten-
sion of which is satarated.
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13) If T has a model M, and there is a type p on IM|,
p={p;(x,a?):i<iy < IMIi},pis omitted, and {;(x, y):i< iy} is
finite then the conclusion of (10) holds.

14) Conjecture: In (12) (i) we can say that forevery u 2 A 2 IT!
T has a \-universal, not A*-universal model of cardinality = u.

15) Conjecture: If T has the independence p. (d=f. 4.1) A 2 2T,
then T has a universal model of cardinality A iff A = X, 2.

Note that

16) If T has the independence p., R C A X A, then T has a model M,
formula p(x, y ) and sequencesa i i < X from M, such that M k=
plat, all iff G, p € R.

Historical remarks

2) For A > T, Harnik proves it using the method of the proof of
F5 (or Theorems 5.16, 5.12 here) and Al and the definition of (C * Q)
(See Shelah [D1). The author completes it for A = 1T

3) It is implicit in the proof of (2).

10) This answers affirmatively question 4C, Keisler [A], p. 41 (one
version), and implicitly answers 4A. Moreover, we do not need G.C.H.

Before (10) was proved (indep.); Harnik {C] proved: (G.C.H.) Every
T satisfies exactly one of the following: (i) For every u > A 2 1T, A
regular, T has a max A-saturated model of cardinality = p.

(ii) Tiiere is Ay such that every A¢-saturated model of T of power
> u'T!is u*-saturated.

11) This answers affirmatively questions 4C, Keisler [A] p. 41
(second version), and implicitly answers to 4B, and as in (10), without
G.C.H. Keisler [A], 4.2b (ii) proved with G.C.H. that when T has the
f.c.p., 8o S A<y, then T has a p"-universal model which is max

A\ -saturated.
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C. Categoricity of theories

*1) If T is categorical in A, A > IT|, then T is categorical in every
1> 1Tl; and every model of T of cardinality > |7 is saturated. (For
countable 7T see Morley [A], for uncountable Shelah [K].)

2) Conjecture: (Morley) If T is categorical in 1T, |T1> R, then T
has a model of cardinality < |Tl. Moreover T is a definitional extension
ofsomeT'C T IT'I<ITL

3) This conjecture was affirmed for the following cases:
(1) Bq < 1T1< 270, 1T regular, [Keisler [G]].
(2) 2, < ITI< 244y, ¢cf 6 = w, IT] is regular.
(3) IT1 = T1"0 [see Shelah [C]].
(4) By A6, in all cases in which by G), unsuperstability of T im-
plies it has in 171 many models. For example, assuming G.C.H., (2)
holds. In fact if (2) fails, k (T) = T\, or k(T)" = IT\, k(T is singular.

4) If T is a complete theory in the language L(Qeq) and is categorical
inA> 1T and A, < A= 11, A, <NorX =21, then ¥ is categorical
in every g = A, and in some p < p(17) [L(Qeq) is the ianguage with tas
added quantifier ““there exist x’s of the cardinality of the model”.]
(Perhaps we can improve the conclusion to “every g > |T1"”, by the
methods of the proof of (1), but this was not checked yet.) [See Shelah
[A] §6, [J].]

5) Conjecture: If T is a complete theory in the language L(Qeq) and
is categorical in one A > |T1*, then it is categorical in every A > ITI". If
T is categorical in A = IT1" > 8, then T is a Jefinitional extension of
T'cT IT'N<ITI

6) Let T be categorical in IT1". Then over every A, 141> ITI, there
is a minimal and unique prime model M; and every elementary permu-
tation of 4 can be extended 1o an automorphism of M. Also over every
model M there is a mini.nal unique prime model. If M is a model of 7,
IMi> 1T, A C IMi, every elementary permutation of A can be extend-
ed to an automorphism of M. [See Harnik and Ressayre [B].]

*7) If every model of T of power A is | TI*-universal, then T is cate-
gorical in |T1*, [Shelah [N=*]].
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8) Conjecture (Keisler): If ¥ is a sentence in L, ,, . and it is catego-
rical in some X 2 3, , then it is categorical in every A 2 1, . Similarly
for Ny instead of 3, (Compare with D5).

9) If T is countable, T is categorical in ¥, iff for every n, D, (T is
finite. [See Ryll-Nardzewski [A], or Svenonius [A].]

10) Conjecture: 1) If T is finitely axiomatizable and complete, then
it is not categorical both in ¥ and ¥,.
2) If T is categorical in 8 but not in 8, then it is not finitely
axiomatizable.

For simplifications of the proof of Morley’s categoricity theorem see
Chang and Keisler [B], Baldwin and Lachlan [B], Ressayre [A] and
Keisler [Ix]. Marsh {A] is repeated and completed in Baldwin and Lach-
fan [B]. See also Baldwin {A], [C], [D], {El, [F#], Glashmire [A],
Harnik [D], Mcintyre [A#], Ash [Ax], Keisler [I1*]. Baldwin [C] can
be generalized to uncountable 7.

Historical remarks

1) This is f.0§ conjecture. In fact mainly from the attempts to solve
it, the theory of stability was developed.

Ehrenfeucht [A] proved that if T is countable and categorical in
= 27 then it does not have the property (E). (See historical remarks
to A12.) Scott improved it to the case u = k* > k and Morley [A] to
any u > R,. Later Keisler [A] shows (E) can be replaced by the f.c.p.

Morley [A] proved (1) for countable 7. For uncountable theories,
successive and indeperdent approximations were Rowbottom [A],
Ressayre [A] and Shelah [B). Assuming G.C.H. Rowbottom proved
that if T is categorical in u > x = inf {}:x = T}, xxo > X}, then Tis
categorical in every A 2 u. Ressayre elimiinated G.C.H. and proved that
also for 171" < u < x and also mostly for IT1" = yu; and shows that T is
categorical in some A < 2[(2'7")"]. He also gave a unified and simplified
proof for countable and uncountable 7. Shelah shows it for every
u> 1T\, u + x; and sniows that T is categorical in some A < u(171). In
Shelah [K], (1) is fully proved.

2, 3) The conjecture appears in Morley [A], and he said it is not due
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tc somebody in particular. The conjecture is partially verified by (3). The
case IT1 < 270 i5 due to Keisler, the case s < ITI< 2, is a refinement
ot the author. /

7) This affirms a conjec ure of Keisler.

9) This was proved independently by Engeler [A], Ryll-Nardzewski
[A], Svenonius [A].

10) It is not clear to whom to attribute this conjecture. Part (2) is
question (2), Morley [A], p. 537.

D. Homogeneity

Let H(T) be the class of cardinalities in which every model of T is
homogeneous.

*1)If there is A, IT1+ 8y S A€ H(T), then every g, u 2 A or
u > ID(T)|, belongs to H(T). But 8y < A < ID(T)! implies A ¢ H(T).
[See Shelah [D1, 7.6.]1 [See example in Keisler [A], p. 41. 4A.]

PARIA !Tl Ng,and 7 is not categorical in ¥, then in every A,
8o < A< 270, T has a model which is not 8 ; -homogeneous. Hence if
ITi=Rg, 8, e H(T) then T is categorical in 8, . [See Shelah [D] Th.
7.9.1

3) If 8y < IT1€ H(T), then T is a definitional extension of some
T'CcT,ITI<ITL

4) Let ¥ be asentencein L, . If %, € H(¥), then every A € H(¥).
for A> K. (See Keisler [B] §3. Also for the class of reducts of models
of ¥.)

5) Let W be a sentence in Lw w> N> Ng. Suppose (a) ¥ is catego-
rical in A, (B) its models of cardmahty A are ¥, -homogeneous () every
countable model of ¥ has elementary extensions of arbitrarily high
power which is a model of W. Then W is categorical in every A > Ng.
(See Keisler [G1))

Let Tbe atheory in L, P ={p;: i <i,} aset of typesin L, H(T, P)
the class of cardinals A 2 ILI+ ¥, in which every model of T wlich
omits every p € P is homogeneous,
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6) If there is A € H(T, P), A\ > IT|, then there is uy < 2[(2'L})’]
such that: every pu = U belongs to (T, P), and every p, ILI< u< g
does not belong to M (T, P) except possibly two, if there are two ex-
ceptions, then uy < (2'7)*. If « is such an exception then: (1) (2¢)" 2 g,
) cf > w,orpy S QRTY 3)if A= Z, A%, K # N7, [See Shelah [D],
Th. 7.10,6.7,6.8,7.5.]

7) (G.C.H.) Let h(X) be the number of homogeneous models of
power X ( with a small change in the definition for singular \). Then
ITIS g < A< pimplies 2y () S Ap(N), and A (Rg) S Ry, B <A
implies ~;(A) < hyp (% (). (See Keisler and Morley {F].}

8) Conjecture (Keisler and Morley): (G.C.H.) For every A 2 8,
hey(\) = hp(8,) (for countable 7).

9) Conjecture (Keisler and Morley): Suppose M is an (2“0 y-homo-
geneous model of cardinality > 2“0, ITh(M)I = R . Then for every A,
M has an elementary extension N, which realizes no new type, is A-
homogeneous, and is of power = \.

10) Conjecture: If M is a \*-homogeneous model of 7 of cardinality
A, then A< 214,

Historical remarks

1) The example appearing in Keisler [A] is due to Morley, and it is
of a countable T, for which H(T) = {A:A> 20}, Keisler [B} proves
for countable T, that A 2 ®; € H(T) implies A € H(T). Question B of
Keisler [B] p. 260 is partially answered by (1), which is due to the
author. Partial result is Shelah {D] Th. 7.6.

2) This answers affirmatively question D, Keisler [B] p. 260.
6) This partially answers question B, Keisler [B] p. 260.

E. The number of non-isomorphic models of a theory

(Remember T is always complete.) (Notice G.10.)
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1) If T is countable, catsgorical in 8; but not in Ny, then
(R, T) =N, [see Baldwin and Lachlan [B]. If T is countable and super-
stable, I(Rg, T) > 1 then I(R, T) 2 Rq. [Lachlan [D*]]

2) Conjecture: If T is categorical in |T1" but not in IT1, IT! = ¥ o
then I(IT), T) = lal + 8.

3) If T is countable, /(8 y, T) # 2. [Vaught [A]]

4) For every n # 2, there is a countable T, /(% ,, 7) =n. [See
Vaught [A], (the result is due to Ehrenfeucht)].

SYIf T is ¥, -stable but not ¥ -categorical then for every «,
I(®,, T) 2 la + 11 (see Shelah [D], 7.9, and 6.9, Rosental [A=*].

*6) If T is countable, and not categorical in ¥, then for every
a22,, I8, TV213,. [compare with G].

*7) If T is superstable A= N(T)> IT), = IT), 2¢ > 250 then
I(u, T) = min(2#, 2M).

8) Conjecture: If T is stable A = A(T) > 1T, (see Al) then for every
p2 ITH+ 8y, I(n, T) 2 min(2#, 21). False.

NIFID(DI> ITLAZ ITI, then I(A, T) = ID(T)!. [See Ehrenfeucht
[B1, in fact.]

*IO) If ITIS R, < ID(T)I T is saperstable, then I(R,, T) = la + 11

11) If T is superstable, and it has an ¥ j-saturated model M, in which
there are two maximal indiscernible sets of different infinite cardinalities,
then forevery R, 2 ITLI(R,, T) 2 lal.

12) Conjecture: Every T satisfies one of the following:
@) for every N2 ITI, IQ\, T) < 22'T",
(i) forevery R , 2 IT] I{R,, T) 2 la + 11,
This is a special case of a mode general conjecture, which for simpli-
city we phrase for countable T, and large enough a.

13) Conjecture: cvery T, satisfies exactly one of the following (for
every a = 3,).
DI, =1
INIR,, =2,
I, N=lal
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VIR, T)=lal®0
VI, T)= el
VD I(R,, T) =2
VII); I(8,, T) = min[2%, 3 (lal, i + 1)] (where 1 < i< §,) [proba-
bly i < Deg x = x]
VIID I (R, T)=2"
[N ) =N+ 2, 2300]
(case VIl is N cases, in fact). (Each of the cases is realized by some 7).
This will, essentially, affirm

14) Conjecture (Morley): I(A, T) is a non-decreasing function, for
A> ITI.

15) For every A, u < 2* there is T, |71 =2, such that: I(k, T) = 2#
for every k = 2*. Also for every A there is 7, |71 = X such that for
every k = 2, I(k, T) = 22*. Also there is a countable theory 7, such
that for every A > ITI, I(\, T) = 2%, but every 2'Tl-universal model of
T is saturated.

16) Conjecture (Vaught): IT1=8,, I(Ry, T) > ¥, implies I(%,, T) =
20, (See G21).

Historical remarks

1) This was Vaught’s conjecture. Morley [B] proves that
I8y, T) < 8. Baldwin and Lachlan [B] proved also the other inequa-
lity. This answers affirmatively question (1), Morley [A], p. 537.

2) I thank Chang for suggesting to conjecture something of this
form.

5) This was a conjecture of Harnik, in [A]. The proof is based on
a result from Morley [B].

7) For IT1= R, u = 2, this affirms a conjecture of Keisler (Chang
and Keisler [B] open problem 13).

13) In Harnik [A] appears an example of T, 2; ST\, 7)< 3,. The
example is due to Rabin, and the proof o” ilarnik. Gaifman [A] showed
that the theory of numbers satisfies VIII.
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15) The construction can be based on the example of Morley, appear-
ing in Keisler [A], p. 41 (or the one of Harnik [A]). The last example is
a construction uniting the previous construction with that of Baldwin
and Lachlan [B], §4; but then new phenomena arise.

F. Categoricity of pseudo-elementary classes

*1) Let x, A, u be infinite cardinals, x < A, x < u. The following sta-
tements are equivalent.

W IfIT; 1S x, PC(Ty, T) is categorical in A then it is categorical
in m.

) If IT; 1< x, p atype Ipl < x, @ a one-place predicate, and T,
has a model M, u = IMI > |QM | which omits p, then T, has = model NV,
A= NI > IQV |, which omits p.

(iii) If |73 1< x, PC(T;, T) has only homogeneous models in A,
then it has only homogeneous models in . [See Shelah [B] p. 200,
[H].] (Here we can replace T; by a sentence of (L, )x+’w 9

DI PC(T,, T)is categorical in Ny, |7 | = X, then it is categorical
in every A> R,. [See Keisler [B], §3 for even a more general result.]
(C.H. is eliminated by 1)).

*3)If PC(Ty, T) is categorical in A\, A> 1T |, u(ITy ) = 2 & divides
v, then PC(T;, T) is categorical in 37 [See Shelah [B] Th. 4.5 and
G.10.]

*4)If PC(T,, T) is categorical in A > |7, | then:
I) T is superstatle,
II) stable in every A 2 IT, |,
I1I) has not the f.c.p.;
IV) is categorical in g 2 1T 1 iff every model in it of cardinality u
is saturated. [See Shelah [H]; Shelah [B] Th. 4.2; Keisler [A] 4.2 (i);
Shelah [B] 4.5.3c, [H].]

*5) If T is countable, superstable [8,-stable] and without the f.c.p.,
then there exists Ty, TC T, 1T} 1= 280, [1T,1=%,4] such that
PC(Ty, T is categorical in every cardinality > 2%0 [> Rol. [See
Shelah [G].]
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*6) If T is countable and superstable, then there exists Ty, TC Ty,
IT,1= 2% , such that PC(T;, T') is categorical in 2 Ro [See Shelah [G].]
(Compare 5,6to G10, Gi4)

7) Question: If T is uncountable, what are the necessary and suffi-
cient conditions for the existence of T, T C T, such that PC(T, T)
is categorical in every A> 1T |7

8) Conjecture: Suppose PC(T,, T) is categorical in A = |7 I. Then
A> Ry 1mphes L II, IV of (4), and XA > 13, implies III of (4). Remark:
For A > 270 it suffices to prove T is superstable. For partial results see
G7,G12, G13, GIS, G23, A2. So if A = A%, (8) holds.

Historical remarks

1, 2, 3) From the proof of Th. 3.3, Keisler [B], p. 256 it is trivial
that (ii) - (iii). Keisler [B] 4.2 (i.e. 2) assuming C.H.) is a particular case
of (ii) » (i).For countable T, (ii) - (i) and (3) are due, independently,
to Choodnovski, Keisler [E] p. 18.2 (forA = ANo only) Shelah [I], [B};
and generally to Shelah [I], [B], [H]. The direction (i) - (ii) is due to
the author, and alse ¢ii) - (ii). I don’t know whether Choodnovski
uses the restriction A = A0, This answers partially questions from Keis-
ler [B].

4) 1, 11, IV can be seen quite easily from the proofs in the ca 2
T, =T, the history of which appears in C1; but secemingly thi- was first
noted in Shelah [A], [B], [P*].

III was proved by Keisler [A] 4.2b (i) p. 41 for countable 7. By IV
the generalized case has the same proot.

G. The number of non-isomorphic models of a pseudo elementary class

) If 1T 1= 8y, ID(T) > 8, then I8, Ty, T) = 271, [See Keisler
[C] Th. 5.6.] (In fact, by using Ehrenfeucht-Mostowski model:, for
every A > 8, I\, Ty, T) 2 2™),

2)If ITy =8, T unstable in 8, 2 "1 > 2™0, then for every A > Ry,
I(\, Ty, T)> 2%1, (This follows from (1) by (3).)
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3) If T{ 1) is the complete diagram of A C IM|, TC T* C T(A)
M amodel of T,and I(\, Ty U T*, T*) 2 p, u> A4! then
I Ty, T2 .

4) Conjecture (Keisler): If 1Ty 1= 8, ID(T)I> 8, then
I(:l’ Tl’ T) =:2.

5) Conjecture: In (2), 271 > 270 is not needed. False.
*6) If T is unstable, A > IT |, then I(A, Ty, T) = 2*. [See Shelah [E].]

*7) If T is unstable, A\ = |7, |2 8, then I(\, T;, T) = 2}, except in
the very rare case that: there is a family of cardinality 2*, of subsets of
A each of cardinality A, the intersection of any two of which is finite.
[See Shelah [E].]

8) Question: Is it consistent that such A > N exists? (This is a set-
theoretic question, of course.) Baumgartner said yes.

9) Conjecture: If T is unstable, A 2 1T, | + 8, then I(\, T, T) = 2.

*10) If T is not superstable, A > T | is regular, then I(A, Ty, T) =22,
Moreover, for every u > N, I(u, Ty, 7) = 2. [See Shelah [H].]

*11) If T is unsuperstable but stable, A > |17, | is regular, then in
PC(Ty, T) there are 2* models M; of cardinality A, such that if i # j,
M; cannot be elementarily embedded in M;. [See Shelah [H].]

*#12) If T is unsuperstable, A =A™V > IT, I then I(\, T}, T)> A\ If
A=Z, NN, SN0, N2 1T, I then I\, Ty, T)> . [See Shelah [H].]

*13) If T is unsuperstable, A > IT; |, u < A< ™0, 28 < 27 then
I\, Ty, T) =2, In fact suppose there is a tree with g nodes and 2 A
branches of height k < k(T), IT; 1<\, 2¢ < 22 then I(\, Ty, T) = 2\,
Also if there is such a tree, k < K(T), B 2 IT1 LX< R, = x* < N,
2utigl < 2A then I(8 45, Ty, T) 2 22, [See Shelah [H] and also [M],
Th. 2.]

14) Conjecture: If T is unsuperstable, X 2 1T, |+ 8, , then
I\, Ty, T)=2*. Moreover, if A> IT; |, in PC(T, T) there are 2* mod-
els of cardinality A, no one of them can be eiementarily embedded in
any other.
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*15) Suppose T is stable and has the f.c.p., 8 g = min(ZNO, |7, ). Then
forevery 8, 2 ITy L, I(%,, Ty, T) = 2'e#' [See Shelah [G].] (Compare
F6)

Definition: m(\, p, TV =min{I(\, Ty, T): TC Ty, lTll—u}

16) For every a there is a complete theory T, |71 = lal+ 8, such
that forevery N, Zu> lal+ 3y, m(R,, o, T) = 3(l7y - Bl, @) where
N =2 097> 6+w

17) There is a countable complete 7, which is superstable, and for
every A = u + 20, m(\, w, T) = 2A.

18) Conjecture: If 8 ;= 270 and for some R, =A>u22'T),
mQ\, 1, T) = A(le - B, I TV then for every A > u = 2'T,
mQ\, u, T) =27,

19) Conjecture: For simriicity let T be countable, A > p = y
Then one of the following occurs:
(i) for every A> u > 270 m(\, u, T) = 22
(ii), for every X, > = 270 = 8, m(8,, u, T) = 2(a - Bl, ) if
a2 f+w[y<ITI].
(iii) for every A > u = 20, m(\, p, T) =

*20) Suppose T is countable, p a type in its ianguage If T has a model
omittingp in 2 , but notin 3, , then for every a2 w,
IR, D> 10, and for every n, I(R,,. T)> 2n.

) If 1Ty 1= Ry, I(8g, Ty, T) > R, then I(8y, Ty, T3 = 20, This is
true aiso if 7'y isin L [See Morley [C].]

wpw ”

22) There are countable Ty, T I(8,, T, T) = 8, (T-the theory of lin-
ear order, 7' saying for every two elements there is an order-automor-
phism taking the first to the second. We can complete the theories w.l.
0.£.) [Kunen, unpublished].

23) I ID(D)I> 1T, |, A= IT,ithenI(A\ Ty, 7) 2 ID{MI [See Ehren-
feucht [B] in fact].
See also Shelah [C].
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Historical remarks

1) Thi- improves Ehrenfeucht [B], which proves, in fact, that for
every A2 R, I\ T}, D 2 250,

6) Gaifman [A] proves it for the theory of numbers. Ehrenfeucht
proves, assuming 7" has the property (E) (see A12), that I2*, T, T)> 1.
Shelah [A] Th. 2.13 [B} 4.51 proves I(R,, T, T) 2 la - 8| where
g = 1Tl and T is unstable.

10) In Shelah [B] 4.5.2, it was proved that if T is unsuperstabie,
R, = Rg = IT) |, then I(R,, Ty, T) 2 l(a - B)/wl.

H. Keisler’s order and saturation of ultrapowers

1) < is a reflective order. [See Keisler [A].]

2) T is <-minimal iff for every model M of T, and (R, N\)-regular
ultrafilter D over A, M!/D is X*-compzct. There are minimal theories
which are countable. [See Keisler [A" p. 32.]

3) T is <-maximal iff: for every model M of T, and (X, A)-regular
ultrafilter D over \, MI/D is \"-compact iff D is A\*-good. There are
maximal theories which are countable. For A > R, no theory is
<], -minimal and <, -maximal. [Sce Ksisler [A] p. 32.]

4) The following condition is sufficient for <]-maximality: thers is
¢(x, ¥), such that for any n < w, w C n X n, ¥ € T where

=3yl .y N @x)ek, v A, ¥

G, prew
i<j

A —_ —
Gpw | AxNplx,y") Aplx, y7))
i<j
[See Keisler [A] 3.1 Benda [A], part II Th. 9.1
The following results will appear in Shelah [G], sometimes using

Kunen [A].
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*5) If A > 270, T is countable, then T is <, -minimal iff T has not the
f.c.p. (by A12, this implies T is <table).

¥6) If Rg <AL 2%0 < 27, T is countable, then T is <1, -minimal iff
T is stable.

*7) T is <-minimal iff T has not the f.c.p.
In order to show that in (6), 280 < 21 js superfluous, it suffices to
prove

8) Conjecture: If M is a N*-universal model of T, T unstable, D
(Rg: A)-regular ultrafilter on A, then M*/D is not \*-compact.

9) If T has the strict order property (8) holds [for definition see
4.21. Also if 289 > 22, (8) holds.

*10) If Ty, T, arc countable stable and with the f.c.p., then
Tl 4 T2 <] Tl' IfT3 is unstabije Tl < T3.

*11) Suppose there is A > 8y, A" < 22 < 2X', T, is countable and
stable, 7', unstable. Then 7'y I T, butnot 7, < 7.

*12) There is a countable 7" (nnot minimal nor maximal) iff there is a
(¥, A)-regular non-good ultrafilter D on a cardinal u such that
Mn;/D 2 % implies In;/D > p. So if G.C.H. fails, this holds.

*13) There are two unstable countable theories, T4, T;,4. (defined
here, Th. 4.7) such that for every unstable 7, T, < T, or Ty g I T
{or both).

14) Conjecture: Those theories are incomparable.

*15) IFMA/D is (2*)"-saturated, D any ultrafilter, M is u-saturated,
then M™/D is uM/D-saturated.

*16) If T is countable and without the f.c.p., D an w -incomplete
ultrafilter over 7, M a model of T, then M7/D is R} /D-saturated. More-
over, if A is the least cardinal such that there is ¢(x, y ) and
p = {@(x, a?): i< A} (@i € IMI) which is a consistent type over IMi,
but omitted, then M!/D is maximally M /D-saturated.
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*17) If T is countable stable and with the f.c.p., D an w,; -incomplete
ultrafilter over A, u = min{IL, n;/D: IIn;/D 2 8, n; < 8y} then MI/D
is max u-saturated.

18) There are theories T,,, 1T, 1= R, such thatif « < 8, T, < T but
not 7y < T,. If there is a countable 7, which is not minimal nor maxi-
mal, then there are incomparable theories.

*19) If, vaguely speaking, we replace in the definition of <, ultra-
power by limit ultrapower; then by the resulting ¢ rder < the countable
stable theories are divided into four clases: K -sup¢ wstable without
f.c.p., K,-unsuperstable without the f.c.p., K;-superstable with the
f.c.p.; K,-unsuperstable with the f.c.p. K; is minimal (among them);
K3, K,-incomparable. If T; < T, then k(T;) < k(T).

*20) If T is not <, -minimal then it is not u -minimal for any
%> min(y, 2/T1-
21) Conjecture: If T is not <, -minimal, then it is not <3“ -minimal
(u=I1T1+2%0),

22) Conjecture: If Ty, T, are countable, unstable and do not have
the independence property (Def. 4.1) then T, < T, < T}.

23) Conjecture: If Ty, T, are countatle, unstable and do not satisfy
(3) from Th. 4.8 for u =8, then Ty < T, < T;. Perhaps instead of
not (3), it suffices 7'y, T, has not the strict order p (see Def. 4.2).

Historical remarks
7) This answers affirmatively a question of Keisler [A] p. 40. He

proved ([A], 4.20) that if 7 is minimal, then it has not the f.c.p.

9) This was proved independently by Keisler and the author, for
the theory of linear order; hence to every theory with the strict order p.

12) The notice in Notices of the A.M.S. vol. 16 (1969) p. 501 claim-
ing to prove the existence of such D was an error.

15) This answers affirmatively question 4D, Keisler [A] p. 41.

18) This answers negatively question 2E Keisler [A] p. 32; and ans-
wers positively question 2C (but the theory is not the one he suggested
and is uncountable).
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L. Other results

Definition: Let M be amodel of T, A C M, S a set of types over A
(in the language L of 7), and T'C T,. § is called (T}, T)-independent
if: for every Sy C S there are models M;, M, of T, of arbitrarily high
power such that: M, is a elementary extension of M, ; the reduct of
M, to L is an elementary extension of M; and p € § is realized is M, iff
p€S,;.(Of course A C IM, ).

D IfISIAI+ 1T, 1141 < 2181 § s (T, T)-independent, then for every
A2 AT I+ ISLI(N, Ty, T) 2 2'S! (notice G3).

2) If T is unstable, J is an ordered set with a dense subset J;, /1=
IJ; 1=}, then there are A, S C S(A), I41= X, IS1= u such that for eve ry
T, S is (T, T)-independent.

3) If k < k(T), X a cardinal, then there are 4, S C S(4), [Al= EKK P
IS1=A*¥, such that for every T, S is (T';, T)-independent (notice G13).

4) If T has the independence p (Def. 4.1) A a cardinal, then there are
A, SC S(A), 141= A, IS =22, such that for every Ty, S is (T}, T)-
independent.

5) If T is superstable, IS(A4)I> 141+ ITl, then there are B,
IBI< 141+ 1Tl and S C S(B), ISI = 1S(A)! such that S is (T, T)-indepen-
dent.

Remark: A rclated resuit is Keisler [C] 5.4.

6) Let T be a superstable theory, X, = ITI". Let for 8, > 2'7,
I*(8,, T) be the number of non-isomorphic 71" -saturated models of
T of cardinality 8 . Then exactly one of the following holds:
arrm,n=1
) * (%,, D= la-pl
(iii) ¥ (Ro; 1) = la - BI* for @ >+ A, where A < 217!
(v) I* (8, L1y> 2 for 8, >a2p+ITI
There are equivalent syntactical condltlons, and the structure of the
models in the first three cases is characterized. For example, if (iv) holds,
there is a formula ¢(x, ) such that for every {A\;:i€ I}, (A, > 2'T'+ 1)
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T has a model M, and there are sequences a ! i € I from M such that
Hbe IMI: M Eplb,afl}l=N\,.

7) Conjecture: We can generalize (€) to stable theorics.

8) Question: Can we in (6) (iv) omit the condition &, > a? Yes.

9) T has a saturated model of cardinality N iff A = BV 1D{THI
<A
or T is stable in A [Follows from various results mentioned in B].



Sh:10

294 S. Shelah, Stability, the f.c.p., and superstability

§ 1. Notations

We shall use a, 8, v, i, j, k, { for ordinals; m, n, r for finite ordinals
(= natural numbers); k, A, x, u, for infinite cardinals (= initial ordinals);
and 6 for a limit ordinal. The cardinality of a set A will be |Al. A se-
quence s is a function from a ordinal, which will be called the length
of the sequence, and denoted by /(s ). Let 5 () = s; be the ith element
of the sequence. s |k = (s¢i): i < k); and Rargs = {5(i): i <I1(s)}. Let
aq = {5:1(s)=a,Rangs C A}, and ®4 = U,.#A. Sequences of ordi-
nals will be denoted by 7, 7; usually they will be sequences of zeroes
and ones. So writing only /() = a, we mean 7 € ¢2. T will be a fixed,
first-order, complete theory in a language L. Formulas of L will be de-
noted by ¢, ¥, 6. ¢(x) is a pair (g, x ) where every free variable of ¢
belongs to Rang x . We shall not differentiate strictly between ¢ and
¢(x); and the exact meaning will be clear from the context. Variables
will be denoted by x, y, z; and finite sequences of variables - by x, ¥,
z . Let k be a cardinal greater than the cardinalities of all the models
and sets we shall speak about. By Morley and Vaught [D] T hasa k-
saturated model M, and every model of 7 of cardinality < k is isomor-
phic to an elementary submodel of M. So for sin. vlicity, saying a model
of T we shall mean an elementary submodel of M « f cardinality < k.
M, N shall denote models of T, IM| - the set of elemenis of M, and
hence 1M1l - the cardinality of M. A, B, C shall denote sets included in
some (M. Leta, b, ¢ denote elements of M;a , b, ¢ finite seyuences
of such elements. We shall write 2 € A4 instead ofa € “>A4;andae M
instead of a € IMl. For “p[a] is satisfied in M we shall write
M k ylal. But as M is an elemer:tary submodel of M, M E ¢[a ] iff
M E pla]; hence we shall omit M; and sometimes say only ¢ [a ] holds.
Note that M is an elementary submodel of N iff IMI C INL

Let A denote a set of formulas ¢(x) (not ). We say p is a A-m-type
over (or on) A if:

(1) its elements are of the form p(x ;a ) wherea € 4, x =(xg, ..., X,,_1),
and ¢(x ;) is ¥ or W for some ¥(x;y) € A.

(2) p is consistent; that is, for every finite ¢ C p, k (3x) Ay, V.

Types wiil be denoted by p, gq. If A is the set of all formulas of L,
then we omit it; and if m = 1 we omit it. If A = {¢}, we shall write
instead of A. p is a complete A-m-type over A if it is maximal; that is
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ifeeA, o€ Athenp(x;a)€porlp(x;a)€ p. Let ST(A) be the
set of complete A-m-types over A, We say ¢ realizesp if p(x ;a ) € p
implies E ¢lc ;a }. As M is k-saturated, every type is realized by some
c. The type ¢ realized over 4 is {¢(x;a):a €A, Eplc;al}. Letp
restricted to A be plA = {p(x ;@) E p:a € A}.

Let ¢f bey ifi = 0 and Tlg if i = 1. Let pifst) where st. is a statement
be @ if st. is true and Ty if st. is false.

Writing ¢ = ¢(x ;¥ ) we shall always mean /(x) = 71, and see Rang x
as a set of variables, and Rang y as a set of parameters. (The meaning
shall become clear in the usage, as we deal with types
{p(x;ak): k< ky}.) In fact sometimes when we say a formula ¢, we
mean ¢(x ;) or p(x ), or a formula obtained from g by a suitable
change of variables. Note that x is not uniguely fixed - we can add to
it dummy variables or change the order of the variables. For simplicity
W2 assume X =X, ..., X,y_1 ) Xg = X.

M is \-saturated, if every type p on IMl, p € S(A4), |AI< A is realized
in M. M is A\-compact if every type i on IM|, Ipl < A, is realized in M.
Note that for A > 1T, those two concepts are the same.
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§ 2. Properties equivalent to unstability

We shall define some properties (A-F) of formula p(x ;¥ ) and prove
their equivalence by a series of lemmas. They are
(A) ¢(x;y)is unstable;i.e., for every A there is an A4, ng(A)I> A 1AL
(B) ¢(x;y)is unstable in at least one A.
(C) ¢(x;y) has the order property; i.e., there arez 0,a !, ... such that
for every n,

{Te(x;a®), ..., le(x;an), p(x ;am™l), plx ;a™2), ...}

is consistent.
(D) T'={9(x ;7 5,)": n€ ©2, n < w} is consistent (with 7).
(E) It is false that:

we can define for every g-m-type p a Rank, which is a natural
number < n(p, m) < w such that (1) p C q implies Rank ¢ < Rank p
(2) every g-m-type has a finite subtype of the same rank (3) For
every p and ¢{x,a ).

Rank [p U {¢{x, a)}] < Rankp
or
Rank [p U {T¢(x, a)}] < Rank p.

We also prove

Theorem 2.13. The fellowing properties of T are equivalent:

(1) T is unstable

(2) T is unstable in at least one A\, A\ = AT

(3) some formula ¢(x;y) is unstable

(4) some formula (x;y) is unstable

(5) there are a formula p(x ;y) and sequencesa”, n < w of a fixed
length such that forn, r < w
Egplan,a’]} = n<r.

By 5.3 we can add tc those properties

(6) There is an infinite set of sequences of the same length and a for-
mula ¢ =¢(x9, ..., x 7Y, a) such that the formula and its negation are
connected over the set.
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(7) There is an infinite indiscernible sequence (of sequences) which
is not an indiscernible set.

In all the theorems, we can replace ¢-m-types by A-m-types, and
S g (A) by S7(A); for any finite set of formulas A. This can be done
directly by repeating the proofs, or by using the following formula:

ifA= {75 ) k<n< w}
let
q,(':;;j;—osj}—ls "'3.]-;"—1323 205 veey Zn__1)=

= D lz=z > o501

This is true also for other sections. So we prove some theorems for
¥, but use them for any finite A.

Definition 2.1.
A) o(x;y)is stable in \ iff for every A, 14! < \ implies
IS Z’ AL
B) @(x;y) isstatle iff it is stable in at least one cardinal. *
C) T isstablein » if 141 < N implies IS(4)I S A,
D) T isstable if it is stable in at least one cardinal.

Property A. ¢(x ;¥ ) -s unstable.
Property B. p(x ;¥ ) is unstable in at least one A.

Definition 2.%Z. ¢(x ;) has the order property (or order p) if there are
af,..,an",.. such that for every r, the set

{o(x;amEC@2N < W}

is consistent.
Property C. ¢(x ;y) has the order p.

Definition 2.3, Let
(o, m,a) = {p(x ;¥ )" ®:n€ 22, k<a}uT

(since what m is clear, we shall usually omit it.)
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Property D. T'(p, w) is consistent.

Before we continue to define the other properties we shall prove that
A, B, C, D are equivalent, by provingA-> B> C~> D~ A.
It is self-evident that A implies B

Lemma 2.1. If for some A, IST (A)1> 1412 R, then o(x ; V') has the
order p. (i.e. property B implies property C).

Remark. In Shelah [F] a stronger theorem appears.

Proof. Let v =¢(x;¥),1(y) = n. Clearly, 1741 = 141" = 141> ¥,. For
every p € ST (A) let w(p) = {a €"4: p(x;a ) € p}, and W =
{w(p):p€ SZ’(A)}. Clearly if p, q € S7(4) then p = q iff
w(p)=w(qg). Hence |W|= ISZ‘(A)I >1A41= 141> Ng; and by defini-
tion, W is a family of subsets of 74. By a thecrem of Erdos and Makkai
[A] this implies that there area ®, ...,a 7", ... € "4; w(py), ..., w(p,), ...
€ W such that:
either (1) forevery k, /< w ale w(p,)iffI<k
or Q) forevery k, I< w ale w(py)iff k< L

By the definition of w(p; ) we can conclude that:
either (1) for every k < w, {¢(x;a?) U<k | < W} is consistent.
or (2) for every k < w, {p(x;a NE*D: ] < ¢} is consistent.

In both cases, clearly ¢ has the order property. [In case (1), we
should reverse the order of the first /(< w)a’’s, and use ~he compact-
ness theorem.]

Lemma 2.2. If o(x; y) has the order p, thea T (g, w) is consistent (i.e.
property C implies property D).

Proof. Let us define an order on w2 2: if glk = 7lk, n(k) = 0, (k) = 1
thenn< rifnlk=7lk,I(n) =k, 7(k) =1 thenn < 1;if nik = 7ik,
ImM=k,r(k)=0then7<n.

By the compactness theorem, as ¢(x ; y) has the order property, the
set

TU {p(x,; ¥, ) E0<D: I(n) = w, (1) < w}
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18 consistent. If a , realizesy , ¢, o Tealizes x o+ then for every n € @2,
P, = {o(x;a,,, "7 r < w} is consistent. Hence I' (g, w) is consistent.

Lemma 2.3. If I'(p, w) is consistent, then p(x;y) is unstable {i.e. pro-
perty D implies property A).

Proof. Let A be any infinite cardinal, and we shall prove that ¢ is un-
stable in A.

Let u=inf{u: 2% > .}. As I'(p, w) is consistent, clearly also (o, u)
is consistent. So let M be a model of it, leta, realizz y_, and ¢, realize
X, .Let A = U{Rang a,:1(n) < u}. Clearly !AI < (zmza)-zxo ST X
7\ (asA< 2", u<Aby deﬁnition). Forn € #2, let p,, be the p-m-type
that ¢, realizes over A. Clearly if i(n) =1(7) = u, n # 7, and k is the
first ordinal such that n(k) # 7(k), then

o(x; Enm)"(k) €p,
and
1 ‘P(J—C-;a_ngk)"(k) =*P()—C-;Eﬂk)7(k) €p,,

hencep, # p,. So

ISP Z I{p,: I(m) =p}l = | {n: l(n) = p}i=2¢ >N
or
IS > N2 141,

Hence we have proved the equivalence of properties A, B, C, D.
Now we shall define ranks of \o-m-types.

Definition 2.4. For every 4, «, and ¢(x ; y) we define S’" +(4) by induc-
tion on a:
() S’"O(A) is the set of p-m-types over A (not necessarily complete).
) If S m (A) has been defined then S m +1(A4) will be the set of
typesp € Sm »(4) such that for every ﬁmte q C p there are B, A C B,
and b € B such that:

qu {v(f;F)}ESQQ(B); qV {e(x;b)r e Sm (B).

(3) S™, (4) =N, S™, (A).
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Lemma 2.4. If p is a p-m-type over A, A C B, then for every a,
PESY +(B)-

Proof. Immediate, by induction on «.

Definition 2.5. If p is a ¢-m-type over A4, then Rank"’f1 p will be the
greatest ordinal « for which p € Sz"a (A4). (As S{Za A)=nN,, Sf;',k(A ),
always there exists such a; and by Lemma 2.4 it does not depend on
A, but only on p.)

If p € S ,(A) for every o, then Rankl!p = ; and we stipulate a < o
for every ordinal a. To inconsistent set of formulas we give the rank —1.

Remark. When ¢ and m are clear, we shall omit them and write Rank p.

Property E. There is a g-r1-type whose rank is <.
Property F. For every n there is a ¢-m-type whose rank is > n.

We have proved that the properties A-D are equivalent. Now we shall
prove D - E, F > D, and as E ~ F is self-evident we finish the proof of
the main theoreian of this section. Before proving this we shall prove a
lemma on ranks.

Lemma 2.5. (A) If p, q are p-m-types, and p C q then Rank p 2 Rank q.

(B) Every g-m-type p has a finite subtype q, such that Rank p =
Rank q.

(C) Every o-m-type of rank < has no two extensions q,, q, such
that Rank p = Rank g, = Rank q,, and for some a, p(x,a) € q,,
Te(x,a)€Eq,.

(D) If p is a p-m-type on A of rank a, a < = then it has no more than
one extension in S {;‘ (A) of rank «a.

Proof. (A) Supposep C g € S'" 0(A4), and a = Rank p < Rank ¢. Then
pE S’" LA),pE S”‘a+1(A), but qe S, ,(A). Let p, be any finite sub-
type of p; then p, is also a finite subtype of g; hence, by definition 2.4,
asge€ S”’ ot l(A ), there exists B, A C B, and b € B, such that

P Y {w(x b)Y, py YV {Me(x, b)e Sm (B). As this is true for every
finite subtype of p, p€ S™ a1 (4), a contladlcttlon
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(B) Suppose p € S’"O(A ), Rank p = a. Hence p € Sm »(4), but
ré¢ S +1(A). By the definition of 7 ., (A4), p has a ﬁmte subtype g
such that foreveryb,B;ACB, b € B qu {p(x,b) ¢ S"’ (B) or
gqu {My(x, b))} ¢ S’" (B). Hence, as q is a finite p-m-type, Rank g<a.
On the other hand by (A) asqC p, Rank ¢ 2 Rank p = . Hence
Rank ¢ = Rank p = a. (If Rank p = =, any finite subtype of p will be
0.X)) '

(©) Suppose p, q,, g, € S'" '.(4), Rank p = Rank ¢, = Rank 3 gy =a.
Thengq, € S”‘ (A),and asp U {o(x,a)} C gy, Rank(p U {p(x, a)}) =
Rank g, =«, [by (A)] hencep U {p(x,a)} € S";‘ (A). Similarly, using
q2 , we can show that p U {Tlp(x, a)} € S m . (A4). By the definition of

o Sm ), pe S'"aﬂ(A) A contradlctlon to Rank p = a.

(D) An 1mmed1ate corollary of (C).

Lemma 2.6. If ' (p, w) is consistent, then there is a p-m-type with rank
. (Hence property D implies property E).

Proof. As I'(y, w) is consistent, it has a model, and let a, n Tealize yn
for each 7, I(n) < w, and b realizes x for each n, I(n) = w.

AsT'(p, w) = {ap(xn, yﬂl,,)"(") l(n) w, # < w}. Clearly for each n
of length < «, p, = {o(x, a ol 210 n < I(n)} is a consistent w-m-type.
As the ranks are well ordered there is among the types {py: I < w}
one with minimal rank, say p,. Hence Rank p_ < Rank p,.,,, but as
Py C Py 2iso Rank p, 2 Rank p,_,. So Rank p_ = Rank Pr~@ and
similarly Rank p, = Rank p,_;,. Asp(x, a,)€ p,_q,, W(x,a, YED 1y
we get, by Lemma 2.5C a contradiction.

Lemma 2.7. If p is a ¢-m-type, thien Rank p 2 n iff
Lpn = ol a)Y:0x, aYep,icz l(n)=n}u
U {00, Yo t®: i) =n, k< n)
is consistent, i.e., realized in M. (Fp,n depends, in fact, also on ¢.)
Proof. Suppose Rank p > n, hence p € Sg (4), and we shall prove that

I, » is consistent. By Lemma 2.5A and the compactness theorem it
suffices to prove this for finite p. We shall now define by induction on k,
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k< n, Ay, a, forn;i(n) < k, such that for each 1, I(n) = &,

P, =p" {‘P(x au)"0: 1<k} esm -k Ar)-
Fork=0,49=A4,andp , = 'p,hencep(,ES _o(Ag) asRankp2n.
Suppose we have defined for k, and we shall define fork+ 1. Let

l(n) k, then asp, € k(A k) P,y 1< NO, by the definition of

Wt _i(Ay) there exxst: B »Ax € B, anda, € B, such that

n Yiv(x,a,)l,p, V{7 0. G, n)} e Sy k_l(B ). Letpy.q) =

p., U{p(x, a )},pmm p,V {7¢(x. a )}, and Ay, =U{B,: l(n)=k}.

Clearly the condltxons for k + 1 are satisfied, hence we can ﬁnlsh the

definition by induction. So for n, M) =mn, p, € S”' (A ), hence there

is c which realizes p,, . Taking a for y.,z and F for x we see that

Fp’n is consistent.

So we have proved one direction of the equivalence. Let us prove the
other direction. We assume that Fp is consistent, and we should prove
that Rank p 2 2 n. Let M be a model of T, , andleta, realizey,, and
c realize x . Define p, =p U {o(x;a, al k)’?(") k<lI(n)}. We shall prove
by 1nduct10n on k < n that if I(n) =n — k < n then Rankp, 2 k. For
k = 0 this holds as c realizes n, , so clearly p, is consistent, and hence
belongs to S m (M I) Suppose we have pl oved it for k, k < n, and we
shall prove 1t for k+1. Letl(n)=n - k- 1, then, by the induction
hypothesis, the ranks of p, ., = p, U {golx a,Yandp, ., =
p,Y{ Telx;a, )} are 2 k; hence by Lemma 2 5C Rankp,, Zk+1.So
we proved that Rank p, 2 n — I(n) and hence Rank p = Rank Py 2 H.
So we prove the second direction in Lemma 2.7 and thus prove it.

Lemma 2.8. If there is no finite upper bound of the rank of p-m-types,
then T' (o, w) is consistent (i.e. property F implies property D). More-
over, Rank™p 2 w implies Rankp = .

Proof. Let p be the empty p-m-type. As for any n, there is a ¢-m-type
p, of rank 2 n,and p C p,; Rank p 2 Rank p,, 2 n. So Rank p 2 w.
Hence by Lemma 2.7, T ».n is consistent for any #. It is clear by defini-
tion that as p is empty, I, ,, = I'(p, n). Hence I'(p, n) is consistent for
every n. Hence I' (¢, w) is consistent. The proof of the second phrase is
similar. So we finish the proof of the main theorem.
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Theorem 2.9. Let ¢(x ;¥ ) be a formula. Then the Sollowing statements
about p(x;y ) are equivalent.

(A) o(x;yp) is unstable in every infinite cardinal.

(B) o¢(x;y) is unstable in at least one infinite cardinal.

(C) ¢(x;y) has the order property.

(D) Tu T (p, m, w)is consistent.

(E) Not every g-m-type has a rank <ee,

(F) There does not exist a finite upper bound on the ranks of the

p-m-types.

Proof. This follows from Lemmas 2.1-2.8.
Now we shall apply this theorem to theories.

Lemma 2.10. The following statements are equivalent
(A) T s stable in A
(B) for every m, |\AI <\, implies 1Sm (A)I < \.

Proof. As (A) is a particular case of (B) (for m = 1) clearly (B) implies
(A).

So suppose (A) holds, and we shall prove (B). Let m < w-and
iA1< X. We define by induction 4,, such that: 14, 1< A, and 4, C 4,,,.
Let Ay = A.If A, is defined, as 15(4,)I <\, there is 4,41, 4, C Appy»
|4 41 1= A, such that every type in S{4,) is realized in 4, . It is easy
to show that every type in $™(4) is realized in 4,, , hence
ISm(A)I < 14,, Im =Nm =\, So we prove the theorem

Lemma 2.11. If ¢(x; y) is unstable in \, then T is unstable in \, More-
over 1SMm(4)1 2> lSZ*(A)lalways.

Proof. As p(x;y) is unstat'e in A, there exists 4 such that

S’"(A)I >ANZ2 141 Every » € S'" (A) has an extension p* in S (4).
Clearly P#q;p, qE S”’(A) 1mphes p* # g*. Hence

ISmANZ I{p*:p€E S'"(A)}l = iSm(A)l >N\ 2 141. By th= previous
lemma this implies that Tis unstable in A\
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Definition 2.6. If ¢ = ¢(x;y), p an m-type, then
plo={¥(x;a): ¥(x;a)ep, Y=9por¥="1¢}.

Lemma 2.12. If T is unstable in \, A = \\T\, then there are ¢, A such
that 1S,(4)1> 141+ 8,. Moreover, IS < I, 1S, (D! .

Proof. As T is unstable in A, there exists an 4, 1S(4)I> N2 141, If for
some @, lSw(A)l > A, we prove the lemma. So suppose that for every o,
IS,,(4)I < . Now if p, g € S(4) p # q then for some y, ply # qlyp,
hence

ISAI={p:peSUAIIL I(plp:pe LY:pE SN}
ST IS, (IS T =T =),

a contradiction. So we have proved the lemma.

Theorem 2.13. The following properties of T are equivalent:

(1) T is unstable.

(2) T is unsiable in a cardinal A = \'T",

(3) there is an unstable formula p(x;y).

(4) there is an unstable formula ¢ix;y).

(5) there is a formula ¥ (¥ 1, y2), I(y 1) =1(y 2) = n, and sequences
a’ r< woflength n such that fork, 1 < w

EW¥lak, al] iff k<.

Proof. By the definition of unstability, (1) implies (2). By Lemma 2.12

(2) implies (3). It is self-evident that (3) implies (4). If (x;y) is un-

stable, then it is unstable in every \, and hence by Lemma 2.11, T is

unstable in every A. Hence (4) implies (1). So (1) = (2) > (3) -~ (4) -~ (1).
Now suppose (3) holds. Then by Theorem 2.9, ¢(x; ¥ ) has the order

property. Hence there are ¢ such that for every k < «w,

Py = {p(x;c")E 020 : n < w} is consistent. Let bk realize py, . Let

an =(bn)~cn, then clearly k ¢[b¥, c?] iff n 2> k. By adding dummy

variables to ¢, we get a formula

V=W, y1;x2, y2) =p(x!, y2) A x! #x2

and clearly = ¥[a¥*;a"] iff n> k. So (5) holds.
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Suppose (5) holds. Define ¢ # = g 2*1 Then clearly for every k,
{W(y;cn)E (20 p < (o} is consistent as it is realized by a 2k, Hence
W has the order p, and so by Theorem 2.9 it is unstable. So (4) holds.
As we have shown (1)~ (2) » (3) > (4) = (1), (3) = (5) = (4),
clearly the theorem holds.
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§ 3. Properties of stable formulas and the finite cover property

We say that ¢ = ¢(x ;¥ ) has the finite cover property (f.c.p.) if for
every n there is a set of 2 n formulas ¢(x ;a@ ) which is inconsistent, but
every subset of it is consistent. We prove that if s »ne ¢(x ; ) has the
f.c.p., then scme ¢(x; ) has the f.c.p. We generalize Keisler [A] Th.
5.1 to: unstability implies the f.c.p. We also show that if T has not the
f.c.p., then for every ¢(x ; y ) there is ng, such that every p-m-type h-s
a subtype g of the same rank, Iql < ny. We also prove that if T is stable,
every type p € S™(A) is definable withir A, that is: for every ¢(x;))
thereis W(y;z)and c € A such thatp(x;a)Epiffac A, E¥[a;c].
Moreover, if 1412 2, the choice of ¥ depend only on . There are some
other results.

Definition 3.1. (A) The g-m-type p is V(v ; ¢ )-defined if

o(x;a)ep=>kV¥a;c)
and
Te(x;a)ep=>ET1V¥][a;c].

(B) The p-m-typz p is ¥ (¥ ; z )-A-definable if there exists ¢ € 4 such
that p is ¥ (¥ ; ¢ )-d=fined.

Theorem 3.1. (A) Suppose ¢(x ;y) is stable. Then there is a formula
¥ (y;z) such that:
everyp € S'"(A), (1412 2) is V-A-definable.
Aiso every p € S'"(A ), is ¥, -A-definable for some ¥, and we can
demand Rank p < w, instead p(x ,y) is stable.
(B) For every ¢(x;y), r, n and n € "2, there is a formula \Il' such that.
foreverya®,...,am1,
EY [af,..,a "—1] szank{‘p(f;E’)ﬂ(-’): I<n}y=>r.

Remark. Usually, using 3.1A we shall :gnore the restriction 141> 2.
We also prove, in fact, that for every ¢, m there is a finite A, such that
every p € Sg‘ (A) is W-A-definable for: .,ome ¥ € A, and by 3.1A we
can choose A, !Al =2,
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Proof. (A) First let 4 be any set, p € SZ’(A) be any type; and we shall
prove it is ¥-4-defined for some ¥. By Lemma 2.5B p has a finite si:b-
type g such that Rankp = Rankg =r, and let g = {@(x;a )1D: [ < n}.
Foreverya € A,letq@)=q U {¢(x;a)}. Ciearly, if p(x;a) € p tien
q(a) C p, hence Rankg(a) = Rankp =r, butas¢q C q(a),
r = Rank g 2 Rank ¢(a); hence Rank g(a) = r (we use Lemma Z.5A).
Now if 1¢(x;a) € p, then similarly Rank [gU {Tp(x;a)}] < Rankp=r,
hence by Lemma 2.5C, Kank g(a) = Rank[q U {¢p(x;a)}] <.
Soforanya € A ¢(x;a)€ p iff Rank[g(a)] = r. By Lemma 2.7
Rank[g(a)] = riff T q(@),» is consistent. Let 6 (x;c)=
0(x;a0,..,am)y=nA,, 0(x,a’)®. Clearly T y@),r is consistent iff
EWia;c], where

V(381 =3 Fp gy <r D, (3F) [0G550)A
va) A N oplesy n?]

Hence, fora € A, o(x;a) € piff E ¥ [a;c], wherec € A. So we
should prove only that the choice of ¥ depends only on ¢, and not on
A. In fact, it suffices to prove that there is a finite A, such that every
p & ST (A) is ¥-A-definable for some ¥ € A. For if
A={¥k(;z%): k< n} then

Y(y;z2)=¥Q@;z0..7"1 2,25, ... 2,¢)
= L\n [z#2z,»V(y;z D]

is the required formula.

Suppose there is no such finite A; we get a contradiction. Let P be a
new one-place predicate and b, ..., b,,_; new individual constants. For
every A let

TA =TU {_1 (320,21, .n) [ Il\ P(ZI)A
Myg. Y1, D) | {C\ P(yy)~
o, vg, .)= ¥(¥g, 329, .01 1 1 ¥ E A}

where b =<(by, ..., b, _1 7

m-1/-
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Clearly if p € Sf (4), forno ¥ € A pis W-A-definable, A C M, M is
a model of T, then (M, 4, b, ..., b,,_,) is a model of T, where
(bgy s +res b,y_1 ) realizes ;s in M. Hence for every finite A, T, is consistent.
Let Ay be the set of all tormulas of L. Clearly T,  is consistent; and let
(M, PM b, ..., b,._;) be amodel of it. Let A = PM  and p be the p-m-
type by, ..., b,,_; ) realizes over A. Clearly for no ¥ p is ¥-4-definable.
This contradicts what we first proved. So 3.1A is proved.

(B) It is immediate by Lemma 2.7; and in fact we prove it in the

proof of (A).

Corollary 3.2. Suppose T is stable, p € S™ (A), and for every ¢,
Rank(plp) = Rank [(plg)IB,1, |B,| 2 2. Then there are ¥, c,€B,
for every @, such that:

acA, h\Pw[Zl—;cTw] iff p(x;a)€Ep

Proof. Immediate from the proof of the previous theorem.

Theorem 3.3. fp e Sg’ (IM1), IMIC A, then p can be extended to an
equi-rank type in S(’f‘ (A4).

Proof. We shall prove it only for stable, as this is the only case we need.
By Theorem 3.1 there is a formula ¥ (y;z) and a sequence ¢ € IM|
such that

o(x;a)ep iffac M, ¥(a;c].

Let us define g = {p(x;a Y (¥1a:¢]) : g € A}. Clearly p C q hence
Rank g < Rank p = n. Suppose Rank g < n, and we get a contiradiction,
hence prove the theorem. (The case g is not consistent, can be consider-
ed as a particular case; and anyway the proof is the same.)

As Rank g < n, there is a finite ¢; C g, Rankq; < n, and let

g ={pC;an® 1< 1)
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hence by 3.1B, k1 ¥ [a 9, ...,a"]. By the definition of g, for every
I<r,E¥[a’;c 17D, Hence

E@EY0, .y (G0, .5 A B wEhano).
Asc €M, there are b9, ..., b" € IM! such that
W (B9, .., 5] A D w(Blc]0.
n 1<r
By the definition of ¢ and ¥, forevery I < r, o(x; 517D € p, and let
py = {e(x; 6B 1< 1.

Sop; € p, and hence n = Rank p < Rank p, . But by the definition of
\Ilf;, and of b9, ..., b", Rank p; < n; a contradiction.

Theorem 3.4. If p€ Sm(IM1), IMIC A, then there is q € S™ (A), such
that for every ¢(x ;¥), Rankg’(php) = Rank™ (qly), andp C q.

Proof. The same as the proof of the previous theorem.

Theorem 3.5. Supposep € S g’ (4), Rank p < w, and there is no finite
Po C p such that p is the only extension of py in SZ‘(A). Then
(A) There is a finite q C p and r < Rank p such that:
(1) q has infinitely many extensions of rank r in SZ‘ (A).
(2) if ¥ € p then for only finitely many extensions q, of q of
rank rin Sg'(A), aveq;.
(B) There are typesp™® € § g’(A ), Rank p" =r < Rank p such that
WV € p implies I{n: 1V € p} < R,

Remark. Theorem 5.14 has a stronger hypothesis and nicer conclusion
than 3.5B.

Proof. Clearly (A) im lies (B), so it suffices to prove (A).
By Lemma 2.5B t! ere is a finite g C p. ng = Rankp, = Rankp.
Clearly if py C q € £ /',(4) then Rank q < ng, and if in additior. ¢ # p,
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g€ Sg'(A) then Rank g < ny (by Lemma 2.5C). Sor(9) < ny for
Po © q C p, where

r(¢) = max{Rankq; : q C q, € S™(4), q; # p}.

(#s Rank g, can be one of n, values only, this maximum exists.) Now
let

ro =min{r(q) : po C g C p, lqgl < Ry}.

Clearly the minimum exists, and ry < ngy. So let g be such that

r(qo) =rg. Po € qo C p, Iqy1 < 8. By the definition of r(q,), g, has
at least one extension ¢, € S™(A), q; # p of rank ry. We shall now
prove that g, has infinitely many such extensions. Otherwise suppose
ql, ..., q" are all such extensions. For each k, 1 < k < rasqk # p, g%,
p € S™(A), there is o(x;a k)& € p such thar Tp(x;a k)nk) € gk.
Let

g1 =qo Y {o(x;akm®: 1 < k<r}.
Clearly Ig, 1< R, py C q; C p. Also as

{q2:q; € q2 €ST(A), q; # PIC {q; 99 € 9, EST(A),
q; # p}

it is clear that r(g,) < r(qy) =r,. But by uefinition g, has no extension
in Sz’(A) of rank ry =r(gy), as it contrad: tsq!, ..., q";so
r(q,) <r(qqy) =ry. This contradicts the definition of ry.

We can conclude that

P={p* = S™(A) : q¢ C p*, Rankp* =ry}

is infinite. (The condition p* # p is superfluous, as Rankp = ny > ry =
Rank p*.)

We shall prove now that g, 7, satisfy the conditions mentioned in
Theorem 3.5A, and so prove the theorem. Condition (1) 4.hat P is infi-
nite) has already been proved. So we should prove only that for every
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¥ € p, (p*:p*€ P, 1V € p*} is finite. Suppose it is not true, then there
are different p”. n < w, such that 1¥ € p". For simplicity let

¥ = p(x;a) for some @ € A (and not Tp(x;a)). Let D be a (non-prin-
cipal) ultrafilter over w. Define

g={0:{n:0€p"} € D}.

Clearly “1¢(x ;@) € q, and hence g # p. Moreover, for every b € A4,
o(x;b)e qgore(x;b)E q.

Now we shall prove thatg€ S Z’, " (A) (and hence is also consistent).
Suppose this is not true, then by Lemma 2.5B (or the compactness
theorem if g is not consistent) ¢ has a finite subset which does not
belongs to ST g (A)- Let this subset be { ¥y, ..., ¥;} where / < w.

By the deﬁmuon of q, for every k < I, {n: ¥, € p"} € D. Hence, by
the definition of the ultrafilter

{n:¥;ep”, .., ¥, EP}= {n: ¥, ep"teD.

k< < !
As the empty set € D, there exists p" such that { ¥, ..., ¥;} C p", and
hence by Lemma 2.5A, Rank{¥,,, ..., ¥;} = Rankp” =r, and so
{(¥o, .., ¥)JES (A ), a contradiction. Hence g € Sg’ 0(A), orin
other words Rankq ’> ro- Asq € S™(A),q# P, 99 C q; Clearly

Rank g < ry [by the definition of ro =r(qy)]. So Rankqg =ry. By
Lemma 2.5B ¢ has a finite subtype q® of rank ;. As before

{n:q% C p"} € D. Hence ¢0 has in S’: (A) infinitely many extensions
of rank 7, a contradiction to 2.5D. So we prove Theorem 3.5.

Corollary 3.6. IfpE S m(A) then there are n < Rank p and types Py
n € "2 w such that

(1) p(, =p, and every p,, € §7(A).

Q)i Im)<n, ¥€p,, then {k< w:7 VED, k) is finite.

(3 ifl(n)=n, thenp, has a finite subtype q,, such that p,, is the
only extension of q,, in SZ' (4).

Proof. By iterating Theorem 3.5.
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Definition 3.2. (A) ¢(x; y) has the finite cover property if for arbitrar-
ily large natural numbers n there area ©, ..., a "~ 1such that:

D N o ak
Ea@Ex) 2, ek, a")

but for every /< n
F@x) A o(x;ak)

k<n
k1l

(B, T has the f.c.p. if there exists a formula ¢(x; y) which has the
f.c.p.

Lemma 3.7. The forrula ¢(x ;) does not have the f.c.p. iff there is a

natural number n such that: T' is a set of formulas of the form ¢(x;a),
and every subset of I' of cardinality < n is consistent, then I is consis-
tent.

Proof. Immediate, by the definition.

Theorem 3.8. (A) If T has not the f.c.p. then T is stable. (In other
words, cvery unstable theory has the f.c.p.)
(B) iIf(x;y)is unsiable then the formula

Y(x;z)=¥(;yl,y2,y3,y4)=

= [0y =10y )] A lo(xsy3) =p(x; 1 4))
has the f.c.p.

Remark. This strengthens Theorem 5.1, Keisler [A], p. 42; and simpli-
fies the proof.

Proof. (A) By Theorem 2.13, as T is unstable, some ¢(x;¥) is unstable,
hence (A) follows from (B).

(B) Asy(x;y) is unstable, by Theorem 2.9 it has the order p. So
by the definition (2.2) there area 9, ..., a ', ...J < w such that for every
k<w

P = {p(x;aHEESD; [ < )

is consistent.
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Let n be any natural numnber. For any £ < »n define
ck=g0~gn.gk~a ¥k, We claim that g = {¥(x; c *):k < n} is inconsis-
tent, but for every I < n, q; = {¥(x;c¥): k< in, k # I} is consistent. As
n is arbitrary, by Lemma 3.7, clearly this will prove the theorem.

Let us first prove that g is inconsistent. Suppose b realizes g. Then
as EW(b;c0),also Ep[b;a®] ="1¢[b;a"]. On the other hand for
every k< n,as E¥[b;ck];clearly Epl[b;a*] =pl[b;akt!].

Hence

kpl5;30] = kelb;al] = ko[b;a2] e ... Eolb;a"]
= Ep[b;a0]

a contradiction. Therefore q is inconsistent.
Now if k < n, then clearly a sequence realizing p; ., realizes q;;
hence g, is consistent. So we prove the theorem.

Theorem 3.9. (A) There is a stable theory with the f.c.p.; and there is a
stable theory without the f.c.p.
(B) Thsre are stable theories which are
(1) superstable and without the f.c.p.; which are also stable in ¥.
(2) superstable with the f.c.p.; which are also stable in K.
(3) unsuperstable without the f.c.p.
(4) unsuperstable, with the f.c.p.; but stable.

Remark. (A) was proved in Keisler [A], p. 44.

Proof. Clearly (B) implies (A), so we prove (B} only.

We shall describe the examples but shall not prove their properties.

(1) The theory of a model whose only relation is the equality.

(2) Let M be a model with the equality relation, and an equivalence
relation; such that for every n .here is an equivalence class of cardinality
n. Clearly its theory satisfies our demands. (This is the example of
Keisler.)

(3) Let M be a model such that iM!| = w; the relations of M are the
equality and for every n the equivalence relation E,, defined as

E,={n,1):n, 7€ “w,nln=rln}.

The theory of M is the required theory.
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(4) By combining the two previons examples, we can easily construct
such a theory.

Lemma 3.10. (A) If' T has not the f.c.p., then every formula ¢(x;y)
has not the f.c.p.

(B) If T has not the f.c.p., for every finite A, m, there is
r=r(A, m) < w such that: If T is a set of formulas ¢(x;a),l(x) =m,
o(x;¥) € A, and every subset of T’ of cardinality < r is consistent then
I’ is consistent.

Proof. (A) We shall prove it by induction on m = X(x). For m = 1 this

is se!~evident. Hence assume we have preoved it for m and we shall prove
it for m + 1. Suppose it is not true. Then thereisp =p(x ;y) =

P{Xg5 ees X ;¥) and for every n < w a set I, of formulas of the form
¢(x;a) such that: T, is inconsistent, but every subset of I',, of cardi-
nality < n is consistent. By Lemma 3.7 there is # < w such that: if T is
a set of formuias of the form p(xgy, ¢y, ..., ¢y » a ), and every subset of
I" of cardinality < r is consistent; then I' is consistent. Let

W(Xgs eers Xy 37 0y ooy 1) = @) [ k’ér P(Xgy X1 oo Xy 3 V5]
and let for every n

T¥={W(xy, . Xpy3al, ..,am1): for

k,0<k<r; p(x;ak)eT,}.

Clearly every subset of I'* of cardinality < n/r is consistent. Hence by
the induction hypothesis, for some sufficiently large n, I'¥ is consistent.
Hence there are ¢y, ..., ¢,, Which realizes I'}. Let

= {9(xg, Cps s Cpys @) 19Xy ey X, @a)ET, L
Clearly every subset of I of cardinality < r is consistent; and so by the

definition of r, I' is consistent; hence there is ¢, which realizes it. So
(Cps €1 --» C,) Tealizes T, ; a contradiction. So the theorem is proved.

(B) The proof is a variation of (A).
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Lemma 3.11. If T has not the f.c.p. then for every formula p(x;y)
there is a natural number n suck that:

if p is a p-m-type, then there is q C p,
lg! < n such that Rank7!q = Rank”p.

Proof. As there exists a natural number n, such that every p-m-type
has rank < ny; it is clearly sufficient to prove thati: for every k < n
there is n(k) < w such that p-m-type of rank k, has a subtype of cardi-
nality < n(k) of the same rank.

Define forie z

\I“l( ﬂ,...,y,...,z,‘.,...)nekz =
rek>;

k 0%y, ¥) A ne’}c 9(xy, 2y O
1<k

net2

For simplicity let ¥ = ¥i(x *, y, z ). By Lemma 2.7 it is clear that for
every q C p, Rank g = k iff {Wi(x *,a,z): (x;a) € q} is consistent.
By the previous lemma it is clear that this lemma follows.
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§4. Unstable formulas;
the independence and strict order property

We can consider as the center of this section the investigation of the
function

KZ‘()\) = LUB({ ng'(A)I D HAITS AL

From Theorem 2.9 (A), (B) it follcws that if for one A, K m(\) > A*,
then for every u, K "“‘(u) > u*. Hence if G.C.H. holds, p(x; y) is unstable
then KZ’ ) =" for every A. Without this assumption we get:

if Ded(A) is always regular, then K7 (N) can be only one of the follow-
ing functions: (2*)*, Ded(A), A", n (n > 1).

(Ded(A) is the first cardinal u such that there is no ordered set of
cardinality p, with a dense subset of cardinality A.)

We prove also that if (2M)* = u* > u = Ded()), u is regular; then
Kg“ (M) = u* implies ¢(x; ) has a syntactical property which implies
that for every u, Kg‘ (1) = (2#)". The property is the independence pro-
perty: there area?, ...,a ", ... such that for every w C w,
{p(x;an)f(eW) ; p < W} is consistent. Like Theorem 2.13 we prove
here that if ¢(x;y) has the independence p, then some ¥ (x;y) has the
independence p (Theorem 4.6).

We define also a syntactical property which can be considered as com-
plementary to the independence p: the strict order p. It appears that
¢(x; ) is unstable iff it has the independence p or some Boolean com-
bination of it has the strict order p. Also there are unstable theories
where some formulas ¢(x; ) has the independence p, but no formula
W (x; y) has the strict order p; and conversely. By this we prove there
is an unstable T without the property (E} (see §0 A12).

We end the section by a list of open problems; and a discussion on
them.

Definition 4.1. (A) A formula ¢(x; y) has the independence p if for
every n there are sequencesa 0, ..., a "! such that:

for every w C n, k= (3X) [ Ic{:\n o(x;a k)it (kew]
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(B) T has the independence p if some formula p(x; y) has the inde-
pendence p.

Definition 4.2. (A) A formula ¢(x; y) has the strict order p if for every
n there area 0, ..., a "~! such that:

if k, 1< n,then E (Ax) [Np(x;a*) A p(x;al)] = k<L

(B) T has the strict order p if some formula ¢(x; y) has the strict
order p.

Remark. Note that in 4.2B we say ¢(x ;) and not ¢(x; y) as in Defini-
tions 4.1B and 3.2B. :

Theorem 4.1. (A) T is unstable iff T has the independence p or the
strict order p. Moreover T is unstable iff some ¢(x; y) has the indepen-
dence p or the strict order p.

(B) ¢(x;¥) is unstable iff it has the independence p, or for some n,
nen

A oGy km®

x:v0 yn-1) =
\I,n(xay PRI 4 ) k<n

has the strict order p.

Proof. (A) This follows from (B) by Theorem 2.13. If T is unstable,
some ¢(x; y) is unstable; hence by (B) ¢(x; y) has the independence p
or¥, (x;¥°,.., y n—1) has the strict order p (for some 7). So, by defi-
nition, the conclusion follows.
Suppose, on the other hand, that p(x; y) has one of those properties.
Then by (B), ¢(x;y) is unstable, and so by Theorem 2.13 T is unstable.
(B) Suppose ¢(x; ¥) has the independence p. Then, by the definitions,
¢(x;¥) has the order p; hence by Theorem 2.9 ¢(x; 37) is unstable.
Next suppose that for some n, ¥, = ¥, (x;y09,..,y"1)has the
strict order p. Then from the definitions (2.2, 4.2A) and Th. 2.9 it fol-
lows that \Ifn is unstable. As I(x) = m, clzarly there is an 4,
!S(},’n A)1> 1412 8. Forevery g € S'q’,'n (4) leta ; be a sequence realiz-
ing ¢, and

g*={p(x;ay:i€{0,1},a € 4, kylag;al’}.
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Clearly ¢* € §7'(A}; and for p, g € S'7 (A)s = p* implies g = p;
henceg # p unphe‘ q* # p*, so:

ISPDIZ {g* g € ST _(A)1> 1412 K,

This means that ¢(x; ) is unstable. So the strict order p of W, implies
the unstability of ¢; and also the independence p of ¢(x;y) implies
¢(x;y) is unstable.

So it remains to be proved that if ¢ = ¢(x;y) is unstable, then it has
the independence p or for some 7, ¥, has the strict order p. By Theo-
rem 2.9 ¢(x; y) has the order p, so there are sequencesa 0, ...,a ",
such that for every r < w there exists ¢ 7 such that: Ep[c”;a "] iff
r < n. By the compactness theorem and Ramsey theorem ({A]); as
proved in Ehrenfeucht and Mostowski [C], we can assume that
(a":n< w) is an indiscernible sequence (of sequences); where

Definition 4.3. The sequence <a ¥ : k < @) is an indiscernible sequence
if for every

r<w,k0<...<k,<a, i0<ll<...<lr<a

the following sequences realize the same type:

~~end ¥ G0NGTN A AT

Remark. For details see the beginning of Section 5.

If foreveryn< w, wCn,
D[ A ¥ g kyif (kew)
EQ@x) [ D olxiak)tEew]

then clearly ¢(x, y) has the independence p and so we finish. So we
assume that there are n < w, w C n such that

E@0) A eb;ak)ifkew)

Let Iwl=r. We can easily define wy, ..., w, a < w such that:
Mwyg=w,w, ={n—r,n—r+y,.,n-1}



Sh:10

§4. Unstable formulas; the independence and strict order property 319

(2) forevery I < a, lw)l=r,w;Cn

(3) for every I < a there is k; < n such that wy, ; =w, U {k; + 1} —{%;}
(andsok;Ewp, ki Ewpy, i+ 1Ew, b+ 1€ wy,y)
(we step by step raise w = wj tow,, ).

We assume k& 71 (3x).[A, ¢, o(x;ak)fkewg ],

On the other hand by the definition of the a ¥'s and w,

vy A v - kyif(kew,)
l=(3x)[k<n e(x;a’) woll.
Hence there is / < a such that

EI1@EX) [ A okaF)EESI]  where s = w)
and

E@x) ] k/<\n p(x;ak)EkEN] where t=w,,.
Let 8= k;, and

\I,=‘P('.x_—;.}77.}_)—09"’9.‘)—)—6—135)—ﬁ+2)"'D;n_l):z

A =Sk (kEs) wiiee
k<n wx;y ") Ap(x;y)
k+g,p+1

Il

We shall prove that ¥ has the strict order p. Let v < .

Defineb =p 0~ ...~ bB-1"ps+2+y™  ~pn-1+v By the indiscerni-
bility of (@ ¥ : k < w?, and the definition of ¥, if f< k<I< B+,
then (by the indiscernability of {a:i < w} and as this holds for &=,
I=g+1,vy=0).

E@X) [Y(x;al,b) ATTolx; ak))

but (by the same argument)

ET@X) [P(x;ak,b) ATlo(x;adl.
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Hence, observing again the definition of ¥
E@x)[Y(x;al,b) ATi¥(x;ak,b)]
ET@X) [¥Ox;a*,b) ATV (x;al, b)].

As this is true for every ¥ < w, clearly ¥ has the strict order p; and it
is also clear that W is of the required form. As this was proved under an
assumption that ¢(x; ) dozs not have the ...."~ vendence p, we have
proved the theorem.

Definition 4.4. Ded(}) is the first cardinal u such that there is no order-
ed set of cardinality u, with a dense subset of cardinality A.

Remark. It is known that for every A, A" < Ded(A\) < (2M)*; and it is
consistent with ZFC that Ded(X ) < (2"1)*. See Baumgartner [A], [B],
Mitchell [A].

Theorem 4.2. If (x ;¥ ) is unstable, A < k < Ded(\), then there is an A
such that 141 < A, IS";'(A)I 2 K.

Proof. By the definition of Ded()), there are an ordered set J, 1J1 2 k,
with a dense subset 7, |/l = A. As ¢(:z;y) in unstable, by Theorem 2.9
o has the order p. Hence by the compactness theorem there are a, I

s € J such that:

forevery t€J, {p(x;a,)f0=9:5€J}

is consistent.
Let A = U{Rang(a,) :s € I'}. Clearly |41 < II1-8 = \. For every
tellet
Py ={ox;a )t 0<d: s},

Clearly p, is a consistent p-m-type over 4. Letp, C q, € S'"(A) Now if
$1,8y €J,8; < s, thenthereist € 1,5, <t <s,,50 p(x; a D€ dg
Te(x;a,) € qs,- Hence s; # s, implies s #* qs,. So

lS";(A)lZ {gq,:s€J}I=lJI=k> A= 14l
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Thecrem 4.3. (A) If ¢ = ¢(x ;3 Y has the independence p, then for every
A there is an A such that: 1A15 ), !Sg2 A=

(B) If for some infinite A there is a regular cardinal \, such that
IS™(4)1 2 \ 2 Ded(l41) then @(x;¥) h1s the independence property.

Remark. It can also be shown that:

(1) if for every n there is a finite A such that IS'” ANn= 141" then
¢(x; ¥) has the independence p.

() if p(x; y) has the independence p, [(y) = r, ihen for every n
thereis 4, 141 < nr, IS;’} A= 2n,

Proof. (A) Let

{(Sx) [ v %) A A (s y")]
wChuChwnu=0; w,uareﬁnite}

As ¢ has the independence p, clearly I' U T is consistent, and hence
has a model M. Let a ¥ realizesy %, and 4 = U{Ranga ¥ : k < A}.
Clearly |141=\. For every w C A let p,, = {p(x;a ¥)EEEW: f <A},
By the definition of T', p,, is consistent, and so there is q,, € ST (4),
Pw C q,,. Clearly w # u implies q,, # g, $0

ISm(A)2 1{q,, 1w C A= H{w:wCAJI=2%

So we prove 4.3A.

(B) Suppose A is infinite and |S ? (A2 A= Ded(141) where 4 is
infinite and A regular. Let u be the first cardinal such that there exists
BC A, iBl=uand IS'" (B)! > A; and let B be such set. Let n = 1(y) and
nB={gk:k< ul. Clearly B is infinite and hence "Bl = |BI? = u? =y,

Fork<u,pe€ SZ',G(B) let

plk={¥:¥ep, ¥=9pkx;al) or ¥=T1p(x;a’)
where [ < k1.
Fork < ulet
Sy ={plk:p€ Sg’ (B), and plk has = \ extensions in Sg‘ B)}
S,={p:pe Sg (8), for every k < u, plk€ S }.
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Let S =U,<,S;, S* = Uy ., 5. We define an order on S:
(D) ifplk=qlk,p(x;ak)ep,To(x;ak)Eq theng<p
Q)ifpe S, qlk=p,and T p(x;a*)e qgtheng<p
3)ifge Sy, plk=q, p(x;ak) € p theng < p.
Clearly this is a total ordering of S, and S* is a dense subset of S.
- Now we shall show
* lS:‘(B)-SuK?\ .
S'”(B)—Su={p:p€S$(B), forsome k<u,plk¢ Si}
=U{{qES™(B):plkC q}:pES™B),plk¢ S }.
Let B; = U{Ranga !:I'< k}. Clearly k < u implies |B; | < u, hence
by the definition of u,as By C BC A4, IS;" (Bx)! < A. Hence
I{plk:pESg'(B),plke,ESk}lSl I{plk:pESg'(Bk),plkéSk}l
< Hplk:peSm(B)}

< 2 ISTB)I< A
k<u

(The last inequality holds as u < 141 < Ded(1A1) < A, and X is regular.)

So
l{plk:peSZ’(B),k<u,plk¢Sk}l<>\.

On the other hand, by the definition of S, if p € Sg’ B), plk & Sy,
k<u,thenl{qge S;" (B):plkC q}l< . So S{;’ (B) — S, is the union
of less than A sets, e¢ach of cardinality < A. As N is regulgr, we prove (¥).

Hence if ¢ € S, then

HpEeS,:gCpH2n
as otherwise
HpeSTB):qC ptl=HpES, :qCp}i+
+l{p:pE [Sz'(B) -8,1, gC pi<A

and so q ¢ Sy, a contradiction.
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We shall now prove by induction on  that:
(**) For every g € $*, and for every natural number r there are
ag, vy a;“l € 7B such that for every w C 7,

qU {p(x;ak)fEEW: g <1}

is consistent.
Clearly if we prove (**) then it follows that ¢ has the independence
p, and so we finish the proof.
For r =0, (¥*) is trivial.
Suppose we have proved (**) for r, and we shall prove it forr + 1.
Forgq € §* let

={pES* :qCp},Sq={peS:qCp},
k ={PE S, 1 qCp}.

Before starting (**) we have proved that IS I 2 A Itis clear that
Squ C© 84> hence IS, | 2 . Also it is clear that S* is a dense subset of
Sq5and as 1S, = )\> Ded(141) = Ded(u), clearly IS*I > u. (This is by
the deflmtlon of Ded(u).) As S* U, . uSq.ks there i 1s k < u such that
l_._S‘ k1> u. Foreveryp e Sq k> by the induction hypothesis, there are
ag ,d ;’;1 € "B such that forevery w C r, p U {p(x; a! )‘f(’EW) I<r}
is consxstent Now thv>re are only u such r sequences, hence there are
P15P2 € Sgk,P1 * by such ‘cha’cag1 =a) ,. ,a;;ll =g ;,21 Asp, #p,,
Py,Py € Sy there isa’ € "B such that go(ic';a") €py, 1o ah)ep,
(or conservely, and then we can interchange p; and p,). Define

ag =q0 ,...,a""1=q7-1 4

Aspy,p, €87, clearly q C py, q C p,, and so we prove (**) forr + 1.
Thus we prove (**) and hence prove the theorem.

Definition 4.5. (A) K7 (\) = LUB {187 (4)!: 141 <AL
(B) Km(\) = LUB{IS™m(A)l: IAI S A},
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Theorem 4.4. Suppose Ded(Q) is regular for every \. Then K o (A\) can
be only one of the following functions:

n (> 1), \%, Ded()), (2*)".
Moreover, each of these functions is K; (A) for some T, .

Proof. First suppose that ¢(x;y) is unstable. Then by Theorem 4.2,
A < k < Ded(A) implies there is an 4, lS:’ (A)l = k. Hence

K :1 (A\) 2 Ded()). If for every \, K g (A) = Ded(A), the conclusion of
the theorem holds. So Suppose for at least one A, K z’ (A) # Ded(}),

hence K m () > Ded(A). So by Definition 4.5, there is 4, A1 < A,
Sm 73] > Ded()). As Ded(}) is regular, by Theorem 4.3B, p(x ;) :
has the independence p. So by Theorem 4.3A for every A there is an

A, IAI< A, IS”’ ()12 22, hence K™ (A) > 2M. But always

IS'" A< 2“'”“0, hence K (M) < (2M). So if ¢ is unstable,

K m (A) = Ded()) (for every M) or K m(\) = (2M)* (for every A).

So suppose ¢(x ;) is stable. For every n, if for one A, K m(A)>n,
then thereis A, 41 <A, IS'" (A)! 2= n. Itis easy to find B C A IBIS R,
such that IS'" (B 2 n; hence for every p, as u = ¥, = 1BI, K7 (1) > n.
Hence if for some A, K m(A) = n, then for every u, K™ (u) = n. As for
every 4, a,a realize a type over A, clearly lS{’f’ 028] S_ I,son> 1.

So suppose K™ (\) 2 R, for sonie A. Then for any n thereis A4,
1S (A,,)! 2> 27, We can define by induction on k < n, a ¥, n(k) such
that:

Hpe Sm(4,): o(x;alm® e p for every I < k}1 2 2n-k

and {¢(x;a )"® : I< k — '} U p(x;ak-1)t-nk-1) j5 consistent. For
simplicity suppose every n(l) is zero. Hence {p(x 7;y Hf U<m: < n < w}
is consistent. So for every A, {@(x ¥ ;y DI U<K): ] < k < A} is consistent.
Leta ! realize y! and c ¥ realize x%, A = U{Ranga!:1 < A}, and p;, the
p-m-type ¢ ¥ realize over A. Clearly

lAI= 2, 1S™CA) 2 1{py s k<N =
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Hence for every A, K m(A) 2 N, As o(x ;) is stable, 141 < X implies
IS" (A)I< A, s0 K’" ()\)< A% So ”'"(7\) A"

Lex us prove that each of the mentlonc d functions is K 1 (7\) for some
pand 1’

(1) By Theorem 4.7 there are T and ¢(x; ) such that w(x y) has the
independence p. Hence K ; (\) = (2M)".

(2) Let T be the theory of the order of the rationals, and
w(x;y)=x < y. Clearly K m(A) = Ded(Q).

(3) If T is the theory of equality, o(x;y) =[x =y], thenK g’ \)=

(4) Let T be a theory with an equivalence reiation £ withn 2 1
equivalence classes. and ¢(x;y) = [x E y]. Clearly K:, MN)=n+1l.

Lemma 4.5. If u < \. A is regular and for every A, |A1 < u implies
IS(A) < N, then for every A, m; 1Al < uimplies |1Sm (A)I < A.

Remark. This strengthens Lemma 2.10.
Proof. We shall prove it by induction on m. For m = 1 this is'self-
evident. Suppose it is truc for m, and we shall prove it form + 1. Let
A1 < u, and for every g € S™*1(4) define:

q*={@3x,) ¥(xg, .0 X, a) : ¥ (xg, .o X, , ) € G}

It is easily seen that g* is a (consistent) m-type over A4, and has a
unique extension in S™ (4) which we shall denote by ¢*. Clearly

Hg' : g€ SmIANIS ISmMUA)I< A
By the regularity of A if suffices to prove that for every p € S™ (4),
{ge Sm*1(4): ¢* =p}I< .

Let<cy, ..., ¢,,_1 ) realize p. As every q € S™*1(4) is closed under finite
conjunction, clearly if g* = p then

q ={¥(Cp, s Cpp_1> X%, @) : W(xg, ..., X,y , @) € @}
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is consistent. Moreover q; = ¢, implies ¢, = q,. Hence
{g:q € Sm*1(A),q"=p}I < IS(AV {cg, o Cp 1 DI< N

As said before, this implies 1S™+1(4)| < A. So we prove the induction
step, and so also the lemma.

Theorem 4.6. The following statements are equivalent:
(A) there is a formula p(x,y ) which has the independer.ce p.
(B) there is a formula ¢(x ;y ) which has the independence p.
In the case there are u, \; Deé(u) =\, A = N7 < 2u glso the statements.
(C) forevery u thereis an A such that |Al=u, 1S(A) =2+,
(D) forsome A, m, 1IS™(A)1> A'Tt= X, A" = Ded(I4]).

Remark. In the proof we assume there are such A, u, and through this
proves the equivalence of (A) and (B). By set theoretic consideration
this assumption can be removed. (See Baumgartner [A], [B] and
Mitchell [A]). (This is done like many removings of G.C.H. from proofs.)
We can eliminate the use of set theory by using K, (M) for finite A. That
is bv using the remark to Theorem 4.3, and replacing (C) and (D) by
(C*) there are ¢ = ¢(x;y) and n such that for every r there is an 4,
[Al=r, IS,(A) 2> 2rin,
(D*) there are ¢ = ¢(x;y) and m = I(x), such that for every n there
isan 4, 141< Ny, ng(A)IZ 1417,

Proof of theorem 4.6. Clearly (A) implies (B).

By Theorem 4.3A, (B) implies that for every u, for some m, A,
lSz’(A)I =72l |4]=pu. Hence by Lemma 2.11 ISMm(4)1 2 ISZ' (A)i=2#,
iA1= u. So (B) implies (D).

Suppose (D) holds, i.e., IS™(4)1> AT =X, \* = Ded(lA4!). By Lem-
ma 4.5, there is B, |1BI < 141, such that |S(B)| > A. By Lemma 2.12

H1S,(B)! ZISBIZ N> A=AT,
(%

Hence for some ¢, ISw(B)I 2 X'. By Theorem 4.3B, ¢ = ¢(x; ¥ ) has the

independence p. So at least, (D) implies (A). So (A) » (B) - (D) » {A).
As it is easy to see that (A) implies (C) by Theorem 4.3A; and that (C)

implies (D) we have proved the theorem.
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Theorem 4.7. (A) There is a theory T,y with the strict order p and
without the independence p. Moreover, some formula ¢(x;y) has the
strict order p.

(B) There is a theory T = Ty with the independence p and without
the strict order p. Moreover there is no infinite A, and a formula
16 TR S a ) which is antisymmetric and connected over A [This is
the property (E) of Ehrenfeucht [A]. See §0 A/2]. (T;,4 also does not
satisfy (3) from 4.8, for every u.)

Proof. (A) Let T'=T 4 be the theory of dense order without first and
last element. Clearly the formula ¢(x;y)=x < y has the strict order p. It
is also clear that for any infinite A, 15(4)! < Ded(141). Hence by
Theorem 4.6 T has not the independence property. (This can also be
shiown depending on the fact that for finite 4, ISA) < 141+ 1.)

(B) In the language of T there will be only the equality sign, a one
place predicate P(x), and a two place predicate x E y. Its axioms will be:

(1) x E y implies 71 P(x), P(y); that is

(Vxy) [x Ey - 1 P(x) A P(¥)].

(2) if P(y) then y is uniquely determined by {x:x £ y}, and
conversely; i.e.,

(VY 3, NP APOIANX)XEY, EXEYy) >y, =53]
(Vxle)[—lp(xl)/\ jP(Xz)/\(vy)(xlEyEX2Ey)_)xl=x;]

(3), For every 2n different elements in 7\P, xy, ..., X, xl, ..., xn
there is a y such that x; Ey, ...,x, Ey, Ix1 Ey, ..., 1a* Ey. That is,

0(2\91 [xg #3 A P(x;) AP (xD)]

0<i<n

(Vx5 ey X, (VXL L x7)

- (3y) 0<';C\Sn (xx Ey A Ixk Ey)]

(4),, The same as (3),, interchanging P and 3P, xEy and yEx.
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That is,

(VY5 s Y )VPL, L p7) 04\5” [y #¥' A P(yi) A P(YY)]

0<I<n

- (3x) 0<Q5n (xEy; A “ley")]

It is not hard to prove that T is consistent, by building a model for it.
It is also easy znd standard to prove it has elimination of quantifiers,
and is complete. By this it can be shown that no formula g = (x;y)
has the strict order p. On the other hand, clearly p(x;y) = x Ey has the
independence p.

Discussion of some open problems

Clearly this section leaves some natural problems unsolved.

We have proved that if some formula ¢(x; y) has the f.c.p., then
some formuia ¢(x;y) has the f.c.p.; and if some formula ¢(x; ) has
the independence relation, then some formula ¢(x;y ) has the indepen-
dence relation. But we do not prove

Conjecture 4A. If some formula ¢(x; y) has the strict order p, then
some formula ¢(x; y ) has the strict order p.

Remark: Lachlan proved this. in [Fx*].

If a formula g(x ; y) is stable, or equivalently has not the order p,
we succeed in exploiting it to prove something about it: its types have
rank; and they are describable (Theorems 2.9, 3.1, 3.2). Naturally we
asked the vague questions:

Question 4B. What can we say about the g-m-types, when T has not the
independence p?

Question 4C, What can we say about the p-m-types, when 7 has not the
strict order p?

Remark. By the way, a result connected to this and to 6.4 is

Theorem 4.8. For any u, m, the following condition are equivalent:
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(1) For every A= ZK“M there are A, 1A= Xand \* m-types on A,
contradictory in pairs, each of them of cardinality u.

(2) There are a set A, a set S of m-types on A, contradictory in pairs,
ISI>A2Z, ., (A1 +ITV*, and for every p € S, IpI < x, and
2iTHx < \ for some x.

(3) There are ¢, (x,y*) « < u, and a, 1 € *> w such that: (A) for
every € Fw, {g,(x, En,a) ta < u} is consistent (B) for every n € > w,
k <_l < w, I+ 1=a, {,(x, ¢y~ir)s 0, (X, a,. )} is inconsistent.
((x)=m).

In the case u = ¥, we can add (see Definition 6.2)

(4) Degm (x = x) = oo,

It is clear that if (3) holds for one u > IT|, we can take all the ¢,
equal, and so (3) holds for every u. It should be noted that Ty Jdoes
not satisfy (3) for any u 2 8 ; but we can find a theory which satisfies
(3) for every u (hence is unstable) but has not the strict order p. If T'is
stable, u regular, then u < k(7)) iff (3) holds for u. If T has the strict
order p, then for every u (3) holds. Perhaps in Question 4C, we should
add that T does not satisfy (3) for I T1".

Unfortunately, in the case Ded(]) is singular for some A, we do not
know what K g’ (M) can be.
Conjecture 4D. If for at least one infinite A, ISZ’ (4)1 = Ded(1Al) then
¢ = ¢(x ;) has the independence p.

Possibly this conjecture can be affirmed by answering Question 4B.
In Shelah [D] Theorem 4.4 it was proved:

Theorem 4.9. If T is stable, then there are cardinals N\ < 2'T! ¢ < 71"
such that:
Tisstablein piff u=A+u&) (=1 + Ex“px ).

It is natural to ask what are the possible functions K™ (\) and how
they are fixed by syntactical properties of 7. A natural conjecture is
(for simplicity we take m = 1):
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Conjecture 4E. K1(\! is determined by the holding of the following
properties of 7'

(1) The stability cr unstability of 7.,

(2) Thie holding of the independence p.

(3) The values ot K1(A\) for A < 17,

(4),, There are formulas ¢, (x; 3*) for k < \ and sequences ¥
k <\, n < w such that: for every (n* : k < \) the type

{r (xsakmyf(n>np): p < 5 k< A}

is consistent.
(5)x There are formulas gz (x; y %) k < A, and sequences a k7 k < A,
n < w such that for every (n¥ : k < \) the type

{pplx, akn)if(n=np) .y < oy, k < \}

is consistent.
(6), There are formulas . (x; y*) k < A, and sequences a, TEMw
such that for every 7 € A the type

{op(x, a, ) =100 : n e koo k< A}

is consistent,

Remark. Condition (6),, is a reformulation of (C * A) from Shelah [D]
Definition 4.2.

Clearly if A < u then 4), ~ @),, (5), = (S, (6), > (6),; Also if
T is unstable, it satisfies (6),, for every \; and if T has the independence
p, then it satisfies (4),, (5), for every A. On the other hand (6),, im-
plies T is unstable, (4), implies (5), and (5) i+ implies T has the inde-
pendence p. So instead of all of (4),, [(5),], [(6),] we can take the
first cardinality for which they are not satisfied. [ Also (5), implies
(6),.1

Clearly this conjecture may depend on Conjecture 4D.

It is known that if T is stable, and it has a model M, 8, < IPM| < Ip1,
then for every A 2 u 2 171, T has amodel N, IPN | =y, IM|l = A (See
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Shelah [A]. For 8 -stable theories see Shelah [D], the proof of Theo-
rem 7.9, and Baldwin and Lachlan [B] proof of Theorem 3). Now what
will occur if we replace “T is stable” by “T has not the independence p”’
or “T has not the strict order p”’. Perhaps an advance in Questions 413,
4¢C will help here.

Question 4F. What are the classes K of pairs of cardinals such that fox
some theory T, and perdicate P, where T has not the independence p:

(A, wY€ K iff T has a model N, INlI =}, IPN | = pu.

Question 4G. The same as 4F, but where T does not have the strict
order p.
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§5. Cn indiscernible sets and sequences

First, let us m=ntion a result which does not mention indiscernibility:
(Theorem 5.14).

Let T be stable, and p a A-m-tyoe over M, A be finite [countable].
Then there is 7(4, m) < w [= 8] ; and sequencesa ¥ k < w from M
such that:

w(x;a)€ pimplies l{k < w:klplak*;al}l< n(A, m).

We say that a set I of sequences is an indiscernible set (over A) if
every n distinct sequences taken from 7 realize the same type (over 4).
(In fact, we deal more with a finite version of this concept which will
be used in investigating saturation of ultraproducts, Keisler’s order, and
related topics.)

We associate with every indiscernible set 7 in a model M a cardinal
= dim(/, M) such that:

(1) 7 can be extended in M to a maximal indiscernible set of cardina-
lity u (Definition 5.4).

(2) I cannot be extended in M to an indiscernible set of cardinality
u* + 1T (Corollary 5.12) (we can replace u* + {T1" by u* + «, where
Kk 2 k(T) is regular).

)Y If II; N [, 2 Ry, then aim(/y, M) + k(T) = dim(I,, M) + k(T)
(Theorem 5.12).

(4) If M is A-saturated but not N\*-saturated A > |7l then there is in
M an indiscernible set 7 such that dim(Z, M) = A (Theorem 5.16). [For
superstable T, A > N, suffice].

Remark. Define p(I) = {p(xy, ..., xy):in < w,ay,..,a, €1
i#j=a;# aj, Eelay, ..., a,1}. If T is superstable for every p ({) there
isr(p()) < wsuch that II; N I, 1> r(p()), r(p(,)) implies

dim(Z, , M) = dim(/,, M).

We also discuss in this section the connecticn between the existence
of indiscernible sequences which are not indiscernible sets; the existence
of connected antisymmetric relations over an infinite set; and unstability
(in suitable formulation those concepts are equivalent).

Remember: members of A are ¢(x) and not ¢.
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Definition 5.1. (A) {a ¥ : k < a} is a A-n-indiscernible sequence over A
ifk <l< aimpliesa® # a! and:

forevery o(x9, ..., x"1;y)e A, c € A4,

ko <..<k, ;<a,l;j<..<l,_, <aand permutation 6 of
{0,....,n—1}

kola @, . g %n-1,77 iff kplah®, . gbe-D;7].

(B) If A is the set of all formulas we omit it. If {a ¥ : k < a} is A-n-
indiscernible for every n, then we say it is A-indiscernible. If we omit
the words “over 4’ we mean over the empty set. If A = {¢}, then we
write ¢ instead of A.

Remark. For simplicity, we treat {a* : k < a} as a sequence also. Also
we shall always assume (@ ¥) = I(a ) = m. An I is A-(< »n)-indiscernible
iff it is A-r-indiscernible for any r < n.

Definition 5.2 (A) {a ¥ : k < a} is a A-n-indiscernible set over A4 if
k<l<oimpliesa* # a! and:

for every formula o(x 9, ..., x""1:)) € A,

sequence ¢ € A, and two sets of different ordinals < «, {k9, ..., k#~1},
{o, ..,

kola®, kel iff kpla®, . ar el
(B) We adopt the same shortening as in Definition 5.1.

Lemma 5.1. (A)IfAC Ay, and I = {a* 1k < a} is @ A;-n,-indiscernible
set [sequence] over A, then I is a A-ny-indiscernible set [sequence] over
A,

(B) If 1 is a p-n-indiscernible set [ sequence] over A for every ¢ € A,
then it is a A-n-indiscernible set [sequence] over A.
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(C) For every finite n;and A; i < r < w, there is a finite A such that:
(1) forany I = {a* : k < o}, ] is A-n-indiscernible set iff for every
i < r it is Ajnindiscernible set; where n = max;,n;, a 2 n.
(2) the same as (1) for indiscernible sequences.

Remark. A depends on m, which we considered fixed.

Definition 5.3. Suppose [ is an infinite set of finite sequences of ele-

ments, all of the same length; p(x©, ..., x71;y)a formula;and ¢ a

sequence. Then p(x 9, ..., x"1; ¢) is connected and antisymmetric

over I if for any n different sequences from 7, a 0, ..., a "1 there are
(1) a permutation 8 of n such that

Fpla@® .  g00-1;c]
(2) a permutation 8 of n such that
ElplaO®, ., q00-D; ]
It can be easily seen that Ramsay theorem ([A]) implies

Theorem 5.2. (1) If I is an infinite set of sequences of length m; A, A,
n are finite, then I has an infinite subset {a * : k < w} which is a A-n-
indiscernible sequence over A.

(2) The analog of (1) using the finite version of Ramsey theorem.

Theorem 5.3. (A) Suppose T is stable, n < w, A finite, then there is
ny =ny(A) < w such that: every A-n-indiscernible sequence I over A
is a A-n-indiscernible set over A, if |l 2 ng.

(B) If T is steble, for every formula ¢ = o(x 0, ..., x " 1;y) there is
n(p) < w, such that there is no set I of 2 n(yp) sequences, each of length
1(x0), and sequence c, and p(x 0, ..., x "~1; ¢) is antisymmetric and
connected over 1.

(C) Also the converses of (A), (B) hold. Moreover, if T is unstable,
there is A = {p(x9, x 1)} and an indiscernible sequence
I={ak : k < w} such that p(x 0, x 1) is connected and entisymmetric
over I, and hence I is not A-2-indiscernible set.
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Remark. Morley [A], Theorem 3.9 proves a similar thing for }- ;-stable
T.

Proof of Theorem 5.3. (A) Suppose that the conclusion of (A) fails.
Then clearly for every r there are 4, and [, such that J, is a A-n-indis-
cernible sequence over 4,, but not a A-n-indiscernible set over A, and
II,1 2 r, and the elements of /, are sequences of length m. By the defini-
tions there are ¢,(x%, ..., x""1;y)€ A and ¢” € 4 such that

@, (x0, ..., xn"1;¢7) is antisymmetric and connected over /,. As A is
finite there is € A such that for arbitrary large r ¢ = y,. This clearly
contradicts the conclusion of 5.3B, so it suffices to prove part B of the
theorem.

(B) Suppose the conclusion fails. By the coinpactness theorem there
are a sequence ¢ and an infinite set / of sequences of length m = 1(x0)
such that ¢(x 0, ..., x"-1; ¢) is connected and antisymmetric over ..

For simplicity let / = {a * : k < w}. By 5.2 and the compactness theo-
rem we can assume w.l.o.g. that / is an indiscernible sequence over Rang
c.Let A =2T" then we can find a dense ordered setJ/; with a dense
subset J which is dense in J; such that IJ; 1> A 2 IJ|, and, J; has

no first or last element (if g = inf{k : 2¢¥ > A}, then J; can be chosen as
#2. and J as the set of eventually constant sequences in #2).

By the compactness theorem we can dr fine {a :s € J;} such that:
for every s; < .. <5, r < W, C @, ... as ,E'\Z{I .. a’ realize the
same type. Now letA= U{Ranga (S E J} U Rangc. Clearly IA1< A
Let for s € J; —J, p, be the m-type which a realizes over 4. If always
s# t=pg# p,, then IS (A2 {p,:s€J; -J} =, -JI>N2 Al
a contradiction to the stability of 7 by Lemma 2.10, Th. 2.13.

So thereares# ¢, 5,1 €J; —J, p, =p, and w.lo.g. s < . Ncw without
loss of generality assume kE ¢fa !, ...,a";c] (otherwise - replacs ¢ by
). Sc there is a permutation 8 of {1, ..., n} such that
Elpla®®, ..., a%;c]. We can choose such § with maximal r =r(8) =
inf{k:0(k)# k}.Sc ETlplal,..,ar1,a%®;c].

Ass < t,wecan find sy, .., s, such that:

$1 < <8, €J, 5,1 <5<8,, Sop-1 << Spy) -
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By the definition of thea s

L:-hp{asl ’ asr 1’ Se(r) se(n);c ]
and similarly, and by the indiscernibility

&="h,o[a a5, s s@(}_ﬂ),...,asg(n);c]
as p; = p,

&=1¢[asl, asr 17 @5 Qg 1y oo By € ]
again by the definition and the indiscernibility

= _h,p[as1 sl s as asuml), ey asu(n); cl.

(Where u is a permutation of {r+ 1, ...,n} such thatu(r + 1), ..., u(n)
and 8(r+ 1), ..., 0(n) are ordered in the same way.)
So, by the definition of thea 's

Elelal,...,ar,autD  aqum;c],

This contradicts the maximality of » = r(8), hence we prove 5.3B.
(C) By Theorem 2.13, if T is unstable there ate sequences
{a¥ :k< w}and aformula p(x 9, x }) such that Epla*,a!] iff
k < . By using Theorei 5.2 as in the proof of (B), clearly (C) follows.

Lemma 5.4. (A) If {a% : k< o}, « 2 w [a alimit ordinal) is a A-n-
indiscernible set [ sequence], o < §, then we can define a ¥ for
a < k < Bsuch that {a* : k < B} is also a A-n-indiscernible set
[sequence] .

(B) We can omit A and/or n from (A).

(C)Ifa* €Ml for k< a, Mis (181 + 1AI" + lal*)-compact then we
can choose thea® a < k< Bin M.

Proof, Immediate.
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Conjecture. The requirement “a a limit ordinal” is necessary.

Theorem 5.5. (A) If T has not the f.c.p. and A is finite, then there is
n;€A) < w such that:

if {ak:k<a2n;(A)} isa A-n-indiscernible set over A, B> «a, then
we can define a * for a < k < Bsuch that {a* : k < 8} is a A-n-indiscer-
nible set over A.

BYIfAC IM,a%k € IMifork<aand Mis (IA" + 1AI" + 1Bl + lal®)-
compact, then we can choose a* € IM| fora < k< f.

(O)If A, Aare finitea < B=w, A C IM|,a* € 1M for k < a then
we can choose a ¥ € IM|fora < k< 8.

Proof. (C) follows from (B), and (B) will be clear from the proof of (A).
So we shall prove (A) only.

If n is too large, every set of different a ¥'s is a A-n-indiscernible set.
Similarly if m = I(a ) is too large. So we can prove the theorem for
fixed n, m.

Let

A* = {o(x9, .., x" 1Y) 00, .., x1;y)=
=¥ (x 00, ., x00-D;y), ¥(x0, .., x1y)e A,
and 6 a permutation of n}

As T has not the f.c.p., by Theorem 3.10B there is a natural number
nl = nl(A) such that:

if ' is a set of formulas of the form p(x%;a'l, ...,a” !, ¢c), ¢ € A%,
and every subset of I of cardinality < n! is consistent then I is consis-
tent.

It is clearly sufficient to prove that we can define a ¢ such that
{ak :k < a+ 1} will be a A-n-indiscernible set over A. For this it is
clearly sufficient to find @ ® which realizes

— oy ) - _ _
Do = {0(X,a%" %, . ak°,7):Tea, k< ..<k2<a,

g€ A*and Egplan1,am2,..,a9%.c]}.
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For this, it is clearly sufficient to prove that p, is consistent. By the
definitic. of nl, it suffices to prove that every subset of p, of cardina-
lity < nl is consistent. Let ¢ be a subset of P, lql < nl.Clearly ing
appears < (n—1)(n* —1)a*'s. So if a > (n—1)(n! —1), then there is

a ¥ which does not appear in any of the formulas of ¢, hence a ¥ realize
g, so q is consistent. So p, is consistent; hence we can define a @, hence
we can define a ¥ fora < k < B, by induction, as required.

Theorem 5.6. If T is stable, A finite, then there are r < w, and finite
A* such that:

if py, is the A*-m-type that a® realizes over A, =A U U{Ranga’: 1<k},
Po C py and for every p € A%, Rankg' P lp) = Rankg (py ) where
m=1(a%)then {a* :k< a} is a A-indiscernible sequence over A, and
moreover, A*-r-indiscernible sequence over A.

Proof. Clearly, as A is finite, there is an » < w such that any sequence
{B¥ . k < B} is A-indiscernible sequence iff it is a A-r -indiscernible
sequence for every r; < r. So by Lemma 5.1C there is a Al which is
finite and any seauence {b* : k < B} is A-indiscernible iff it is Al-r-
indiscernible.

By Theorem 3.1A (and see the remark for the case 141< 2) we can
define by downward induction the finite sets A,, A, 1, ..., 44; &% such
that:

(0) Forany b*, k< B,and B,1= {D* : k < b} 15 A*-r-indiscernible
over B, iff for every i < 7, it is A-i-indisczrnible over B.

() Al c A,

(2) each A, is closed under permutations - variables, i.e., if
@(xq5 .- X1 ) € Ay, 0 a permutation of /. then ¢(x,q), ---» Xgg-1)) € Ag-

BR)ife=p(x0, .., xk1;y)e Ay ix0) =...=I(x*1)=m, then
every type p, Rankg'_ p= Rankg' (pl A), is ¥-A-definable for some
Ve, (=¥, .. x*1,y;2)]. [For the definition of A* we
use 5.1C.]

Now let A, I = {a ¥ : k < a} be as required in the theorem, and we
shall show {a* : k < a} is a A-indiscernible sequence over A. It clearly
suffices to prove by induction on / < r that I is a Aj-l-indiscernible se-
quence over A (as Al C A,, and by the definition of Al, A*.)
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Case I: 1 = 0. This is fulfilled trivially.
Case II: 1 = 1. Aspy C py, for every k, clearly if k1, k2 < a,thena gkt ,
a*? realize the same type over A — ~Po-

Now notice that if k < I < a, then for every ¢, pylo C p lo,
Pole C pilo and Rankg (P ly) = Rankgj (pole) = Rankg' (p;lp). Now
by Theorem 2.5D, p l¢ has unique extension in SZ’ (4;) of the same
rank, and p; lp € S (A;). On the other hand p, lp C (p;lp)I4; C pily
hence Rank” [(p,lcp)lAk] = Rank (py lp). So py lp = (p1p) |4y . As
this is true for every g € A*, and pk € S’”* (Ax), b€ S'"*(A,) clearly
PilAy = Pg-
Case III: 1t holds for /, and we should prove forl + 1.

As A, is closed under permutations of variables it suffices to prove
that, for any p(x 0, ..., x";y)E Ay, c €A
(ifa>kO> k1> >k, a>0>1 > .> ), then

kolak®, . ke iff k@, ..., ai';e]

By the symmetry in (*), we can assume 4% 2 j0, As Po C po claerly

1 —:l

ait . aieliffeplak® ait, . altcl.

k«p[&_fo,al

By the definition of p_ ¢, this implies it suffices to prove
M ifa>i>kl > . >k, a>i>jft > ... >/, then

— =1 —l — . — —d —
o(x,ak’,..,ak;c)ep;iffp(x,ai ,...,al';c) €p;.

But now by the definition of A, there is ¥ € A; and b € A such that:
foreveryi> il > ...> i

oG, ai', .., ail,0)ep;iff ewiait, . 7, ¢, b
But by the induction hypothesis
Ew[akt, .. gk iff ew(alt, ., altc]

So Case 111 foliows.
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Corollary 5.7. If T is stable and for every k < o 2 w, py, is the m-type
a’ realizes over Ay, = U{Ranga’ : 1< k} U A and for every ¢,
Rank?™ (py o) = Rank (pg lp), and p C py, then {a* :k < a} isan
indiscernible set over A.

Proof. By the previous theorem, it is an indiscernible sequence over 4;
and by Theorem 5.3A every indiscernible sequence over 4 is an indis-
cernible set over 4.

Theorem 5.8. Let T be stable, and I a set of sequences of length m.

(A) If N\ < |1\ is a regular cardinal, n, A are finite |A\ < \, then there
is Iy C I, 17112 & which is A-n-indiscernible set over A.

(B) If N < lis regular, Xy + 1A1 < N, and |BI < N\ implies |S(B)I < A
then there is I, C I, \I; | 2 \ which is an indiscernable set over A.

Remark. Similar theorems with similar proofs are Morley [A] for 8-
stable theories, Shelah | B] Th. 3.1 p. 194 for stable theories, Shelah
[D] Th. 3.1 p. 82 for stable diagrams; and Shelah [F] Th. 2.2. Sowe
will not repeat the proof. The new part here is (A), which is necessary
for proving the two-cardina! theorem for stable theories, and for Theo-
rem 6.7.

Theorem 5.9. Suppose ¥ (v ;x) = ¢(x;y)and Y(y; x) has not the in-
dependence p, and let

a,= {3y) A ¥Ex0 iqem .

Then there is n = n(yp) < w such that
(A)if {a* :k < a} is a A, -n-indiscernible set, ¢ a sequence then
either

Hk<a:kplak;clHi<n
or
Hk<a:Egla®;c}<n.

(B)if {a* : k< a} is a A, -n-indiscernible sequence and ¢ is a se-
quence, then there are 0 =ag < ay < ... < a, = a such that:
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ifi<n, a; <k, k2 <ay, then
'—‘kl_— . —'k2."‘
Epla® ;cl iff Fola®;c].

Remark. In Harnik and Ressayre [B] a similar theorem (1.3) is proved.
Similar theoreins are also 6.13 and Shelah [D] Th. 4.1. The theorems
were proved independently.

Proof. (A) As ¥ (y; x) does not have the independence p there is
ng < w such that

r= (a;w)r‘go YW, xECEW: wCny =10, ..., ng—1}

is inconsistent. Let n = n,.
Now suppose our conclusion is incorrect. Then there are different
ordinals kg, ..., k,,_1, lg, ..., |,_; < @ such that

Epla®0;c1,.., kplatn-1;21,
!=‘lnp[c710;c7],..., l=’!¢[c7’”"1;£7] .

Remembering that {a % : k < a} is a A, -n-indiscernible set, we can see
that takinga ” for x7 forr < n, I is satisfied. Hence I is consistent,
contradiction.

(B) The proof is essentially the same.

Definition 5.4. (A) Let I be a A-n-indiscernible set in M (i.e.,
a € I'= a € IM!). Then dim(I, A, n, M) is the first cardinality g such that
there exists a maximal A-n-indiscernible set I, in M, IC I, I, |=p
(7, being maximal means that there is no A-n-indiscernible set 7, in M,
I, C 1,1 # iy).

(B) Similarly we define dim(/, A, M), dim(Z, n, M), dim(I, M) with
4-indiscernibility, n-indiscernibility and indiscernibility instead of
A-n-indiscernibility; and the same with dim(/Z, A, < n, M).
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Thecrem 5.10. Suppose T does not have the independence p, A is finite.
Ther: there are natural number ny = ny(4), and a finite A* such that: if
1, is a A-n-indiscernible set in M, 1, is a A*-ny-indiscernible set in M,

!Il r Izl?._ ng then

ny [dim(7;, A, n, M)I"-1 2 dim(I,, A%, ny, M)

(so if one of the dimensions is infinite then dim(/;, A, n, M) =
dlm(.lz ’ A*, ns, M)).

Proof. Notice that:

if Al, ..., A7, nl, ..., " are finite, r < w, then there are finite A,

n such that if I is a A-n-indiscernible set, then it is Ai-n’-indiscernible
set forevery i, 1 <i<r(by Lemma 5.1C).

Clearly we can prove the theorem for fixed n, (remembering that for
sufficiently large n, every set of different sequences is a A-n-indiscernible
set).

Now let A = {@p(x?, .., x"1;y¥): k < ky < w} where
I(x0%)=..=1(x"1)=m. Define, for k < k;, 6 a permutation of n

Wy oL, . X1, 7K F0) = gy (F0O), ., 001 5)

denotezk =x1~. . ~x"layk soW, , =¥, ,(z%;x0)
Now each ¥, ,(z ¥; x 0) does not have the independence p (by Lem-
ma 4.6, as T does not have the independence p). So there is
r=r(k, ) < w such that
{(3:?") 1l<\r U, a2 %, xOhHifdew): w C r=r(k, 9)

is inconsistent. Define

ny =max{r{k, ) + n:k < kg, 6 a permutation of n}

Al = {(aé"k) D ¥y o @k X0 W r=rk, 6),

k< kg, 0 is a permutation of n}
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By Lemma 5.1C, and as increasing n; does not do any harm, it is
clearly sufficient to prove:

if I. is a A-n-indiscernible set in M, 1, is a Al-(< n)-indiscernible
setin M, |I; N I,1> nj then

"Z3[dim(11, A, n,M)]""l 2 dim(lz, Al, < n3,M)

By the definition of dimension we can assume / 1 is a maximal A-n-
indiscernible set in M, of cardinality dim(/;, A, n, M), and similarly for
I,. So we should prove only that ny I7; 1"~ 2 11, 1.

Now there is an m-type q over A = U{Ranga :a € I,} such thatc
realizes g iff I; U {c} is a A-n-indiscernible set. If p(x, b) € q then
clearly in it appear n — 1 sequences from I, , hence, exceptn — 1 se-
quences, every ¢ € I; N I, satisfies k p[c’; b]. Hence

Heel kole, b1 12 nL-(n=1)2 ny—(m~-1).
By the definition of n3 and Al clearly
{cel,:Eelc,b]}< ny.

Now the number of formulas ¢(x, y) appearing ingq is < 1A + 1
(the +1 is for the formulas {x # ¢ :¢ € [;}).
Hence if

Uyl > nalgi=ny I I-1(1AL 4 1) = n il In-1

then there is a ¢ € I,, such that for every ¢(x, b) € q, k¢lc, b1, and
hence, I; U {c} is a A-n-indiscernible set, and as ¢ € I,, ¢ € IM|. This
contradicts the choice of /; as maximal a A-n-indiscernible set in M. So
I, 1< 54l In-1 hence we prove the theorem (as we can replace n, by
ng).

Theorem 5.11. (A) If T has not the independence p and \[; N1,12 ¥,
1,, I, are indiscernible sets, then

dim(Z,, M) + ITi=dim{U,, M) + IT\.
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(B) If T is superstable, \I; NI, 12 8, then dim(/;,M)=dim(,, M).
(C) If T is'stable k = k(T) is as defined on 0.A1 X\ 2 « is regular
I, n1,12 8, dim(Iy, M) 2 \, then dim(I,, M) = dim(I,, M) [if T'is
superstable, k(1) = R, 1.

Proof. (A) Exactly as the proof of the previous theorem.
(B, C) This follows from 6.13.

Corollary 5.12. If T does not have the independence p,

p=dim(I, M) 2 |\Ti(or u* 2 (7)), then I cannot be extended to a in-
discernible set in M of cardinality > w;if u> ITloru2 N2 k() Nis
regular then every indiscernible set I, in M, \I, N 11 2 8, can be ex-
tended to an indiscernible set in M of cardinality p.

Theorem 5.13. (A) Suppose T is stable p € S™ (IM1), B C IMI, and for
every ¢, Rankg (ply) = Rank’™ [(pip)|B], and for every k < a, a ¥ real-
ize over By = U{Ranka!:1< k} U B the type p\B;. Then ¢(x;c)Ep
implies {k < a:Elplak;c 1} < 8ysand {ak : k< a} is an indiscer-
nible set over B.

(B) Clearly always we can find the required B; and if M is | T -satu-
rated, we can also find suitable a* for k < |TI".

Proof. (B) is self-evident.

By Theorem 3.4 we can define a ¥ for @ < k < & + w such that the
type a ¥ realizes over IM|U U{Rank a!:I < k}, which we name p;
satisfies:

(1) for every o, Rank:’ (plp) = Rankg (P o).

(2)p C py. ,

By Coroliary 5.7, {a* : k < a + w} is an indiscernible sst over B.

By Theorem 5.9, for any ¢(x, a) € p either {k<a+w:kpla¥,a]}is
finite or {k< a+ w:klpla¥,a]} is finite. But p(x, a) € p C p; for
a<k<a+w hence Eplak, al.So{k<a+w:ETplak, allisfi-
nite, and so the conclusion follows. »
Theorem 5.14. Suppose T is stable. For any finite A there isn=n(A)< w
such that: for any p € S (\M) there are sequences a * € IM| for k < w
for which p(x, b)€E p implies |{k < w:ETplak, b1} < n.
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Proof. As that of the previous theorem.

Theorem 5.15. Suppose T is stable A is countable, p € S (IM1). Then
there are sequences a * € |M| for k < w such that ¢(x, b) € p implies
{k<w:ETpla*, b} is smaller than n, < .

Proof. Clear from the proofs of the two previous theorems.

Taeorem 5.16. Suppose T is stable, M is N-saturated but not \'-saturated,
A> T\, Then there is in M a maximal indiscernible set I = {a; : k< \}..

Proof. As M is not N'-saturated, it omits a 1-type pg, Ipg! S A, by a
type on IMI. Let p € S(IM!), py C p. By Theorem 5.13A, 5.13B, there
are ak € IM|, k < w such that:

(1)I= {a¥:k < w)} is an indiscernible set.

Q)ifp(x,a)E p, {k< w:Epla*, al} is finite.

Now we shall show that {a; :k < w} cannot be extended in M to an
indiscernible set of cardinality A*. For suppose {a;:/ < X'} is such a set.
For every ¢(x, ¢) € p,, clearly p(x, ¢) € p, hence by the definition of
the a;'s

HI< w:METela, c 11 < R,
hence

1< w:MEpla, cli=x,
hence

HIK XN :MEopla, c]HZ R,
hence by Theorem 5.9

HI< N :METela, c 11 < Ry

Hence, as p, is not realized in M
A" = I{I< X" :q; does not realize py} |

< L WA :METpla, c LS IpyiRg <A
‘P(x'&_)epﬂ

/
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contradiction. So {g; : /< w} cannot be extended in M to an indiscer-
nible set of cardinality A*. As M is A-saturated, it can be extended in M
to an indiscernible set of cardinality A.

Theorem 5.17. Suppose T is stable and for every i < a, p; is the m-type
al realize overA; = =U{Ranga/:j< i} U A; 0 C p; fori<j. Then
{@i:i<a}is the union of < Tl sets, each of them an indiscernible
set over A. Moreover, there are a; < o for i < B < IT" such that:
i<j<B=x<q andforeveryt<ﬁ L={al:0;<j<a;,}isan
indiscernible set over A

Proof. Take {¢;:i< B} ={y< a:Rank™ (p7+1 ip) < Rank™ (p, lp)}.
Then the theorem follows by 5.6. In fact there is 7, /I < 1T, such that
I; — I is an indiscernible set over Ay, Y 4, - frg gy )

Lemma 5.18. In 5.17, we cannot improve the bound on 8.

Proof. Let L(7) contain the equality, and the equivalence relations £,

i< B+ 1. T will consist of axioms saying that if i <, E; refines E;, and
every equivalence class of E}, is the union of infinitely many Ej-equiva-
lence classes; and that E; has infinitely many equivalence classes. Any

E -equivalence class is infinite. Let 4 be empty, ay <eo;<...<az<a,
anda,,r< a be such that: g, E, a; 1ffa <ij.

Remark. We can define dimension not only for indiscernible sets, but
also for types p, provided that: if p is a 1-type over IM|, there is

q € S(M), p C q such that for every ¢, Rank p!y = Rank gqlyp. Similarly
for m-types, and this holds also for fixed types (Def. 6.5) when T'is
superstable.
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§6. Degrees of types, and superstable theories

We define for every type a degree, which is an ordinal or e such that

(1) evary type has a finite subtype of the same degree. I{ p C q then
Deg g < Deg p (Lemma 6.2)

(2) if T is stable, T is superstable iff every type has degree < o
(Corollary 6.10).

(3) For every finite type p, there is aset 4, 141 < | Tl such that:
pisatypeonAd,and ifg€ S(A4),p C q, A C B, Degp = Deg g, then
q has a unique extension in S(B) of the same degree (Corollary 6.8).

(4) If p is a type on A, then it has an extension in S(4) of the same
degree (Thoerem 6.6).

We also prove that if T is stable but not superstable, there are formu-
las ¢, (x: yn), n< w,and sequences Ez.n, N € @>w such that

(1) forevery n € “w, {g,(x, amn) :n < w} is consistent.

(2) for every m, n € Mw, n<r< W, {Pma1 (X, @pmimy)s Pt (X5 A i)}
is inconsistent.

Definition 6.1. We define when Degly(x, a)] = « holds by induction
ona:
(D Degm lo(x,a)] Z 0iff E@Ax)p(x,a);
(2) Deg™ [p(x,a)] = & iff for every a < §, Deg™ [p(x,a)] 2 o
(3) Deg™ [o(x,a)] = a + 1, i. there are n < w, formula ¥(x; y),
and sequencesa ! I < IT1" such that:
(i) forevery I< ITI*, Deglo(x,a) A ¥(x,a!)] >«
(ii) for avery w C 1TV, lwl > n,

ET1(3X) zé\w ¥ (x,ah.

Definition 6.2, Deg” [p(x,a)] isaifitis= abutnot= a + 1. Itise
if for every a, Deg™ [o(x, a)] 2 «. If E1@X)¢(x, @), then it is not
defined and we shall ignore this case many times, or treat it as —1. If
m = 1(x) is one, or it is obvious what it is, we omit it.

(Most of the time, except 6.10, it will be tixed but arbitrary.)
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Lemma 6.1. (A) If = (VX)[p(x, a) »> ¥ (X, ¢)] then
Degy(x, a) < Deg¥(x, ¢).
(B) If a, ¢ realize the same type, then Degp(x, a ) = Degy(x, ¢ ).
(C)If for no ¢, a, Degp(x, @) = o, then Deg¥(x, ¢) 2 «, implies
DegW(x,c)=co
(D) There is c., < (2'T")*, such that Deg¥ (x, ¢) 2 o implies
Deg¥(x, c) = oo,

Proof. (A)—(B) Immeciate; by induction.

(C) We prove by induction on 8 = «, that Deg¥(x, ¢) = «, implies
DegW¥(x, ¢) 2 B. For f= &, and for § a limit ordinal, it is immediate.
Suppose it holds for 8, and we shall prove for § + 1. So let
v =DegW¥(x, ¢) 2 a,. Since for no ¢, a Degp(x, a) = ag, clearly
Y > ag, ory 2 ag + 1. Hence by (3) from Definition 6.1, there are
n< w,6(x,y)and 5! 1< ITI" such that:

(i) for every I < IT1*, Deglf(x, b%) A W(x, ¢)] 2 a,.

(i) for every w C TV, lwl=n, ET1@x)A ¢, 0(x, b))
By the induction hypothesis (i) implies

(i)' forevery I < ITV", Degl6(x, 5!) A ¥ (X, c)] = 8.

Now by Definition 6.1 part (3), (i)', (ii) implies Deg ¥ (x,c) =8+ 1.
So we prove (C).

(D) Follows from (B) and (C).

Definition 6.3. For an m-type p, Deg™ p will be min { Deg™” [A¢Eq @l
q a finite subtype of p}.

Lemma 6.2. (A) If p = {¢,(x,a"):n < r< w} then Degp =
DeglA,, < ., (x, a™)).

(B) Every type p has a finite subtype of the same dzgree. Hence if
i<j<&=p;Cp;, Degpy = Degp;, 8 alimit ordinal, then
DeglU; .5 ;] = Degpy.

(C)Ifp C q then Degq < Degp.

(D) If every sequence realizing p realizes q then Deg p < Degq.

(E) Deg p = 0 iff p is algebraic (i.e., p is realized by 1 finite number of
elements).

F)Ifa=Degp< o, n<w,isaformulaal 1 < ITI" sequences and
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forevery w C ITI*, Iwl=n, {¢(x,a’) 1€ w} is inconsistent, then for
at least one I, Deglp U {p(x,a ")} <a(orp v {¢(x, al)} is inconsis-
tent.

Proof. Immediate.

Definition 6.4. A type p splits strongly over A, if there is an indiscer-
nible set over A, {a ¥ : k < w} such that for some ¢, p(x,2 %) Ep,
Te(x,a)ep.

Lemma 6.3. If p splits strongly over A, Deg(plA) < « then
Deg p < Deg(plA); provided that T has not the independence p.

Proof. Let ¢ = piA, and let us definep” =a n~a 2n*l and b

« < a < ITI*, such that {d @ :a < IT!"} is an indiscernible set over A
(clearly {b" :n < w} is such a set, so by 5.4A it is possible). Let
T(x,y0 vy =p(x,y%) ATle(x, y1). By 5.9 there is n < w such
that for every w C ITI*, Iwl=n, {¥(x, b*):a € w} is inconsistent. So
by 6.2F, for some a Deg[q U {¥(x, b*)}] < Degq. Asb«, b0 realize
the same type over 4, by 6.1A, also Deglqg U {¥(x, b0)}] < Degg. By
6.2D Deglq U {¢(x, a ), To(x, ai)}] < Degq. Asq U {p(x, a 9),
To(x, a 1)}] C p, by 6.2C Degp < Dege = Deg(piA). So we prove the
lemma,

Remark. Similarly if p is a type over 4,a ", n < «w realizes the same
type over A, and for some r < w, forevery w C w, Iwl2r,
{@(x,an):n€ w} is inconsistent, then Degp > Deglp U {o(x, a ®)} 1.
(Assuming, of course, Degp < =.)

Theorem 6.4. Let p be a finite m-type, then the following conditions
are equivalent:
(A) Degp 2 ITV*
(B) There are formulas ¢, (x; y "), natural numbers r,for0<mn<w
and sequences a. q forne w>(|T*) such that
. (@) for every n € w(ITI%), p,=pY {p,(x, Zl_ﬂ‘n):O <n< wis cor-
sistent.
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(i) for every nen(IT1"),n < w,w C IT1*, Iwl 27,41
{@n+10(c;a,~qy) : 1 € W} is inconsistent.
(C) The same as (B} with r,, = 2 for every n; and for every n > 0,
n € PUTIY)

E(Vx) [pg41 (. @) > ¢, (x, ap )]
(D) Degp =

Proof. We shall prove A+ B, B—~ C,C— D, and D - A, and this clearly
is sufficient.

Remark. If we are interested only 1n the equivalence of A, B, D, then the
proof of B - C can be skipped, as from the proof of C — D, it is clear
that B - D. Indeed, C is needed mainly because of esthetic reasons.

Proof of A - B. Let us say that a type q satisfies (a; 9y, 7y .09z, 1)
(k< w)bya, T k(T if:

() the degree of g, =q U {p,(x, ap,):0<n < k} is 2 a for every
ne kT,

B) forevery n€ *(IT1", n< k, w C ITV", lwl 2 r, ,; the set
{Pp+1(x;a,~p) i1 € w} is inconsistent.

We shall now define by induction on n > 0y, r,, such that for every
a < ITV*, p satisfies (a; @y, 71} ... @y, Iy ) Clearly from this, B follows.

For n = 0 clearly the induction hypothesis holds. Suppose we have
defined ¢y, 7y, ..., @, Iy » Such that p satisfies (a; 9y, 7y ...;9,, 7, ) bY
a "‘ renZ(IT1*) for every a < IT1* and we shall define Op+1>Fn+1 SO
that p satisfies {a; Yy, 715 o3 Opa1» Trer ) fOT EVETY @ < IT1*; and so prove
the induction, hence prove A - B.

Letq% =p U {p (¥, 2%,): 0< k< I(n)}.

Now we shall prove by mductlon oni, 0< i< n that:
(*) for every a < |T1*, n € "-I(IT1*), there are o2 x,¥), r* < w such
that q2*1 satisfies (& O _41» i1 s o3 Pn» Tn s 055 1) (1= 0, this is
{a; cp"‘ r°‘ M.

FOI‘l = (, this follows from Definition 6.1, (3). (remember p is finite,
and by Lemma 6.2A there is in fact no differences between finite types

and formulas.)
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Suppose (*) holds for i < n, and we shall prove it fori + 1. Let
n € "=1(ITI"). The number of possible pairs (p, r), v a iformula of
L(T),r < wis < ITI8y = ITI. Hence there are g2, r® such that
HI<ITI: gy = Tl =re}l= ITI*. By renammo we can assume
that forevery I < ITI’ oy = 50"‘ Feay =12

Now for every I < ITI+ a4, satisfies. (O O iais Fpmitls 3 P s
P2 1y Py bY some a a (, T) TE ‘+1>(ITI ). Now clearly qf;” satisfies
(O Qs s o3 Ps Py ;9% r“) by a 7€ F2(I71%), where a, =
a [7(0),<(r(), ..., 7(i + 1))] So we prove (*).

Now the number of pairs (g, r) is < |T1, so there are Pps1> e SUCh
that for IT1" o's 9%, =, 1, ¢, =1 . As @ < B, implies that: if p satis-
fies (B; @15 715 e Pyt s Fpey ) then p satisfies (o, 0y, 715 @paps Fuer 5
clearly we end the proof of the induction setp on n. So we prove
A - B,

Proof of B -~ C. We shall define by induction on k < w formulas «p"n
and natural numbers % > 2 such that:

(1) for every k, they satisfy the conditions mentioned in B.

Let f(k) = min{n :r”g > 2}.

Q) forevery k,if f(k)< wthenfk+ 1)> f(k)orl=f(k)=f(k+ 1),
and ry > rk+1,

(3)if n < f(k) then pk = pk+1,

Clearly if we succeed in defining them. and define ¢}, az \0"‘1 for large
enough k (f(k) > #) then clearly C is satisfied by ¢, = &, ¢;(c; y7).
It is also clear that for £ = O there are such wg, rg (by B). So it suffices
to prove, that if ¢/ , rf1 are defined for/ < k, 0 < n < w, then we can
define k1, rk*l 0 <n < w.

MNow we can assume there are g, n ME w>(IT1") such that (B) is satis-
fied by %, rk (0<n< w)a,;end

(ili) ifne w>(T"),i< w,l; £, < .. << IT!+ i1 <0 <.

L <ITIV (wherel, =1, <= j, =j,u fora =1, .,i-1) and
Tis - T € @>(IT17) then the “wo sequences
a‘n"(ll)ﬂ‘rl anﬁ(li)"fi

A res o o
n ]l) 7’1 ver fln’\(]t) 1,!_
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realize the same type over

A, =U{Ranga_:I(r)<I()orrl(n)#n;T€ w>(1T1))

Remark. (1) We can choose the 7's as void sequences. Hence in particu-
lar, <En"<1) :1<!TI") is an indiscernible sequence over 4,

(2) We can assume that (iii) holds, by using Ramsay’s theorem, or
using the following theorem which is proved in Shelah [H]. The theory
is combinatorical, in fact, generalizing Erdos, Hajna!l and Rado [B].

Theorem, For every n, j < w there is g = g(n, j) < w (an explicit ex-
pression can be obtained) such that: Let N be a model, with language
L;,IL1<£3,<2,4;, =\ and for every 1 € ">} there is a sequence
b, € INI. Then there is a function f :">(2,) > ">\ such that:

@) fEN =0 @ Um =1 (v) 7 =qiriff f(r) =f(0)Ir; (8) if we
aefine a, = bg . then (iil) is satisfied, if we replaced |TV" by 2. and
restrict ourselves to sequence (of ordinal) of length < n, and t¢ i < j.

So we have 9%, 7k (0 <n < w) and En, n € «>(TI1") such that (i)
and (ii) from (B} hold, and also (iii). We should define pk*1, rk+1,

If f(k) = w, clearly C holds. So let f(k) < w and n € fK)-1(ITI"),
and let 1, be a sequence of n ones. Suppose first that

p*=pU{gk(cia,,) in <fU} U {Ghgyen (X, .y, )in<w)

U {tp_);(k) (5‘:—, En"‘(()) )}
is consisient. Then define

gkt =gk for n# f(k)

P = o Gy L,y ) = g O ) A Py T35 )
rk+t =rk for n# f(k)

rkil =rkiy — 1 (or, in fact, (r¥u + D/2)

Clearly this definition satisfies our demands.
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So suppose that p* is inconsistent. Hence it has an inconsistent
finite subtype, which we can assume is

p! =pQ {00 38 10) 10 <L} U {@pgpen (X3, 1 ) 1< ng)
U {95y X 3a, ()}
Let us define
gkt =gk for n < f(k)

""10,'—1 = A \
‘Plfc(k) l“’,Jg(k)(x yO ey ) i<f(k)+n0¢' LyHaNp

pitl =«,0§+,,0 for n> f(k)

rk*t =7k for n< f(k)

n

Pkt =
i = 2

rk+l = r§+n0 for n> f(k)
Clearly this definition satisfies our demands. So we end the definition,
hence the proof of B> C.

Proof of C »> D. Suppose Degp < . Letg,, r,, a be as in C, and
P, =pu {o,(x, an,n) 0< n<Il{n)} forevery n E w>¢T1"). Among
the p,, there is one with minimal degree gq,., Deg q, = a. Hence for
every I < ITI", Deg(q, ) 2 Deg q, = o. But as every subset of
{@1ryr1 (X, @, ) 11 < ITI*} with at lewst two elements is inconsistent;
we get a contradiction by Lemma 6.2F.

So Deg p = o,

Proof of D - A. As ITI" < o, Deg p = o implies Degp = ITI".

Theorem €.5. If for some m-tvpe p, Degp = =, then T is unstable in
every \ for which A0 > \; hence T is not superstable.
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Remark. 7 is superstable iff it is stable in every A = 2!T!.

Proof. By Theorem 6.4, D, C and the compactness theorem, there are
@, (x, ") 0<n< w,anda,, n € “>such that
(i) forevery n € @A, p, =p U {9,(x, a,,,) : 0< n < w} is consistent.
(ii) for every n € 7-IN, k # I < N, {0, (X a1y )s 0,06 @ iy} s -
consistent.
For every n € w2 let En realize p,, let A = U{Rang En in € w3}
and g, be the type c,, realize over A. Clearly

ISm(4)12 1{q, :n€ “N}I1=2"0,
IATS N-Ry =A.
By Lemma 2.10 the theorem is proved.

Theorem 6.6. For any m-type p on A, there is an extension q € S™(A)
of the same degree.

Proof. Let us first prove that

(*) for every p(x;a), a; =a ora, = a where a = Deg p,

a; =Deglp U {p(x;a)}] a; =Deglp U {To(x, a)}].
By 6.2 there is a finite p; C p such that

a=Degp; a; =Deglp, ' {p(x;a)}] a; =Deglp; U {Tp(x,a)]
and denoting ¥(x, b) = \Pé\P | 9> we get

a=Deg¥(x, b), a; =Deg{¥(x, b) A p(x;a)l,

@y = Deg[¥(x;5) A Np(x;a)]

So it suffices to prove by induction on a, that
(**)if Deg ¥ (x, b) = a, then Deg[¥(x, b) A ¢(x;a)] = a or

Deg[¥(x;5) A Tp(x;a)] 2 « [as always Deg[ ¥(x, b)) A 0(x, c)] <

Deg W(x, b) by 6.1A].



Sh:10

§6. Degrees of types, and superstable theories - 355

Let a = 0, and so by the definition there is ¢ such that E ¥ {c;5].
So either Ep[c;a] or El¢lc, al. In the first case
E@x)[¥(x;5) Aplx;a)l, hence a; = Deg[¥(x;b) Ap(x;a)] 20=0a
(by Definition 6.1), and similarly if E¢[c, a] thena, 2 a.

So suppose we have proved (**) for a, and we shall prove it fora + 1.
AsDegW¥(x, b)Z a+ 1> a, therearen < w, 8(x, c *)a < iT!*, such
that: o

(i) forevery a < ITI", Deg[¥(x, D) A O0(x,c*)] = a

(ii) forevery w C IT1*, Iwl 2 n, {0(x;c @) : a € w} is inconsistent.

By the industion hypothesis, for everv 8 < IT1” there is 8(;3) € {C, 1}
such that Deg[ ¥ (x, B) A 0(x, c ¥) Ap(x, a )¥®] = «. Hence for
ITI" B's §¢8) =0, or for ITI* B's §(B) = 1. So by renaming we can assume
for every f§ 6 (8) = 6 (0). So by Definition 6.1

Deg[W(x;b)Anp(x;a)®®] = a+1.

So remains the case « is a limit ordinal. But if (**) fails,
ny = nax(aqg,a,) < «, hence

Deg[¥(x, b)] 2 a3 + 1, Deg[¥(x;b) rp(x;a)l =
ay <az+1, Deg[W(x;0) ATlp(x;a)] Say<az + 1.
Contradiction to the induction hypothesis.

So we prove (**) hence (*). Now let {;(x, a?) :i < iy} be the list of
all formulas with parameters from A4, and x as variables. We can define
by induction §(¢) € {0, 1} fori < iy, such that Degp,,, = Degp; where

p;=pV {&p,'()?, alyi :j<iy.
By 6.2B Degp = Degpio, and clearly p C Pi, € ST (A).
Theorem 6.7. Suppose T is stable, p an m-type and ay = Degp < o.

Then there are no g, and p-m-types py k < \T\*, contradictory in pairs,
such that ag = Deg(p U p;) for every k < ITI".
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Proof. Suppose Theorem €.7 fails, and {p; : k < IT1"} is such a set of
types. Let A be a set such that p, p; are types on 4. By Theorem 6.6
we can assume p, € § m(A) (by replacing p, by a suitable extension).
By Theorem 2.5 for every k there is a finite g*¥ C p;, such that
Rank”‘(q’ ) = Rank™(p;);and as p C p U g¥ C p U py, clearly
Deg(p U qz)- As there are IT1" > R gk's, we can, by dropping
and remaining assume that for every k < IT1", gkl =n,,
q* ={p(x, a®)D :i < ny}, and Rankm(q¥) =n,. Solet W(x;c k) =
A{¥ ¥ < gk}, So clearly Deg[p U {\I!(x c¥)}] =a,. Now letb*
realize p U p;. Then clearly it does not realize ¢’ for! # k; for other-
wise

4 < pr.q' Cppng= Rank{:q’ = Rankp;, = Rank”'p,

contradiction by 2.5. So for every k, pU {¥(x ;20 [ < 171"} is
consistent, and of degree o, by 6.2D.

As T is stable, it has not the independence p (by 4.1) so there is
n? < w such that: there are no b9, ..., b#°~! such that for every
wCn? {(¥(x;bn)fmeEm: n < n2} is consistent.

Now by Theorem 5.8 we can assume {c ¥ : Xk < ITI"} is A-2n?-
indiscernible set where

@x) N Wi e ge 2

Define for k < ITI*
) - —
V¥(x;ak)=W¥(x;cktn )Aié\nzﬂ\ll(x,c').

Clearly by 6.2D oy = Deglp U {¥*(x;a %)} On the other hand by
the definition of #2 and the indiscernibilit:- of ¢ ¥:k < ITI*}, every
set of n2 W*(x;a *)'s is inconsistent. This is a ¢ sntradiction by 6.2F.
So we prove the theorem.

Definition 6.5. A m-type p is fixed, if for every formula ¢(x, a), either

Deg[pU {(x,a)}1=Degp or DeglpU {T1¢(x, a)}] = Degp.

but not both. Hence if p is a fixed type on A, it has a unique extension
in S (A) of the same degree.
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Corollary 6.8. Let T be superstable. (A) For every m-type j: there is a set
A, 1AI< IT| such that if g € S™ (A), Degp =Degp U q, then q is fixed.
(B) every m-type over A has < 2'T' extensions in S™(A) of the same
degree.
(C) If p is an m-type over C, A ={a; :i < ITl} is as in (A),
"{a‘ 1i < IT1}, and for every i) < ... <i, < ITI, (a,l,. ,an)
(a'l a'ny realizes the same type over C then we can replace A by A, .
(D) If in (A) p is a type over M, M is | T\-saturated, then we can
choose A C IMI,

Proof. Immediate.

Theorem 6.9. If Deg! (x = x) < o, T is stable, then T is superstable, i.e.
for every A, 1IS(A)I< 141+ 2T,

Proof. By Lemma 6.1, every ¢(x;a ) has degree < e, hence every 1-type
has degree < e, Let A be a set. By Lemma 6.2 every type p € S(4) has
a finite subtype g [p] of the same degree. Clearly the number of f{inite
types on A is < |41+ T and by Corollary 6.8B, for every finite g
{p:p€85(),qlpl =q}1 < 2T, Hence

IS =2, {p:peS),qlpl =g < (AI+1TH2'T' =
q

A1+ 2T

Corollary 6.10. The following conditions are equivalent, if T is stable:
(A)Degl (x =x) < oo
(B) every m-type has degree < |T1" (hence < ay < ITI")
(C) T is superstable, i.e. stable in every \ 2 2T’
(D) T is stable in one A, \"0 > A > 2/T!
(E) there are 110 ¢, (x;) ") 0< n < w;a, T € “>w such that:
@) for every n€ “w, {y, (x; Enm)50 < n < w} is consistent.
(i) for every 1€ @2 w, k <1< w9, (X, pngy), @, (X, @ ,nyy) are
contradictory wheren=1{7) + 1.
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Proof. A » C by 6.9, C -+ D trivially; by 6.5 D implies B (noticing that
by 6.4, Deg” p 2 ITI* implies Deg™ p = =) and trivially B-> A. A<= E
by 6.4. '

Remark. It can be easily proven that if T has the strict order property,
then Deg! (x = x) = o (like the proof of C > D in 6.4).

Lemma 6.11. Suppose T is superstable, p is an m-type over A and p is
fixed. If a, b realize the same type over A,a, b€ B, A C B,

p C q € S™(B), Degp = Deg q and ¢ is a formula then

p(x;a)€q = p(x,b)Eq.

Proof. By Lemma 6.1B, 6.2A.

Theorem 6.12. Suppose p; is the m-type a ! realizes ver
A;=U{Ranga/:j<ilu A foreveryi< a2 IT\"and i <j< a implies
p; C p;. Then, assuming T is superstable:

(A) If py is fixed, and Degp; = Degpq fori< e, then {a;: i< a}is
an indiscernible set over A.

(B) if for cvery i < e, Deg p; = Deg pyy, then there is § < IT1" such
that {a;:B< i< a} is an indiscernible set over A U ~Ranga;:i < f§}.

Proof. (A) The proof is as the proof of 5.7, using 6.11.

(B) By 5.17 there is § < ITI", such that {a;: § < i <C ITI'} is an indis-
cernible set over A, . If v is the first such that {a;: < i< y}isnotan
indiscernible set over 4, then D, splits strongly over 4; (see Definition
6.4) contradiction by 6.3. [In fact in (B) we can taks < w.]

Theorem 6.13. (A) Suppose T is superstable, {(af:ie I} an indiscernible
set over A, ¢ a sequence. Then there is a finite set 1| C I such that
{ai:i€I—1,} is an indiscernible set over A U U{Rangai:i€l;} U
Rangc .

{B) In (A) we can replace superstability by stability, and 11| < R
by i 1< k(7).

Remark. See Remark to 5.9.
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Proof. Forany J C I let B(J/)=A U U{Ranga’:i€ J}. By Lemina 6.2
there is finite /; C 1, such that the type p that ¢ realizes over B(J)
satisfies Deg[p|B(/;)] = Deg p. By Lemma 6.3 p does not split sirongly
over B(I;). If {ai:i€I—1,} is not an indiscernible set, over

B(I;) U Rangc there are differents,, ..., s, € I — I, and different

ty, ..., t, € I—I,such that for some ¢

(*) Egla’l,...,a"m;c] ETpla’,..,amc].

Without loss of generality {s,...,s,} N {#, ..., £, } = 0 (otherwise we
take a third set, disjoint to both of them, and replace one of them with
it, so that (*) still holds). Now it is easy to see that p spliis strongly over
B(l,), contradiction.

Remark. More refined theorems about degrees will appear, including
some remarks which were not proven here. See Shelah [N#*].

Question. What is the exact relation between the degree here, the rank
in Shelah [C] (def. 2.1, p. 75), the strong splitting of Shelah [D] def.
4.1 p. 87 (here 6.3), and the notion suggested naturally from the re-
mark to Lemma 6.3? (See 6.8B, 6.3, and Shelah [N*1).
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