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272 S. Shelah, Stability, the f.c.p., and superstability 

§0. Introduction 

As, on the one hand this paper is only defining some concepts and 
invertigating them; and on the other hand those investigations help in 
solving some problems not  mentioning them; instead of abstracting the 
content of this paper, we shall give a list of all theorems and problems 
connected to them. Those whose proof  depends on this paper are de- 
noted by * 

Some of  the material in § 2 and some other, is a repetition on Shelah 
[B] because it is improved here, for completeness, and as also there some 
proofs were only hinted. As in the introduction we do not review the 
paper, this is done for every section separately in its beginning. The paper 
is self-contained. 

The list is divided to the following topics: (for completeness, each 
part contain also results unconnected to stability) 

(Definitions) 
A) Stability 
B) Saturativity and universality 
C) Categoricity o f  theories 
D) Homogeneity 
E) The number of  non-isomorphic models of  a theory 
F) Categoricity o f  pseudo elementary classes 
G) The number o f  non-isomorphic models o f  a pseudo-elementary 

class 
H) Keisler's order and saturation o f  ultrapowers 
I) Other results 

[Results not  attributed to anybody neither in the list nor in the his- 
torical remarks, are unpublished results of  the author. Usually for every 
result there is a reference, whereas the historical remarks are concentrat- 
ed at the end of  each part] .  

We should first define some concepts (for further explanation see 
§ l ) .  

T is a complete first order theory in L = L(F). M is X-saturated if  
every (consistent) type over a set A c IMI, IA I < X is realized in M. M is 
X-compact if  every type p over IMI, Ipl < X is realized in/14, M is max-X. 
saturated if  it is X-saturated but not X*-saturated, similarly for compact 

Sh:10



§ O. Introduction 273 

M is it-universal if every model of  Th(M) = T of  cardinality <_ bt is iso- 
morphic to an elementary submodel of  M. Notice, that for X > ILIi M 
an L-model, M is X-saturated iff it is X-compact. 

M is saturated if it is IIMII-saturated. 
For T 1 ~ T, PC(T  1 , T) is the class of reducts of models of  T 1 to the 

language of  T. I(X, T l, T) is the (maximal) number of non-isomorphic 
models in PC(T 1 , T) of cardinality ~..; and l(X, 73 = I(X, T, T). 

T is stable in X if for every model M of  T, A c IMI, IA I <_ X, the num- 
ber of types elements of  M realized over A (in M) is <_ X. T is stable if it 
is stable in at least one cardinality, superstable if it is stable in every 
X>_ 2 Irl. 

T is categorical in X if it has, up to isomorphism, exactly one model 
of cardinality X. 

T1 <Ix T2 provided that: i f M  1 is a model of  T l, M 2 a model of  T 2, 
/)  a (S 0, X)-regular ultrafilter over X, M ~ / D  is X÷-compact then M ~ / D  

is X÷-compact. This is Keisler's o~:er from [A]. D will always be a non- 

principal uttrafilter. Let T 1 <1 T 2 hold when for every X, TI<1~, T 2. 
T has the ~c.p., if there is a for;n~la ~o(x, y ), such that  for every 

n < co, T has a model M, sequences ~-0, ..., ~'m, (co > m >- n) such that  
{~o(x, a-i): i _<_ rn~ is not realized iaM,  but for every] <_ m, 
{ ~ x ,  a-i): i <_ m, i ¢ ]} is realizeg. 

#(X) is the first cardinality such that:  if T is a theory, p a type, I Tl, 
Ipl <_ X, and T has a model omitting p of cardinality >_ g(X), then it has 
such models of arbitrarily high pov er. (See e.g. Chang [A] for the values 
of#(X)).  

D n (T) is the set of ccmplete and consistent types with the variables 
Xo, ..., Xn_ 1 only (consistent - tha t  is, consistent with T.) Let D(T)  = 

On<toDn (T). 

A. Stability 

1 ) For every stable, theory T there are cardinals ~:(T) <_ I TI ÷, 
X(T) ~ 2 jrl such that: Tis  stable in X iffX = X(T) + ~K<~(T)X ~ . We 
stipulate that for unstable T, x (73  = o~. 

There is a syntactical condition (C * X) which is equivalent to 
g < r (T) .  [See Shelah [D] Th. 4.4] ,  
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274 $. Shelah, 3tability, the fic.p., and su~.erstability 

*2) If  T is superstable ;k (T) <_ ID(T)I + 2 s0. 

3) Conjecture: For every stable TX(T) = ID(T)I  or X(T) = 

ID(T)I + 2 s° .  (i,e., h(T) can be chosen in this way.) Proved in Shelah [N*] 

47 If  T is stable in ),, M a model of  T, A c B c IMI IA I <_ X < IBI, 
then B has a subset of  eardinality >_ )`* which is indiscernible over A. 
(See Def. 5.2.7 [See Shelah [D] Th. 3.1; IF] Th. 2.2, and here 5.8 are 
generalizations. ] 

There are some definitions of prime model; and proofs it exists under 
certain stability conditions. For simplicity, assume all models we deal 
with are elementary submodels of  some very saturated model M of T, 
and A c IMI, IA I is small. 

Definition. M is X-prime over A if: A c M, M is )`-compact, and if 
A c N, N is )`-compact, then there is an elementary embedding of  M 
into N, which is the identity on A. The type p is X-isolated, if there is 
q c p, Iq! < )`, such that every element realizing q realizesp. [We can 
consistently replace compact by saturated, and Iql < X by q is a type on 
some A, IA I < X; then we get ()`, 1)-prime models and ()`, 1)-isolated type. 
Note that every model is ~0-compact.  

5 ) Suppose T is stable in some bt < 2 ~' , or T is stable, ~ > I TI. 
(At On every A,  there is ;k-prime model (and also a ()~, 1 ) prime 

model). (See Ressayre [A] Th. 4.3, Shelah [B] Th. 3.5.) 
(B) This model is unique, i.e., if M, N are ),-prime models over A, 

then there is an isomorphism from M onto N, which is the identity over 
A. 

(C) I f M  is ~ )`-prime [()`, 1)-prime] model overA,  every finite 
sequence in M realize over A a )`-isolated [()`, 1)-isolated] type provided 
that cfX >- ~:(T). [See Ressayre [A¼ Th. 4.3.] 

(D) I f M  is a ()`, l)-prime (or)`-prime) model overA,  then in M 
there is no indiscernible set (Def. 5.2) overA of cardinality > )`. 

(E) If  T is superstable A c M, M is )`-compact [)`-saturated] and 
satisfies the conclusions of  (C), (D) then it is a )`-prime [ (~,, 1 )-prime ] 
model over A. For stable T there is a characterization of  prime models. 
See Shelah [N*] ,  [O*] .  
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§ O. Introduction 275 

6) If  T is stable, X >- K(T) + ~ 1, then over every A there is a (X, 1)- 
prime model (which seemingly does not satisfy 5C, but satisfies 5D). 
Conjecture: See Shelah [N*] ,  the model is unique. 

77 Suppose T is stable and countable. Then for ew~ry A there is a 
model M, A c M such that: if c ~ M, ~0(x, y ) is a formula, then there 
is O(x, b 7, b ~ A which satisfies, for every a- ~ A, ~ ~o [b--, a-] =~ 

(Vx-) [O(x, b )-* ~o(x, a 7], and ~ 0 [c-, b-]. 

8) Question: Is ~(T) < ~1 sufficient in (7)? Is there a stable T 
which does not satisfy the conclusion of  (7)? 

9) If  Tis  stable, M a model of  T, ~0 < IQ M I <  IIMII, then for every 
X >_/a >_ I TI, T has a model N, IINII = X, IQ N I = #. [See Shelah [A] Th. 
6.3.] 

10) If  T is stable and countable, N an elementary extension of  M 
which is a model of  T, N ¢ M, QM = QN then there is an elementary 
extension N 1 of  N, N 1 4= N, Q~V,l = QN = QM. [See Lachlan [D*] 

11) If  Tis  stable in X, then it ~as a model M, IIMII = ~, A c IMI, 
IAI = 3, and every permutation of  A can be extended to an automor- 
phism of M, and A is a maximal indiscernible set in M. Also if 
X = Zi<uXi; t.t, X i < X; T stalzle in )'i, this holds. [See Harnik and 
Ressayre [B] 1.11.] 

"12) If  T is unstable, then it has the f,c.p. [Here Th. 3.8.] .  

* ~ 3) T is unstable i f f  it has a formula ~0(x, y ), a model M, and se- 
quences { a  ~" n < 6o} from M such that M ~ 9 [~-n, ~-m ] ~, n < m 
[Here, Th. 2.13.] .  [A generalization - Shelah [F] §2.]  

Remark: For other kinds of  prime models see Shelah [D] § 5; [D] proof  
of  7.10; [C] ; [K].  On totally transcendental theories (= ~ 0"stable) see 
also Blum [A] ,  Lachlan [B],  [C],  Baldwin [E] .  

Historical remarks 

1) In Morley [A] it is proved that if T is countable and ~0-stable, 
then it is X-stable for every X. Rowbot tom [A] ,  and Ressayre [A] prove 
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276 S. Shelah, Stability, the f.c.p., and superstability 

(indep.) that if T is stable in > ,̀ >̀  n0 > > ,̀ then T is stable in every/~ >_ > .̀ 
Rowbottom depend on G.C.H. In Shelah [B], ( I )  is proved for count- 
able T, and partially for every T, and Shelah [D] gives 1) and [N*] is 
the full solution. A further conjecture appears here, §4 (conjecture 4E). 

4) Morley [ A] proves it for ~ 0"stable, countable theories. Rowbot- 
tom has an unpublished weaker result than (47. In Shelah [B] it is 
proved for> ,>  tTI, and in [D] it is proved. 

57 (At For the case T stable in/~ < 2 ~, , it was proved (indep. and 
successively) by Rowbot tom,  Ressayre [A],  Shelah [A],  [B]. The case 
>`> ITI (which is new only :if2 ~ = 2 trl) is of  Shelah [A],  [B]. 

(B) For IAI = [TI = >  ̀= ~0, this is due to Vaught [A]. This answers 
a question of Sacks in Chang and Keisler [B]. 

(C) Due indep, to Rowbot tom and Ressayre, for regular X. For 
singular >  ̀it follow,~ in fact from B3. 

7) This is due indep, to Lachlan and Shelah (about the same time). 

11 ) Morley [ A ] p. 5 3 7, (5) asked whether for every b~ 0"stable T, 
a¢> b~0, Thas  a m,)del M, A c IMI, IAI = 113,i li = ~, and every., permuta- 
tion of  A can be extended to an automorphism of M. Silver answers 
affirmatively the question, for regular > ,̀ using saturated models. By B2, 
it follows this is true for every ~, if T is stable in > .̀ By Harnik and 
Ressayre [B], we can take A as a maximal indiscernible set for regular>`. 
In fact it is a pal ~icuiar case of  their theorem. 

12) Keisler [A],  5.1 proves a little weaker theorem: the property 
(E) implies the f.c.p, where (E) T has a model M, A c IMI is infinite, 
~o a formula, ~o = ~o(x I , ..., x n ),  and for every n different elements of  
A ,  a 1 , . . . ,  a n there is a permutation 0 such that M ~ ~0 [a0(1), ..., an(n)] ,  

and a permutation 0 such that M ~ -I ~o [a00 ), ..., ao(n) ] .  

This property (E) was first defined by Ehrenfeucht [A].  Here 4.7B, 
it is proved that there is unstable T which do not satisfy (E). 
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B. Saturativily and universaiity 

1) I f M  is an L-model, ItMII _<./a = ZK<x#~ + 2 ILt, k regular, t h e n M  
has an elementary extension of cardinality ta which is k-saturated. [See 
Morley and Vaught [D] .] 

*2) If  T is stable in k, then it has a saturated model of  cardinality X. 

*3) l f M  i i < 8 is an increasing elementary chain of models of  T, T is 
stable k > ITI, every M i is k-sz~turated, cf 6 >_ x (T)  (see (a)) then 
Oi<.~M i is also k-saturated. 

4) Conjecture: We can replace k > I TI by k >- ~(T). Proved in Shelah 
[N*I .  

*5) I f M  i i < 6 is an increasing elementary chain of models of  T, T is 
superstable, and every M i is k-saturated, then Oi<6M i is k-saturated. 

6) If  T is unstable, T has a saturated model of  cardinality k > ITI iff 
k = ~;~<xk K. [See Shelah [D] claim 6.5.2.1 

7) If k = ~1~ > ITI, cf 6 < ~(73 (unstability is sufficient) then T has 
a model of  cardinality X which has no elementary extension of  t Jwer 
k which is (cf 5)÷-saturated. [See Shelah [D] Th. 6.4.] 

8) Conjecture: We can replace c f8  by ~:, and k = "~ by k g > k. 

9) For every T and regular k, T has a max X-saturated m o d e l  [See 
Shelah [D],  6.3, 6.6.] 

10) If  T has a ~(T)-saturated model M which is not X÷-saturat~'d, 
k ITI < IIMII then for every regular X, T has max k-saturated models of  
arbitrarily great powers. [See Shelah [D] ,  6.9 [N*] .  The condition 
X ITI < !IMtl ca~mot be weakened to k < IIMII.] 

* I I ) If  T has a I Tl*-saturated model, not k÷-saturated; (X÷)lTI-universal 
then for every # >_ X, k regular T has a #-universal, max X-saturated 
model. (If  T is unstable, or even if it has the f.c.p., the conclusion holds.) 

"12) Every T satisfies exactly one of  the following: 
(i) For every ta >- X >- 2 Irl, T has a ?,*-universal model of  cardinality 

>- ta which is not (2 x )*-universal, 

.~;i) There is ~, model of  T of  cardinality 2 m,  every elementary exten- 
sion of which is satarated. 
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278 S. Shelah, Stability~ the f.c.p., and superstability 

13) If  Thas  a model M, and there is a t y p e p  on IMI, 
p = (gi(x, a-i): i <  i 0 < IIMll),p is omitted, and (~i(x, y i ) :  i < i0} is 
finite then the conclusion of  (10) holds. 

14) Con]ecture: In (12) (i) we can say that for every/~ >- ?` >- ITI 
T has a ?`-universal, not ?`*-universal model of  cardinality >_/a. 

15) Conjecture: If  T has the independence p. (d,ff. 4.1 ) ?  ̀>_ 2 sTI, 
then T has a universal model of cardinality ?` iff  ?` = Zv<x2~. 

Note that 

16) If  T has the independence p.,  R c ?` × X, then T has a model M, 
formula ~0(x, y ) and sequences ~-i i < ?` from M, such that M 
~o[di, a]] iff(i , /3 E R. 

Historical remarks 

2) For ?` > I TI, Harnik proves it using the method of the proof  of  
F5 (or Theorems 5.16, 5.12 here) and A1 and the definition of  (C * ?`) 
(See Shelah [D] ). The author completes it for ?` = I TI. 

3) It is implicit in the proof  of  (2). 

10) This answers affirmatively question 4C, Keisler [A] ,  p. ~1 (one 
version), and implicitly answers 4A. Moreover, we do not need G.C.H. 

Before ( i 0 )  was proved (indep.); Harnik llC] proved: (G.C.H.) Every 
T satisfies exactly one of  the following: (i) For every ~a > ?  ̀>_ I Ti, ?` 
regular, T has a max ?,-saturated model of  cardinality >_ #. 

(ii) Tit ere is X 0 such that every ?`0-saturated model of T of  power 
> /d ITI is ,~÷-saturated.  

11) Tiffs answers affirmatively questions 4C, Keisler [A] p. 41 
(second version), and implicitly answers to 4B, and as in (10), without 
G.C.H. Keisler [A] ,  4.2b (ii) proved with G.C.H. that when T has the 
f.c.p., ~ < X <-/~, then T has a #÷-universal model which is max 

~,÷-saturated. 
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C. Categoricity of theories 

* 1) If  T is categorical in k, X > I TI, then T is categorical in every 
ja > ITI; and every model of T of  cardina?Jty > ITI is saturated. (For  
countable T see Morley [A] ,  for uncountable Shelah [K] .) 

2) Conjecture: (Morley) If  T is categorical in ITI, ITI > ~0,  then T 
has a model of cardinality < I TI. Moreover T is a definitional extension 
of some T' c T, I T'I < I TI. 

3) This conjecture was affirmed for the following cases: 
(1) ~q0 < IZl < 2 % ,  ITI regular, [Keisler [G] ]. 
(2) "~ < ITI < ~1~+1, c f6  = co, ITI is regular. 
(3) I TI = I TI s0 [see Shelah [C] ]. 
(4) By A6, in all cases in which by G), unsuperstability of  T im- 

plies it has in IT! many models. For example, assuming G.C.H., (2) 
holds. In fact i f (2 )  fails, to(T) >_ ITI, or g(T) ÷ -- ITI, fc(T) is singular. 

4) If  T is a complete theory in the language L(Qe q) and is categorical 
in ~ > I TI +, and ;k n < ~ =~ lln<o~ X n < k or k = ~18 , then ~ is categorical 
in every ta >- ;k, and in some/a < /a ( ITI )  [L(Qeq) is the language with ta¢ 
added quantifier " there  exist x ' s  of the cardinalky of  the model" .  ] 
(Perhaps we can improve the conclusion to " e v e ~ / #  > I TI ÷'', by the 
methods of  the proof  of  (1), but  this was not cheCKed yet .)  [See Shelah 
[A] §6,  [J] . ]  

5) Conjecture: If  T is a complete theory in the language L(Qcq) and 
is categorical in one k > I TI ÷, then it is categorical in every k > I TI ÷. I f  
T is categorical in X = I TI ÷ > ~ 1, then T is a definitional extension of  
T' c 7, IT'I < ITI. 

6) Let T be categorical in I TI ÷. Then over every A,  IA I > I TI, there 
is a minimal and unique prime model M; and every elementary permu- 
tation of  A can be extended to an automorphism of  M. Also over every 
model M there is a minimal unique prime model. I f M  is a model of  T, 
NMII > I TI, A c IMt, every elementary permutat ion of  A can be extend- 
ed to an automorphism of M. [See Harnik and Ressayre [B] .] 

"7) I f  every model of  T of  power ~. is I Tl÷-universal, ~.hen T is cate- 
gorical in ITI ÷. [Shelah [ N , ]  1. 
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280 S. Shelah, Stability, the f.c.p., and superstability 

8) Conjecture (Keisler): If  xI, is a sentence in Lul,, , , and it is catego- 
rical in some X >_ ~,~l '  then it is categorical in every X >- : l ,q  Similarly 
for ~ 1 instead of  :1,,,1 (Compare with D5). 

9) If  T is countable, T is categorical in ~ 0 i ff  for every n, D n (73 is 
finite. [See Ryll-Nardzewski [A] ,  or Svenonius [A] .] 

10) Con/ecture: 1 ) I f  T is finitely axiomatizable and complete, then 
it is not categorical both in S 1 and ~0" 

2) If T is categorical in ~ 1 but not in ~ 0, then it is not finitely 
axiomatizable. 

For simplifications of the proof of  Morley's categoricity theorem see 
Chang and Keisler [B],  Baldwin and Lachlan [B], Ressayre [A] and 
Keisler [ I . ] .  Marsh [A] is repeated and completed in Baldwin and Lach- 
ian [B]. See also Baldwin [AI ,  [C],  [D] ,  [El ,  [F* I ,  Glashmire [Ai ,  
Harnik [D],  Mcintyre [A*] ,  Ash [A*] ,  Keisler [1 , ] .  Baldwin [C] can 
be generalized to uncountable T. 

Historical remarks 

1) This is Los" conjecture. In fact mainly from the attempts to solve 
it, the theory of  stability was developed. 

Ehrenfeucht [A] proved that if T is countable and categorical in 
# --- 24 , then it does not have the property (E). (See historical remarks 
to A12.) Scott improved it to the case tt = gx > t~ and Morley [A] to 
any tt > ~0.  Later Keisler [A] shows (E) can be replaced by the f.c.p. 

Morley [A] proved (1) for countable T. For uncountable theories, 
successive and indeper:dent approximations were Rowbottom [A],  
Ressayre [A] and Shelah [B].  Assuming G.C.H. Rowbottom p~-oved 
that if T is categorical in # > × = inf { ×:X >- I TI, X ~0 > X}, ther~ T is 
categorical in every X >- tt. Ressayre eliminated G.C.H. and proved that 
also for ITI ÷ < bt < X and also mostly for ITI ÷ = #; and shows that  Tis  
categorical in some h < "~ [(21rl)+]. He also gave a unified and simplified 
proof for countable and uncountable 7'. Shelah shows it for every 

> ITI, tt 4= X; and sllows that T is categorical in some X </a(ITI) .  In 
Shelah [K],  (1) is fully proved, 

2, 3) The conjecture appears in Morley [A] ,  and he said it is not due 
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to somebody in particular. The conjecture is partia!ly verified by (3). The 
case ITI < 2 s0 is due to Keisler, the case :2~ < ITI < :18+ 1 is a refinement 
of tlle author. 

7) This affirms a conjec , ire of Keisler. 

9) This was proved independently by Engeler [A],  Ryll-Nardzewski 
[A],  Svenonius [A].  

10) It is not clear to whom to attribute this conjecture. Part (2) is 
question (2), Morley [A],  p. 537. 

D° Homogeneity 

Let H(T) be the class of cardinalities in which every model of T is 
homogeneous. 

*1 ) If there is k, ITI + b~ 1 <- X ~ H(T),  then every/a, bt >-- ~, or 
/a> ID(T)I, belongs to H(T). But ~0 < k<- ID(T)I implies 7, q~ H(T). 
[See Shelah [D],  7.6.] [See example in Keisler [A],  p. 41 .4A. ]  

2) If I TI = ~ o, and ) is not categorical in ~q l ,  then in every ~, 
~0 < ;k <_ 2 s0 , T has a model which is not  t~ 1 -homogeneous. Hence if 
ITI = ~0,  ~1 ~ H(T) then l ' i s  categorical in 1~ l . [See Shelah [D] Th. 
7.9.] 

3) If ~ 0 < I TI ~ H(T),  then T is a definitional extension o f  some 
T ' c  T, IT ' I<  ITI. 

4) Let • be a sentence in Ltob, o . If  ~ 1 ~ H(~)~ then every X ~ H ( ~ ) .  

for ~ > ~0. (See Keisler [B] §3. Also for the class of  reducl!s of  models 
of q~.) 

5) Let ~ be a sentence in L~I ,~ ,  ), > ~o" Suppose (a) • is catego- 
rical in k, (/~) its models of  cardinality k are ~ 1 -homogeneous (,~,) every 
countable model of  • has elementary extensions of  arbitrarii~y high 
power which is a model of ~ .  Then ot is categorical in every k > ~ 0- 
(See Keisler [G1 .) 

Let T be a ~theory in L, P = {Pi: i < i0} a set of  types in L,H(T, P) 
the cla~;s o f  cardinals ~k >__ ILl + ~ 1 in which every model o f  T w:tich 
omits every p ~ P is homogeneous. 
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6) If  there is ?~ ~ H(T, P), ;k > I TI, then there is/,t 0 < :1 [(2 tL I) + ] 

such that: every/a >_/a 0 belongs to H(T, P), and every/~, ILl </~ < I.t o 
does not belong to M(T, P) except possibly two, if there are two ex- 
ceptions, then/~0 < (2~rl) +- If  tc is such an exception then: (1) (2 ~ )÷ >_/z 0 
(2) c f g  > ¢o, o r ~  0 <- (21rl) ÷ (3) i f~  = 2~x<x,~x, g ~ X ÷, [See Shelah [D],  
Th. 7.10, 6.7, 6.8, 7.5.] 

7) (G.C.H.) Let hr(;k ) be the number of  homogeneous models of 
power ~, ( with a small change m the definition for singular ~,). Then 

ITI <_ ~o < '~ </~ implies h r ( # )  <- hr(X), and hr(~ o) .<_ ~o, ~o < ~ 
implies hr(k)<__ hr(~o). (See Keisler and Morley [F] .'~ 

8) Conjecture (Keisler and Morley): (G.C.H.) For every ;k >_ ~2,  
hr(~) = h r ( ~  2) (for countable T). 

9) Conjecture (Keisler and Morley): Suppose M is z~n (2 ~°)÷-homo- 
geneous model of cardinality > 2 ~0 , ITh(M)I = F;0. Then for every ;k, 
M has an elementary extension N, which realizes no new type, is k- 
homogeneous, and is of  power >_ ;~. 

1 O) Conjecture: If  M is a ;C-homogeneous model of  T of cardinali~ ¢ 
k, then ~ < 2 ~" 3. 

t~storical remarks 

1) The example appearing in Keisler [A] i sdue to Morley, and it is 
of  a countable T., for which H(T)  = (~,:3~ > 2~0}. Keisler [B] proves 
tor countable T, that ;k >_ ~ 1 ~ H(T)  implies ;k ~ H(T). Question B of 
Keisler [B] p. 260 is partially answered by (1), which is due to the 
author. Partial result is Shelah [D] Th. 7.6. 

2) This answers affirmatively question D, Keisler [B] p. 260. 

6) This partially answers question B, Keisler [B] p. 260. 

E. The number of  non-isomorphic models of  a theory 

(Remember T is always complete.) (Notice G. 103 
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1) If  T is countable, categorical in ~ 1 but not in ~0,  then 
I(~ 0, T) -- ~o [see Baldwin and Lachlan [B]. If T is countable and super- 
stable, I (~ o, T) > 1 then I(~ o, T) >_ ~o. [Lachlan [D*] 1 

2) Conjecture: If  T is categorical in ITt ÷ but not in ITI, ITt = ~a 
thenI(ITI ,  7")= I s l+  V; 0. 

3) If  T is countable, I (~  0, 73 :# 2. [Vaught [A] ] 

4) For every n ~ 2, there is a countable T, I(~ o, 73 = n. [See 
Vaught [A] ,  (the result is due to Ehrenfeucht)] .  

5) If  T is ~0-stable but not ~ 1-categ°rical then for every s ,  
l (Sa ,  T) >_ Is + 11 (see Shelah [DI ,  7.9, and 6.9, Rosental [A*] .  

*6) If  T is countable, and not categorical in ~ 1, then for every 
s >_ "~2, I ( ~ ,  73 >_ :I 2. [compare with GI]. 

*7) If T is superstable ;k = k(T) > ITI,/a >_ ITI, 2v > 2 ~° , then 
l(tz, T) >_ min(2~, 2 x). 

8) Conjecture: If T is stable k = X(T) > ITI, (see A1) then for every 
Is > I TI + ~ 1, I(/a, 7") ~ min(2U, 2 x). False. 

9) If  ID(T)I > ITI, k 3> ITI, then l (k,  T) >_ ID(T)I. [See Ehrenfeucht 
[B],  in fact.] 

*10) If ITI <_ ~a <__ ID(T)I T is ~aperstable, then I(V; a, T) >_ Is + 1 I. 

1 i ) If  T is superstable, and it has an ~ 0"saturated model M, in which 
there are two maximal indiscernible sets of different infinite cardinalities, 
then for every ~ >_ ITI, I ( ~ ,  T)>__ Isl. 

12) Conjecture: Every T satisfies one of  the following: 
(i) for every X >_ I TI, I(X, 7") <_ 2 21Tt. 

(ii) for every ~:, >_ ITI, I ( ~ a ,  T) >_ Is + l I. 
This is a special case of a mode general conjecture, which for  simpli- 

city we phrase: for countable T, and large enough s .  

1 3) Conjecture: Every T, satisfies exactly one of  the following (for 
ever3, s >_ :1 2). 

I) I ( ~  a, T) = 1 

II) I ( R ~ ,  T) = :12 
III)I(R,~, 73= Isl 
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IV)I (R~,  T)=  lal s0 
V ) I ( ~ , ,  70= lal nl 

VI) l (Ra ,  T) = 2 Ial 
VII)iI(l,~a, T)=  rain[2 ~a, :l(Io~l,i+ 1)] (where 1 <  i <  ~1) [p roba -  

bly i <- Deg x = x ] 
VIII) I (~  a, 73 = 2 sa 

[~I(L i) = X + Z/<i2a(x,t) ] 
(case VII is ~ 1 cases, in fact). (Each of  the cases is realized by some 70. 

This will, essentially, affirm 

14) Conjecture (Morley): I(~, T) is a non-decreasing function, for 
X>  ITI. 

15) For every X, ta < 2 x there is T, ITI = 2 x, such that: I(~, 70 = 2u 
for every x >_ 2 x. Also for every X there is T, I TI = X such that for 
every ~ >__ 2 x, I(~, T) = 2 2x. Also there is a countable theory T, s':ch 
that for every 3. > ITI, I(X, T) = 2 x, but every 21rl-universal model of  
T is saturated. 

16) Conjecture (Vaught): ITI = b~0, I (~0 ,  T) > ~0,  implies I(~0~ T) = 
2 ~°. (See G2 1 ). 

Historical remarks 

1) This was Vaught 's  conjecture. Morley [B] proves that 
1(~ 0, 70 < 1~ 0. Baldwin and Lach~an [B] proved also the other inequa- 
lity. This answers affirmatively question (1), Morley [:~], p. 5 37. 

2) I thank Chang for suggesting to conjecture something of  this 
form. 

5) This was a conjecture of Hamik,  in [A] .  The pr,~of is based on 
a result from Morley [B]. 

7) For ITI = ~0, /a  = ::11 this aff'ums a conjecture of  Keisler (Chang 
and Keisler [B] open problem 13). 

13) In Harnik [A] appears an example ;:f T, "~] < I ( ~  T) <_ "~2. The 
example is due to Rabin, and the proof  o? itarnik. Gaifman [A] showed 
that the theory of  numbers satisfies VIII. 
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15) "[he construction can be based on the example of Morley, appear- 
ing in K¢fisler [A],  p. 41 (or the one of  Harnik [A] ). The last example is 
a construction uniting the previous construction with that of  Baldwin 
and Lachlan [B], §4;  but then new phenomena arise. 

F. Categoricity of pseudo-elementary classes 

* 1 ) Let X, ~, It be infinite cardinals, X < ;k, X < It. The following sta- 
tements are equivalent. 

(i) If  IT 11 <_ X, PC(T1, T) is categor~ical in k then it is categorical 

ini t .  
(ii) If  ITII<_ X~ P a type Ipl <_ X, Q a one-place predicate, and T t 

has a model M, It = IIMII > IQMI which omits p, then T 1 has e; model N, 
X := IINII > IQ N I, which omits p. 

Off) If  IT 1 I<_ X, PC(T1, T) has only homogeneous models in ~, 
then it has only homogeneous models in It. [See Shelah [B] p. 200, 
[lq ] .] (Here we can replace T 1 by a sentence of (L 1 )x+,o J .) 

~_, IfPC(T 1, T) is categorical in ~1 , ITll  = ~0, then it is categorical 
in every ~ > ~0.  [See Keisler [B], §3 for even a more general result.] 
(C.H. is eliminated by 1) ). 

*3) IfPC(T 1, T) is categorical in ~, ~ >  IT 1 I, It(IT 1 I) = "~n 8 divides 
~/, then PC(T1, 73 is categorical in "~ [See Shelah [B] Th. 4.5 and 
G.10.] 

*4) If PC(T1, T) is categorical in ~ > IT 11 then: 
I) T is superstal~le, 

II) stable in every X >_ IT 1 I, 
l i d  has not the f.c.p.; 
IV) is categorical in It >_ IT 1 i i ff  every, model in it of  cardinality ,u 

is saturated. [See Shelah [H] ; Shelah [B] Th. 4.2; Keisler [A] 4.2 (i); 
Shelah [B] 4.5.3c, [HI .1 

*5) If T is countable, superstable [~0-stable] and without  the f.c.p., 
then there exists T1, T c  T 1 , IT 11 = 2 s0, [IT l I = ~0] such that 
PC(T1, T) is categox'ical in every cardinality >_ 2 ~0 [>_ ~ 0 ] .  [See 
Shelah [G] .] 
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*6) If T is countable and superstable, then there exists T 1, T c T1, 
ITII= _~'~°, such thatPC(Tl, ?3 is categorical in 2 ~0 [See Shelah [G] .] 

(Compare 5, 6 to GI0,  Gi4 . )  

7) Question: If T is uncountable,  what are the necessary and suffi- 
cient conditions for the existence of  T l, T c T1, such that PC(T l, 73 
is categorical in every ~, > IT 1 I? 

8) Con/ecture: Suppose PC(T1, T) is categorical in X = IT 1 I. Then 
;k > ~0 implies I, II, IV of  (4), and X > "~1 implies III of (4). Remark: 
For ?~ >__ 2 s° ,  it suffices to prove T is superstable. For partial results see 
G7, G12, G13, GI5,  G23, A2. So ifX = Xs0, (8) holds. 

Historical remarks 

1, 2, 3) From the proof of Th. 3.3, Keisler [B], p. 256 it is trivial 
that (ii) ~ (iii). Keisler [B] 4.2 (i.e. 2) assuming C.H.) is a t~articular case 
of (ii) ~ (i).For countable T, (ii) --> (i) and (3) are due, independently,  
to Choodnovski, Keisler [E] p. 18.2 (for ;k = ?~s0 only) Shelah [I], [B] ; 
and generally to Shelah [I],  [B], [H]. The direction (i) ~ (ii) is due to 
the author, and also (iii) --> OiL I don' t  know whether Choodnovski 
uses the restriction X = Xs0. This answers partially questions from Keis- 
ler [B]. 

4) I, II, IV can be seen quite easily from the proofs in the c a -  
T 1 = T; the history of  which appears in C 1 ; but seemingly thi" was first 
noted in Shelah [A],  [B],  [P*]. 

III was proved by Keisler [A] 4.2b (i) p. 41 for countable T. By IV 
the generalized case has  the same proof. 

G. The number of  non-isomorphic models of  a pseudo elementary class 

1) If IT 1 I= ~0, ID(T)I > ~o, then I(~1,  T 1 , 7 3 =  2~1. [See Keisler 
[C] Th. 5.6.] (In fact, by using Ehrenfeucht-Mostowski model:,  for 
every ~, > ~o, I(?~, T 1 , T) >_ 2 s l  ). 

2) If IT 11 = ~,o. T unstable in ~o,  2s l  > 2~°, then for every ~, > 8o,  
I(X, T 1 , 7") >_ 2 s l  . (This follows from (1) by (3).) 
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3) I f  T(.!.) is the comple te  diagram o f A  c IMI, T c  T* c T ( A )  

M a model  o f  T, and 1(3, T l t.; T*, T*) >-/~,/a > X ~m then  
1(3, T~, T)-'_~ ~. 

4) Conjecture (Keisler): I f  IT 1 I= ~ 0 ,  ID(T)I > ~0 ,  then 

1('11, T 1, 7)=~12 . 

5) Conjecture: In (2), 2 ¢1 > 2 s°  is not  needed. False. 

*6) I f  T is unstable,  X > IT 1 I, then  1(3, T I, T) = 2 x. [See Shelah [E] .] 

*7) I f  T is unstable,  3  ̀= IT 1 I >__ ~ 1, then 1(3, T 1 , T) = 2 x, excep t  in 
the very rare case that :  there is a family of  cardinal i ty  2 x , o f  subsets o f  
3 each of  cardinal i ty  X, the intersect ion of  any two of  which is finite. 

[See Shelah [E] .] 

8) Question: Is it consis tent  that  such h > ~0 exists? (This is a set- 

theoret ic  quest ion,  o f  course.) Baumgar tner  said yes. 

9) Conjecture: I f  T is unstable,  X >_ I T 1 I + ~ 1, then  IGk, T l,  T) = 2 x. 

* 1 0) I f  T is not  superstable,  3 > IT 1 1 is regular, then  1(3, T 1 , / 3  = 2 x. 
Moreover, for every t a>  X, I(/a, T1, T)>_ 2 h. [See Shelah [ H ] . ]  

* 1 1 ) I f  T is unsuperstable  but  stable, 3  ̀> I T 1 1 is regular, t hen  in 
P C ( T  1 , T) there are 2 x models  M i of  cardiaal i ty  X, such tha t  i f  i 4= j,  
M i cannot  be e lementar i ly  embedded  in Mj. [See Shelah [H] .] 

* 1 2) I f  T is unsuperstable,  X = 3 ~ >_ I T 1 1 then I(X, T 1, T) > X. I f  
n 0  _ 3 = Zn<,o 3 n , 3 n = X n ~ 3 > IT 1 1 then 1(3, T 1, T) > 3`. [See Shelah [H] .] 

* 1 3) I f  T is uosuperstable ,  3 >_ I T 1 I,/~ < 3 <_/a s°  , 2u < 2 x , then  

1(3, T 1, 73 = 2 x. In fact suppose there is a tree wi th  g nodes  and > 3` 
branches  o f  height  ~c < tc (T), IT 1 I<_ 3,, 2u < 2 x, then 1(3, T 1 , T) = 2 x . 

Also if there is such a tree, ~c < to(T), ~a+a >-- IT1 I, X <  ~,, =~ ×~ < ~,~, 
2u+lt31 < 2 x, then  I ( ~ . ~ ,  T 1, ?3 >_ 2 x. [See Shelah [H] and also [M] ,  
Th.  2.] 

1 4) Conjecture: If  T is unsupers table ,  3 >_ I T 1 1 + R l ,  then  
I(~,  T 1 , T) = 2 x. Moreover,  if 3 ,"- IT I I, in PC(T1,  T) there are 2 x mod- 
els of  cardinal i ty  3`, no  one of  them can be e lementar i ly  embedded  in 
any other .  
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"15) Suppose Tis  stable and has the f.c.p., 8a = min(2 s° ,  IT 1 I). Then 
for every ~a ~_ IT l I, I ( ~ a ,  T1, T) >_ 2 la'~l. [See Shelah [G] .] (Compare 
F6) 

Def in i t ion:  m(~,, It, T )=  min{I(X, TI, T): T c  T 1 , IT11 = It} 

16) For every a there is a complete theory T a, I T~ I = la I + ~ 0, such 
that for every S'r >- It >- lal + : l l ,  m ( ~ , / x ,  T) =-- :l(Iq¢ -~1, a) where 
~ = 2s0, 3,> 6 + w. 

17) There is a countable co:nplete T, which is superstable, and for 

every X >__ It + (2~°) ÷, m(X, It, T) = 2 x. 

18) Conjecture:  If  ~ =  2 s° ,  and for some l~ a = ~ > It >- 2 Irl, 
m (?,, It, T) >_ ~ (la -/J I, I TI +) then for every ~k > It >_ 2 irl, 

m (?~, It, T) = 2 x. 

19) Conjecture:  For simr, iicity let T be countable, ?~ > It >- f r o .  

Then one of  the following occurs: 
(i) for every ?~ > It >-- 2 s° ,  m(?~, It, T) = 2 x 

(ii)~ for every ~ > It >- 2 ~° = b~, m ( ~ ,  It, T) = : l ( la  -~1, 7) if 
0 t > _ ~ + 6 o [ 7 <  ITI+]. 

(iii) for every ~ > It >- 2 s°, m(X, It, T) = 1. 

*20) Suppose T is countable, p a type in its language. If  T has a model 

omi t t ingp in :1,o but not  in :I,ol, then for every a >_ w, 
I(b~e, T) >_ la I ~0, and for every n, I ( ~  n , T) >_ 2 n . 

21) If  IT: I = b~ 0, I(N 0, T 1 , T) > b~ 1 then I (~  0, T 1 , ~ = 2 s° .  This is 
true ~so if  T 1 is in L~I,~ o . [See Morley [C] .] 

22) There are'countable T 1 , T I(b~o, T 1 , T) = ~l  (T-the theory of lin- 
ear order, 7' 1 saying for every two elements there is an order-automor- 
phism taking the first to the second. We can complete the theories w.l. 

o.g.) [Kunen, unpublished].  

23) If  fD(T)I > IT 1 I, k ->- )T 1 i then I(~, T 1, 7") >_ ID(Y')I [See Ehren- 

feucht [B] in fact].  
See also Shelah [C]. 

Sh:10



§ O. Introduction 

Historical remarks 

289 

1) Thi ~ improves Ehrenfeucht [B], which proves, in fact, that for 
every X>_ ~o' , i(k,  /'1, T)>_ 2 ~o. 

6) Gaifman [A] proves it for the theory of numbers. Ehrcnfeucht 
Froves, assuming T has the property (E) (see A 12), that I(2 x , T l, T)> 1. 
Shelah [A] Th. 2.13 [B] 4.51 proves I(8~,  T 1, T)>_ h~-ill where 
b ~ = I T 11 and T is unstable. 

10) In Shelah [B] 4.5.2, it was proved that if T is unsuperstable, 
~a >_ ~ = IT 1 I, t hen I (Sa ,  T 1, 7)>_ I ( a - l ) /w l .  

It. Keisler's order and saturation of ultrapowers 

1) <1 is a reflective order. [See Keisler [A] .] 

2) T is <~-minimal iff for every model M of T, and (~0, X)-regular 
ultraf'flter D over X, Mt/D is k*-compact. There are minimal theories 
which are countable. [See Keisler [A! p. 32.1 

3) T is <~-maximal iff: for every model M of T, and (t~0, X)-regular 
ultrafilter D over X, Mt/D is X÷-compact iff D is X*-good. There are 
maximal theories which are countable. For X > ~ 0, no theory is 
<Ix-minimal and <~x-maximal. [See Keisler [A] p. 32.] 

4) The following condition is sufficient for <l-maximality: there is 
s0(x, y ), such that for any n < co, w c n X n, • ~ T where 

@ = ( 3 ~ 1 ,  . . . ,  y , , )  A 
(i,j) E w 

i < ]  

(~£)(¢(~-. ~-~) ^ so(x, yJ)) 

^ -1 (aF)O(F, ~q ^ ~(x, yO) ~i,p ¢ w 
i < i  

[See Keisler [A] 3.1 Benda [AI,  part II Th. 9.1 
The following results will appear in Shelah [G],  sometimes using 

Kunen [AI.  

Sh:10



290 S. Shelah, Stability, the f.c.p., and superstability 

*5) If  ~ >- 2 ~°, T is countable, then T is <Ix-minimal iff T has not the 
f.c.p. (by A12, this implies T is ~table). 

*6) If  ~0 < ~ < 2~° < 2x, T is countable, then T is <Ix-minimal iff  
T is stable. 

*7) T is <l-minimal iff  T has not  the f.c.p. 
In order to show that in (6), 2 ~° < 2 x is superfluous, it suffices to 

prove 

8) Conjecture: I f M  is a ~,+-universal model of  T, T unstable, D 
(~0,  X)-regular ultrafilter on ;~, then MaID is not ;k*-compact. 

9) I f  T has the strict order property (8) holds [for definition see 
4.2].  Also if 2 ix*) > 2 x, (8) holds. 

*10) I f  T 1, T 2 are countable stable and with the f.c.p., then 
T 1 <l T 2 <! T 1 • If  T 3 is unstable T 1 <i T 3 . 

*11) Suppose there is ?, > ~0,  ;k÷ < 2x < 2x*, Tl is countable and 
stable, T 2 unstable. Then T 1 <l T 2 but not T 2 <i T 1 . 

* 12) There is a countable T (not minimal nor maximal) iff there is a 
(~¢0, A)-regular non-good ultrafilter D on a cardinal/a such that  
l-lni/D >_ N 0 implies lIni/D >/a .  So if G.C.H. fails, this holds. 

* 13) There are two unstable countable theories, Tot a, T-ma~ (defined 
here, Tla. 4.7) such that for every unstable T, Tot a <i T, or T~a a <~ T 
(or both). 

14) Conjecture: Those theories are incomparable. 

* 15) I fMX/D is (2x)*-saturated, D any ultrafilter, M is/a-saturated, 
then MaID is/aX/D-saturated. 

*16) I f  T is countable and without  the f.c.p., D an wl- incomplete  
ultrafilter over L M a model of  T, then MIlD is ~ /D-sa t lwa ted .  More- 
over, if ~ is the least cardinal such that there is ¢(x, y ) and 
p = (¢(x,  a-i): i < ~,) (~i  ~ IMI) which is a consistent type over IMi, 
but omitted, then Mt/D is maximally ~4/D-saturated. 
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* 17) If  T is countable stable and with the f.c.p., D an 601-incomplete 
ultraffdter over ~,/a = min(IIi<xni/D: llni/D >_ No, n i ~ N0} then 341/19 
is max/a-saturated. 

18) There are theories T~, IT~I = ~ ,  such that if~ < 3, Ta <1 Ta but 
not Ta <3 T a . If  there is a countable T, which is not minimal nor maxi- 
mal, then there are incomparable theories. 

* 19) If, vaguely speaking, we replace in the definition of<L ultra- 
power by limit tdtrapower; then by the resulting order < the countable 
stable theories are divided into four clases: K 1-sup~ ~table without 
f.c.p., K2-unsuperstable without the f.c.p., K3-supe~:stable with the 
f.c.p.; K4-unsuperstable with the f.c.p. K 1 is minimal (among them); 
K 3, K2.-incomparable. If T 1 <__ 7"2, then ~(T 1 ) <__ x(T2). 

*20) If  T is not <Ix-minimal then it is not <~u-minimal for any 
t~ >- min(~, 2 It0. 

21 ) Conlecture: If T is not <lx-minin:al, then it is not <~u-minimal 
(# = ITI + 2~0). 

22) Conjecture: If  T 1, T 2 are countable~ unstable and do not have 
the independence property (Def. 4.1) then T 1 <1 T 2 <3 T 1 . 

23) Conjecture: If  T 1, T 2 are countal:le, unstable and do not satisfy 
(3) from Th. 4.8 for # = ~ 1 then T 1 <1 T 2 <~ T 1 . Perhaps instead of 
not (3), it suffices T 1, T 2 has not the strict order p (see DeI: 4.2). 

Historical remarks 

7) This answers affirmatively a question of Keisler [A] p. 40. He 
proved ( [A] ,  4.20) that if T is minimal, then it has riot the f.c.p. 

9) This was proved independently by Keisler and the author, for 
the theory of linear order; hence to every theory with the strict order p. 

12) The notice in Notices of the A.M.S. vol. 16 (1969) p. 501 claim- 
ing to prove the existence of such D was an error. 

\ 

15) This answers affirmatively question 4D, Keisler [A] p. 41. 

18) This answers negatively question 2E Keisler [A] p. 32; and ans- 
wers positively question 2C (but the theory is not the one he suggested 
and is uncountable). 
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I. Other  result~ 

S. Shelah, Stability, the [.c.p., and superstability 

Definition: Let M be a model  o f  T, A c M, S a set o f  types  over A 
(in the language L of  T), and T c T 1 . S is called (T  1 , T)- independent  
if: for  every S 1 c S there are models  M~, M 2 o f  T l o f  arbi t rar i ly  high 
power  such that :  M 1 is a e lementary  extens ion o f M  2 ; the redruct o f  

M 1 to L is an e lementary  extens ion of  M; and p ~ S is realized is M2i f f  
p ~ S 1 . (Of  course A c IM 2 I). 

i 

1) If  ISI IAI + IT 1 I IAI < 2 Isl, S is (T  1 , T)- independent ,  then  for  every 

~>_ IT 1 I+ ISI, I(~,, T 1, T) >_ 2 Isl (not ice  G3). 

2) I f  T is unstable,  J is an ordered set wi th  a dense subset J l ,  IJI = g, 
IJ 11 = X, then there are A, S c S(A), IAI - 3,, ISI = ~ such tha t  for  every 
T1, S is (T  1, T)- independent .  

3) I f  g < g(T) ,  X a cardinal,  then  there are A, S c S(A), IAI = Zu<u 7xu, 
ISI-- X r , such tha t  for every T 1 , S is (T 1 , T)- independent  (not ice  G13).  

4) I f  T has the independence  p (Def. 4.1) X a cardinal, then  there are 
A, S c S(A), IAI = X, ISI = 2 x, such that  for every T 1, S is (T  1 , T)- 
independent .  

5) I f  T is superstable,  !S(A)I > IA I + I TI, then  there are B, 
IBI .<_ IAI + ITI and S c S(B), ISI = IS(A)I such that  S is (T, T)-indepen- 
dent.  

Remark: A related resu~.t is Keisler [C] 5.4. 

6) Let T b e  a superstable theory ,  tO# = ITI ÷. Let for ~¢a > 21r~, 
I* (tO=, T) be the number  o f  non- isomorphic  I Tl+-saturated models  o f  
T of  cardinal i ty  t¢~. Then  exact ly  one of  the fol lowing holds:  

(i) I* ( } ~ ,  T) = 1 
(ii) I* ( ~ ,  T) = I~ -~1 

(iii) I* (I~i ~ = la - ~31 ~' for a >- iB + X, where X <_ 2 trt 
(iv) I* ( ~ a ,  74) > 2 ta'pt for ~a  > a >-/3 + ITI ÷ 

There are equivalent  syntact ical  condi t ions,  and the  s t ructure  o f  the 
models  in the first three cases is characterized.  For  example,  i f  (iv) holds, 
there is a formula  q(x ,  y-) such tha t  for  every {hi: i e / 3 ,  (?'i > 21 rl + III) 
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T has a model M, and there are sequences ~-i j ~ I from M such that 
I (bE I M l : M ~ 0 [ b , ~ ! ] ) l = X i .  

7) Conjecture: We can generalize (6) to stable theorics. 

8) Question: Can we in (6) (iv) omit the condition ~ > ~? Yes. 

9) T has a saturated model of cardinality X iff X = ~ Xu + ID(T)I 
t t < h  

or T is stable in X [Fol!~ws from various results mentioned in B]. 

293 
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§ 1. Notations 

We shall use a,/3, % i, i,  k, I for ordinals; m, n, r for finite ordinals 
(= natural numbers); ~, X, X, ta, for infinite cardinals (= initial ordinals); 
and ~ for a limit ordinal. The cardinality of a set A will be tA 1. A se- 
quence s is a function from a ordinal, which will be called the length 
of the sequence, and denoted by l(~).  Let s-(i) = s i be the ith element 
of  the sequence, s l k  = (s(i): i < k); and Rang i-= {s(i): i < l(s)}.  Let 
aA = {s-" l(s-)= t~, R a n g s  c A}, and a>A = Uo<~aA. Sequences of ordi- 
nals will be denoted by 72, r;  usually they will be sequences of  zeroes 
and ones. So writing only l(r/) = ~, we mean ~ ~ a2. T will be a fixed, 
first-order, complete theory in a language L. Formulas of L will be de- 
noted by ~o, ~ ,  0. ~0(x) is a pair <~o, x ) where every free variable o f ~  
belongs to Rang ~ .  We shall not  differentiate strictly between ~o and 
~o(x); and the exact meaning will be clear from the context. Variables 
will be denoted by x, y ,  z; and finite sequences of variables - by x ,  y ,  
z .  Let K be a cardinal greater than the cardinalities of all the models 
and sets we shall speak about. By Morley and Vaught [D] T has a ~ - 
saturated model M, and every mozlel of T of cardinality < k- is isomor- 
phic to an elementary submodel o f M .  So for sin. olicity, saying a model 
of T we shall mean an elementary submodel o f M  ~ f cardinality < k-. 
M, N shall denote models of T, IMI - the set of elements of M, and 
hence IIMIi - the cardinality of M. A, B, C shall denote sets ~ncluded in 
some IMI. Let a, b, c denote elements of  M; a ,  b ,  c finite seauences 
of such elements. We shall write a- ~ A instead of/t-- a w>A; and a ~ M 
instead o f a  ~ IMI. For  "~o [a-] is satisfied in M" we shall write 
M ~ t~ [~-1. But a sM is an elementary submodel of M, M ~ ~o [a-] iff 
• ~] ~ ~ [a-] ; hence we shall omit M; and sometimes say only ~o [a-] holds. 
Note tha tM is an elementary submodel o f N  iff  tMI c INI. 

Let A denote a set of formulas ~o(x) (not ~o). We say p is a A-m-type 
over (or on) A if: 

(1) its elements are of the form ~o(x ; a ) where a ~ A ,  x = ( x  o . . . .  , X m _ l )  , 

and ~ x  ;y  ) is • or "-I~ for some q,(x ;y  ) ~ A. 

(2) p is consistent; that  is, for every finite q c p ,  ~ ( : I x ) A , I , ~  q ~ .  

Types wi~.i be denoted by p, q. If A is the set of  all formulas of  L, 
then we omit  it; and i f m  = 1 we omit it. l f A  = {~o}, we shall write 
instead of A. p is a complete A-m-type over A if it is maximal; that  is 
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if a-- ~ A, ~o ~ A then ~o(~-; a-') ~ p or -]~o(Jc-; a') ~ p. Let S ~ ( A )  be the 
set of  complete A-m-types over A. We say b- realizes p if ~0(x ; a ) ~ p 
implies ~ ~0 [c-; a-]. As ,~ is ~-saturated, every type is realized by some 
c. The type c realized overA is {~o(x ;a  ): a E A, ~ ~o[c ;a  ] }. L e t p  
restricted t o A  bep lA = {~o(x ;a  ) ~  p: a ~ A).  

Let ~ be ~o if i = 0 and -1~o if i = 1. Let ~otfC st.] where st. is a s tatement 
be ~0 if st. is trz~e and '1~o if st. is false. 

Writing ~0 = ~o(x ;y  ) we shall always mean l(.x-) = r n, and see Rang x- 
as a set of  variables, and Rang y as a set of  parameters. (The meaning 
shall become clear in the usage, as we deal with types 
(~o(x;h-k): k < k0).)  In fact sometimes when we say a formula ~o, we 
mean ~o(x ;y  ) or ~o(x-), or a formula obtained from ~o by a suitable 
change of variables. Note that  ~- is not  uniquely fixed - we can add to 
it dummy variables or change the order of  the variables. For simplicity 

we assume x = ~x 0 , . . . ,  X m _  1 ), X 0 = X. 

M is ;k-saturated, if every type p on IMI, p ~ S ( A ) ,  IAI < X is realized 
in M. M is X-compact if every type p on IMt, Ipl < X, is realized inM.  
Note that for X > I TI, those two concepts ~.re the same. 
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§ 2. Properties equivalent to unstabilitlt 

We shall define some properties (A-F) of formula ~o(x ;y  ) and prove 
their equivalence by a series of  lemmas. They are 
(A) ~o(x ;y  ) is unstable; i.e., for every ~ there is an A, IS~(A)I> X> IA I. 
(B) ~(x ;y  ) is unstable in at least one ~. 
(C) ~(x ;y  ) has the order property; i.e., there are ~0 ,  ~1 ,  ... such that 
for every n, 

{7~o(x-; a-0), ..., "q~o(x ;a  n), ~O(x ;an+l) ,  ~o(x ; a r'+2), ...} 

is consistent. 
(D) P = {~o(x n ;ynMn)n(n): 7/~ w2, n < w} is consistent (with T). 
(E) It is false that: 

we can define for every ~m- type  p a Rank, which is a natural 
n u m b e r <  n(~o, m ) <  t o s u c h t h a t  ( 1 ) p C  q implies Rank q _<. Rartkp 
(2) every ~m- type  has a finite subtype of  the same rank (3) For 
every p and ¢ ( x ,  a ). 

o r  

Rank [p tJ {~o(x, a )}] < R a n k p  

Rank [ p u  {7~o(x, a )}] < Rankp .  

We also prove 

"theorem 2.13. The f o l lowing  propert ies o f  T are equivalent: 

(1) T is unstable 
(2) T is unstable in at  least one X, ~ = 3, j rl 

(3) some  formula  ~o(x; y )  is unstable 

(4) some  formula  ~o(x ; y ) is unstable 
(5) there are a fo rmula  ~o(x ; y )  and sequences a n, n < w o f  a f i x e d  

length such that  f o r  n, r < to 
~o [~n,  fir ] ¢=~ n < r. 

By 5.3 we can add to those properties 
(6) There is an infinite set  o f  sequences  o f  the same length and  a for-  

mula ~o = ~o(x o, ..., ~ - 1 ,  ~ ) such that  the fo rmula  and its negation are 

connec ted  over the set. 
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(7) There/is an infinite indiscernible sequence (of  sequences)which 
is not an indiscernible set. 

In all the theorems, we can replace ~-m-types by A-m-types, and 
S~(A)  by S~(A);  for any finite set of  formulas A. This ~an be done 
directly by repeating the proofs, or by using the following formula: 

i f A  = {~k (x- ;yk) :  k <  n < o~} 
let 

,I, . . . ,  z ,  z 0 ,  . . . ,  z , _ l )  = 

= A [ Z = Z k ~ ( x ; y k ) ] "  
k<n 

This is true also for other sections. So we prove some theorems for 
~, but use them for any finite A. 

Definition 2.1. 
A) ~p(x;y ) i s s tab le inXJf f foreveryA,  IAl<_Ximplies 

IS~(A)I <_ ;k. 
B) ~o(x ; y ) is stalrle i ff  it is stable in at least one cardinal. 
C) T is stable in ). if IAt <_ ;k implies I S(A)I <_ ~. 
D) T is stable if it is stable in at least one cardinal. 

Property A. ~p(x ;y ) :s unstable. 
Property B. ¢(x ; y ) ~s unstable in at least one X. 

Def'mition 2.2. ¢(x  ;:~ ) has the order property (or order p) if there are 
~ o ,  ..., a-n , ... such that  for every r, the set 

{¢(~-;h-n)~(. >,) • n < ¢o] 

is consi:~tent. 

Property C. ¢(x ; y ) has the order p. 

Definition 2.3. Let 

P(~,  re, a) = {tp(x~;yr~lk)~(k): 17E ~2, k <  a} w T 

(since what  m is clear, we shall usually omit it.) 
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Property D. r(~o, ~ )  is consistent .  

Before we cont inue  to define the o ther  propert ies  we shall prove that  
A, B, C, D are equivalent ,  by  proving A -~ B ~ C -+ D -~ A. 

It  is self-evident tha t  A implies B 

Lemma 2.1. I f  for  some A, [S~ (A )I > IA I >_ ~o, then ¢(x ; y ) has the 
order p. (Le. property B implies property C). 

Remark.  In Shelah [ F ] a  s t ronger  theorem appears. 

Proof. Let  ~o = ~ ( x  ; y  ), l ( y )  = n. Clearly, Inhl = iA I n = IA I _>_ b~ 0 . Fo r  

every p ~ S'~ (A ) let  w ( p  ) = { a ~ hA" ¢ (x  ; a ) ~ p) , and W = 
{ w ( p ) :  p ~ S ~ ( A ) } .  Clearly i f  p, q ~ S ~ ( A )  t h e n p  = q iff  
w ( p )  = w(q).  Hence IWI = Is~n(A)I 3> Ia l  = Inhl > ~0;  and by defini- 
t ion, I¢ is a family  o f  subsets o f  hA. By a theorem o f  Erd6s and Makkai 
[A] this implies tha t  there are ~-0, ..., ~-r, .... ~ hA; W(Po), ..., W(Pr), ... 

I¢ such tha t :  
e i ther  (1) for  every k, l < 6o a-I E W (Pk ) i ff  I < k 
or (2) for every k, l < 6o a t  E w(pk  ) iff  k < l. 

By the def in i t ion o f  w(p~)  we can conc~,ude that :  
e i ther  (1) for  every k < 6o, (¢(~-;~-l)  tf(t<k): l < 6o} is consistent .  
or (2) for  every k < 6o, { ~ ( ~ ;  ~-t)if ¢k<_O: l < 6o} is consistent .  

In bo th  cases, clearly ~ has the order  proper ty .  [ In case (1), we 
should reverse the order  o f  the first l ( <  6o) at 's ,  and use ~:he compact-  
ness theorem.  ] 

[ e m m a  2.2. I f  ~(x  ; y )  has t~,~e order p, then I~(¢, w)  is ccnsistent (i.e. 
property C implies property ~). 

Proof. Let  us def'me an order  on "~->2: i f r l l k  = r lk ,  r i(k) = 0, ~'(k) = 1 
then r / <  r ;  i f  r/Ik = r ik ,  l(rl) = k, r ( k )  = 1 then r / <  r ;  i f r i t k  = r lk ,  
l(~l) = k, r (k)  = 0 then  r < rl. 

By the compactness  theorem,  as ¢ ( x  ; y )  has the  order  proper ty ,  the 
set 

T u  {¢(xn;y~)~tn<~): l(n) = w,  i(r) < w} 
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is consistent. If  a-, realizes y r,  c ,~ realizes x-~, then for every. 7/~. ~ 2, 
pn = {~o(x ; a nl,)n( r)" r < co} is consistent. Hence P(~o, co) is consistent. 

Lemma 2.3. ffF(~o, w) / s  consistent,  then ~o(x ; y )  is unstable (Le. pro- 
per ty  D implies proper ty  A). 

Proof. Let k be any infinite cardinal, and we shall prove that  ~o ~s um 
stable in k. 

Let ia = inf{/a: 2u > X}. As P(¢, co) is consistent, clearly also P(¢, ~) 
is consistent. So l e tM be a model of  it, let a r realiz:~ y r ,  and c n realize 
x-- n . Let A = O { Rang a-~" l(r/) </a}. Clearly IAI<_ (2;~<~ 2 ~ ).b~ 0 .<_/a.X.~ 0 
X (as k < 2 x , # <_ X by definition). For 7/~ u2, let Pn be the ~o-m-type 
that c n realizes over A. Clearly if t(r/) = l(r)  =/a, r / ¢  ~, and k is the 
first ordinal such that  r/(k) 4= r(k),  then 

~o(x ; a nlk )~(k) E Pn 
anO 

-] ~o(x ; a ntk ) n(k) =~0(x ; arlk )r(k) E Pr , 

hence Pn :/: Pr" So 

Is~n(A)t > - I{p n" l ( n ) = # } l  = 1{7/: l('ri) =,a} i = 2u > X 
o r  

IS~(A)I>  k>_ I a l .  

Hence we have proved the eqt ivalence of  properties A, B, C, D. 

Now we shall define ranks of  ,p-m-types. 

Definition 2.4. For every A, ~, apd ~o(x ;y  ) we define S2 ,a (A)  by induc- 
tion on a:  

(1) S~,o(A)  is the set of  e ra - types  over A (not necessarily complete). 
(2) If  S~,~(A) has been defined then S~,,~+ 1 (A) wiE be the set of  

types p ~ S~,a(A)  such that for every f'mite q c p there are B, A c B, 
and b ~ B such that: 

q u {~o(x; b)} e S~,~(B); q t9 {7 ~o(x ; b)} e S I n ( B ) .  
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Lemma 2.4. l f  p is a ~o-m-type over A, A c B, then for  every a, 

Proof. Immediate, by induction on a. 

Definition 2.5, I f p  is a ~ m - t y p e  over A, then Rank~p  will be the 
greatest ordinal a for which p ~ S~,~(A). (As S~, 8 (A) = Nk<s S~/c(A), 
always there exists such a;  and by Lemma 2.4 it does not depend on 
A, but only on p.) 

l f p  ~ S~,a(A) for every a, then Rank~Zp = ~ ;  and we stipulate a < 
for every ordinal a. To inconsistent set of formulas we give the rank - 1. 

Remark. When so and m are clear, we ;;hall omit them and write Rank p. 

Property E. There is a ~-m-type whose rank is ~o. 
Property F. For every n there is a ~ m - t y p e  whose rank is >_ n. 

We have proved that the properties A-D are equivalent. Now we shall 
prove D -> E, F --> D, and as E --> F is self-evident we finish the proof  of 
the main theorem of  this section. Before proving this we shall prove a 
lemma on ranks. 

Lemma 2.5. (A) I f  p, q are ~-m-types, and p c q then Rank p >_ Rank q. 

(B) Every ~ m - t y p e  p has a f inite sub!ype q, such that Rank p = 
Rank q. 

(C) Every ~-m-type o f  rank <oo has no two extensions q l ,  q2 such 

that Rank p = Rank ql  = Rank q2, and for  some ~, ~p(x, a ) E ql  , 

(D) I f  p is a ~-m-type on A o f  rank ~, ~ < ~ then it has no more than 

one extension in S ~ ( A )  o f  rank a. 

m and a Rank p < Rank q. Then Proof. (A) Suppose p c q ~ S , 0 ( A ) ,  = 
PES~,a(A)'p~'Sm~,~+ 1 (A),. b u t q E S  m~,~+ :t (A). L e t P l  b e a n y  finite sub- 
type of p; then Pl  is also a finite subtype of q; hence, 0y definition 2.4, 
as q ~ S m +. (A), there exists B, A c B, and b ~ B, such that 

Pl  u (¢(~-, b)}, Pl  u {-l~o(x, b)}~ S~,n(B). As this is true for every 
finite subtype of  p, p ~ S m (A), a contradiction. ~o,a+ I 
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(B) Suppose p E Sy, o(A ), Rank p = a. Hence p ~ S m, a(A ), but  
P q~ sm~,a+ 1 (A). By the definition of  Sy~+ 1 (A), p has a finite subtype q 
such that  for every b-• B;A  c B• E ~ B, q u (¢(x  b )} ~ S m (B) or , ~,~ 
q u ('-l¢(x• b)} ¢ Sy~(B).  Hence, a sq  is a finite c-m-type, Rank q < ~. 
On the other hand by (A) as q c p, Rank q >_ Rank p = a. Hence 

Rank q = Rank p = a. (If Rank p = ~,  any finite subtype o f p  will be 
O.K.) 

(C) Suppose p, ql• q2 ~ Sya(A) ,  R a n k p  = Rank ql  = Rank. q2 = ~- 
T h e n q  1 ~ S m (A), and a sp  o {¢(x, a)} ~ q~, Rank(p ~ (¢ (x ,  a ) } ) >  ~,ot 
Rank ql  = a,  [by (A)] hence p u {~(x• a )) ~ Sy, a(A). Similarly, using 
q2, we can show that  p u (-q¢(x a )} ~ S m (A). By the definit ion of  

• ~p,Ot 
m Sy,,+ 1 (A), p ~ S , , +  ~ (A). A contradiction to Rank p = a. 

(D) An immediate corollary of  (C). 

Lemma 2.6. f f  1"(~o, to) is consistent, then there is a c-m-type with rank 
~,. (Hence property D implies property E). 

Proof. As P(¢, to) is consistent, it has a model, and let a-- n realize Y--n 
for each 77, 1(7/) < to, and b-- n realizes x~ for each r/, l(r/) = to. 

A s  P ( ~ ,  t o )  = {~p(xn, Y~ln)n(n): 10?)  = to ,  t. ~ < to} .  Clearly for each 7/ 
of length < a~, Pn = {~(~  anln )n(n)" n < l(r/)) is a consistent c-m-type. 
As the ranks are well ordered, there is among the types { Pn" l (rl) < ~,} 
one with minimal rank, say p , .  Hence Rank Pr <~ Rank P~^<0> but  as 

p~ c Pr~<0> also Rank Pr >- Rank Pr̂ <O>" So Rank Pr = Rank Pr~<O~ and 
similarly Rank Pr = Rank Pr*<I>. As ~p(x, ar ) E Pr-~o~ , -k,o(x• a r ) ~. pr,, :l> 
we get, by Lemma 2.5C a contradiction. 

Lemma 2.7. I f  p is a c-m-type, then Rank p >_ n i f f  

Pp,. = a ) i  e p, i z, t (n )  = n)  u 

u {tp(x n, yntk)n(r':)" l(r/) = n• k < n} 

is consistent• i.e., realized in M. (Pp, n depends, in fact, also on ~.) 

Proof. Suppose Rank p >_ n, hence p ~ S ~ ( A ) ,  and we shall prove that  
Fp, n is consistent. By Lemma 2.5A and the compactness theorem i t  
suffices to prove this for finite p. We shall now define by induct ion on k, 

Sh:10



302 S. Shelah, Stability, the f.c.p., and superstability 

k <_ n, A k, a-- n for r/; fir/) < k, such that  for each 77, l(r/) = k, 

p,~ =p U (~o(x;antl)rl(O: l <  k} E S~,n_k(Ak).  
For k = 0, A 0 = A, and p( ~ =p; hence pt ~ e S~,n_o(A o) as Rankp  2 n. 
Suppose we have defined for k, and we shall define for k + 1. Let 

l(r/) = k, then aspn e S~,n_k(Ak) , i pn l<  ~0,  by the definition of  
s m~_k(A k) there exists Bn, A k c B n and a-- n e B n such that  

m?/ ,~  . . -  

p,~ t9 { ¢(x,_ a n )}, pn u {-1 ~(x-, an )} ~ S,m_k_ 1 (Bn)" Let P,7̂ <0> 
Pn u {9(x, an)},pn.< D =Pn U {"]~(~, an)}, and Ak+ I = O (B n • 107)= k}. 
Clearly the conditions for k + 1 are satisfied, hence we can finish the 
definition by induction. So for r/, 107) = n, Pn ~ Smo(An) '  hence there 
is c~ which realizes Pn" Taking a-,7 for ~ and b-,7 for x n we see that 
Fp, n is consistent. 

So we have proved one direction of  the equivalence. Let us prove the 
other direction. We assume that  Pp,n :is consistent, and we should prove 
that R a n k p  >_ n. Let M be a model of  rp, n and let a~ realize Y--n, and 
c'-, realize x n . Define Pn = P u {~(x ; anlk) n(k) : k < l(r/)}. We shall prove 
by induction on k < n that  if  l(r/) = n - k < n then Rankpn >_ k. For 
k = 0 this holds as c- n realizes 07, so clearly Pn is consistent, and hence 
belongs to S s~ tlMI). Suppose we have proved it for k, k < n, and we 
shall prove it for k + 1. Let l(r/) = n - k -- 1, then, by the induction 

hypothesis, the ranks of  phil0 ~ = Pn O (~O(X ; an)} and pn~l> = 
Pn u {-q~o(x;a~)} are >_ k; hence by Lemma 2.5C Rankpn > k + 1. So 
we proved that  Rank Pn >- n - l(r/) and hence Rankp  = Rank p< > >_ n. 
So we prove the second direction in Lemma 2.7 and thus prove it. 

Lemma 2.8. I f  there is no finite upper bound o f  the rank oleo-m-types, 
then F(~p, ~ )  is consistent (i.e. property F implies property D). More- 
over, Rank~p >_ ~ implies Rank~p = o.. 

Proof. Let p be the empty ~-m-type. As for any n, there is a ~-m-type 

Pn of rank >_ n, and p c Pn ; Rank p ~'_ Rank Pn ~- n. So Rank p >_ ~ .  
Hence by Lemma 2.7, P,o,n is consistent for any n. It is clear by defini- 
tion that as p is empty,  I'p, n = F(~p, n). Hence Y'(¢, n) is consistent for 
every n. Hence F (9, w) is consistent. The proof  of  the second phrase is 
similar. So we finish the proof  o f  the main theorem. 
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Theorem 2.9. Let ¢ ( x  ; y ) be a formula. Then the following statements 
about ¢ ( x ;  y-) are equivalent. 

(A) ~p(x ; y ) is unstable in every infinite cardinal 
(B) ~o(x ; y )  is unstable in at least one infinite cardinal 

(C) ¢(x  ; y )  has the order property. 
(D) T o  F(¢,  m, co) is consistent. 

(E) Not  every ~-m-type has a rank <~. 

(F) There does not  exist a f inite upper bound on the ranks o f  the 
c-m-types. 

Proof. This follows from Lemmas 2.1-2.8. 

Now we shall apply this theorem to theories. 

Lemma 2.10. The following statements are equivalent 
(A) T is stable in ;k 
(B) for  every m, IA I:g ),, implies IS m (A)I <_ ;k. 

Proof. As (A) is a particular case of (B) (for m = 1) clearly (B) implies 
(A). 

So suppose (A) holds, and we shall prove (B). Let m < o~,and 
tAl<_ ;k. We define by induction A n such that: IAnl<_ ~,, andA n c A ~  1 . 

LetA 0 = A .  I f A  n is defined, as IS(An)I <_ X, there isAn+ ! , A n c An+l, 
tAn+ 1 I= ;k, such that every type in S(An)  is realized in Ar,~l. It is easy 
to show that every type in S m (A) is realized in A m ,  hence 
ISm(A)I <_ IA, n I m = ;km = ;k. So we prove the theorem 

Lemma 2. I 1. l f  ~o(x ; y ) is unstable in ;k, then T is unstable in ~ More- 
over IS m (A)I >_ IS~(A)I always. 

Proof. As ¢(x  ; y ) is unstat!e  in ~,, there exists A such that 
IS~(A)I > X >_ IA I. Every ;:~ ~ Sm¢ (A) has an extension p* in S m (A). 
Clearly p ~ q;p,  q ~ S ~ ( A )  implies p* ~ q*. Hence 
IS m (A)I >_ I{p*: p E S~n(A)) I = IS~(A)I > "h >_ IA I. By th ~ . previous 
lemma this implies that 7 is unstable in ?~. 
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Definition 2.6. If~o = ¢ (x  ;y) ,  p an m-type, then 
pl~o= {~I '(x;a):  ~ P ( x ; a ) ~ p ,  ~I' =~a or ~P =-l~o}. 

I_emma 2.12. f f  T is unstable in X, X = Xlrl, then there are ~o, A such 

that IS~(A)I > IAI + ~0. Moreover, IS(A)I <_ fl~o IS~(A)I. 

Proof. As T is unstable in X, there exists an A, IS(A)I > X >_ IA I. If for 
some ~o, IS,(A)I > X, we prove the lemma. So suppose that for every ¢, 
IS,(A)I < X. Now if  p, q ~ S ( A )  p ~ q then for some ~o, pt~o :~ ql~, 
hence 

IS(A)I= I{p : p E  S ( A ) ) I <  I((pl~a:~oE L>:p E S(A)}I 

< H~ IS~(A)I <_ II~;~ = X Ir~ = X, 

a contradiction. So we have proved the lemma. 

Theorem 2.13. The fo l lowing  properties o f  T are equivalent: 
(1) T is unstable. 

(2) T is unslable in a cardinal ~ = XITt. 

(3) there is an unstable formula  ~(x ;  y ). 

(4) there is an unstable formula  : • ~o,x , y  ). 
(5) there is a formula  ~p(ff l ,  ~ 2 ) ,  l(.V1 ) = 1(~2) = n, and sequences 

d r r < o~ o f  length n such that f o r  k, 1 < w 

1= xIt [~-k, ~-l] i f f  k < l .  

Proof. By the definition of  unstability, (1) implies (2). By Lemma 2.12 
(2) implies (3). It is self-evident that (3) implies (4). If ¢ (x ,  y ) is un- 
stabii[e, then it is unstable in every ~,, and hence by Lemma 2.11, T is 
unstable in every ;k. Hence (4) implies (1). So (1) -+ (2) ~ (3) ~ (4) --> (1)~ 

Now suppose (3) holds. Then by Theorem 2.9, ~(x;  y )  has the order 
property. Hence there are c n such that for every k < ~,  
p~ = (~o(x;c'n) if(n>k)" n < ~} is consistent. Let b k realize pk. Let 
a --n = (b n )-,  c --n , then clearly ~ ~o[b k, b --n ] i f f n  >_ k. By adding dummy 
variables to ~o, we get a formula 

ff~ = x ~ ( x l ,  y ' l  ; x 2 , . V ' 2 ) = t p ( X l ,  y ' 2 )  A X 1 ~ X 2 

and clearly ~ • [a --k ; ~-n ] i ff  n > k. So (5) holds. 
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Suppose (5) holds. Define b -n = ~ 2 n + l .  Then clearly for every k , '  
{ ~I'07; b "n )if (n>k): n < ~0} is consistent as it is realized by ~-2k. Hence 
g' has the order p, and s o b y  Theorem 2.9 it is unstable. So (4) holds. 

As we have shown (1) ~ (2) ~ (3) ~ (4) ~ (1), (3) ~ (5) ~ (4), 
clearly the theorem holds. 
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§3, Properties of stable formulas and the finite cover property 

We say that  ~o = ¢(x  ;y  ) has the t'mite cover property (f.c.p.) if for 
every n there is a set of>_ n formulas ~0(x ;a ) which is inconsistent, but 
every subset of  it  is consistent. We prove that  if  s ~-ne ¢(x ; y ) has the 
f.c.p., then some ~o(x;y-) has the f.c.p. We generalize Keisler [A] Th. 
5.1 to: unstability implies the f.c.p. We also show that  if T has not  the 
f.c.p., then for every ~o(x-; y-) there is no, such that every ~-m-type h-.s 
a subtype q of the same rank, Iql < n 0. We Mso prove that if T is stable, 
every t y p e p  e S m ( A )  is definable with k A, that  is: for every ~¢(x;y ) 
there is ~I,(y ; z ) and b--e A such that  ¢ (x ;  a ) e p i f fa-~  A, ~ xI, [a ; c ]. 
Moreover, if  IA I >_ 2, the choice of  xp depend only on ~o. There are some 
other results. 

Definition 3.1. (A) The ~-m-type p is xp (y ; c )-defined if 

~ o ( x ; a ) C p ~  ~ xI,[a ;c ] 
and 

- ] ~ ( x ; a  ) ~  p ~, ~ q , [ a ; c ]  . 

(B) The ~-m-typ,~ p is ~P (y ; z )-A-definable if there exists c--e A such 
that  p is ~I, (y ; c )-d,~fined. 

Theorem 3.1. (A) Suppose ¢ (x  ; y )  is stable. Then there is a formula 
~I,(y ; z ) such that: 

every p E S ~  (A), ( IA I >_ 2) is ~I,-A-definable. 
Also every p e S~(A) ,  is ~l"A-definable for s o m e  x~ 1 , and we can 
demand Rank p < w, instead ¢ (x  , y ) is stable. 

(B) For every ~p(x ;y) ,  r, n and ri e n2, there is a formula ~r  such that: 
for  every ~o ~n-1 rl 
~I,r [ ~ - 0  ~n-1] i f fRank{~p(£ .a~)nO,  l <  n} > r. 

Remark. Usually, using 3. IA we shall :~gnore the restriction !A I>_ 2. 
We also prove, in fact, that  for every ~c, m there is a finite A, such that 
every p e S~ n (A) is ~-A-definable for ~ome ~I, e A, and by 3.1A we 
can choose A, IAI = 2. 
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m Proof. (A) First l e tA be any set, p ~ S¢ (A) be any type; and we shall 
prove it is ~I,-A-def'med for some # .  By Lemma 2.5B p has a finite s~b- 
type q such that R a n k p  = Rank q = r, and let q = {9(x-; ~-t)n(i): 1 < ~:}. 
For  every a-~ A, let q(a-) = q u {9(x ; a )}. Clearly, if 9(x-; a-) ~ p t~'._en 
q (a-) c p,  hence Rank q ( a )  >_ Rank p = r, but as q c q (a) ,  
r = Rankq  >_ Rank q(a--); hence Rank q ( a )  = r (we use Lemma 2.5AI. 
Now if - l  ~o(x; a ) ~ p, then similarly Rank [q u (-19(x ;a )} ] <_ R a n k p  =r,  
hence by Lemma 2.5C, Rank q(a ) =  Rank [q o {~o(x ; a ))] < r. 

So for any a ~  A ~p(x; a ) ~ p iff Rank [q(a-)] >_ r. By Lemma 2.7 
Rank [q(a-)] >__ r i f f  Fq(~),r is consistent. Let 0 (x;  c ) = 
0 (x-; h -°  , ..., ~-n-1 ) = ^ l<n ~o(x-, ~-l)n(/). Clearly Pqff),r is consistent iff 

xI, [a-; c--I, where 

~ [ a ' ; ~ ]  = ( = l . . . y - ~ . . . . ) t ( r ) < r  A ( 3 x ) [ O ( x ; c ) ^  l(r/) = r 

Hence, for b-~ A, so(x ;a  ) ~ p iff  ~ ~I, [5-; b-], where b-~ A. So we 
should prove only that the choice of  • depends only on ~o, and not  on 
A. In fact, it suffices to prove that  there is a finite A, such that  every 
p ~ S~ (A) is ~I,-A-definable for some xI, ~ A. For if 
A = { "P~ OT; ~-k) • k < n} then 

,I ,07;~-)  = , I ,07 ;~  -o, .... ~ " - ~ ,  z, Zo, ..., z , , _ l )  

= ^ [z ~ zt -~ 'I'l(y; ~-l)] 
l<n 

is the required formula. 
Suppose there is no such finite A; we get a contradiction. Let P be a 

new one-place predicate and b o, ..., bin_ 1 new individual constants. For  
every A let 

Tzx = Tt.J ( - l ( 3 Z o , Z l , . . . )  [ lA p ( z i ) ^  

(VYo, Y l ,  ...) [ A k e ( y k )  - ~  

t0(b, Yo, ...) ~- ' I ' ( y 0 ,  ...; z0 ,  ..31 ] • ~I, ~ A} 

where b = (b o, ..., bin_ 1 ) .  
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Clearly if p ~ S~ (A), for no ~I, ~ A p is ~I,-A-definable, A c M0 M is 
a model of  T, then (M~ A,  bo, . . . ,  b m_ 1 ) is a model of  Ta where 
(bo, ..., bin_ 1 ) realizes iv in M. Hence for every finite A, Ta is consistent. 
Let A 0 be the set o f  all iormulas of  L. Clearly T~ is consistent; and let 
(31, pM, bo ' ..., bm_1 ) be a model of  it. Le tA = ~ ,  a n d p  be the ~ m -  
type (b o, ..., bin_ 1 ) reali2es over A. Clearly for no ~I, p is V-A-definable. 
This contradicts what we first proved. So 3.1A is proved. 

(B) It is immediate by Lemma 2.7; and in fact we prove it in the 
proof  of  (A). 

Corollary 3.2. Suppose T is stable, p ~ S m (A), and for  every ~o, 
Rank(pl~o) = Rank [(pl~0)lB~], IB~I>_ 2. Then there are ~ ,  c ~ ~ B¢ 

for  every ~o, such that." 

a ~ A ,  ~ I , ~ [ a ; c ~ ]  i f f  ~ o ( x ; a ) ~ p  

Proof. Immediate from the proof  of  the previous theorem. 

Theorem 3.3. , ' f  p E S~ (IMI), IMI c A, then p can be extended to an 
equi-rank type in S ~ ( A  ). 

Proof. We shall prove it only for stable, as this is the only case we need. 
By "[heorem 3.1 there is a formula ~ ( y  ;z ) and a sequence b-~ IMI 

such that 

~ o ( x ; a ) ~ p  iff  d e  IMI, ~ xP [a ; c ]  . 

Let us define q = { ~0(x ; a )if (-1~;~-1) : a-- ~ A }. Clearly p c q hence 
Rank q <_ Rankp  = n. Suppose Rank q < n, and we get a contradiction, 
hence prove the theorem. (The case q is not  consistent, can be consider- 
ed as a particular case; and anyway the proof  is the same.) 

As Rankq  < n, there is a finite ql  c q, Rankq i  < n, and let 
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hence by 3.1B, ~ -7 ~n [~-o ~-r] By the definition of  q, for every 
l ~ r, ~ ~I, [~'l; c"] n(i). Hence 

~ ( ~ - o ,  ..., F , )  [7,1,~ (~-o, ...,~-,) ^ ^ , I , (Fl ;b-) ,a)]  
l<  r 

As b-~ M, there are b - ° ,  ..., b -r ~ IMI such that 

^ ,I, [~-t; F]~( l ) .  7 ~I 'n [b - °  b-r] ^ t_<r 

By the definition of c-- and ~ ,  for every l < r, ¢(x-; Kt)n(l) ~ p, and let 

p~ = (~(~-; b-~)~(0, l < i-}. 

So P l c  p, and hence n = Rankp  <__ R a n k p l .  But by the def'mition of  
~I'~, and o f b  -°,  ..., b 7', Rankp  I < n; a contradiction. 

Theorem 3.4. l f  p ~ S m (IMI), IMI c A,  then there is q ~ S m (A ), such 
that for  every ~o (x ;y  ), Rank~ (p I¢) = Rank~ (q I¢), and p c q. 

Proof. The same as the proof  of  the previous theorem. 

Theorem 3.5. Suppose p ~ S~(A) ,  Rankp  < co, and there is no f inite 

Po c p such that p is the only extension o f  Po in S ~ ( A ) .  Then 
(A) There is a f inite q c p and r < Rankp  such that: 

(1) q has infinitely many extensions o f  rank r in S ~  (A ). 
(2) i f  ~P ~ p then for  only f initely many extensions ql  o f  q o f  

m 7 ~ rank r in S (A), q l .  
(B) There are types pn E S ~ ( A ) ,  R a n k p  n = r < Rankp  such that 

~P E p implies I { n : 7 • E pn } I < ~ O" 

Remark. Theorem 5.1Z has a stronger hypothesis and nicer conclusion 
than 3.5B. 

Proof. Clearly (A) im ,lies (B), so it suffices to prove (A). 
By Lemma 2.5B t! ere is a f'mite ~'0 c p. n o = RankP0 = Rankp .  

Clearly if P0 c q E ,~ n a,0(A) then R a n k q  <_ n o, and if in addition q ~ p, 
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q ~ S ~ ( A )  then R a n k q  < n o (by Lemma 2.5C). So r(o)  < n o for 
Po c q tT_ p, where 

r ( q )  = m a x { R a n k q l  • q c q l  ~ Sm(A), q', ¢: P} .  ~o 

(As Rankq l  can be one o f n  0 values only, this maximum exists.) Now 
let 

r 0 = min ( r (q )  : Po c q C p, Iq l<  ~;o}. 

Clearly the minimum exists, and r o < n o. So let qo be such that  

r(qo) = r  o, Po c qo c p, Iqol < ~ o - B y  the definition o f r (qo) ,  qo has 
at least one extension ql  ~ S ~ ( A ) ,  ql ~ P of rank r o. We shall now 
prove that  qo has infinitely many such extensions. Otherwise suppose 
ql ,  ..., qr are all such extensions. For each k, 1 < k < r as qk ~ p, qk, 
p ~ S ~ ( A ) ,  there is ~o(x ; a k)n(k) ~ p such tha~ "] ~o(x-; a-k )~(k) ~ q k  

Let 

ql  = qo U (,p(x-;ak)n(k) : 1 <-- k <__ r}. 

Clearly Iql I < ~o, Po c ql  c p. Also as 

{q2 :ql  C q2 E S r f ( A ) , q 2  ~:p}C {q2 "qo C q 2 E S t f ( A ) ,  

q2 :/: P) 

it is clear that  r(ql  ) <_ r(qo) = r o. But by det'mition ql  has no extension 
in S y ( A )  of rank r 0 = r(qo), as it contradi ts q l ,  ..., qr; so 
r(ql  ) < r(qo) = r o . This contradicts the definition of r 0 . 

We can conclude that  

P = (p* E Sty(A) " qo C p*, Rankp*  = r o} 

is infinite. (The condition p* 4: p is superfluous, as R a n k p  = n o > "0 = 
Rankp*. )  

We shall prove now that  q0, r0 satisfy the conditions mentioned in 
Theorem 3.5A, and so prove the theorem. Condition (1) (~hat P is infi- 
nite) has already beenproved.  So we should prove only that  for every 
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xt, ~ p, [p*:p*~P,  - 1 G ~ p * }  is finite. Suppose it is not  true, then there 
are different pn. n < w, such that -1 G ~ pn. For simpliOty let 
G = ~0(x-; a-) for some a-~ A (and not -1 ~o(~; a-)). Let D be a (non-prin- 
cipal) ultrafdter over w. Define 

q =(0"  { n : O ~ p  n} ~ D}. 

Clearly -1 ~o(x ;a ) ~ q, and hence q ~ p. Moreover, for every b ~ A, 

~o(~-; b-) e~ q or -ls0(x ; b )  ~ q. 
Now we shall prove that  q ~ smr  (A) (and hence is also consistent). 

~o, 0 

Suppose this is not true, then by Lemma 2.5B (or the compactness 
theorem if q is not coasistent) q has a finite subset which does not  

belongs to S~,r0 (,4). Let ~his subset be { xI'0, ..., G l} where l < ¢o. 
By the definition of  q.. for every k < l, { n : G/c ~ pn } ~ D. Hence, by 

the definition of  the ultrafilter 

{ n" ~I' o ~ pn , . . . ,  Gt E pn } = t¢~ t ( n" G k ~ pn } ~ D. 

As the empty set q~ D, there exists pn such that { ~0,  .'-, Gi} c pn, and 
hence by Lemma 2.5A, Rank( G o, ..., G i} >- R a n k p  n = ro, and so 
{ Go ' , x#,} ~ S m_ (A), a contradiction. Hence q a Sin_. (A), or  in 

• . .  • ~o,r0_ ~ , r 0 .  . 

other words R a n k q  >_ r 0. A s q  E Sm.(A), q 4= p, qo c q, clearly 
R a n k q  <__ r 0 [by the definition o f ro  = r (q0) ] .  So R a n k q  = r 0] By 
Lemma 2.5B q has a finite subtype qO of  rank r 0. As before 
{ n : qO c pn } E D. Het~,ce q0 has in S~  (A) infinitely many extensions 
of rank 1" 0, a contradiction to 2.5D. So we prove Theorem 3.5. 

Corollary 3.6. I f  p ~ S~(A) ,  then there are n <-- R a n k p  and types pn, 
ri ~ n>- 6o such that 

(1) Pc > = P, and every pn ~ S ~  (A). 
(2) ij:l(n) < n,  G ~ Pn, then {k  < oa :-! ~ P n ~ k ~ }  ~sfinite. 
(3) i f  l01) = n, then Pn has a f inite subtype qn' such that Pn is the 

only extension o f  q n in S ~ ( A ) .  

Proof. By iterating Theorem 3.5. 
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Definition 3.2. (A) ~(x ; y )  has the finite cover property if  for arbitrar- 
ily large natural numbers n there are ~-o, ..., ~-n-1 such that: 

7 (3x--) kA<. 
but for every l < n 

(3x) k~n ~(~;a-k). 
k~.!  

(B/T  has the f.c.p, if there exists a formula ¢ ( x ; y )  which has the 
f.cop. 

l.emma 3.7. The formula ~o(x ; y )  does not have the f.c.p, i f f  there is a 
natural number n such that: F is a set o f  formulas o f  the form ¢(x  ; a ), 
and every subset o f f  o f  cardinality < n is consistent, then P is consis- 
tent. 

Proof. Immediate, by the definition. 

Theorem 3.8. ( A ) I f  T has not the f.c.p, then T is stable. (In other 
words, every unstable theory has the f c.p.) 

(B) ff~p(x-; y-) is unstable then the formula 

f f i ( X , Z  )=  ~(~-,~'1,  ~-'2, ~'3, ~'4) = 

has the fc.p.  

Remark. This strengthens Theorem 5.1, Keisler [A], p. 42; and simpli- 
fies the proof. 

Proof. (A) By Theorem 2.13, as T is unstable, some ~p(x; y-) is unstable, 
hence (A) follows from (B). 

(B) As ~o(x-;y')is unstable, by Theorem 2.9 it has the orderp. So 
by the def'mition (2.2) there are ~-0, ..., ~-t, .... 1 < to such that for every 
k < 6 0  

is consistent. 
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Let n be any natural number. For  any k < n define 
~-k = ~-0 ~,a--n ̂ ~'k~ ~'k+l. We claim that  q = ( 9 (x; b -k ) :  k < n} is inconsis- 
tent, but for every l < n, ql = ( xp(~-; b-k ): k < n, k ~ l} is consistent. As 
n is arbitrary, by Lemma 3.7, clearly this will prove the theorem. 

Let us first prove that q is inconsistent. Suppose b- realizes q. Then 
as ~ xI, (F; ~-0), also ~ ¢ [b-; h -0 ] - -1 ~0 [~-; ~-n ]. On the other hand for 
eveuI k < n, as ~ • [b-; b "-k ] ; clearly ~ ~ [b-; ~-k ] = ~ [b-; ~'k+l ]. 

Hence 

~ ¢ [ b ; a  0] *=* ~ ¢ [ b - ; a - l ]  .=.  ~p[b- i~-2]  .=} . . . ,= ,  ~ p [ b ; a  n] 

a contradiction. Therefore q is inconsistent. 
Now if k < n, then deaf ly  a sequence realizing Pk+t realizes qk ; 

hence qk is coiasistent. So we prove the theorem. 

Theorem 3.9. (A) There is a stable theory with the f .c.p.; and there is a 
stable theory wi thout  the f.c.p. 

(B) ?he, re are stable theories which are 
( I )  superstable and wi thout  the f.c.p.; which are also stable in ~ o. 
(2) superstable with the f.c.p.; which are also stable in }~o. 
(3) unsuperstable wi thoat  the f c .p .  
(4) unsuperstable, with the f .c.p.; but  stable. 

Remark. (A) was proved in Keisler [A] ,  p. 44. 

Proof. Clearly (B) implies (A), so we prove (B) only. 
We shall describe the examples but shall not  prove their properties. 
(1) The theory of  a model whose only relation is the equality. 
(2) Let M be a model with the equality relation, and an equivalence 

relation; such that  for every n &ere is an equivalence class of  cardinality 
n. Clearly its theory satisfies our demands. (This is the example of  
Keisler.) 

(3) Let M be a model such that  IMI = ~ot~; the relations of  M are the 
equality and for every n the equivalence relation E n defined as 

E n = {(r/, r ) : r / ,  r e  ~t~, r/In = t in}.  

The theory of  M is the required theory. 
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(4) By combining the two previous examples, we can easily construct 
such a theory. 

Lemma 3.10. ( A ) I f  T has not  the fc .p . ,  then every formula ¢ ( x ; y )  
has not  the f c.p. 

(B) f f  T has not the f c.p., for  every finite A, m, there is 

r = r(A, m) < ~o such that: If[" is a set o f  formulas ¢ (x  ;a ), l ( x )  = m, 

~(x ; y )  E A, and every subset o f f  o f  cardinality < r is consistent then 

F is consistent. 

Proof. (A) We shall prove it by induction on m = l.(x-). For  m = 1 this 
is se::-evldent. Hence assume we have proved it for m and we shall prove 
it for m + 1. Suppose it is not  true. Then there is ~o = ¢(x ; y ) = 
~o(x o, ..., x m ; y-) and for every n < ~ a set Pn of  formulas of  the form 
~o(3c-; a-) such that: rn  is inconsistent, but  every subset of  Pn of  cardi- 
nality < n is consistent. By Lemma 3.7 there is r < ~o such that: i f  P is 
a set o f  formulas of  the form ~a(Xo, c I , ..., c m , ~) ,  and every subset of  
P of  cardinality < r is consistent; then 1" is consistent. Let 

~It(x1,  . . . ,Xm ; ~ - 0 ,  ..., ~- r -1  ) = (=:lXo) [ kA<r ~O(Xo, X1 " . . . ,Xm ; ~ k ) ]  

and let for every n 

Pn* - { ~It ( X l ,  "" ,  Xm , ~-0,  ..., ~-r-1 ) • for 

k, 0 < - k <  r; ~o(x-;a-k) ~ rn}.  

Clearly every subset of  P* of  cardinality < n/r is consistent. Hence by 
the induction hypothesis, for some sufficiently large n, P* is consistent. 
Hence there are c 1 , ..., Cra which realizes r* .  Let 

P = {~(Xo, c l ,  ..., Cm, a )  : ~(Xo, ..., Xm, a )  ~ Pn }" 

Clearly every subset of  I" of  cardinality <_ r is consistent; and so by the 
def'mition of  r, 1 ~ is consistent; hence there is c o which realizes it. So 
(Co, c i ,  ..., c n) realizes I" n ; a contradiction. So the theorem is proved. 

(B) The proof  is a variation of  (A). 
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Lemma 3.11. I f  T has not  the f.c.p, then for  every formula ~o(x ; y ) 
there is a natural number n such that: 

i f  p is a ~m- type ,  then there is q c p, 
Iql < n such that Rank~q = Rank~p.  

Proof. As there exists a natural number n o such that every ~m- type  
has rank ~ n o; it is clearly sufficient to prove that: for every k <_- n o 
there is n (k) < w such that  ~m- type  of  rank k, has a subtype of  cardi- 
nality < n (k) of the same rank. 

Define for i ~ z 

x I ~ i ( . . . , X ~ l , . . . , y , . . . , Z r , . . . )  ~k  2 = 

r~k>2 

= A k A ^ 
rig 2 n~k2 

l < k  

For simplicity let xpi = xpi(~-,, y ,  z ). By Lemma 2.7 it is clear that  for 
every q c p, Rank~ q = k iff { xI, i (x  *, a ,  z ): ~p(x-; ~-)i ~ q} is consistent. 
By the previous lerr, ma it is clear that  this lemma follows. 
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§4. Unstable formulas; 
the independence and strict order property 

We can consider as the center of  this section the investigation of  the 
function 

= L U B (  IS '(A)t • tAI <- x) .  

From Theorem 2.9 (A), (B) it follows that  if for one 7,, K~  (k) > k*, 
then for every #, K (ta) > Hence if G.C.H. holds, so(x ; y ) is unstable 
then K~(X) = X*÷ for every k. Without this assumption we get: 

if Ded(X) is always regular, then K~ (h) can be only one of  the follow- 
ing functions: (2x) ÷, Ded(k), 7, ÷, n (n > 1). 

(Ded(7,) is the first cardinal ta such that there is no ordered set of 
cardinality/a, with a dense subset of  cardinality ~,.) 

We prove also that if  (2x) ÷ >_ #÷ > tt >- Ded(?,)~/a is regu!ar; then 
K~ (~,) >_ tt ÷ implies ~o(x ; y ) has a syntactical property which implies 
that for every/a, K~ n (/a) = (2u) ÷. The property is the independence pro- 
perty: there are h -a, ..., k "-n , ... such that for every w c co, 

{~0(X ; ~n)ff(n~w) ; n < co} is consistent. Like Theorem 2.13 we prove 
here that if~o(~';y-) has the independence p, then some q (x ;y - )  has the 
independence p (Theorem 4.6). 

We define also a syntactical property which can be considered as com- 
plementary to the independence p" the strict order p. It appears that 
~0(x ; y )  is unstable iff  it has the independence p or some Boolean com- 
bination of  it has the strict order p. Also there are unstable theories 
where some formulas ~0(x;y) has the independence p, but no formula 
• (x;y) has the strict order p; and conversely. By this we prove there 
is an unstable T without  the property (E) (see § 0 A 12). 

We end the section by a list of  open problems; and a discussion on 
them. 

Definition 4.1. (~)  A formula ~o(x; y-) has the independence p if for 
every n there are sequences fi -°,  ..., ~-n-1 such that: 

for every w c n, ~ (:Ix--) [ kAn ~o(x;h-k)tf(kew; '] 
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(B) T has the independence p if some formula ¢(x;y-) has the inde- 
pendence p. 

Definition 4.2. (A) A formula ~o(x ; y )  has the strict order p if for every 
n there are a-0, ..., ~-n-1 such that: 

if k, 1 < n, then ~ (~]x) ["1 ~¢(x-; ~-k ) ^ ¢(~-; ~-l)] .=~ k < 1. 

(B) T has the strict order p if some formula ~o(x ; y )  has the strict 
order p. 

Remark. Note that in 4.2B we say ~o(x;y) and not ~o(x; y )  as in Defini- 
tions 4.1B and 3.2B. 

Theorem 4.1. (A) T is unstable i f f  T has the independence p or the 
strict order p. Moreover T is unstable i f f  some ¢(x; y )  has the indepen- 
dence p or the strict order p. 

(B) ~o (x ; y ) is unstable i f f  it has the independence p, or for some n, 
riE n2 

~Pn (x ; y o, ..., ~-n-1 ) = k<An tp(x ;y ~: )~(g) 

has the strict order p. 

Proof. (A) This follows from (B) by Theorem 2.13. If T is unstable, 
some 9(x; y-) is unstable; hence by (B) ~0(x; y-) has the independence p 
or ~n (x; ~-0, ..., ~-n-1 ) has the strict order p (for some ~/). So, by defi- 
nition, the conclusion follows. 

Suppose, on the other hand, that ~o(x; y-) has one of thos~ properties. 
Then by (B), 9(x ; y ) is unstable, and so by Theorem 2.13 T is unstable. 

(B) Suppose 9(x ; y )  has the independence p. Then, by the deffmitions, 
9(x ;y ) has the order p; hence by Theorem 2.9 ~o(x ;y  ) is unstable. 

Nex~ suppose that for some 7, #n  = #,~(~;~-o, ..., ~-n--1) has the 
strict order p. Then from the definitions (2.2, 4.2A) and Th. 2.9 it fol- 
lows that 9n  is unstable. As l (x)  = m, clearly there is an A, 
ISr~n(A)l > IAI ~ ~;o" For every q ~ S~n(A) let a-q be a sequence realiz- 
ing q, and 

q* ={~o(x ;a ) i ' i~  {O, 1},a~-A,  ~p[h-q;a-]i}. 
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Clearly q* E S~  (A); and for p, q E S ~n (A),  q* = p* implies q = p; 
hence q ~ p implies q* q= p*,  so: 

I S ~ ( A ) I ~  I { q * : q E  s r~n(A) l>  IAI>_ ~;0" 

This means that ¢ (x  ; y )  is anstable. So the strict o rderp  of ~I, n implies 
the unstability of~o; and also the independence p of ¢ (x ;  y-)implies 
~ (x ;  y )  is unstable. 

So it remains to be proved that  if  ¢ = ¢(x  ; y )  is unstable, then it has 
the independence p or for some r/, ~I,,~ has the strict order p. By Theo- 
rem 2.9 ¢(x  ; y )  has the order p, so there are sequences d ° ,  ..., ~-n, ... 
such that  for every r < 60 there exists b -r  such that:  ~ ~0[c r; a n ] ill" 

r <_ n. By the compactness theorem and Ramsey theorem ( [A]) ;  as 
proved in Ehrenfeucht  and Mostowski [C], we can assume that  
(an :n < w) is an indiscernible sequence (of  sequences); where 

Definition 4.3. The sequence ( ~ - ' k  • k < t~) is an indiscernible sequence 
if for every 

r < oz, ko < ... < kr < a, 1 o < 1 1 < . . . < l , < , *  

the following sequences realize the same type: 

ak°',-,a kl . . . . .  a--kr ; if tO. -, all  . . . . .  a-~" . 

Remark. For  details see the beginning of Section 5. 

If for every n < co, w c n, 

( 3 X )  [ kA<n tp(x; -ak) if (kEw) ] 

then clearly ¢(x',  y-) has the independence p and so we finish. So we 
assume that  there ,are n < co, w c n such that 

7 (3~-:') [ tcA<n ~(~;~k)i f(k~w)] 

Let Iwl = r. We can easily define w0, ..., w,. a < ¢o such that: 
( 1 ) w  0 = w , w . = { n - r , n - r + ! , . . . , n - -  1} 
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(2) for every l <_ ~, Iwtl = r, w t c n 

(3) for every I < ~x there is k t < n such that  Wl+ 1 =: W ILI { k t + 1} --{ k t} 

(and so k t E Wl, k t qt wt+ 1, kt + 1 qt wt, k t + 1 E wt+ 1 ) 
(we step by step raise w = w 0 to wa).  

We assume ~ 7 (3x)~[A~<n ~(x-; a-k)if(kew0) ]. 

On the  o ther  hand by the def in i t ion  of  the ~-tC,s and w a 

(~X)  [ k~<n ~O(x;ak)if(k~w'O] • 

Hence there  is l < a such that  

and 

7 (3X-) [ k~<n ~O(x;ak) if(kEs) ] , where  s = w t 

(3X)  [ k~<n ~O(X;~'k) if(k~O] where t = w, ,+l .  

Let 3 = kt,  and 

ff~ = ff~(x',y ,~ - '0 ,  . . . ,  y ' 3 - 1 ,  y--t~÷2, .--, ~ n - 1  ) : :  

A 
k<n 

k~3,3+1 

~(~-;ik)~¢ k~s) ^ ~(x ;y) 

We shall prove that  ~P has the strict order  p. Let 3, < u~. 
Define b = b o "- ... ̂  ~-a- 1 " b-~+2+~ " . . .^ E n -  1+~. By the indiscerni- 

bility o f  <~-k : k < co), and the def in i t ion  o f  if', i f 3  < k < l < 3 + ~', 
then (by the  indiscernabili ty o f  {~-i : i < co) and as this holds  fo r /~=  3, 

l = 3 +  1,~= 0). 

(3~) [~i,(~-; ~-t, E) ^ 7 ~0(~; ak)l 

but  (by the  same argument)  

7 (3~-) [,I,(~;~-k, E) ^ 7 ,p(~-;~-l)]. 
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Hence, observing again the definition of ~I' 

b-) ^ 7  q,(x;h-k, E)] 

7 (3x-) h-*, E) ^ 7 ,/.,(x; h-t, E)I. 

As this is true for every ~/< w, clearly ~ has the strict order p;  and it 
is also clear that ~I, is of the required form. As this was proved under an 
assumption that ~o(x ; y )  dozs not have the .,~,'~.Jendence p, we have 
proved the theorem. 

Definition 4.4. Ded(k) is the first cardinal ta such that there is no order- 
ed set of  cardinality/~, with a dense subset of cardinality ~,. 

Remark. It is known that for every ~,, X+ < Ded(?O <- (2x)÷; and it is 
consistent with ZFC that Ded(~ 1) < (2 ~1)+. See Baumgartner [A],  [B], 
Mitchell [A].  

Theorem 4.2. I f  ~o(x ; y )  is unstabh', X < ~ < Ded(X), then there is an A 
such that IAI<_ A, IS~(A) I>  ~. 

Proof. By the definition of Ded(X), there are an ordered set J, IJI >_ ~, 
with a dense subset 1, III = ?~. As ~p(:, ; y )  in unstable, by Theorem 2.9 
~o has the order p. Hence by the compactness theorem there are a s, 
s a J such that:  

for every t ~ J,  {tp(x;as)i f f t<s~ " s ~ - J }  

is consistent. 
Let A = LI { Rang(as) :s  ~ I ) .  Clearly IAI<_ III. ~0 = ?~- For every. 

t ~ J let 
Pt  = {~p(x ; as ) f f  (t <s): s E I} .  

Clearly Pt is a consistent ~ m - t y p e  over A. Let Pt c qt ~ S ~ ( A  ). Now if 

s l ,  s 2 ~ J, s 1 < s 2 then there is t ~ I, s 1 < t < s2, so ~o(x ; a t) E qsl, 
7 ~p(x ; a t) E qs 2 . Hence s 1 :/: s 2 implies qs 1 ~ qs2. So 

IS~n(A)I > _ I{q s " s E J } I =  I J l = ~  > X = tAI. 
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Theorem 4.3. (A) l f  ~o = ~o(x ;y ~ has the independence p, then for  every 

there is an A such that: IAl <_:_ X, IS~(A)I = 2 x. 
(B) I f  for  some infinite A there is" a regular cardinal ~, such that 

IS~ (A)I > ;k > Ded(IA I) then ~o(x ; y )hTs  the independence property. 

Remark. It can also be shown that: 
(1) if for every n there is a finite A such that IS~ (A)1 >_ IA I n , then 

~o(x, y ) has the independence p. 
(2) if~o(x ; y )  has the independence p. l ( y )  = r, ¢hen for every n 

there isA,  IAI < nr, IS~ (A)l >_ 2 n . 

Proof. (A) Let 

r =  

• w C ; ~ , u C ~ , w n u  = 0 ;  w, u a r e f i n i t e /  

As ~o has the independence p, clearly P u T is consistent, and hence 
has a model M. Let h -k realizes y k ,  and A = LI { Rang d tc • k < ~,}. 
Clearly IAI = ~. For every w c ~ let Pw = (~°(x-; ~-k)tf (tc~w): k < ;k}. 
By the definition of  V, Pw is consistent, and so there is qw ~ Sm (A), 

Pw c qw. Clearly w 4: u implies qw 4= qu so 

IS~(A)I>- I{q w " w c ;k}l = I{w" w C X}I= 2 x. 

So we prove 4.3A. 
(B) Suppose A is infinite and IS~ (A)l > ;k >_ Ded(IA I) where A is 

infinite and X regular. Let/a be the first cajrdinal such that  there exists 
B c A, [BI = ~a and IS~ (B)I >_ ~; and let B be such set. Let n = l (y )  and 
n B = {~-k • k < bt}. Clearly B is infinite and hence tnBI = IBI n = la n = 11. 

For k <_ la, p ~ S~,o(B) let 

p lk  = {xI, : ~  ~ p, xp = ~0(~; ~-l) or q~ = -! ~(~- ,~- l )  

where l < k) .  

For k < /z  let 

S k = {plk  :p ~ S m (B), and p l k  has >_ X extensions in S~  (B)} ~o 

S u = {p :p ~ S~ (/~), for every k < #, p l k ~  S k }. 
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Let S = Uk<uS k , S* = U k < . S  k. We define an order on S: 
(1) i f p l k  = qlk, ~o(~-; h --k) E p, '1 ~o(x; ~-k) E q then q < p 
(2) i f p  E Sk. qlk =p, and -] ~0(x; a -to) E q then q < p 
(3) if q ~ Sk, p Ik = q, ¢(x;  a k) ~ p then q < p. 
Clearly this is a total ordering of  S, and S* is a dense subset of  S. 
Now we shall show 

(*) i sy  ( s )  - G i<  x 

S m (B) - S ~  = {p :p E St~ (B), for s o m e  k </~, t , lk  q~ S k } 

= U{{q~ sy  (B):pik c q} :pc S~(B),plke~ Sk }. 

LetB k = U{ Rang,~-t:/'< k}. Clearly k < /a  implies FB t I<  tt, hence 
by the definition of/a, asB k c B c A, ISr~ (Bk)l < X. Hence 

I{plk:p E Sm (B), plk q~ Sk } l <~ I{plk 'p~S;n(Bk ),plkC~ Sk } l 

<" I{plk "p~Sy(Bk)}l 

<_: ~ ISy~Bk)l< X 
k<u 

(The last inequality holds as/~ <- IA I < Ded( IA I) <_ ~t, and ;k is regular.) 
So 

I { p l k ' p  e Sm(B), k < #,plk¢~S k }1< •. 

On the other hand, by the definition orS k, i fp  e S m (B), plk ~ S k 
k < U, then I{q e St~ (B) : p i k c  q} l< X. So S m~ (B) - S,  is the union 
of  less than X sets, each of  cardinality < X. As X is regular, we prove (*). 

Hence if  q ~ S k "~hen 

I { p e  S u "q C p}l >_ }t 

as otherwise 

I { p ~ S ~ ( B ) ' q  c. p}[ = I ( p ~ S ,  "q c p} l+  

+ l { p : p ~ _  [S t~ (B) -Su] ,  q C p } l < ] k  

and so q ¢d. Sk, a contradiction. 
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We shall now prove by induction on r that: 
(**) For every q ~ S*, and for every natural number r there are 
a O, ..., a~-I ~ r B such that  for every w c_ r, 

323  

q t3 {¢(~;~-k)if(k~w): k < r} 

is consistent. 
Clearly if we prove (**) then it follows that ~a has the independence 

p, and so we finish lhe proof. 
For r = 0, (**) is trivial. 
Suppos e we have proved (**) for r, and we shall prove it for r + 1. 
For q ~ S* let 

* = { p  ~ S *  • Sq qC  p} ,Sq = { p E S  q C  p}, 

Sa, k = (p ~ S k • q c p}. 

Before starting (**) we have proved that ISq,t~l >~ X. It  is clear that  
Sq,, c Sq, hence ISql>_ k. Also it is clear that  S~ is a dense subset of  
Sq ; and as ISq I>_ X >_ Ded(IA I) >_ Ded(g), clearly IS~I > tt. (This is by 
the definition of  Ded(ta).) As S~ = U~<~Sq, k, there is k < tt such that  
IS¢, k I >/~ For every p ~ S ,k, by the induction hypothesis, there are 
a o, . . ,  a rp-1 ~ n B such that for every w c r, iv U (~(x ; a I )tr(lew): l <  r} 

• : ff 
is consistent. Now ,there are only ~t such r sequences, hence there are 

Pl ,P2 ~ Sq,k,Pl ~: P2 such t h a t a  -0 =~-0 , . . . ,  ~'r_-I = ~-~21. Asp1 ~ P 2 ,  
P l  P2  ." P l  

Pl,  P2 ~ Sk there is ~-t ~ n B such that  ¢ (~ ;  ~-t) ~ P l ,  "1 ¢ (~ ;  ~ l )  ~ P2 
(or conservely, and then we can interchange Pl  and P2)- Define 

- o  - o  - - a =a , . . . , a t - 1  =~-r-1 a r =-~l. 
1 q P l  ' q 

As Pl ,  P2 E S~, clearly q c P l ,  q c P2, and so we prove (**) for r + 1. 
Thus we prove (**) and hence prove the theorem. 

Definition 4.5. (A) K~ (X) = LUB { IS~n (A)l • IA! <_ 7,}. 
(B) Kin(X) = .,UB{ I S m ( A ) l  " IAI < ),}. 
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Theorem 4.4. Suppose  Ded(X) is regular f o r  every X. Then K ~  (~,) can 
be only one o f  the fo l lowing  functions." 

n ( > 1), ~,*, Ded(),), (2 x)*. 

Moreover, each o f  these func t ions  is K 1 (X) f o r  some 7, ~o. ~o 

Proof. First suppose that ~o(x ; y )  is unstable. Then by Theorem 4.2, 
~, < ~ < Ded(;k) implies there is an A, IS~ (h) l  >_ ~. Hence 
K m (X) >_ Ded(X). If for every X, K m (~,) = Ded(X), the conclusion of  

~o ~o 

the theorem holds. So Suppose for at least one X, K~(?Q ~ Ded(X), 
hence K (X) > Ded(X). So by Definition 4.5, there is A, IA I <_ ;k, 
IS~ n (A)I'>- DedCk). As Ded(;k) is regular.~ by Theorem 4.3B, ~o (x ;> ' 
has the independence p. So by Theorem 4.3A for every X there is an 
A, IAI < X, IS m (A)I :>_ 2 x, hence K m (X), > 2 x. But always 
IS~ (A)I <_ 2t4t+~0, hence K~  (;k) _~(2 x) . So if~0 is unstable, 
K~  (?~) = Ded(X) (for every X) or K m (X) = (2x) ÷ (for every ?~). 

So suppose ~o(x" y ) is stable. For every n, if for one ),, K m (),) > n, 
' ~o 

then there is A, ;A I <__ X, IS~ (A)I >_ n. It is easy to find B c A, IBI <_ ~0, 
such that IS~ (B)I >_ n; hence for every/a, as la >- ~o >- IBI, K m~ (la) > n. 

Hence if  for some ?~, K~  (X) = n, then for every #, K m (ia) = n. As for 
every A, a ,  d realize a type over A, clearly IS~ n (A)I ~ 1, so n > 1. 

So suppose K m (X) >- ~ 0 for some ;L Then for any n there is A n, 
~o 

IS~ (A n )1 >_ 2 n . We can define by induction on k < n, ~-k, r/(k) such 
that: 

I{p E S ~  (A n ) " ~0(x-; ~-t)n(l) E p for every l < k} I >_ 2 n-k 

and { tp(x;dt )n( l )  • l < k -  !} u ~o(x; a-k-1)l-n(k-i) is consistent. ?or 
simplicity suppose every ~/(l) is zero. Hence (~o(x -n ;~-t)ir(/<n): l<_ n < w} 
is consistent. So for every X, {~o(~ -k ; f / ) i r ( t  <k): l ~ k <7 ?~} is con.,istent. 
Let fi-t realize f t  and ~-k realize ~-k, A = U { Rang ~'t : l < ),}, and Pk the 
~m- type  b -'k realize over A. Clearly 

I A I = X ,  jS~(A)i>_ I{p k : k <  ~.}1 = ~.. 
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Hence for every k, K ~  Gk) ->- ;k ÷. As ~o(x ; y ) is stable, IA I < k implies 
IS n: (A)I < k, so K m (X) < 3~+. So ~Fm ( ~ )  = ~k +. 

Let us prove that each of  the mentioned functions is K,1 (;k) for some 
~o and ~ 

(1) By Theorem 4.7 there are T and ~0(x; y)  such that ~0(x;y) has the 
independence p. Hence K~ l (k) = (2 x)+. 

(2) Let T be the theory of  the order of the rationals, and 
~o(x; y)  = x < y.  Clearly K ~  (X) = Ded(k). 

(3) If  T is the theory of  equality, ~0(x; y)  = [x = y  ],  then K ~ ( k ) =  k ÷. 
(4) Let T be a theory with an equivalence relation E with n >- 1 

equivalence classes, and ~0(x;y) = Ix E y ] .  Clearly K l (k )  = n + 1. 

l_emma 4 .5 . / f / a  < ~. k is regular and for  every A, IAI <_ bt implies 

IS(A)I < X, then for  every A, m; IAI <_ ~ implies IS m (A)I < k. 

Remark. This strengthens Lemma 2.10. 

Proof. We shall prove it by induction on m. For m = 1 this is:self- 
evident. Suppose it is tru~ for m, and we shall prove it for m + 1. Let 
IAI <_/a, and for every q ~ Sm+I(A)  define: 

q* = { ( 3 x  m ) ~It ( x 0 ,  ..., Xrn , a ) " ~It ( x 0 ,  . . . ,  x m , a ) ~ q}. 

It is easily seen that  q* is a (consistent) re. type over A, and has a 
unique extension in S m (A) wluch we shall denote by q*. Clearly 

I{q ÷ " q E Sm+I(A))I  <__ ISm(A)I < X. 

By the regularity of  ~. if suffices to prove that  for every p ~ S m (A), 

I{q ~ sm+I(A)  " q+ = p}l < k. 

Let (Co, . . . ,  Cm_ 1 ) realize p. As every q ~ S m+l (A) is closed under  finite 
conjunction, clearly if q+ = p  then 

q' = {  ~P (c o,  ..., Cm_ 1 , x ,  ~ )  " ~ (Xo , ..., Xm , ~') ~ q }  
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t t is consistent. Moreover ql = q2 implies ql = q2- Hence 

I{q :q E Sm+I(A),  q* = p)l<_ IS(A U {c o, ..., em_ 1 })l < ~k. 

As said before, this implies IS m+l (A)I < ?~. So we prove the induction 
step, and so also the lemma. 

"[heorem 4.6. The following statements are equivalent." 
(A) there is a formula ~o(x, y )  which has the independence p. 
(B) there is a formula ~o(x ; y ) which has the independence p. 

In the case there are tt, 3,; Ded(/~) = ?t ÷, X = harl < 2~' also the statements. 
(C) for  every I~ there is an A such that IA I =/a, IS(A)I = 2~. 
(D) f o r s o m e A ,  m. ISm(A)I> XSTI = X, ?~* = Ded(IA I). 

Remark. In the proof  we assume there are such ~,,/a, and through this 
proves the equivalence of  (A) and (B). By set theoretic consideration 
this assumption can be removed. (See Baumgartner [A] ,  [B] and 
Mitchell [A] ). (This is done like many removings of  G.C.H. from proofs.) 
We can eliminate the use of  set theory by using R~ (~) for finite ~,. That 
is by using the remark to Theorem 4.3, and replacing (C) and (D) by 

(C*) there are ~o = ~0(x;y) and n such that for every r there is a n A ,  
IAI = r, IS~o(A)I >_ 2 r/n. 

(D*) there are ~o = ~o(x ; y )  and m = l (x) ,  such that for every n there 
i s a n A ,  tAI<  ~0,  IS~(A)I>_ IAI n. 

Proof of  theorem 4.6. Clearly (A) implies (B). 
By Theorem 4.3A, (B) implies that for every ~a, for some m, A, 

IS~(A)I = 2 t~l, IAI =tt.  Hence by Lemma 2.11 ISm(A)I >- ISTff~ (A)I = 2u, 
IAI = ~. So (B) implies (D). 

Suppose (D) holds, i.e., I S m ( h ) l >  ~k ITI = ]k, ]k + = Ded(IA I). By Lem- 
ma 4.5, there is B, IBI <_ IA I, such that IS(B)I > ~,. By Lemma 2.12 

Fl IS~o(B)I _>_ IS(B)I >_ ~,÷ > • = ~,aTI. 

Hence for some ~0, IS~(B)I >- h÷. By Theorem 4.3B, ~o = ~¢(x;y) has the 
independer~ce p. So at least, (D) implies (A). So (A) -~ (B) -~ (D) -~ (A). 
As it is easy to see that  (A) implies (C) by Theorem 4.3A; and that (C) 
implies (D) we have proved the theorem. 
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Theorem 4.7. (A) There is a theory T~,rd with the strict order p and 

without  the independence p. Moreover, some formula ~o(x; y )  has the 

strict order p. 
(B) There is a theory T = T ~  with the independence p and wi thout  

the strict order p. Moreover there is no infinite A, and a formula 

~o(x 1 , ..., x n ; a ) which is antisymmetric and connected over A [This is 
the property (E) of  Ehrenfeucht [A]. See §0 A/2] .  (Tin d also does not  
satisfy (3) from 4.8, for every #.) 

Proof. (A) Let T = Toz a be the theory of dense order without  first and 
last element. Clearly the formula ~0(x ;y) = x < y has the strict order p. It 
is also clear that for any infinite A, IS(A)t < Ded(IA I). Hence by 
Theorem 4.6 T has not  the independence property. (This can also be 
shown depending on the fact that for finite A, IS(A)I <_ IAI + 1.) 

(B) In the language of  T there will be only the equality sign, a one 
place predicate P(x),  and a two place predicate x E y. Its axioms will be: 

(1) x E y  implies 7 P(x),  P(y) ;  that is 

(Vxy)  [x E y -~ 7 P(x)  ^ P(y ) ] .  

(2) if P (y )  then y is uniquely determined by {x:x E y }, and 
conversely; i.e., 

( V y x y z  )[P(y 1 ) ^ P(.v 2 ) ,x ( V x ) ( x E y  I = x E y 2  ), ~ Y l  =Y2] 

(Vx lx2)[ -1P(x  1 ) ^ 7P (x  2 ) A (Vy)(x I E y - x 2 E Y ) - - > x  1 =x  2 ] 

(3) n For every 2n different elements in 7P,  X l , . . . ,  Xn  , X 1 , . . . ,  X n 
there is a y such that x I Ey,  ..., x n Ey ,  7 x  I E y ,  ..., 7~: n Ey .  That  is, 

(VXI ' Xn)(VX 1 X n) [ A ;.t 7 p ( x  k)  ^ T P ( x l ) ]  ..., , . . . ,  0<k_<n IX k 4 :  . A 
l 

[ O<l<_n 

-~ (3y )  0<ksnA (x k E y  ^ 7 x  k E y ) ]  
, . I  

(4) n The same as (3) n , interchanging P and 7P, x E y  and y E x .  
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That is, 

(Vy l , . . . , yn ) (Vy l ,  ... ,yn) [0<k<nA [yk ~ yl A P(Yk)A P(yl)] 

O<l<n 

"* (3x) A (xEy k A -qxEyk)] 
O<k<n j 

It is not hard to prove that T is consistent, by building a model for it. 
It is also easy and standard to prove it has elimination of quantifiers, 
and is complete. By this it ('an be shown that no formula SO = SO(x ; y ) 
has the strict order p. On tl~e other hand, clearly so(x;y) = x E y  has the 
independence p. 

Discussion of  some open problems 

Clearly this section leaves some natural problems unsolved. 
We have proved that if some formula SO(x ;y ) has the f.c.p., then 

some formula so(x; y-) has the f.c.p.; and if some formula ¢(x ; y ) has 
the independence relation, then some formula SO(x;y-) has the indepen- 
dence relation. Bat we do not  prove 

Conjecture 4A. If  some formula SO(x ;y  )has  the strict order p, then 
some formula SO(x; y-)has the strict order p. 

Remark: Lachlan proved this. in [F*].  

If a formula ~(x ; y ) is stable, or equivalently has not  the order p, 
we succeed in exploiting it to prove something about it: its types have 
rank; and they are describable (Theorems 2.9, 3.1, 3.2). Naturally we 
asked the vague questions: 

Question 4B. What can we say about the ~-m-types, when T has not  the 
independence p? 

Question 4C. What can we say about the ~-m-types, when T has not  the 
strict order p? 

Remark. By the way, a result connected to this and to 6.4 is 

Theorem 4.8. For any I~, m, the following condition are equivalent: 
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( 1 ) For  every X = ~,~<u~, K there are A,  IA 1 = X and Xv m- types  on  A ,  

contradictory in pairs, each o f  them o f  caminali ty  ia. 
(2) There are a set  A ,  a set S o f  m- types  on A,  contradictory  in pairs, 

ISI > X >_ ~;u<v (IAI + ITI)u, and f o r  every p ~ S, Ipl <_ X, and 
21r~x < X f o r  some X. 

(3) There are ~o~(x, y ~ )  ~ < #, and a- n r~ ~ u> ~o such that: ( A )  f o r  
every 77 ~ vow, (~o~ (x ,  anl ~) : ~ < la) is consistent  (B) f o r  every ,7 ~ v> to, 
k < l < w, l(r/) + 1 = t~, {~o~(x, c%-<k~), 9~(x ,  a-~^<b)) is inconsistent .  
( l ( x )  = m).  

In the case la = ~o,  we can add (see Definition 6.2) 
(4) Deg m (x = x) = 0% 

It is clear that  if (3) holds for one # > I TI, we can take all the ~,, 
equal, and so (3) holds for every/a. It should be noted that  T ~  does 
not satisfy (3) for any V >- ~ 0 ; but  we can find a theory which satisfies 
(3) for every/a (hence is unstable) but has not  the strict order p. If  T is 
stable,/a regular, then/a < ~:(T) iff (3) holds for/a. If  T has the strict 
order p, then for every/~ (3) holds. Perhaps in Question 4C, we should 
add that  T does not  satisfy (3) for I TI ÷. 

Unfortunately, in the case Ded(X) is singular for some X, we do not 
know what K m (X) can be. 

t 

Conjecture 4D. If for at least one infinite A, IS~ n (A)I >_ Ded(IA I) then 
= ~0(x ; y ) has the independence p. 

Possibly this conjecture can be affirmed by answering Question 4B. 
In Shelah [D] Theorem 4.4 it was proved: 

Theorem 4.9. I f  T is stable, then there are cardinals ), <_ 2 Irl, ~ <_ ITI ÷ 
such that: 

T i s  stable in ts i f f la  = X +/.t(~) (=),  + Zx<~/ax). 

It is natural to ask what are the possible functions K m 0,) and how 
they are fixed by syntactical properties of  T. A natural conjecture is 
(for simplicity we take m = 1 ): 
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Conjecture 4E. K 1 (his, is determined by the holding of  the following 
propertie~ of T: 

(1) The stability c~" unstability of  T. 
(2) The holding of  the independence p. 
(3) The values or" K 1 (~) for X < I TI. 

(4) x There are formulas ¢k (x; ffk ) for k < X and sequences ~k,n 
k < ~, n < 60 such that: for every <n k : k < ~) the type 

{ ~ k ( X ; a k ' n ) i f ( n > n k ) :  rl < 60, k <  ~} 

is consistent. 

(5) x There are formulas Ck(X;ff k) k < h, and sequences ~-k.n k < ?~, 
n < 60 such that for every <n ~ • k < ?~) the type 

: (~ok(x, d k'n )if(n=nk)" n < 60, k < ~} 

is consistent. 

(6)7, There are formulas ¢k(x ;~  k) k < ~, and sequences a-- r r ~ x>60 
such that for every r ~ x60 the type 

(~ak(X, h--n) if (n -- rlk) " r /~  k60, k < X} 

is consistent. 

Remark. Condition (6)h is a reformulation of (C * ;k) from Shelah [D] 
Definition 4.2. 

Clearly if  h < # then (4)~, - (4)x, (5) u - (5)~., (6) u ~ (6)x; Also if 
T is unstable, it satisfies (6) x for every ?~; and if  T has the independence 
p, then it satisfies (4)x, (5) x for every ?~. On the other hand (6) j r  r im- 
plies T is unstable, (4)~, implies (5) x and (5)jrl÷ implies T has the inde- 
pendence p. So instead of  all of  (4) h, [(5)~,], [(6)~, ] we can take the 
first cardinality for which they are not  satisfied. [Also (5) 4 implies 
(6) 4.1 

Clearly this conjecture may depend on Conjecture 4D. 

It is known that  if T is stable, and it has a model M, R0 <- IpMI < IIMII, 
then for every )~ >_ ~t >_ ITI, T has a model N, IP N I = ta, IIgll = X. (See 
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Shelah [A].  For N0-stable theories see Shelah [D], the proof of Theo- 
rem 7.9, and Baldwin and Lachlan [B] proof of Theorem 3). Now what 
will occur if we replace "T is stable" by "T  has not the independence p "  
or "T  has not the strict order p" .  Perhaps an advance in Questions 4i:i, 
4C will help here. 

Question 4F. What are the classes K of pairs of cardinals such that fo; 
some theory T, and perdicate P, where T has not the independence p :  

Ck, ~) ~ K iff T has a model N, Ilgll = X, IP  N I = i.t. 

Question 4G. The same as 4F, but where T does not have the strict 
order p. 
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§ 5. Cn indiscernible sets and sequences 

First, let us mention a result wl~ich does not mention indiscernibility: 
(Theorem 5.14). 

Let T be stable, and p a A-m-ty:oe  over M, A be finite [countable] .  
Then there is n(A, m) < ~ [= }~0 ~ ; and sequences ~-k k < w from M 
such that: 

¢ (x  ; a ) E p implies I{ k < ca" ~ -1 ~p [/7 -k ; a-] ) I < n (A, m). 

We say that  a set I of  sequences is an indiscernible set (over A) if 
every n distinct sequences taken from I realize the same type (over A). 
(In fact, we deal more with a finite version of this concept which will 
be used in investigating saturation of  ultraproducts, Keisler's order, and 
related topics.) 

We associate with every indiscernible set I in a model M a cardinal 
/a = dim(/, M) such that:  

(1) I can be extended in M to a maximal indiscernible set of cardina- 
lity # (Definition 5.4). 

(2) I cannot be extended in M to an indiscernible set of cardinality 
/a + + I Tt + (Corollary 5.12) (we can replace/z + + I Zl + by/a + + ~:, where 

>- g(T) is regular). 
(3) If  II 1 n 12 I>_ ~0,  then a im(I  1, M) + ~:(T) = dim(I z, M) + ~:(T) 

(Theorem 5.12). 
(4) I f M  is k-saturated but  not ;k+-saturated ;k > ITI, then there is in 

M an indiscernible set I such that dim(L M) = ?, (Theorem 5.16). [For 

superstable T, ~ > ~ 0 suffice]. 

Remark. Def 'me p ( I )  = { ~ ( X l ,  . . . ,  X n ) : n  < co, a I , ..., a n E I 

i ~ ] ~ a i :/: ai, ~ ~o [a 1 , ..., a n ] }. If T is superstable for every p (/) there 
is r ( p ( I ) )  < co such that  II 1 n I 21 > r ( p ( I  1 )), r ( p ( I  2))  implies 
dim(I 1 , M) = d im(l  2 , M). 

We also discuss in this section the connection between the existence 
of indiscernible sequences which are not  indiscernible sets; the existence 
of connected antisymmetric relations over an infinite set; and unstabili ty 
(in suitable formulation those concept.,: are equivalent). 

Remember: members of A are ¢ ( x )  and not  ¢. 
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Defini t ion 5.1. (A) {~-k • k < t~} is a A-n-indiscernible sequence o v e r A  
if k < 1 < a implies ~-k ¢ ~-l and '  

for e v e w  tp(x -° , ..., ~-n-1 ; i f )  e A, c-- ~ A,  

k o < ... < kn_ 1 < a, I 0 < ... < ln_ 1 < a and permuta t ion  0 o f  
{0, ..., n - 1} 

,p[a k°(o), ..., ~ k°(n-D; b -] iff ~p[~-t°(o), . . . , ~ ( n - 1 ) ;  C] . 

(B) If  A is the set of  all formulas we omi t  it. If  { ~-k : k < a } is A-n- 

indiscernible for every n, then  we say it is A-indiscernible. If  we omi t  
the words  "over  A "  we mean over the emp ty  set. If  A = {sp}, then  we 
write ~o instead o f  A. 

Remark.  For  simplicity,  we treat ( a  Ic "k < a} as a sequence also. Also 
we shall always assume l ( a  k ) = l ( a  ° ) = m. An I is Aft< n)-indiscernib~e 
iff it is A-r-indiscernible for any r < n. 

Defini t ion 5 . 2  (A)  {~-k • k < a} is a A-n-indiscernible set over A if  
k < 1 < a implies d k ¢ ~-t and: 

for every formula ~o(x ° ,  ..., x n-1 "y-) E A, 

sequence c ~  A, and two sets of  d i f ferent  ordinals < a, { k ° ,  ..., k n-z }, 
{10, -.-, ln- t } 

, p [ a  k° . . . .  , h --kn-~ ; b-I iff  ~ so[a -p ,  ..., ~ tn-1 ; c--]. 

(B) We adopt  the same shor tening as in Def in i t ion  5.1. 

Lemma 5.1. (A) ! f  A c A1, and I =  ( ~ k  : k < ~} is a Al-nz- indiscernible  
set [sequence] over A,  then I is a A-n 1-indiscernible set [sequence]  over 
A. 

(B) I f  I is a ~o-n-indiscernible set [sequence]  over A f o r  every ~o E A, 

then it is a Am.indiscernible set  [sequence]  over A. 
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(C) For every f ini te  n i and A i i < r < co, there is a f inite A such that: 
(1) for  any 1 = ( ~ k  : k < a}, l is A-n-indiscernible set t f f  f o r  every 

i < r it is Ai-ni-indiscernible set; where n = maXi<rn i, a >- n. 
(2) the same as ( 1 ) f o r  indiscernible sequences. 

Remark. A depends on m, which we considered fixed. 

Definition 5.3. Suppose I is an infinite set of  finite sequences of  ele- 
ments, all of the same length; ~o(x "o, ..., ~-n-1 ;~-) a formula; and c-- a 
sequence. Then ~o(x °, ..., ~-n-1 ; c--) is connected and antisymmetric 
over I if for any n different sequences from L ~-o, ..., ~-n-1 there are 

(1) a permutat ion 0 of  n such that  

¢[h-o(o), ..., yo( , -1) ;  b-] 

(2) a permutat ion 0 of  n such that  

-1 ~[h-ot o), ..., h-°<,-1); b-] 

It can be easily seen that Ramsay theorem ( [A])  implies 

Theorem 5.2. ( 1 ) I f I  is an infinite set o f  sequences o f  length m; A, A, 

n are finite, then Ihas  an infinite subset { ~ k  : k < co} which is a A-n- 

indiscernible sequence over A. 
(2) The analog o f ( 1  ) using the f inite version o f  Ramsey theorem. 

Theorem 5.3. (A) Suppose T is stable, n < co, A finite, then there is 

n o = no(A ) < co such that: every A-n-indiscernible sequence I over A 

is a A-n-indiscernible set  over A, i f  III >_ n o. 
(B) I f  T is stable, for  every formula ~ = ~o(x ° , ..., ~ n -  ~ ; ~ )  there is 

n (~o) < co, such that there is no set I o f  >_ n (~o) sequences, each o f  length 
l ( x  0 ), and sequence c-, and ~o(x °, ..., ~ n - I  ; ~)  is antisymmetric and 

connected over I. 
(C) Also the converses o f  (A), (B) hold. Moreover, i f  T is unstable, 

there is A = (~o(x °, ~-1 )} and an indiscernible sequence 
I =  {~k • k < 60} such that ~o(x °, ~1 ) is connected and antisymmetric 

over I, and hence I is not  A-2-indiscernible set. 
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Remark.  Morley [A] ,  Theorem 3.9 proves a similar thing for ~ 0-stable 

T. 

Proof  of  Theorem 5.3. (A) Suppose that  the conclusion of  (A) fails. 

Then clearly for every r there are A r and I r such that  I r is a A-n.-indis- 
cernible sequence over A t ,  but  no t  a A-n-indiscernible set over A, and 
II r I >_ r,  and the e lements  of  I r are sequences of  length m. By the  def in i -  
tions there are ~Pr(X ° , ..., x n-1 ;y ')  E A and ~-r ~ A such that  
~0r(~-0 ' ---, ~-n-I ; ~ r )  is anf isymmetr ic  and connec ted  over I r. As A is 

finite there is ~o~ A such that  for arbitrary large r 9 = 9r" This clearly 
contradicts  the conclusion o f  5.3B, so it suffices to prove part B o f  the 

theorem.  
(B) Suppose the conclusion fails. By the compactness  theo: 'em there  

are a sequence c and an infini te  set I o f  sequences o f  length m = l ( . r  ° ) 

such that  ~o(x -° , . . . ,  x n - 1  ; c - - )  is connec ted  and ant i symmetr ic  over, ' .  

For  simplicity let I = {~-k • k < co}. By 5.2 and the compactness  theo- 
rem we can assume w.l.o.g, that  I is an indiscernible sequence over Rang 

c--. Let X = 2 'rt, then we can find a dense ordered s e t J  1 wi th  a dense 

subset J which is dense in J1 such that  IJ 1 I >  X > IJI, and, J1 has 
no first or  last e lement  ( if  tt = inf{ g • 2 ~ > X}, then J i  can be chosen as 
u2, and J as the set of  eventual ly constant  sequences in t,2). 

By the compactness  theorem we can d,~fine {a  s "s ~ J1 } such that:  
for every s 1 < ... < s r, r < ¢o, c - ^as ,  ^ . . ' ^ a s ,  c - " a  l ^  "." "~-r  realize the  

r _ < 
same type.  Now let A = LI ( Rang a-s : s ~ J]  t.; Rang c .  Clearly IA I _ X. 

Let for s ~ J1 - J ,  Ps be the m- type  which a s realizes over A. I f  always 
s --/: t ~ Ps ~ P t ,  then I S m ( A ) I  >- l (Ps  " s ~ J  1 - J } l  = tJ 1 - J I  > )t>_ IAI 
a cont radic t ion  to the stability o f  T by Lemma 2.10, Th. 2.13. 

So there are s :/: t. s, l ~ J1 - J ,  Ps = Pt  and w.l.o.g, s < t. No,,, wi thou t  
loss of  generali ty assume ~ ~o [a- 1, ..., ~-n ; c--] (otherwise  - replac~ ~o by 
-1~o). Se there is a pe rmuta t ion  0 o f  { 1, ..., n} such that  

--i ~o[h-00), ..., ~-0tn) ; c-]. We can choose such 0 with maximal  r = r ( O )  = 

haf{k • O(k )  4: k } .  Se I=-I~[a -1 , ..., ~-r-1, ~-oCn); c-]. 

As s < t, we can f'md s 1 , .... , s n such that:  

S 1 < "'" < Sn E J,  st_ 1 < S < St, SO(r)_ 1 < t < So(r) .  
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By the def ini t ion of  the a-'s 

-I ~O[asl, ..., asr_l , aso(r) , ..., aso(n) ; ~-] 

and similarly, and by the indiscernibi l i ty  

w 

I= -1 ~p [a-sl, ..., a-sr_l , "at, a S o(r + 1)' " "" a--so(n)' c ] 

as Ps = Pt 

- -  u _ _  ~ - -  

t= -"1,¢ [asl , ..., asr_l , as,  aso(r+l), ..., aso(n ) c ] 

again by the def in i t ion and the indiscernibi l i ty  

-] ~P [ as 1 ' " "  a---st- 1' a Sr , a S u (r+ 1) ' ""' asu( n ) '  c-- I. 

(Where u is a pe rmuta t ion  of  {r + 1, .... n} such that  u ( r +  1), ..., u ( n )  

and 0 (r  + 1 ), .,., 0 ( n )  are ordered in the same way.)  
So, by  the def in i t ion of  the ~-'s 

-I~o[~-1, .... , a r, a u(r+X), -.., £u<n); U]. 

This contradicts  the maximal i ty  o f r  = r(0) ,  hence we prove 5.3B. 
(C) By Theorem 2.1 3, if  T is unstable  there are sequences 

(~-k : k <  w} and a fcxmula~o(x-° ,x  - l )  such that  ~ 0 [ a - k , d  t] i f f  
k < l. By using Theorer~ 5.2 as in the p roof  o f  (B), clearly (C) follows. 

Lemma 5.4. (A) I f  ( a  k : k < ~) ,  ~ >_ oa [~ a l imi t  ordinal] is a A-n- 

indiscernible set  [ sequence] ,  ~ < (3, then we can de f ine  d k f o r  

tx <_ k < (33 such that  { ~ k  : k < (3) is also a A-n-indiscernible set  

[ sequence] .  
(B) We can o m i t  A and /or  n f r o m  (A). 
(C) I f  a k ~ IMI f o r  k < ~, M is (l(3l + IAI ÷ + I~l*)-compact  then  we  

can choose  the ~tc ~ < k < (3 in M. 

Proof. Immediate. 
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Conjecture .  The  r equ i remen t  " a  a l imit  ordinal"  is necessary. 

Theo rem  5.5. (A) I f  T has no t  the f.c.p, and A is firdte, then there is 

n l  (A) < w such that: 
i f  {~-k : k < o~ >_ n l  (A)} is a A-n-indiscernible set over A, {3 > ~, then 

we can define ~ k  f o r  a < k < {3 such that ( ct -k : k </3) is a A-n-indiscer- 

nible set over A. 
( B ) f f A  c IMI, ~ k  E IMIfor  k < a a n d M i s  (IAI ÷ + IAI ÷ + 1/31+ lat÷) - 

compact ,  then we can choose ,~k E IMI for  ~ <_ k < (L 
(C) l f  A,  A are f in i te  ~ < ~ = w,  A c IMI, ~ k  C IMI for  k < a then 

we can choose ~ k  ~ IMI for  a <_ k </3. 

Proof.  (C) follows f rom (B), and (B) will be clear f rom the p r o o f  o f  (A). 

So we shall prove (A) only.  

If  n is too  large, every set o f  d i f ferent  ~-k's is a A-n-indiscernible set. 

Similarly if  m = l ( a  ° )  is too  large. So we can prove the t h e o r e m  for  

fixed n, m. 

Let 

A *  (~0(~ - ° ,  x n - l '  . . . .  = ..., ; y )  :~o(x -° , . . . , x n - 1 ; y )  = 

= q.t (~-0(0), -.., XO(n-1), y ' ) ,  xI.t (x-O ' ..., ~-n-1 ; y )  ~ A,  

and 0 a pe rmuta t ion  o f  n} 

As T has not  the f.c.p., by T h e o r e m  3.1 0B there  is a na tura l  n u m b e r  

n 1 = n 1 (A) such that:  

i f  I" is a set o f  formulas  o f  the form ~0(x °;  h -1 , ..., ~-n-1, c--), ~o ~ A*, 

and every subset  of  P o f  cardinal i ty  < n I is cons is tent  then r is consis- 

tent .  

It  is clearly suff icient  to prove tha t  we can def ine  a -~ such tha t  

{~-k • k < ~ + I} will be a A-n-indiscernible set over A. F o r  this it is 

clearly suff icient  to  find a ~ which  realizes 

Pa = {~,°( x ,  ~-kn-2 , "", a-kO , c ) ' c E A ,  k ° < . . . < k n - 2 < ~ ,  

~o~ A* and I= 9 [ ~ n - 1 ,  ~-n-2, ..-, ~-o, c-l}. 
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For  this, it is clearly sufficient  to prove that  p,~ is consistent.  By the 
definiti¢,a o f  n 1 , it  ~uffices to prove that  every subset o f p a  of  cardina- 
lity < n I is consistent.  Let q be a subset ofp,~, Iql < n 1 . Clearly in q 
appears <_ (n - 1)(n ~ - 1 ) ~-k 's. So if  a > (n - 1 )(n 1 _ 1 ), then there  is 

h "-k which does no t  appear in any o f  the formulas of  q, hence  ~-k realize 

q, so q is consistent.  So p~ is consistent ;  hence  we can define ~'~, hence  
we can def ine h --k for t~ < k < t3, by induct ion,  as required. 

Theorem 5.6. I f  T is stable, A f ini te ,  then there are r < ¢o, and f in i te  
A* such that." 

i f p k  is the A*-m- type  that  ~ k  realizes over Atc = A u LI { Rang ~t :  l < k}, 

Po c Pk and f o r  every ~o E A*, Rank~ n (Pk I~o) = Rank~ (P0 I~o) where 
m = l ( a  O) then ( a ~  • k < ~} i~ a A-indiscernible sequence o v e r A ,  and 
moreover,  A*-r-indiscernible sequence over A. 

Proof. Clearly, as A is finite, there is an r < t~ such that  any sequence 

{ b -k : k </3} is A-indiscerrfible sequence i f f  it is a A-r I -indiscernible 
sequence for every r 1 <_ r. So by Lemma 5.1C there is a A1 which is 
finite and any seouence  (b  -k : k </3} is A-indiscernible iff it is A l_r- 
indiscernible. 

By Theorem 3.1A (and see the remark for the case I A l <  2) we can 
define by d6wnward  induc t ion  the finite sets At, At_l ,  ..., A 0 ; A* such 

that:  
(0) For  any ~ k ,  k < 13, and 13, I = (~-k : k < ~) l~ A*-r-indiscernible 

over B, iff  for every i <_ r, it "~s Ai-i-indiscernible o Jer B. 
(1) A 1 c A r 
(2) each A k is closed under  permuta t ions  ;~ variables, i.e., i f  

~O(Xo, ..., xt_ 1 ) E Ak, 0 a pe rmuta t ion  of  ! then ~O(Xoo),..., Xo( l_ 1)) ~ Ak .  
(3) if~o = ~0(x ° , ..., ~k -1  ; ~ )  E A~., i(~-o) = ... = l (~k -1  ) = m, then 

every type p,  Rankm p = Rank m (p[ A), is ~-A-def inable  for some 
xp ~ Ak_ 1 [~I' = q,(~-I ,  ..., ~-k-~i , y  ;z )] .  [For  the def ini t ion o f  A* we 

use 5.1C.] 
Now l e tA ,  I = {~'k : k  < a} be as required in the theorem,  and we 

shall show {~-k : k < or} is a A-indiscernible sequence overA.  I t  clearly 

suffices to prove by induc t ion  on l <_ r that  I is a At-l-indiscernible se- 
quence  over A (as A 1 c At, and by the def ini t ion o f  A1, A*.)  
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Case I: l = 0. This is fulfilled trivially. 
Case 11: l = 1. AsPo c Pk, for every k, clearly i f k  I , k 2 < el, then a -kl , 
E k2 realize the same type over A - P o .  

Now notice that if k < l < a, then for every ~0, Po I~0 c Pk I~0, 
Po I~0 c Ptl~ and Rank~ (Pk I~o) = Rank~ (Po 1~o)= Rank~ (pt I~o). Now 
by Theorem 2.5D, Po I~o has unique extension in S y  (A k) of the same 
rank, and Pk I~o ~ S y  (Ak). On the other hand Po I~o c (pt I~o)lAk C primo 
hence Ranky [(ptl~o)lAk ] = Rank~ (Po I~o). So Pk I~o = (ptlso)lAk. As 
this is true for every ~o ~ A*, and Pk ~ sm* (Ak), Pt ~ s'n* (At) clearly /, ,x 
ptlAk = Pk. 
Case IlL" It holds for l, and we should prove for l + 1. 

As At+ 1 is closed under permutations of  variables it suffices to prove 
that, for any ~o(x ° , ..., ~-t;.~-) ~_ AZ÷~, b-~ A 
( * ) i f a > k  ° > k  ~ > . . . > k  t , ~ > j ° > l l > . . . > j t , t h e n  

r~-kO ak t ;c ]  iff ~O[h--fl, a - f l ;c ]  tp ~,, , . . . ,  . . . ,  

By the symmetry in (*), we can assume go > jo. As pj o c pk o, claer~y 

~o[~-J ° aJ 1 ~ j t ;c]  iff  ~o [a -k° , a - / l  a - f l ;c ]  

By the definition of  P~o, this implies it suffices to prove 
(**) ifc~ > i >  k 1 > . . .>  kt, a >  i > f l  > ... > ]t, then 

t?(~-, a--k 1 , . - . ,  ~kZ; ~-) E Pi i f f  ~o(~, ~l l  , ..., ~]l;~-) E pi. 

But now by the definition of  A t there is ~ ~ A z and b ~ A such tt, at: 
for every i > i 1 > ... > i t 

~o(x, a "il , ..., f f  il ,  c ) E  Pi i f f  ~ ~-~ [ f f  i l  , ..., ~-il, ¢ , b] 

But by the induction hypothesis 

[=~I][a - k l , . . . , a k l ; c ]  i f f  ~ i  t [ ~ - j l , . . . , ~ ] l ' ~ ] ,  

So Case III follows. 
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Corollary 5.7. f i T  is stable and f o r  every k < a ~ w, pg is the m- type  
a k realizes a v e r A g  - IJ ( Rang ~t  • l < k} u A and for  every ~p, 

Rank~ (Pk I~p) = Rank~ (P0 I¢), and Po c Pk, then { ~ k  • k < a} is an 
indiscernible set  over A. 

Proof. By the previous theorem, it is an indiscernible sequence over A ; 
and by Theorem 5.3A every indiscernible sequence over A is an indis- 
cernible set over A. 

Theorem 5.8. Let  T be stable, and I a set o f  seqz~.ences o f  length m. 

(A) I f X  < IIl ?.s a regular cardinal, n, A are f ini te  IAI < X, then there 

is 11 c L I:~11 >_ 7\ which is A-n-indiscernible set over A. 

(B) I f X  ~ III is regular, ~o + IAI < X, and IBI < X implies !S(B)I < X 
then there is I 1 c [, I11 I >_ X which is an indiscernabh' set over A. 

Remark. Similar theorems with similar proofs are Morley [A] for ~ 0" 
stable theories, Shelah [ B] Th. 3.1 p. 194 for stable theories, Shelah 
[D] Th. 3.1 p. 82 for stable diagrams; and Shelah IF] Th. 2.2. Sowe 
will not repeat the proof. The new part here is (A), which is necessary 
for proving the two-cardina! theorem for stable theories, and for Theo- 
rem 6.7. 

Theorem 5.9. Suppose  ~ ( y  ; x ) = ~o(x ; y ) and q ' (y  ; x ) has not  the in- 
dependence p, and let 

An = { (:1~) Ar<n ~ ( y ; x r ) n ( r ) ' ~ ? E n 2 }  " 

Then there is n = n (~o) < w such that 

(A) i f  { ~ k  • k < a} is a A n-n-indiscernible set, c- a sequence then 

either 

o r  

I { k <  a " ~ o [ ~ k ; F l } l < _ n  

I{k < a • ~ -i~o[~i-k ; ~'-1 } I <_ n. 

(B) i f  { ~ k  • k < a} is a An-n-indiscernible sequence and c- is a se- 

quence, then there are 0 = a o <- a 1 <- ... <_ a n = a such that." 
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i f  i < n, ~i <- k l ,  k2 < ~i+1 then 

~0 [~k 1, ~-1 i f f  ~ ~0 [a -k2", c] 

Remark. In Harnik and Ressayre [B] a similar theorem (1.3) is proved. 
Similar theorems are also 6.13 and Shelah [D] Th. 4.1. The theorems 
were proved independently.  

Proof. (A) As ",IJ (y ; x )  does not have the independence p there is 
n o < w such that 

{ (3)-w) F 

is inconsistent. Let n = n o. 
Now suppose our conclusion is incorrect. Then there are different 

ordinals ko, ..., kn_l,  1o, ..., In_ 1 < a such that 

A ~(Vw ~r)tf(rcw). W C no = ( O, ..., no _ l  } } 
r<no ) 

~ ~ [h-~0; b-l, ..., ~ ¢  [h-kn-~ ; b-l, 

~q~o[h-t°;b-], ..., ~q~o[h --t~-I ;b - I .  

Remembering that (~-k • k < ~} is a An-n-indiscernible set, we can see 
that taking a r for x r for r < n, I" is satisfied. Hence P is consistent, 
contradiction. 

(B) The proof  is essentially the same. 

Definition 5.4. (A) Let I be a A-n-indiscernible set in M (i.e., 

a ~ I ~  a a IMI). Then dim(l, A, n, M) is the first cardinaliW bt such that  
there exists a maximal A-n-indiscernible set 11 , in M, I c 11, I11 I =/~ 
(I 1 being maximal means that  there is no A-n-indiscernible set 12 in M, 

11C12 ,11  ~ i  2). 
(B) Similarly we define dim(/, A, M), dim(l,  n, M), dim(I, M) with 

L-indiscernibility, n-indiscernibility and indiscernibility instead of 
L~-n-indiscernibility; and the same with dim(/, A, < n, M). 
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Theorem 5.10. Suppose T does not  have the independence p, A is finite. 
Then there are natural number n 3 = n3 (~), and a finite A* such that: i f  
11 is a A-n-indiscernible set in M, 12 is a A*-na-indiscernible set in M, 
I11 r~ 121>_ n 3 then 

n 3 [dim(/1 , A, n, M)] , -1  >_ dim(i2 ' A*, n 3 , M) 

(so if  one of  the  d imensions  is infinite then d im(I  I , A, n, M) >- 

d im(I  2 , A*, n 3 , M)). 

Proof. Notice that:  

i f  A 1 , ..., A r, n 1 , ..., n r are finite, r < ~ ,  then  there are finite A, 

n such that  if I is a A-n-indiscernible set, then it is AZ-ni-indiscernible 
set for every i, 1 < i <_ r (by Lemma 5.1C). 

Clearly we can prove the theorem for fixed n, ( remember ing  that  for 

sufficiently large n, every set of  diffi~rent sequences is a A-n-indiscernible 
set). 

Now let A = {~Ok(X*9, ..., ~-n-1 ;~-k) : k < k 0 < co} where 
l(x -0) = ... = l ( x  n-1 ) = m. Define, i~or k < k 0, 0 a pe rmuta t ion  o f n  

~k,O (~'1,  ..., x n - 1 ,  ~'k ; ~0  ) = ~Ok(.~O(O) ' --., ~-0(n- 1) ; y-k ) 

deno te  Uk = ~-1 ..... ,.,~-n-I ,,,~--k, SO ~k,o = Xlrk,o (~-k ; ~-0). 
Now each ~ , 0  (Uk ; ~-0 ) does not  have the independence  p (by Lem- 

ma 4.6, as T does no t  have the  independence  p). So there is 

r = r(k, 0) < co such that  

{(3z-k) lA<r XItk,O(Z-k,xO,') if(l~-w)" w C r = r ( k ,  0)} 

is inconsistent .  Def'me 

n 3 = max{r (k ,  0) + n :k  < k0, 0 a pe rmuta t ion  o f  n} 

A1 = [ (:l~-k) IA<, q~k,o (~-k ;~O,l)if(l~w): W C r = r (k ,  0), 

!." < ko, 0 is a pe rmuta t ion  o f  n / 
J 
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By Lemma 5.1C, and as increasing n 3 does no t  do  any harm, it is 

clearly sufficient to prove: 

i l l  is a A-n-indiscernible set in M, 12 is a A ! -¢< n 3 )-indiscernible 

set in M, I11 n 121 > n 3 then 

n 3 [dim(/1 , A, n, M)] n - l  > dim(i2 ' A1, < n3 ' M) 

By the def in i t ion  o f  d imension we can assume I 1 is a maximal  A-n- 
indiscernible set in M, o f  cardinali ty d im(I  1 , A, n, M), and similarly for 
12. So we shculd  prove only that  n 3 i111 n- l  >_ [I 2 I. 

Now there is an m- type  q over A = 13 { Rang a • a ~ 1: ) such that  c 
realizes q i f f I  l u {c-) is a A-n-indiscernible set. I f  ~o(x, b-)~ q then  

clearly in it appear n - 1 sequences from 11 , hence,  except  n - 1 se- 

quences,  every c-- ~ 11 n 12 satisfies ~ ~o [b-'; b ] .  Hence 

i ( E ~ I 2 " ~ o [ c , b ] } l > _  il I n I2 I - ( n -  1)_> na - ( n -  1). 

By the def ini t ion o f n  3 and A 1 clearly 

w 

I{c E 12 • ~-]~p[c ,  b ] } l <  n 3. 

Now the  n u m b e r  of  formulas ~o(x, y )  appearing in q is <_ IA 11 + 1 

( the + 1 is for the formulas { x ~ c • c ~ I l ))o 
Hence if 

I12 1 > n 3 Iql = n 3 II l t n - l ( IA  11 + 1) = n 4 i l  11 n-I  

then there is a c ' ~  I:., such that  for  every ~o(x, b )  ~ q, ~ ~o[c, b ] ,  and 

hence,  I 1 u ( c}  is a A-n-indiscernible set, and as b-~ 12, c-~ IMI. This 
contradicts  the  choice o f  i I as maximal  a A-n-indiscernible set in M. So 
II 21 <_ n 4 ff I t n - l  h,~nce we prove the t heo rem (as we can replace n 3 by 

n 4 ). 

Theorem 5.11. (A) I f  Thas  not  the independence p and II 1 n I  21 >_ ~0.  

11 , 12 are indiscernible sets, then 

dim( l~ ,  M) + I TI = d im( l~ ,  M) + I TI. 
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(B) I f  T is superstable, II 1 n 121 >_ ~q o then dim (11 , M) = dim (12 , M). 
(C) I f  T is'stable ~ = x (T)  is as defined on 0.AI ;k >_ ~: is regular 

I11 n l  2 I>_ ~0, ' : lim(ll,  M) >- X, then d i m ( I t , M )  = dim(12,M) [if Tis 
superstable, x(T) = N 0 ]- 

Proof. (A) Exactly as the proof  of  the previous theorem. 
(B, C) This follows from 6.13. 

Corollary 5.12. I f  T does not have the independence p, 
/a = dim(/, M) > ITI (or ta ÷ >__ g(T)), then I cannot be extended to a in- 
discernible set in M o f  cardinality > #; i f  la > tZl or la >- X >- ~ ( i )  X is 

regular then every indiscernible set 11 in M, I11 n 11 >_ ~o, can be ex- 
tended to an indiscernible set in M o f  cardinality #. 

Theorem 5.13. (A) Suppose T is stable p ~ s m (  IMI ), B c IMI, and for  

every ~o, Rank~ (pl~o) = Rank2 I(pt~o)lB], and for  every k < a, ~ k  real- 
ize over B k = U{ Rank g l  • l < k} u B the type plB k. Then ~o(x ;c ) ~ p  
implies I { k <  or" ~-I~o[a k ; c  ]}1< No;and {gk  " k < a} isan indiscer- 

nible set over B. 

(B) Clearly always we can f ind  the requiredB; and i f  M is 171 +-satu- 
rated, we can also f ind  suitable g k  for  k < I TI +. 

Proof. (B) is self-evident. 
By Theorem 3.4 we can define ~i k for a <_ k < ot + w such that the 

type ~-k realizes over IMI u I J{ Rank ~-1:1 < k}, which we name Pk 

satisfies: 
(1) for every ~o, Rank~ (pl~o) = Rank~ (Pk I~o). 
(2) p c p.~. 
By Corollary 5.7, (~-k • k < a + co} is an indiscernible set overB. 

By Theorem 5.9, for any ~o(x, a ) ~ p either { k <  a + w" ~ o [ a  k, a-] } is 
finite or {k < a + ~o: ~--I~o[a -k, d]  } is finite. But ~o(x, a ) ~ p c Pk for 
a <--- k <  ot + co, hence I= ~o [a -k, a-]. So { k <  or+w: ~-'l~o[a -k, a-l} is fi- 
nite, and so the conclusion follows. 

. J  

Theorem 5.14. Suppose T is stable. For any finite A there is n = n (A) < co 
such that: for  any p ~ S ~  (IMI) there are sequences ~ k  ~ IMI f o r  k < co 

for  which (o(x, b ) E p implies I{ k < co : ~"Itp [~-k, b-] } I <_ n. 
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Proof. As that of  the previous theorem. 

Theorem 5.15. Suppose  T is stable A is countable, p ~ S ~  (IMI). Then 
there are sequences d k E IMI f o r  k < ~ such that ~ ( x ,  b ) E p implies 

{k < w:  ~ 7 ¢ [ a  -k, b-I} is smaller than n¢ < w.  

Proof. Clear from the proofs of the two previous theorems. 

~1 aeorem 5.16. Suppose T is stable, M is ;k-saturated but  not  X*-saturated, 

X > I TI. Then there is in M a maximal  indiscernible set I = {a k : k < ~}. 

Proof. As M is not  ;C-saturated, it omits a 1-type P0, Ip0 1 <_ ;k, P0 a 
type on IMI. Le tp  E S(IMI), P0 c p. By Theorem 5.13A, 5.13B, there 
are a k ~ IMI, k < ~ such that: 

( i ) I = { a k : k < o~} i,,; an indiscernible set. 
(2) if ~o(x, a ) ~ p, {k < w" ~7~o[a k, a-] } is finite. 
Now we shall show that {ak "k < 6o} cannot be extended in M to an 

indiscernible set of  cardinality X ÷. For suppose { a t : l < X*} J s such a set. 
For every ~o(x, c-) ~ P0, clearly ¢(x, c-') ~ p, hence by the definit ion of  
the a k's  

hence 

hence 

m 

I{ l<  w : M  ~ 7 ¢ [ a  t, c ]}1< ~o 

l { l < o ~ ' M  ~ p [ a  l , c  ]}l = ~ o  

I{ l<  X ÷ :M ~ o [ a  t, c--]}l>_ I,I o 

hence by Theorem 5.9 

I{1< X* :M ~ 7~o[a t, b-]}l < ~o .  

Hence, as Po is not realized in M 

X* = I { l < X ÷ : a I does not  realize P0 } I 

% ~ I{ I<~ ,÷ 'M ~7~o[h - t ,F ]} l<  Ipo l~o<_X 
~o(x, ~-)~po 
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contradiction. So (a t "l < ~} cannot be extended in M to an indiscer- 
nible set of cardinality X ÷. As M is X-saturated, it can be extended in M 
to an indiscernible set of  cardinality X. 

Theorem 5.17. Suppose  T is stable and for  every i < a, Pi is the m- type  

~ i  realize over A i = U { Rang ~-i . / <  i} o A ; Pi c pi f o r  i < L Then 

{~ i  • i < t~} is the union of<_ I TI sets, each o f  them an indiscernible 

set over A. Moreover, there are ai < a f o r  i </3 < IZl ÷ such that: 

i < ] < [3 ~, ~i < a~ and for  every i < (3, I i = (a-/• t~ i <__ ] < %+1 } is an 
indiscernible set over Aa f  

Proof. Take {0t i " i ( fl} = { 7  ' (  Ot " Rank m (P~+I i~o) < Rank m (p~ kp)}. 
Then the theorem follows by 5.6. In fact there is I, I11 <_ I TI, such that 

I i - I is an indiscernible set over Aai u (Aa - ? . a i + l  ) .  

Lemma 5.18. In 5.17, we cannot  ~mprove the bound  on ~. 

ProoL Let L(T) contain the equality, and the equivalence relations E i, 

i </3 + 1. T will consist of axioms saying that i f  i < ], E i refines E i, and 
every equivalence class o f  E i, is the union of infinitely many/]?/-equiva- 
lence classes; and that E 0 has infinitely many equivalence classes. Any 
E~-equivalence class is infinite. Let A be empty, a 0 < a i < ... < % < t~, 
a n d  ai,  i < ot be such that: a i E ,  ai iff a. r <_ i, j. 

Remark. We can define dimension not  only for indiscernible sets, but  
also for types p, provided that:  i f p  is a 1-type over IMI, there is 
q ~ S(M) ,  p c q such that  for every ¢, Rank p!~0 = Rank ql~o. Similarly 
for m-types, and this holds also for fixed types (Def. 6.5) when T is 
superstable. 
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§ 6. Degrees of types, and superstable theories 

We define for every type  a degree, wh~ch is an ordinal or oo such tha t  
(1) eve.ry type  has a f inite sub type  of  the same degree. I f  p c q then  

Deg q <_- D e g p  (Lemma 6.2) 
(2) if  T is stable, T is superstable i ff  every type  has degree < o o  

(Corollary 6.1 0). 
(3) For  every finite type  p, there  is a set A, IAI<__ I TI such tha t :  

p is a type  o n A ,  and i f q  E S ( A ) , p  c q , A  c B, D e g p  = D e g q ,  then  
q has a unique  extens ion  in S(B)  of  the same degree (Corollary 6.8). 

(4) l f p  is a type  on A,  then  it has an extens ion  in S(A)  of  the  same 

degree (Thoerem 6.6). 
We also prove that  if T is stable bu t  no t  superstable,  there  are formu- 

las ~o n (x; ~-n ), n < w, and sequences a-~, r /E  ~>co such tha t  

( 1 ) for every 77 ~ " ~ ,  ( ~o n (x, anl n )" n < w) is consistent .  

(2) for every m, rt ~ row, n < r <  w,  (~Om+t(x, an.<n>),~Om+t(x, and<r>)} 
is inconsistent .  

Defini t ion 6.1. We define when  Deg[~0(x, a )] >_ a holds  by  induc t ion  
o n  ix: 

( 1 ) Deg m [~o(x, a )] >_ 0 iff  ~ ( 3 x )  ~o (x ,  a ); 
(2) Deg m [ 9 ( x ,  a )] >_ 8 iff  for  every a < 8, Deg rn [~o(x, a )] >_ o~ 
(3) Deg m [~o(x, a )] >_ tx + 1, i." there are n < w, formula  # ( x  ; y ) ,  

and sequences ~-t l < I TI ÷ such that :  
(i) ~'or every l <  ITI ÷, Deg[~0(x ,a )  ^ ~(x- ,  h--t)] >_ct 
(ii) for ~very w c ITI +, Iwl >_ n, 

Def ini t ion 6.2. Deg ~' ho(x,  a )] is Ix if it is >_ ~ bu t  no t  >_ Ix + 1. I t  is o o  

i f  for every ~, Deg m [~ (x ,  a )] >_ cz. I f  ~ -1 (3x')~0(x, a ), then  it  is no t  
defined and we shall ignore this case m a n y  times, or t reat  i t  as - 1 .  i f  
m = l(~-) is one, or it is obvious wha t  it  is, we omi t  it. 
(Most o f  the t ime,  except  6.10, it will be tLxed bu t  arbi t rary.)  
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[-emma 6.11 (A) I f  ~ (Vx-)[~(T, ~-) ~ ~I'(x, c )1 then 
Deg~o(x, a ) <_ De g~ (x ,  c ). 

(B) I r a ,  c realize the same type, then Deg¢(x, a ) = Deg¢(x, c ). 
(C) 1f  for  no ~, a, Deg~o(x, a ) = a o, then Deg~(x-, c') >- a o implies 

Deg~(x ,  c ) = ,~o 

(D) There is c o < (2m)  ÷, such that Deg~(x-, c--) >_ a 0 implies 
Deg~(x ,  c ) = oo. 

Proof. (A)- (B)  Immediate; by induction. 
(C) We prove by induction on/3 >_ o~ 0 that Degqs(x, c ) >_ a0 implies 

Deg~(x' ,  c--) >_/3. For/3 = ao, and for/3 a limit ordinal, it is immediate. 
Suppose it holds for/3, and we shall prove for/3 + 1. So let 
3' = DegxI,(x, c ) >- a o. Since for no ~, a- Deg¢(x, a ) = ao, clearly 
3' > a0, or 3, >_ a o + 1. Hence by (3) from Definition 6.1, there are 
n < co, O(x, y )  and b -! 1< ITI ÷ such that: 

(i) for every l <  ITI +, Deg[0 (x-, b -z) ^ ~P(x, c)]  >- a0" 
(ii) for every w c ITl +, Iwl = n, ~ - l ( 3 x ) A t ~  w 0(x,  ~t). 

By the induction hypothesis (i) implies 
(i)' for every l < ITI ÷, Deg[0 (x-, b -t) ^ ~ ( x ,  c )] >_/3. 

Now by Oefinition 6.1 part (3), (i)', (ii) implies Deg qs(x, c ) >-/3 + 1. 
So we prove (C). 

(D) Follows from (B) and (C). 

Definition 6.3. For  an m-type p, Deg m p will be min{ Deg m [ A ~ q  tp] • 
q a finite subtype of p}. 

Lemma 6.2. (A) I f p  = { ¢n (X , a n ) : n < r < ~}  then Degp = 

Deg[An < r~on (x, a n)] .  
(B) Every type p has a f inite subtype o f  the same degree. Hence i f  

i < j < ~ ~ Pi c Pi' Deg P0 = Deg p/, 6 a limit ordinal, then 

Deg[IJi< n Pi] = Deg Po- 
(C) I f p  c q then Deg q <- Deg p. 
(D) I f  every sequence realizing p realizes q then De~i p <-- Deg q. 
(E) Degp = 0 i f f  p is algebraic (Le., p is realized by .:l f inite number o f  

elements). 
(F) fft~ = Degp < oo, n < w, ~ is a formula ~-l, l < ITI ÷ sequences and 

Sh:10



§ 6. Degrees of  types, and superstable theories 349 

f o r e v e r y  w C  ITI ÷, Iwl n, (~p(x,a " l ~  w)  is inconststent ,  then f o r  
at least one l, Deg[p u (¢(x-, ~-t)) ] < ~ (or p u {¢(x,  at ) )  is inconsis- 

tent. 

Proof. hnmedia te .  

Defini t ion 6.4. A type p splits s t rongly over A, if there .is an indiscer- 
nible set over A,  (a  -k • k < 6o} such that  for some ~0, ¢(x-, ~-0) ~ p ,  

"-l~(x, a 1 ) ~ p .  

Lemma 6.3. l f  p splits strongly over A,  Deg(p IA) < o o  then 

Deg p < Deg(p IA ); provided that T has not  the independence p: 

Proof. Let  q = p lA ,  and let us define ~-n = ~ - 2 n ~ - 2 n + l ,  and b -a  

o~ <_ ~ < ITI ÷, such that  {b-~ :c~ < ITI ~) is an indiscernible set ove rA 
(clearly ( b n • n < w} is such a set, so by 5.4A it is possible). Let  
~ ( ~ ,  ~-0, ~-1 ) = ¢(~-, ~-0) A 7 ¢ ( x ,  y 1 ). By 5.9 there is n < 6o such 

that  for every w c ITl+, Iwl = n, { ~ ( x ,  b-=) "a ~ w} is inconsis tent .  So 
by 6.2F, for some a Deg[q u { ~ ( x ,  b~)) ]  < Degq.  As b '" ,  b - °  realize 
the same type  over A, by 6.1A, also Deg[q u { ~(x-,  b-0)} ] < Degq.  By 
6.2D Deg[q u ( ~ ( x ,  a ° ) , - I  ~ (~ ,  a i ))] < Degq.  As q u (~o(~, ~-0), 
"]~p(x, a l ) ) ]  c p, by 6.2C Degp  < Deg~ = Deg(plA) .  So we prove the 

lemma. 

Remark.  Similarly if  p is a type  over A, a n, n < 6o realizes the same 
type over A,  and for some r < 6o, for ew;ry w c co, Iwt >_ r, 
(¢(~-, ~-n) "n ~ w) is inconsis tent ,  then D e g p  > Deg[p  u (~o(x-, a ' ° ) ) i .  
(Assuming, of  course, Degp  < oo.) 

Theorem 6.4. Let  p be a f ini te  m-type,  then the fo l lowing  condi t ions  

are equivalent: 

(A) Degp>_ IT! + 
(B) There are Jbrmulas ~o n (x ; y n ), natural numbers  r n f o r  0 < n < o9 

and sequences a-- n ]'or rl E to>(ITI ÷) such that 

(i) f o r  ever), 71 ~ ~ (I TI*), pn = p u (~o n (x,  a ,~l n ) : 0 < n < w is con- 

sistent. 
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( i i ) f o r  every rl E n(ITl+), n < ~ ,  w c ITI +, lwl ~ rn+ 1 ; 
{SOn+I (x ; an..tt ~) : l E w} is inconsis tent .  

(C) The same  as (B) wi th  r n = 2 f o r  every  n; a n d  f o r  every  n > O, 
~/E n+1(ITI ÷) 

( V x  ) [SOn+! (x, a n) ..', ~% (x , a nl n ) ] . 

(D) Degp = ~*. 

Proof. We shall prove A ~ B, B --> C, C ~ D, and D --> A, and this clearly 
is sufficient. 

Remark. If we are interested only m the equivalence of  A, B, D, then the 
proof  of  B ~ C can be skipped, as from the proof  of  C ~ D, it is clear 
that B -> D. Indeed, C is needed mainly because of  esthetic reasons. 

P r o o f o f A - ~ B .  Let us say that  a type q satisfies ( t~;sol ,r l ;  "sok,rk) 
(k < 60) by a-~ ~'E k>(tTl  ÷) if: 

(a) the degree o f  qn = q u {SOn(X, antn)  " 0 < n <- k} is >__ a for every 
n E k(ITl+). 

(~) for every r/E n(ITl÷), n < k, w c ITI +, Iwl > rn+ 1 the set 

{SOn+I (x ; an.,<t~)" 1 ~ w)  is inconsistent. 
We shall now define by induction on n > 0 so n, r n such that for every 

< I TI ÷, p satisfies (~; SOl, r l  ; " ';  SOn, rn >" Clearly from this, B follows. 
For n = 0 clearly the haduction hypothesis holds. Suppose we have 

d e f i n e d  SOl, r l ,  ..., SOn, rn,  such that  p satisfies (a; SOl, r l  ; -..; SOn, rn > by 
a-a ~" E n> (I TI ÷) for every a < I TI ÷ and we shall define SOn+l, rn+l so 
t h a t p  ~atisfies (a; SOl, r l  ; ...; SOn+l, rn+l ) for every a < ITI+; and so prove 
the induction, hence prove A -~ B. 

Ot L e t q ~  = p  u {sok(x, a nlk)  0 <  k <  l(r/)}. 
Now we shall prove by induction on i, 0 ~ i <_ n that:  

(*) for every a < ITI ÷, r /~  n-i(ITl÷),  there are ~n (x, y ), ~ < o~ such 

that a ~+1 satisfies (a; son-i+1, rn-i+l ; ""; SOn, rn ; ~n'  ~ ) ( i f i  = 0, this is --r/ 

For  i = 0, this follows from Definition 6.1, (3). (remember p is finite, 
and by Lemma 6.2A there is in fact no differences between finite types 

and formulas.) 
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Suppose (*)  holds for i < n, and we shall prove it for i + 1. Let  
7/~ n-/-l(ITl÷).  The number  o f  possible pairs (~o, r), ~o a formula o f  

L (? ) ,  r < co is <_ ITIb~ o = ITI. Hence there a/e ~ ,  r ~,~ such tha t  
÷ " O~ + 

I(1 < ITI . q~n'~t~ = ~° n, ~'<t~ = ~ }1 = ITI . By renaming we can assume 

that  fo," every l < ITl ÷, ~o~^(l ) = ~o~n, r ~  ,l ) = r~.  

Now for every l < I TI* o~+l satisfies (t~; ~On_i+i, rn_i+ 1 ; ...; ~On, r n ; 
_ ' " ~ r l ^ ( l )  

~^~l)'  r%,,, ) by some a (l, r)  r E i+1_> (I TI ÷). Now clearly q~+l sati.,~Ftes 

(a;  ~On_i, rn_i; . . .;  ~On, r n ;~o~, ~ ) by a r r ~- i+2(ITI÷), where a r = 
a [7"(0), ( r (1) ,  ..., r ( i  + 1))].  So we prove (*). 

Now the n u m b e r  of  pairs (~o, r) is <_ I TI, so there are ~on+ 1 , rn+ 1 such 
that  for ITI ÷ ' ~ = a s ~o~ ) ~on+ 1 , ~ )  = rn+ ~ . As t~ </3, implies that:  i f p  satis- 

fies (~; ~o~, r l  ; ...; ~On+l, rn+ ~ ) then  p satisfies (t~:, ~o~, r 1 ; ...;~On+ ~ , rn+ 1 ); 
clearly we end the p roo f  o f  the induc t ion  setp on n. So we prove 
A ~ B .  

Proof  o f  B -~ C. We shall def ine by induc t ion  on k < co formulas  ~n 
and natural numbers  r k >_ 2 such that:  

/2 

(1) for every k, they satisfy the condi t ions  m e n t i o n e d  in B. 
L e t f ( k )  = min{n  :rnk > 2). 
(2) for every k, i f f ( k )  < co then f ( k  + 1) > f ( k )  or l = f ( k )  = f ( k +  ~t), 

and r~:> r/k+l . 
= -k+l (3) i f n  < f ( k )  t h e n ~ n  Wn • 

Ctearly if we succeed in defining them,  ~tnd. def ine ~',, a~ ~n for  large 

enough k ( f ( k )  > n )  then clearly C is satisfied by ~o n = e!.-.'knS0~(x-;y-i). 
It is also clear that  for k = 0 there are such ~o °,  r ° (by B). So it suffices 

to prove, that  if  gCn' rtn are def ined for l < k, 0 < n < 60, tlhen we can 
k+l 0 < n  < 60. define ~n +1 , r n , 

Now we can assume there are a~ r /~  °~>(I TI ÷) such that  (B) is satis- 

fied by ~n '  rng (0 < n < 60) a n ;~:nd 

(iii) i f r / c  '~>(ITI+), i < 6o, l 1 <_12 < < l i <  I T I ÷ , J l  ~ -J2  <- ..- 

<- ]i < ITI* (where  l a = la+ 1 ¢=* j~ =J~+l for a = .~. . . . .  , i - 1) and 
r l ,  ._, r i E w>(I T[ ÷) then the ~.~vo sequences 

a~^( l l )~Zl  ... a~ ( l i ) "~ i  

an", j l )~Z 1 ,q . . . .  • .. ~ (li) ~¢ 
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352 S. Shelah, Stability, the f.c.p., and superstability 

realize the same type over 

A n = U {Rang a--- r " l ( r)  <- l(7/) or rtl(ri) 4: rl; r E ,~>(ITI÷)} 

Remark. (1) We can choose the r 's  as void sequences. Hence in particu- 
lar, <a--n~<t ~ "1 < !TI ÷) is an indiscernible sequence over A n . 

(2) We can assume that (iii) holds, by using Ramsay's theorem, or 
using the following theorem which i.s proved in Shelah [HI .  The theory 
is combinatorical, in fact, generalizing Erd6s, ttajnzl and Rado [B]. 

Theorem. For every n, ] < o~ there is g = g(n, j) < w (an explici t  ex- 

pression can be obtained) such that." Le t  N be a model,  with language 

L1, IL 11 <_ "1 n < :la+g = ]k, and for  every z E n> X there is a sequence 

b-r E INI. Then there is a func t ion  f :  n>(:la ) -'* n>X such that. 

(a) f(< )) = ( ) (/3) l(~) = l [f(ri)] ('r) r = v, ir i f f f ( r )  = f(ri)lr;  (6) i f  we 

aefine a-- r = -bf(r), then (iii) is satisfied, i f  we replaced I Zl ÷ by :I n, and 
rest,qct ourselves to sequence ( o f  ordinal) o f  length < n, and tc~ i <_ ]. 

So we have ~n, rn g ( 0 <  n < ~o) anda-  n, n E -,>(ITI ÷) such that (i) 
-k+l  rk+l  and (ii) from (B) hold, and also (iii). We should define Wn ' n " 

I f f ( k )  = w, clearly C holds. So let f ( k )  < co and r/E fig)-1 (I TI+), 
al~d let 1 n be a sequence of  n ones. Suppose first that 

p* = p U { ~ n ( x ; a n , n ) ' n  < f ( k ) }  u {~p~k)+n(X, a n - l n ) : n <  co} 

is consis.':ent. Then define 

~°~ +1 ='~n for n ~ f(k) 

u { ~ a ) ( x ,  an^<o>)} 

k 

r~ *1 : r ~  for n ~ f ( k )  

rk+l = r~k) 1 (or, in fact, (r~k) + 1)/2) j~k) 

Clearly this definition satisfies our demands. 
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So suppose that  p*  is inconsistent .  Hence it has an inconsis tent  

finite subtype,  which we can assume is 

p l  

Let us define 

353 

= p U  {~o n ( x  ; anl n)" n < f ( k ) }  u {~of(~)+n (x ; a n in )" n < n o } 

u (~r(k)(x ;a~ <0>)}. 

~n +1 = ~ n  for n < f ( k )  

"", i<f(k)+n 0 ~vi ~ , 

~n +I =~n+no for n > f (k )  

rk+l = r~ for n < f (k )  
n 

rk+l = 2 sSk ) 

rk+l = r k for n > f (k)  
n n+n 0 

Clearly this def ini t ion satisfies our demands.  So we end the def ini t ion,  

hence  the p roof  o f  B -+ C. 

w 

Proof  o f  C ~ D. Suppose D e g p  < ~ .  Let ~Pn, rn, an be as in C, and 

Pn = p u {tPn(X, anln)" 0 < n < l(r/)} for every 7/~ t">(ITl÷). A m o n g  
the Pn there is one wi th  minimal  degree qr,  Deg qr = a. Hence for 

e v e o / l  < ITI ÷, Deg(qr  <t>) >- D e g q r  = a. But as every subset o f  
{~o/(~)+1 (x, a r ~/>) "l < ITI ÷} wi th  at least two e lements  is inconsis tent ;  
we get a cont radic t ion  by Lemma 6.2F. 

So Deg p = ~ .  

P r o o f  of  D --, A. As I TI + < ~,, Deg p = ~ implies Deg p >_ I TI+. 

Theo rem 6.5. I f  for some m-type p, Deg p = o0 then T is unstable in 
every X for which X~o > X; hence T is not superstable. 
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Remark. T is superstable iff  it "s stable in every X >- 2 Ir~ 

Proof. By Theorem 6.4, D, C and the compactness theorem, there are 
~On(X, y n) 0 < n < 60, and a n, ~/~ ~>X such that  

(i) for every r /~  ~°X, pn =p u {~%(x, anln)" 0 <  n < w} is consistent. 
(ii) for every 7/~ r - l~ ,  k 4= 1 < ~, (~or(x; a-n~<t)), %(x ;an~:>)} i~ in- 

consistent. 

For every r /~  "X let c n realize Pn, let A = U { Rang a n • 17 ~ "~>X} 
and qn be the type c n realize over A. Clearly 

I s m ( a ) l ~  I(qn "~IE ~°X}l=X ~0, 

I A I ~  X-N 0 =;k .  

By Lemma 2.10 the theorem is proved. 

Theorem 6.6. For any m-type p on A, there is an extension q ~ S m (A ) 
o f  the same degree. 

Proof. Let us first prove that  
(*) for every ~p(x ;a ), a]  = a o r a  2 = a where a = Degp,  
aj. = Deg[p  u {~0(x ;a )}] ot 2 = Deg[p  u {-l~p(x, a )) ]. 

By 6.2 there is a finite p ] c  p such that 

= D e g p l  o~ 1 = Deg[p~ ,J {~p(x ;a )}1 a 2 = Deg[p l  w {-],#(x, a )}1 

and denoting • (x-, b-) = A ~ P l  h0, w e  get 

= Deg xIt (x, b),  a!  = Deg[XI,(x, b)  ^ ~o(x ;a )1, 

t~ 2 = Deg[xI,(x-; b-) A - l~o(x;a)]  

So it suffices to prove by induction on a, that 
(**) i fDegxP(x,  b) >- a, then D e g [ ~ ( x ,  b ) ^  ~o(x;a)] >_ a or 

Deg[ q~(x-; b-) A "-1 ~p(x ; a )] >-- a [as always Deg[ ~ ( x ,  b ) ^ 0 (x, c )] <_ 
Deg xP(x, b)  by 6.1A].  
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Let a = 0, and so by the def in i t ion there is c such that  ~ # [c"; b ] .  
So ei ther  ~ ~ [c ; a ] or  ~ q ~o [c-, a-]. In the first case 

(3x-) [ g, (x ; b ) ^ ~o(x; a-) ] ,  hence a 1 = Deg [ • (x ; b ) A ~o (x ; a )  ] >-- 0 = t~ 
(by Defini t ion 6.1), and similarly if  ~ -1 ~o [c, a ] then a2 >- tL 

So suppose we have proved (**)  for a,  and we shall prove it for tz + 1. 
As Deg ~ ( x ,  b-) >_ t~ + 1 > a, there a r e n  < 6o, O(x, c ~)tx < iTI ÷, such 
that :  . 

(i) for eveq¢ a < ITI +, Deg[ * ( x ,  b )  A 0 (x ,  b-~)] >_ a 
(ii) for every w c ITt +, Iwl >_ n, (O(x ; c ~)" ~ ~ w} is inconsistent .  
By the indus t ion  hypothes is ,  for every./3 < t TI ÷ there is 8 (,~) ~ { 0, 1 } 

such that  Deg[ gt(x,  b )  A O(x, c a) A ~O(X, a )8~] >_ t~. Hence for  

I Tt +/3's 8 ¢~3) = 0, or for I TI +/3's 8 (/3) = 1. So by renaming we can assume 
for every/3/ i  (/3) = 8 (0). So by Defini t ion 6.1 

D e g [ ~ ( x ; b )  A~O(x;a)6(0)] > a + 1. 

So retr~ains the case cx is a l imit  ordinal. But  if (**)  fails, 

'~3 = aaax(czl ,a2) < cx, hence 

D e g [ ~ ( x ,  b) ]  >_a 3 + 1, Deg[xP(x;b)A~O(x;a)]  = 

O~ 1 ( Ot 3 + 1, D e g [ ~ ( x ; b )  A-I~0(x;a )] <-- ~t 2 < 0t 3 + 1. 

Cont radic t ion  to the induct ion  hypothesis .  
So we prove (**)  hence (*). Now let {~oi(x, a i) : i < i 0 } be the list of  

all formulas wi th  parameters  f rom A, and x as variables. We can defihe 
by Laduction 8 ( 0  ~ {0, 1 } for i < i o, such tha t  Degp/+l = Degp i  where  

Pi =P u {¢/(~-, ~-/)8o :j < i}. 

By 6.2B D e g p  = Degp/0,  and clearly p c pi 0 E SIn(A). 

Theorem 6.7. Suppose T is stable, p an m-type and ao = Deg p < ~ .  
Then there are no 9, and ~ m- t ypes  pg k < ITI ÷, contradictory in pairs, 
such that t~ o = Deg(p  t.) p k ) f o r  every k < ITI ÷. 
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Proof. Suppose Theorem ( .7  fails, and {Ptc : k < JTI ÷} is such a set o f  
types. Let A be a set such that  p,  Pk are types on A. By Theorem 6.6 

we can as:rome Pk ~ Sm (A) (by replacing Pk by a suitable extension) .  
By Theorem 2.5 for  every k there is a finite qk C Pk, such that  
Rank~(q  t;) = R a n k ~ ( p k ) ;  and a s p  c p u qk C p U Pk, clearly 

s 0 = Deg(p  u qk). As there are ITI ÷ > b~ 0 qk's, we can, by dropping  
and remaining assume that  for every k < ITI*, Iqkl = no,  
qk = {~o(x.ak,i)n(O : i  < no}, and Rankm (q k) = n 1 . So let ~ ( x ;  b -k  ) = 

A { xI, : xI, ~_ qk }. So c lea rb  Deg [ p u { ~ ( x ;  b -k )} ] = s 0 . Now let ~/c 
realize p ~J Pk- Then clearly it does no t  realize qt for 1 4: k; for other-  
wise 

ql c Pk, ql C Pt, n l  = R a n k ~ q  / = Rank~Pk  = Rank~'Pt 

contradic t ion by 2.5. So for every k, p u { g ' (x  ;cl)ir(t=k): 1 < I TI ÷} is 

consistent,  and of  degree s 0, by 6.2D. 

As T is stable, it has not  the independence  p (by 4.1) so there is 
n 2 < co such that:  there are no ~-0, .... b n2-1 such that  for every 
w C rl 2, (~Jt(x;bn)if(n~w): n < n 2 } is consistent.  

Now by Theorem 5.8 we can assume { c g : Ic < I TI÷} is A-2n 2- 

indiscernible set where  

{ A ~ (x ' yn )~ (n ) ' r lE2n22}  ~, = ( 3 x )  ,, <t(,7) 

Define for k < ITI ÷ 

~t.t*(X;~-k)= ~It(x, ck+n2)A A -]qff(X'C i). 
i <  n 2 

Clearly by 6.2D s 0 = D e g [ p  u { ~ * ( x ; a k ) } ]  On the o ther  hand by 
the def ini t ion o f n  2 and the indiscernibi l i t ;  o f  b--k: k < ITI*}, every 
set o f  n 2 q~* (x;  ~-k )'S is inconsistent.  This is a c mtrad ic t ion  by 6.2F. 

So we prove the theorem.  

Defini t ion 6.5. A m- type  p is fixed, if  for every formula ~o(x, a ), e i ther  

D e g [ p  u {~o(x,a )}]= D e g p  or D e g [ p  u {--I ~o(x, a )}] = Degp.  

but  no t  both.  Hence i f p  is a fixed type on A, it has a unique  ex tens ion  
in S m (A) of  the  same degree. 
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Corollary 6.8. Let  T be superstable. (A) For  every m- type  p there is a set  

A, IAI<_ ITI such that i r a  ~ S m (A ), Degp = Degp  u q, then q is l~xed. 

(B) every m- type  over A has <-- 2 ~rl extensions in S m (A ) o f  the same 

degree. 

(C) l f  p is an m- type  over C, A = {a i : i < I TI} is as in (A), 

A1 = (a i : i  < ITI}, and for  every i] < ... < i n < ITI, (all , ..., ain) , 
<a q , ..., a in > realizes the same type  over C then we can replac6 ~ A by A 1" 

(D) I f  in (A) p is a type over M, M is I TI-saturated, then we can 

choose A c IMI. 

Proof. Im~aediate. 

Theorem 6.9. l f D e g  1 (x = x )  < ~,  T is stable, then T is superstable, i.e. 

for  every A,  IS(A)I <_ Ihl  + 2 ~r~ 

Proof. By Lemma 6.1, every ¢(x;  a ) has degree < ~ ,  hence every 1-type 

has degree < oo. LetA be a set. By Lemma 6.2 every t y p e p  ~. S ( A )  has 
a finite subtype q [p } of  the same degree. Clearly the number of finite 
types on A is <_ IA I + I TI and by Corollary 6.8B, for every finite q 
I{p "p ~- S (A  ), q[p]  = q) l<_ 2 Irl. Hence 

IS(A)I = ~ l ( p ' p ~ S ( A ) ,  q[p]  = q}l% (IAI + ITI)2 ~T~ = 
q 

IAI + 2 ,TI. 

Corollary 6.10. The fo l lowing condit ions are equfvalen t; i f  T is s~:'able: 
(A) Deg 1 (x = x) < 

(B) every m- type  has degree < ITI ÷ (hence < a 0 < ITI ÷) 
(C) T is superstable, i.e. stable in every X >- 2 trj 

(D) Ti s  stable in oneX ,  X ~° > X >_ 2 Irl 
(E) there are n o  ~On (X" y n ) O< n < t.o; a r r E  w> o~ s u c h  that: 

(i) f o r  every ri ~ ~o ~ ,  ( ~¢n (x; a nln ) : O < n < t~} is consistent. 

(ii) for  every r ~ °~> ~o, k < l < ~o; ~o n (x,  a--r,<k>), ~o n (x, ar,<l>) are 
contradictory where n = l(r)  + 1. 
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Proof. A --> C by6 .9 ,  C -~ D trivially; by 6.5 D implies B (noticing that 
by 6.4, Degmp >- ITI ÷ implies Degmp = ~ )  and trivially B --> A. A ~ E 
by 6.4. 

Remark. It can be easily proven that if T has the strict order property, 
then Deg I (x = x) = oo (like the proof  of C --> D in 0.4). 

Lemma 6.11. Suppose  T is superstable, p is an m- type  over A and p is 

f ixed. I r a ,  b realize the same type  over A,  a ,  b ~ B, A c B, 

p c q ~ S m (B), Deg p = Deg q and  ~ is a formula  then 

~ ( x ; a  ) E  q ¢=~ ~ ( x ,  b ) ~  q. 

Proof. By Lemma 6.1B, 6.2A. 

Theorem 6.12. Suppose  Pi is the m- t ype  ~ i  realizes over 

A i = o { Rang ~-1 :] < i}o A for  every i < a >_ i Tt ÷ at~d i < ] < ~ implies 

Pi C p]. Then, assuming T is superstable: 

(A) l f  Po is f ixed,  and D e g p / =  Degp0 f o r  i < ~, then (ai  " i < ~} is 
an indiscernible set  over A.  

(B) i f  f o r  every i < a, Deg Pi = Deg Po, then there is [3 < I TI ÷ such 

that {a-i" [3 <- i < a} is an indiscernible set  over A u i R a n g ~ . : i  < ~3}. 

Proof. (A) The proof  is as the proof  of 5.7, using 6.1 1. 
(B) By 5.17 there is~3< ITI*, such that (~/:/3<_ i <  ITI ÷} is an indis- 

cernible set over.A~. I f ' , / i s  the first such that (~/:/3 <_ i <_ 3'} is not an 
indiscernible set overAa,  then p~ splits strongly over AO (see Definition 
6.4) contradiction by 6.3. [In fact in (B) we can take/3 <_ w.] 

Theorem 6.13. (A) Suppose  T is superstable, { ~ i  • i ~_ I} an indiscernible 

set  over A ,  c- a sequence. Then there is a J~nite ~et I 1 c I such that  

{ ~ i  • i ~ I - I 1 } is an indiscernible set  over A u U { Rang ~ i  : i ~ 11 } u 
Rang c .  

(B) In (A) we can replace superstability by stability, and I11 I < ~o 

by t i l l <  to(T). 

Remark. See Remark to 5.9. 
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Proof. For any J c I let B (J) = A u U { Rang a i" i ~ J}. By LemIna 6.2 

there is finite J~r 1 C I, such that the type p that c reaEzes over B (/) 

satisfies D e g [ b ' l B ( l  1 )] = Degp.  By Lemma 6.3 p does not split strongly 
over B ( I  1 ). If {~-i • i ~ I -  11 } is not an indiscernible Bet, over 
B ( I  1 ) u Rang c there are different s 1 , ..., s n ~ I -  I 1 ,  and different 
t l ,  ..., t n E I -  I l , such that for some ~o 

(*) ~ ¢ [ a  , a S h . c ]  ~-']~0[a -tl, a t n ; c ] .  

Without loss of generality (s 1 . . . .  , s n ) n ( t l ,  ..., t n } = 0 (otherwise we 
take a third set, disjoint to both of them, and replace one of them with 
it, so that (*) still holds). Now it is easy to see that p splits strongly over 
B (I 1 ), contradiction. 

Remark. More refined theorems about degrees will appear, including 
some remarks which were not proven here. See Shelah [N*].  

Ques t i on .  What is the exact relation between the degree here, the rank 
in Shelah [C] (def. 2.1, p. 75), the strong splitting of She!ah [D] def. 
4.1 p. 87 (here 6.3), and the notion suggested naturally from the re- 
mark to Lemma 6.3? (See 6.8B, 6.3, and Shelah [N*] ). 
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