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A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 
BY A REAL WHEN THERE ARE NO SHARPS 

SAHARON SHELAH AND LEE J. STANLEY 

Abstract. Assuming 0' does not exist, we present a combinatorial approach to Jensen's method of 

coding by a real. The forcing uses combinatorial consequences of fine structure (including the Covering 

Lemma, in various guises), but makes no direct appeal to fine structure itself. 

§0. Introduction. In [5], S. Friedman calls the original proof in [1] of the Coding 
Theorem "one of the hardest in all of set theory. The technical considerations are 
extremely elaborate and the proof draws heavily on Jensen's profound fine struc
ture theory." In addition to providing an excellent overview, both of the general 
approach and of the particulars of that proof, [5] presents certain simplifications. 
R. David, [2], [3], and, in subsequent work, Friedman, [7-10], [12], and David, 
[4], have shown how to integrate additional structure into the forcing conditions 
to obtain yet stronger results. In particular, [8] has generalized the coding method 
to coding over ground models where there are measurable cardinals, while pre
serving the measurability of a designated measurable cardinal (in the extension, 
V — L\pL*, R], where R is a real and fi* is a normal measure on K, extending a 
designated normal measure fi of the ground model). Also, ignoring all references 
to measures and mice, pp. 1147-1154 of [8] provide a the skeleton of a highly 
general and concise version of coding over L (obtaining V = L[R], in the extension, 
where R is a real), with no hypotheses on the ground model (other than GCH), 
which is fully developed in [11]. 

Nevertheless, the fundamental features of Jensen's approach remain unchanged: 
the obstacles (which we shall discuss shortly) in the path of a "naive" attempt to 
piece together the "building blocks" of Chapter 1 of [1] are overcome by integrating 
fine-structural considerations into the very definition of the forcing conditions. 
As a result, questions of uniformity, effectiveness, and absoluteness of notions 
involved in "locally defined" approximations to the forcing must be faced. 

Received October 15, 1993. 
The first author's research was partially supported by the U.S. National Science Foundation, by 

the Basic Research Fund of the Israel Academy of Science, and by the Mathematial Sciences Research 
Institute, Berkeley, California. The second author's research was partially supported by NSF grant 
DMS 8806536, by the Mathematical Sciences Research Institute, and by the Reidler Foundation. 

The authors are very grateful to the referee for his rare combination of diligence and patience, as 
well as for many helpful observations. They would also like to thank many colleagues for their interest, 
and the administration and staff of the Mathematical Sciences Research Institute for their hospitality 
during 1989-90. 

This paper is number 340 in the list of Professor Shelah's publications. 

©1995, Association for Symbolic Logic 

0022-4812/95/6001--0001/S04.50 

1 

Sh:340



2 SAHARON SHELAH AND LEE J. STANLEY 

Our approach will be radically different, drawing upon the great simplification 
afforded by the hypothesis of the nonexistence of 0". One of the two main obstacles 
will be overcome by a preliminary forcing. The heart of the proof of Lemma 3 
in [16], which states that this preliminary forcing behaves as needed, involves an 
appeal to the Covering Lemma. 

The other main difficulty is to prove a strategic closure property of the class of 
coding conditions. This will be done in (5.1) below; in (5.2) and (5.3) it is shown 
how this yields distributivity properties of the class of coding conditions. The 
material of §5 (and the material of [17], upon which it draws) appeals to strong 
combinatorial properties of L, developed in [17]. A sketch of the results required 
is presented in (1.2), (1.4), (1.5) below. Here again, the Covering Lemma plays a 
role, this time by guaranteeing that the /.-combinatorics give us a handle on the 
situation in V. 

The obvious downside to our approach is the need for the hypothesis that 0* 
does not exist. The main advantage is that the role of fine structure is "modular": 
it is crystallized in the Covering Lemma itself, and in the L-combinatorics. This is 
quite analogous to the approach that the first author took in his proof of Strong 
Covering (an early version appears as [13], and a revised version will appear in 
[14]). Indeed, in some ways, this paper is an outgrowth of that work. One of the 
first author's motivations for this paper was to develop a family of forcing which is 
closed under certain kinds of iterations. The sort of iteration should be clear from 
(5.3); finer points will be worked out in a forthcoming paper, bearing number 295 
in the first author's list of publications. This allows for a simpler definition of the 
coding conditions, involving the combinatorial apparatus, but making no direct 
reference to fine-structural nor definability notions. It is our hope that nonexperts 
will find this easier to use and to "customize" for particular applications they have 
in mind. 

There are two other drawbacks to our approach. The first is that it seems to 
preclude obtaining sharp definability-type or minimal-degree type of results. In 
fact, this is a rather natural consequence of our seeking a combinatorial forcing, 
intended for use in obtaining combinatorial consequences. We recognize that this is 
a significant departure from the "tradition" created by Jensen's original treatment, 
and that, in the eyes of those steeped in that tradition, the entire approach may 
seem somewhat unattractive. 

The second is a consequence of our treatment of inaccessible cardinals. We 
treat them in a way which is much closer to our treatment of successor cardinals 
than to our treatment of singular cardinals, in that, if /c is inaccessible, then, in 
any condition p, except for fewer than K many a e [K, K+), if a is mentioned 
in p, then p says nothing about a tail of the coding area for a, whereas, if K is 
singular, a £ [K, K+), a is a multiple of K2 (nonmultiples of K2 are treated totally 
differently), and a is mentioned in p, then p says something about a tail of the 
coding area for a. Jensen has informed us that in early, unpublished versions of 
the coding paper (which evolved into [1]), he treated inaccessible cardinals as we 
do, but that he later shifted to treating them in a way similar to his treatment 
of singular cardinals, in order, e.g., to be able to prove the preservation of small 
large cardinals, as in §4.3 of [1]. Thus, though we have not yet investigated the 
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A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 3 

question, our approach may preclude analogues of some of the results there. 
We should point out that this way of dealing with inaccessibles (essentially by 

requiring that the set of cardinals mentioned in a condition is an Easton set) has 
two main uses. The first has to do with dealing with "contamination", see below, 
(2.3), (3.3)-(3.4), and the portion of the "Summary and Introduction" section, 
below, which deals with these items. The second involves the results of [17] and will 
be more fully discussed in (1.3). Apparently, the second use is really an essential 
feature of using ground model scales as the main coding areas at singular cardinals 
(see the discussion leading up to Lemma 5, below), while the need for the first use 
is a result of treating inaccessibles very differently than singulars. 

Recently, S. Friedman has circulated a preprint [A short proof of Jensen's coding 
theorem, assuming not 0#) which draws, in part, on ideas of this paper and [17]. 

Finally, we would like to thank the referee for pointing out that the methods 
of this paper are compatible with the existence of generics, but that, unlike the 
more "classical" coding methods, this requires the techniques of [6]. 

Discussion. The coding theorem we prove is: 
THEOREM 1. If V \= ZFC + GCH + "0" does not exist", then there is a class 

forcing P which preserves ZFC, cofinalities, and GCH, and is such that, in Vp, (there 
is a real r such that "V = L[r]") holds. 

We should immediately point out that the conditions, P = PK2 of §3 add a subset 
Bxi C N3, rather than a real. However, since in the generic extension V = L[B^] 
holds, it is an easy matter to code Bn} into a subset of H2, which, in turn, is coded 
into a subset of Ni, which, finally, is coded into a real, using, e.g., almost disjoint 
coding. It may be necessary to intersperse the forcings of §1.3 of [1] to reshape 
the intervals (N,-, N,+i), for i = 0, 1, but this is not problematical, since when this 
is called for, the subset of K/+I which we already have codes the universe. 

Before embarking on the promised discussion of the obstacles to a naive attempt 
to piecing together the building blocks of [1], Chapter 1 (or some variation on 
them), and how these obstacles are overcome in Lemmas 3 and 5, below, we 
should note that we follow [5] for the general strategy for proving such a coding 
theorem, and especially pp. 1005-1006, middle. In particular, it will suffice, by 
the arguments presented in [5], to prove the four main properties of P presented 
there: Extendability, Distributivity, Factoring, and Chain Condition. The versions 
of these properties which we prove reflect the differences between the detailed 
definition of our P and that considered in [5], but they are sufficiently similar that 
the general arguments for their sufficiency go over to the setting of this paper. 
These properties are proved in (6.1), (5.3), (4.4), and (6.2) respectively. 

The Factoring property states that for all regular 0 > N2, there are P#, P" such 
that P = P# * P8. The Distributivity property states that P^ is (6, oo)-distributive. 
The Chain Condition property states that, in VPe, Pe has the 8+-chain condition. 
The proof of Distributivity in (5.3) is based on a strategic closure property of P^ 
established in (5.1), together with the result of (5.2), which proves that the BAD 
player need not lose the game for "trivial" reasons. Though the proof of (5.1) 
has been rendered rather short and easy, by the introduction of the "very tidy" 
conditions, and the preliminary results of (4.3) and (4.5), in many ways, this result 
is the main lemma of the entire paper. It shows that, by the use of "deactivators" 
and generic scales (in addition to the ground model scales used in setting up the 
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4 SAHARON SHELAH AND LEE J. STANLEY 

main coding apparatus), we can overcome the second of the two main obstacles to 
a naive attempt to piece together the building blocks. We turn now to a discussion 
of these obstacles. 

The first main obstacle simply involves the possibility of coding R C K+ into 
a subset of K, when K is regular. In order to use almost disjoint set coding (or, 
as below, in §§2 and 3, almost inclusion coding, a variant used in [15], (1.3)), 
we seem to need extra properties of the ground model, or of the set R, since, in 
order to carry out the decoding recursion across [K, K + ) , we need, e.g., an almost 
disjoint sequence satisfying: 

for all 9 e (K, «+), {ba\a < 9) £ L[R n 9], 
(*) 

and is "canonically definable" there. 

Such a b is called decodable. It is easy to obtain a decodable b if R satisfies: 

(**) for all 9 E (K, K + ) , (card9)L[Rnf>] = K. 

If (**) holds, we say that R promptly collapses fake cardinals. 
Of course, typically (**) fails, and the "reshaping" conditions of 1.3 of [1], the 

FB of [5], are introduced to obtain (**) in a generic extension. Unfortunately, the 
distributivity argument for the FB seems to require not merely that Hy+ = Ly+[B], 
but that Hy++ = Ly++[B], where B C y+. This will be the case if B is the result of 
coding as far as y+, but that is another story, which leads to the original approach 
to the Coding Theorem. 

Instead, in [16], we showed, assuming GCH and that 0* does not exist: 
PROPOSITION 2. Let K > Ni be a cardinal, let Z c K+W be such that for all 

cardinals X with K < X < K+W, HA = Lx[Z]. Then, there is a cofinality-preserving, 
GCH-preserving forcing S(K) which adds a W C (K, K+) such that Z &L[W, ZC\n] 
and, for all K < 9 < K+, (card 9)L^wn9- z ^ = K. 

Then, starting from A C OR such that HK = LK[A] for all infinite cardinals K, 
and taking S to be the product, with Easton supports, of the S(K) for K = N2 or 
K a limit cardinal, we have: 

LEMMA 3. In Vs there is an A C OR such that, letting A be the class of limit 
cardinals together with ~&2'-

A = {A n H2) U | J { ^ n (K, K,+):K€ A}, 

such that for all infinite cardinals K, HK = LK[A] and such that for K = K2 or K 
inaccessible, for all K<6 < K+, (card 9)L^An0^ = K (for singular K, the last property 
is true with L in place of L[A n 9], by virtue of Covering). 

By virtue of the preceding discussion, we clearly have: 
COROLLARY 4. In Vs, letting A be as in Lemma 3, for all regular K > K2, there 

is a decodable b = (ba\a G (K, K+)) of cofinal almost disjoint subsets of K as above. 
In order to discuss the difficulty in proving the strategic closure properties of 

the Pg, we need to say a bit about the coding apparatus for singular cardinals. 
This material is discussed at somewhat greater length in (1.2) and (2.2)-(2.4), and 
formally presented in (3.4), (3.5), so the reader who finds the present discussion 
insufficiently informative is encouraged to look ahead to these items. 
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A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 5 

If K is singular and K < a < K+, a a multiple of K2, then the main coding area 
for a will be a cofinal subset of K which is the range of a function / * . and / * 
is part of a scale between « and K+ . The domain of / * is a fixed club subset DK 

of the cardinals below a, and for each X e DK, f*(X) is of the form X2z, where z 
is even, 0 < x < X+. If K is a limit of singular cardinals, then the X e DK are all 
singular cardinals, while if n is of the form ju+a>, then the X are all of the form 
NT, T > 1, r odd, where K = HT+a). 

In a condition p in which « is mentioned, an initial segment (K, ^ ( K ) ) of 
ordinals from (K, «+) will be mentioned, and a tail of 1 e DK will be mentioned. 
We shall require that SP(K) is a multiple of K2. I fK<a<<5 p (K) , a a multiple of 
K2, then for a tail of X e DK, f*(X) is mentioned in p (i.e., / * U ) < ^ U ) ) . It is 
natural to expect, and will, in fact, be true in tidy conditions that 

if 8P{K) < a < K+, and a is a multiple of K2, then, on a tail of X e DK, 

f*(X) is not mentioned in p (i.e. SP(X) < f*(X)). 

If (***) failed, then it might be impossible to extend p to a condition which 
mentions a and which "codes correctly" at a, since the portion of p below K may 
have already imposed an unbounded amount of information on the main coding 
area for a. However, (***) is quite hard to maintain when trying to construct 
an upper bound for an increasing sequence of length 9 — cf K of conditions from 

So, rather than require the property, we drop the requirement that p has to code 
correctly at all a. Instead, we allow certain a to be "deactivated", not used for 
coding. We inherit another problem though: how to detect deactivated ordinals. 
For this we are led to introduce two auxiliary coding areas. The first, sa, is simply 
the set of multiples of K between a and a + n2. This area is used for coding an 
ordinal hp{a) > a. The idea is that not only a but all the ordinals in [a, hp(a)) 
will also be deactivated. 

For singular K, we have, associated with each such a, a function aF,a with 
domain DK, and we have that hp{a) is the least y > a such that / * >* ap'a; in 
the notation introduced at the end of this section, hp(a) — s c a l e d " ) . The ap,a 

are the generic scale functions, as opposed to the ground model scale functions 
/ *. We thank the referee for insisting on the point of view that what we are really 
doing is forcing a generic scale, since the ground model scale is not adequate for 
dealing with deactivation. In fact, for singular K, hp(a) is decoded as s c a l e d " ) 
rather than being read directly in sa. For X of the form NT where z > 1 is odd, we 
also have hp(n) for multiples n of X2 which are mentioned in p. Here, however, 
there is no associated function and the hp(a) are directly decoded from sa. 

When a is a limit of multiples of K2, the second auxiliary coding area will be 
a club subset Ca C a. This will be used to help us detect deactivation. The Ca 

will be part of a "square system" between K and K2. 
Returning to (***), we have mentioned that we do require it in tidy conditions, 

and we require something even stronger in very tidy conditions. In (4.3), we show 
that the latter are dense. However, by dropping the requirement (***), we make 
it easier to construct upper bounds which might not be tidy, as we do in (4.5). 
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6 SAHARON SHELAH AND LEE J. STANLEY 

In (1.1), we define games G{8, JV, po), where 8 > Hi is regular, JV is a certain 
kind of sequence (of length 8 + 1) of models, and po G Pg. The two players, 
GOOD and BAD, alternately pick conditions />, € Pg. GOOD plays at nonzero 

even stages, and BAD plays at odd stages. BAD also picks a subsequence of JV 
by choosing an increasing sequence (a{i)\i < 8) from 8; of course, a(i) is chosen 
at stage 2i + 1. We require that the pt are increasing, and that p2t, pu+\ s |^"Q(i)l-

In the cases of interest, JV will satisfy a more technical condition, introduced in 
(1.3), called supercoherence. This will guarantee that at limit stages, we will have 
the hypotheses of (4.5). GOOD wins if she succeeds in playing pg. BAD wins if 
at some even stage j < 8, GOOD has no legal move. 

In (5.1) we prove: 

LEMMA 5. For 8, po as above, and for supercoherent JV, GOOD has a winning 

strategy in G{8, JV, po). 
In (5.2), it is argued (using results [17]) that this gives that Pfl is (8, oo)-

distributive. What is at issue here is whether BAD always loses because of his 
inability to play supercoherent sequences. The results of [17], summarized in (1.4), 
below, show that this is not the case: there are enough supercoherent sequences. 
In (1.4), this is presented as a property of the combined squares and scales system, 
introduced in (1.2). 

Summary and organization. In § 1 we present the coding apparatus for singular 
cardinals and the related results from [17], notably the result about the existence 
of supercoherent sequences. In (1.1) we introduce the model sequences and the 

games G{8, JV, po). In (1.2) we introduce the combinatorial apparatus of squares 
and scales. In (1.3) we introduce the notion of supercoherence. In (1.4) we state 
the main result of [17], presented as an additional property of the combinatorial 
apparatus. In (1.5) we state a small combinatorial result about the system of scales 
which we use in (4.3). The result is clearly closely related to the definition of very 
tidy condition. This is also proved in [17]. 

In §2 we take care of some other preliminaries. In (2.1) we recapitulate some 
of the material of Lemma 3, above, and (1.2), by giving a complete discussion 
of coding areas for various kinds of ordinals. In particular, in (2.1.1) we cite 
an additional result from [17] which shows that, without loss of generality, we 
can assume that the system of bn, for n such that cardn is inaccessible, has an 
additional property called tree-like. In (2.2) we give a preliminary idea of the 
nature of conditions, by introducing the class P(0) of "protoconditions". In (2.3) 
we discuss the phenomenon of "contamination" at limit cardinals, and the devices 
for dealing with it, namely the sets Xy of "candidates" for coding y which are not 
multiples of K. We also introduce the weak deactivator, denoted by ?, and the 
component pp of conditions which provides bounds for contamination. The Xy 

are also useful in the context of the strong deactivator, denoted by !, which we 
discuss in (2.4), along with the generic scales. In (2.5) we give a very brief sketch 
of the decoding procedure, which we complete in (4.6). 

In §3 we give the formal definition of the class of coding conditions. (3.1) 
recalls some notation, terminology and conventions. In (3.2) we define a sub-class 
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A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 7 

P of PQ. These still incorporate none of the sophisticated properties intended to 
deal with contamination and deactivators. In (3.3) we formally define the notions 
associated with contamination, and in (3.4) we cut down P still further by imposing 
five additional properties. The first four of these deal with contamination. The 
last deals with the use of the auxiliary coding areas, sa, and thus foreshadows 
(3.5), where we deal with the strong deactivator ! and the generic scales ap'a, and 
finally define the class of coding conditions by imposing four additional properties 
related to these. In (3.6) we give the (very simple) definition of the partial ordering 
of conditions. 

In §4 we prove some basic lemmas which will greatly facilitate our work in §§5 
and 6. In (4.1) we introduce the tidy and very tidy conditions. We develop some 
of their properties in (4.1) and (4.2), and in (4.3) we prove the crucial result that 
the very tidy conditions are dense. In (4.4) we develop the Factoring property. In 
(4.5) we show that certain increasing sequences have least upper bounds. Taken 
together, (4.3) and (4.5) provide most of the groundwork for (5.1). In (4.6) we 
provide a fully detailed discussion of the decoding procedure, completing the sketch 
of (2.4). 

In §5, we first prove Lemma 5, above, in (5.1). In (5.2), we show that the 
results of [17] really do mean that BAD need not lose for trivial reasons, and that 
this yields the (9, oo)-distributivity of P#. We close with two remarks in (5.3). 
The first has to do with iterations of P#. The second concerns a variant of the 

games G{0, JV, po), which we use in case (c) of (6.1)(7). In (6.1), we establish 
the Extendability properties of P, and in (6.2) we establish the Chain Condition 
property. 

Notation and terminology. Our notation and terminology is intended to be 
standard, or have a clear meaning, e.g., o.t. for order type, card for cardinality. 
A catalogue of possible exceptions follows. Also, the index of notation at the end 
of this section summarizes not just what follows but also some of the important 
definitions and notation introduced in later sections. When forcing, p < q means q 
gives more information. Closed unbounded sets are clubs. The set of limit points 
of a set X of ordinals is denoted by X'. AAB is the symmetric difference of A 
and B, and A \ B is the relative complement of B in A. Notions like =, <, C, 
etc., when decorated with a superscript *, mean "on a tail". For ordinals a < p, 
[a, /?) is the half-open interval {y : a < y < /?}. The notation for the other three 
intervals is clear. It should be clear from context whether the open interval or 
the ordered pair is meant. For ordinals a, /?, we write a » /? to mean that a is 
MUCH greater than /?; the precise sense of how much greater will be clear from 
context. 

For infinite cardinals, K, HK is the set of all sets hereditarily of cardinality < K, 
i.e. those sets x such that if / is the transitive closure of x, then cardt < K. We 
regard w as a successor cardinal, by ignoring the positive finite cardinals. Thus, 
for us, to = 0+. We say that a cardinal K is s-like if it singular or of the form Nr 

where z > 1 is odd, and that it is i-like if is inaccessible or of the form ttT where 
T > 0 is even. For s-like cardinals K we define U(K) to be the set of multiples of K2 

in (K, K+), while for i-like cardinals K we define U{n) to be the set of multiples 
of K in (K, K+). We define E to be the class of ordinals a such that, letting 
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8 SAHARON SHELAH AND LEE J. STANLEY 

K = card a, a G U(K), K is regular and either K is inaccessible or (K is s-like and 
a is an even multiple of K2). 

For models Jl, Sk# denotes the Skolem hull operator for Jl, where the Skolem 
functions are obtained in some reasonable fixed fashion. We often suppress men
tion of the membership relation as a relation of a model, but we usually intend 
that it is one. Thus, (M, A) frequently denotes the same model as (M, G, A). 

When we have a <* -increasing sequence of functions {4>a\a G X), where X is 
a set of ordinals and 0 is a function which is <* one of the <j>a, we let scale(^) 
denote the least a G X such that </> <* 4>a. All other notation is introduced as 
needed (we hope). 

TABLE. Index of Notation 

Symbol 
ba 

r* 
Dk 

SP{K) 

hP(a) 

ap'a 

r 

G(e,jr,p0) 

PW 

Xy 

9 ! 

fipM 

p 

X-^ 

First occurs 

(*), §o 
§0, after 
Corollary 4 

same 

same 

§0, after (***) 

same 

same 

§0, before 
Lemma 5 

§0 in 
"Summary and 
organization" 

same 

same 

same 

same 

(1-3) 

Brief definition 
main coding area for a 

ath scale function in V 

club of K; domain of / * 

sup of ordinals between K 
and K+ mentioned in p 

in cases of interest, right 
endpoint of deactivated 
interval, starting from a 

ath function in generic scale 

club assigned to a by square 
system 

game used in proof of 
distributivity 

class of "protoconditions" 

set of "surrogates" for 
coding y 

weak and strong 
deactivators, respectively 

bound on "contamination" 
between K and K+ in any 
1 > P 

subclass of P(0) 

"characteristic function" 
of JV; XAK) = sup 1̂ 1 n 
[K,K+), when K G \JV\ 

Where defined 

(2.1) 

(1.2)(C) 

(1.2) (A) 

(2.2.1), (2.2.4) 

(3.4), (3.5.2) 

(3.5.1) 

(1.2)(B) 

(1.1) 

(2.2) 

(2.3) 

(2.3), (2.4) 

(2.2), (2.3), 
(3.4) 

(2.2) 

(1.3) 
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TABLE. Index of Notation (continued) 

Symbol 

PX-r 

sn 

Ep 

g" 

P,Po,P" 

vp,a np,a 

7 

Go, G\ 

X = XA 

Prf,PrP 

First Occurs 

(1.3) 

§0, 
after (***) 

(2.2.5) 

(2.2.1) 

(2.2.6) 

(2.4.2) 

(3.5.1) 

(2.5), (4.6) 

(2.5) 

(3.5.1) 

Brief Definition 

"pseudo-characteristic 
function" for JV\ defined for 
certain n <£ \JV\ 

set of multiples of n between 
n and n + K2, where 
cardr] = K 

set of "promises" made by p 

p's contribution to the 
generic function, G 

class of coding conditions, 
and its upper and lower 
factors at regular 6 

functions involved in the 
definition of ap,a 

stongly deactivated points 
in Ca 

intermediate stages in 
decoding G\[K, K+) 

characteristic function of 
the class A C OR 

proprties involved in the 
definition of strong p-
deactivation 

Where Defined 

(1-3) 

(2.1.3) 

(2.2.5) 

(2.2.1), (2.2.4), 
(2.2.5), (3.4), 
(3.5.2) 

(3.5), (4.4) 

(3.5.1) 

(3.5.1) 

(4.6) 

(2.5) 

(3.5.1) 

§1. Singular combinatorics: Results from [17]. 
1.1. Model sequences and the games G{9, J(, po). Let 9 > Hi be regular. Let 

Jl = (Hv+, e, • • •), where v is a singular cardinal, v » 9 and (Hv, e) models a 
sufficiently rich fragment of ZFC. Let a <9 and let {jVi : i < a) be an increasing 
continuous tower of elementary substructures of J(. We say that {jfi\i < <J) is 
(JK, 9)-standard of length a + 1 if, letting Nt := | ^ | , for all / < a, we have 
cardNj =9, 9 + 1 C N0, for / < a, [Ni+{\<e C JV,-+1, and, if i is even, JV{ e A^,+i. 

Let Q be a partial ordering (of course, in §5, Q will be P#, the upper part 
of P at 9). Let X be dense in Q (in §5, below, X will be the dense subclass of 

very tidy conditions, see (4.1) and (4.3)). Let JV = {JV^i < a) be ^-standard 

with each JV1• < J( (in §5, below, JV will be supercoherent (see below)), and let 

qo & Q (:= |Q|) n M (:= \Jf\). The game G(9, JT, Q, X,q0) is denned as 
follows. 
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10 SAHARON SHELAH AND LEE J. STANLEY 

Two players, GOOD and BAD, alternate plays. GOOD plays at positive even 
stages (including limit stages); BAD plays at odd stages. GOOD'S moves are 
conditions, qu e g f l M, where 0 < i < 0. For 0 < i < 8, BAD's move at 
stage 2/ + 1 is a pair, (qn+i, « (0 ) , where q2i+\ G X, q2i < q2i+\, a{i) > 
s\xp{a{j)\j < /'}, q2t, qn+i G Na^y We require that at all stages a < 6 the 
sequence (q( : i < a) is increasing. BAD loses if GOOD succeeds in playing 
qg. GOOD loses if at some stage i < 6, she has no legal move, i.e., there is 
no upper bound to the sequence {qj : j < i). Of course, this can only occur 
if i is a limit ordinal. 

We have already hinted at the difficulty for GOOD at limit stages in the dis
cussion in the Introduction, preceding the statement of Lemma 5. 

1.2. The squares and scales. From [17] (and, for singular cardinals of the form 
KT+m, using Lemma 3 of the Introduction, above, as well), we have the following 
combinatorics for singular cardinals. 

(A) A Square on singular limits of limit cardinals. We have a sequence, (DM : ,u 
is a singular cardinal), where D^ is a club subset of the singular cardinals below 
ju satisfying the following conditions: 

(1) o.t. DM < min D^. 
(2) If X is a limit point of DM, then D;. = DM D X. 
(3) If X G DM is not a limit point of D^, then X is not a limit of limit cardinals. 
(4) Suppose that X G DKi, i = 1,2, and let j t be such that X is the y,th member 

of DKj. Then ; i = j 2 . 
If T is not a successor ordinal, and K = HT+M, conventionally we let DK := 
{KT+„|« is odd, T + n ^ 1}. For such K we set AK := DK. For K which are 
singular limits of limit cardinals we set AK := L K W ^ Dx\X e DK}. 

(B) Squares on (U(K))' n K+, where K is a singular cardinal. For each such K, 

we have a sequence (Ca\a G (U(K))' PI K+) such that each Ca is a club subset of 
the set of even multiples of K2 below a, of order type less than K, and such that 
if /? G Ca but is not a limit point of Ca, then /? is not a limit point of U(K), and 
with the usual coherence property: if /? is a limit point of Ca, then Cp = Ca n fi. 

(C) Scales on (K, K+), where K is a singular cardinal. For such K, we have a 
sequence ( /* : a G U(K)), where dom / * = DK, for A e DK, f*(X) is an even 
multiple of X2, and: 

(1) If K < a < p, a, p G U{K), then / * <* f*s, i.e., for some X0 < K, 
whenever X e DK\ X0, we have /*(A) < fa{X); further, if a G Q , then 
the preceding holds for all X e DK. 

(2) Whenever g is a function with dom g = DK and g(X) < X+ for all Xe DK, 
then g <* / * for some a G £/(/«). 

(3) If K is a singular limit of limit cardinals, X e DK, a G U(K), a1 = f*(X), 
and X' e DRn X, then / * U ' ) = f*a,{X')\ and if K is not a limit of limit 
cardinals and a, P&U{K), X eDK and f*(X) = f*(X), then f*\X = f*p\X. 

(4) For limit points a of C/(K) and A G D K , the set <D(a, A) := {/^(A)|)S G Ca} 
is a final segment of Cf,^)-

Regarding (3), the property given in the second clause follows from the property 
given in the first. Unfortunately, we needed two different clauses, since we do not 
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A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 11 

have any / * where card a is a successor cardinal. However, the property of the 
second clause of (3) in fact allows us to define these according to the following 
convention. Once this is done, in virtue of this definition, we will have the property 
of the first clause of (3) even for K which are not limits of limit cardinals: 

Suppose that X = Kr, where T > 1 is odd. Let K = Kr+cu. Suppose that 
a' — fatt) for s o m e a G U(K). For X' e Ac n X, we define f*,(X') to be 
f*(X'). By the second clause of (3), this does not depend on our choice 
of a. 

Property (4) is the crucial condensation coherence property. It plays an impor
tant role in the proof, in [17], of the existence of supercoherent sequences. We state 
this in (1.4), below, as an additional property of the above combinatorial system 
(A)-(C). Strictly speaking, we never appeal directly to (4), only to the property 
of (1.4), but, when Ca is cofinal in a, we do appeal to the following more obvious 
consequence of (4): 

(4~) On a tail of DK, Q> is cofinal in f*(X). 

We close by stating the decodability property of the above system. As usual, 
A is as given by Lemma 3 of the Introduction. 

(D) Decodability of (A)-(C): For all singular K, DK and the systems {Ca\a < 
K+ is a limit point of £/(«)) and (fa\a € U{K)) are canonically definable in 
L[A n «]. 

The decodability property is an easy consequence of the fact that the systems of 
(B) and (C) are rather simple modifications of systems which are canonically con
structed in L, for singular limits of limit cardinals, and for « which are not limits 
of limit cardinals, in L[A n K], while the system of (A) is a simple modification, 
also given in [17], of a constructible system. 

1.3. Coherence and supercoherence. Let 8 > Kj be regular. Let v > cf v » 8 be 
such that (Hv, e) N a sufficiently rich fragment of ZFC. Let ^£ = (HV+,G, • • •). 
Suppose that JV -< Jt', where cardN = 6 for N :— \JV\, and let K be a cardinal 
with 6 < K, K e N. Let x^(K) = sup(Af n (K, «+)) . 

Recall that an Easton set of ordinals is one which is bounded below any inac
cessible cardinal. For such JV and singular cardinals K with 8 < K < v, we say 
that K is Jf -controlled if there is an Easton set d with K G d e TV. The Easton 
sets we have in mind are those consisting of the sets of cardinals mentioned in 
some condition in N. 

We define p%jr, an analogue of %jr, defined on all singular cardinals K which 
are ^-controlled. The definition makes sense for all cardinals K e [8, v], but 
we will only use it for the singulars which are ^-controlled. If K G N, then 
of course « is ./f-controlled, and in this case PXJ^M := XJ^(K). Otherwise, 
PXA*) •= sup (K+ n Sk#({«} U N)). 

The reason that we only consider controlled K is that one of the results of [17] 
gives an alternative characterization of PXJT{K) which is central in proving the main 
result about the existence of supercoherent sequences (see below). The alternative 
characterization is equivalent only for controlled K. The restriction to such K is 
benign, for our purposes, since it allows us to handle any cardinal mentioned in 
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any condition in JV. This is the essential use, alluded to in the Introduction, just 
prior to the "Discussion" section, of the fact that the set of cardinals mentioned 
in any condition is an Easton set. 

Now, let {JV{\ i < 9) be {JK, 0)-standard of length 0 + 1. For / < 9, let 
Xi = XJTO PXi = PX^r Let JV = JV8 = \J{yy. • , < #} ; a n d i e t x = X(}j px = pXfh 

so dom x = Uldom Xi '•' < #}> and, for K G dom x, X(K) = SUP {Xi(K) '• K e AT/}-
Also, for singular cardinals K G [9, v] which are JV -controlled, 

PxiK) — s^p{pXi(K) '• i < d & K is JV,-controlled}. 

Let K be a singular cardinal, K G dom x- Note that since cf 9 = 9 > a>, there is 
a club D C 9 such that for all i G D, XiM e C-/M- This motivates the following. 

DEFINITION. Let M, 9 be as above, and let (y^| / < 9) be {M, 0)-standard of 
length 9 + 1. Let JV = JV6. Let N, Nj, x, PX> X<> PXi be as above. 

Let K > 9 be a singular cardinal, K G N. (JVI : i < 9) is Jf-coherent at K 
iff, for all limit ordinals S < 9 with K G NS, there is a club DCS such that 
/ / («) G C/(j(K) for all / G Z). {JVJ : i < 9) is M-coherent iff, for all singular 
cardinals K e N \9, {jVt : i < 9) is jf-coherent at K. (JV, : i < 9) is strongly 
A -coherent iff for all i < 9 and all singular cardinals /teJVf, Xi(K) G C*(s)- Finally, 
(yK, : i < 9) is 5i/per ^-coherent iff (yF, : i < 9) is strongly .#-coherent and, for 
all limit ordinals a <9 and all singular cardinals K which are ^-controlled, for 
sufficiently large i < a, we have PXI(K) € CPXa(K)-

1.4. The existence of supercoherent sequences. Here is the statement of the main 
result of [17], which is the crucial additional property of the combinatorial system 
of (1.2). 

LEMMA. Let 9, v, A he as in (1.3). Let C C [Hv+f be club. Then there is a 
super ^-coherent (jVi\i < 9) with each \jVt\ G C. 

1.5. An additional result about the scales. The following small combinatorial 
result concerning the scales of (1.2) is also proved in [17] and will be quite useful 
in (4.3), below. 

PROPOSITION. Let 9 > ^ and let v, J[ be as in (1.4). Let d c [9, v) be an 
Easton set of cardinals, and let y be a function with domain d such that y(/c) < K+, 
for all K G d. Then there is a function y* with domain d such that y*{n) > y(n) 
for all s-like K G d, and such that for all singular K G d, if we let a = y*(n), then 
f* =* y*\DK. Further, if JV -< M with {9 + 1) U {y} C \jV\, then y* G \JV\. 

§2. Preliminaries about conditions. 
2.1. Coding areas for n G (K, K+). We recapitulate here some of what we have 

done in Corollary 4 of the Introduction and (1.2), and provide some insight into 
how the coding will work. First, suppose that rj, K fall under one of the following 
cases. 

(1) K > ^2 is a successor cardinal, n G (K, K+), 
(2) K is inaccessible, r\ G U{K), 
(3) K is a singular cardinal, rj e U(K). 

Then, by Corollary 4 of the Introduction for cases (1) and (2), and by (1.2) 
for case (3), we have associated to n an unbounded subset bn C K. In cases (1) 
and (2), this is the coding area for n. In case (3), it is the main coding area for 
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77, but we also have one, and sometimes two, auxiliary coding areas for 77 as well, 
(see below). 

2.1.1. In case (2), we shall need an additional property of the bn. So, let 5^ := 
{J{U(K)\K is inaccessible}. We say that the system (bn\n e %) is tree-like iff 
whenever 71, 772 &%, if£ &bm nZ>„2, then 6,,, r\£=bn2n£. In [17] we also prove the 
rather simple observation that without loss of generality we can assume that (bn\n e 
'?/) is tree-like and has the following additional property: bn = range gn, where 
gn is a funtion, dom gn — {KT|KT < cardrj & Nr is an i-like successor cardinal}; 
further, for all £, e bn, <J is a multiple of 4 but not of 8. 

In case (1), if K = ju+, it is easy to see that we can, without loss of generality, 
assume that the bn have the following additional properties: bn n n = 0 and the 
members of bn are even ordinals but not multiples of 4; further, if ju is s-like, then 
the members of bn are never of the form a + 2, where a £ E. 

2.1.2. In case (3), (1.2) already gives us bn which have the following properties. 
Once again, the bn are ranges of functions / * with domain DK. Case (3) subdivides 
according to whether K is a limit of singular cardinals, or of the form HT+OJ. In the 
first subcase, DK is a club subset of singular cardinals below K, whose order-type 
is less than its least element. In the second subcase, DK is the set of KT such that 
r > 1 is odd and such that K = Kr+C0. In both subcases of case (3), the f*(X) are 
even multiples of X2, i.e., they are of the form X2i, where z > 0 is even. 

2.1.3. Recall that a cardinal K is s-like if K is singular or K = HT, where x > 1 
and r is odd. If K is s-like and 77 £ U(K), we set sn := the set of multiples of n in 
(77, 77 + K2); sn is an auxiliary coding area for 77 discussed in in the Introduction, 
above, and at greater length in (2.4), (3.4)(E), and (3.5), below. Finally, if K is 
singular and 77 e (U(«))', we have an additional auxiliary coding area for 77, namely 
Cn, from (1.2) (and so also, implicitly, all of the sa for a e Cn). This will be used 
for detecting deactivation of 77 in a way that is rather important for the limit case 
of GOOD's winning strategy in the game of (1.1), and for determining ap'n. This 
will also be discussed more fully in (2.4), below. It should be noted that, unlike 
the previous coding areas, which are essentially unique to 77, this last is not, since 
if a € (Cn)' then this coding area for a is an initial segment of this coding area 
for 77, and if 77 e (Ca)' then this coding area for 77 is a subset of this coding area 
for a. 

It is worth recalling that if K is a limit of singular cardinals and X G DK is not 
a limit point of DK, then X is not a limit of singular cardinals, while if X is a limit 
point of DK thenD,; =DKnX. It is also worth recalling (3) of (1.2), and the related 
convention whereby we regard / * as defined when v = f*(X), a e U((card v)+0J), 
and card v is s-like but regular. 

2.1.4. For regular K and 77 as in (1) or (2), above, bn will be used for coding 77 
as follows. If, on a tail of bn, we read value 1, then we will decode value 1 for 77. 
Any condition will mention at most a bounded subset of bn, so we will guarantee 
a tail of l's on bn by making "promises" of the form (77, £), where £ < K. Such 
a pair is a promise to have value 1 at all members of bn above £,. By a density 
argument, (6.1) (2), except when K is inaccessible and 77 in a bounded subset of 
U(K) (the bound is PP(K), see (2.2), (2.3)), we will have made such a promise 
whenever 77 gets value 1. 
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If K is a successor cardinal, and we do not have value 1 on a tail of bn, then 
we will have value 0 on an unbounded subset of bn. This is also by a density 
argument, (6.1) (5). We then decode value 0 for n. This will essentially be the 
procedure when K is inaccessible, again, except for a bounded subset of U{K). 
The situation regarding the n in the bounded set will be discussed more fully in 
(2.3), and (3.3), (3.4). 

2.1.5. For singular cardinals K, and n as in case (3), the situation is more 
complicated. Here, any condition which mentions n will mention a tail of bn. 
In the simplest situation, we will have an i G {0, 1} and a tail of bn on which we 
have value i. It is natural to expect that when this occurs, we will decode value 
;' for n. However, it could still occur that n is deactivated, and that we therefore 
decode value !, or sometimes value ? for n. We discuss this in (2.4) and (3.3) -
(3.5). If there is no such tail, then we will decode either value ? or value ! for n. 
Again this will be discussed more fully in (2.3) and (3.3)—(3.5). 

2.2. Protoconditions. We define P(0), the class of "protoconditions". 
DEFINITION, p G P(0) iff p = (g, ft S) = (g<>, flP, E(p)), and (2.2.1)-(2.2.5), 

below, hold; g is the "main component", the approximation to the class function 
G which we are seeking to add (and code down to a subset of N3). 

2.2.1. There is an Easton set d — dp of cardinals > K2, and a function 3 — 5P 

with dom 8 = d such that K < 8(K) < K+ for all K e d, and we will have 
g : dom g —> {0, 1, ?, !}, with dom g = \J{(K, S(K))\K G d}. In addition, d 
will have the following property: for singular cardinals K G d, there is a tail of 
DK C d. In addition to the usual characters, 0, 1, we have the strong deactivator 
! and the weak deactivator ?, whose roles will be discussed in (2.3), (2.4), (3.4), 
and (3.5). 

2.2.2. g(a) G {0, 1} unless K is singular and a G U{K). However, we have a 
convention for systematic abuse of notation for certain a. 

2.2.3. Recall that a G E iff (letting K — card a) K > Kj is regular, a G U(K), and 
either K is inaccessible or K is s-like and a is an even multiple of K2. In either case, 
for / = 0, 1, we take "g{a) = i" as an abbreviation for (g{a), g{a + 2)) = (0, i), 
and we take "g(a) = ?", as an abbreviation for {g{a), g{a + 2)) = (1, 0). In the 
second case only, we take "g(a) — !" as an abbreviation for (g(a), g(a + 2)) = 
(1, 1); thus it is our intent that we can have "g(a) = ?" for any a e E, but that 
we have "g{a) = !" only for those a e E whose cardinalities are s-like. 

2.2.4. /? is a function with dom fS = d, such that K < /?(K) < S(K) for K e d. 
For successor cardinals K G d we have JS(K) = K + 1. The role of /?(«) for limit 
cardinals will be made clearer in (2.3) when we discuss "contamination". For now, 
we will just say that /?(«) is a bound on the contamination in (K, K + ) , not only 
in p, but in all stronger conditions q. For cardinals / t e d which are either s-like 
or inaccessible, we will have that 5{K),/3(K) G U(K), and if K is inaccessible, we 
will have that /?(K) > K2. 

2.2.5. Finally, S is the system of "promises" which we discussed in (2.1), above. 
S is a set of ordered pairs (a, £) such that g(a) = 1, card a is regular, N2 < £ < 
card a and if card a is inaccessible then a > ft (card a) and a G U (card a).) We 
shall also require that if card a — X+ then <J > X. Let W(p) = dom E(p). We let 
R(P) •= \J{(ba\$)\(a,S) G E(p)}. We then require g(0 = 1 for all £ G R(p); 
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thus (a, E) e S is the "promise" to put all l's in ba from £, on. 
2.2.6. In §3 we will build to the definition of P, by imposing additional restric

tions on the protoconditions. If 8 > K2 and 6 is regular, then we shall define Pg 
in (4.4). It is only slightly inaccurate, and not at all misleading, at this point, to 
say that the main idea is that d C\0 = 0. The real point is that Pg is the class of 
conditions for coding down to a subset of 9+. 

The partial ordering of protoconditions is defined in the most obvious way: 
P < 9 iff gp Q gq> Pp Q Pq') and E(p) C E(q). This is identical to the definition 
of the partial ordering of conditions, in §3. 

2.3. Xy, "Contamination", /?(«), and the deactivator ?. In (2.1), no coding areas 
were defined for y such that K = card y is a limit cardinal and y is not a multiple of 
K. Strictly speaking, for singular « and a which are multiples of K but which are 
not in U(K), there was also no coding area defined, but, except for the multiples 
of K e [«, K2), these ordinals are in J7 , where rj is the largest member of U(K) 
below a. The multiples of K in [K, K2) are simply ignored. 

This is because such ordinals y are not coded directly. Instead, each such y 
has a set Xy of "surrogates" for coding y. Each of the surrogates a will have a 
coding area ba associated with it. X7 will have size K+, so we have many "tries" 
at coding y correctly. When « is singular, this is not entirely unexpected, since 
possibly some of the surrogates have been deactivated with the strong deactivator, 
!, as in the discussion in the Introduction leading up to Lemma 5. Here we discuss 
the weak deactivator, ?, and the phenomenon of "contamination" which is one of 
the contexts in which it arises. The reasons for calling ? weak and ! strong are 
discussed at the beginning of (2.4) and in (2.3.5), below, where we also discuss 
another context in which ? arises, for singular K. Before doing this, we present 
the Xy. 

2.3.1. For limit cardinals K and a e («, K+) which are not multiples of K, 
we have sets Xa e [U(K)]K+ . If K is singular, the ^ e l „ are all odd multiples 
of K2, i.e., of the form £ = K2I, where / is odd. If K is singular, the system 
(Xa : a € («, K + ) , a ^ 0 ( mod «)) £ L, while if « is inaccessible, each 
Xa = Xar\K+, where the Xa are classes of ordinals and the relation "£ e Xa" is 
canonically 21-definable over L. When K is inaccessible, we shall also require the 
following property of the Xy: 

(*) If K < y < C < K+ and f is a cardinal in L, then £ = sup(A^ n £). 

Finally, for inaccessible «, we take the Xy to partition U{K), while if K is 
singular, we take the Xy to partition the set of odd multiples of K2 in (K, K+). 

2.3.2. "Contamination" is most easily understood in the context of inaccessible 
K. For such K and a e £/(«), it can occur that, for some inaccessible K' > K 
and some a' G U(K'), ba n ba> is unbounded in K. Further, it could also occur 
that gp{a') = 1 in some condition p, and in fact that (a', £) e a{p) for some 
E, < K. This will prevent us either from having gp{a) = 0 or from coding this 
correctly. When, for other reasons, we are required to have gp(a) = 0, a is said 
to be "contaminated" (by a') in p. We cannot prevent such contamination, but 
we will define conditions in such a way (see (3.2)(A), below) that 

(*) Fewer than K many a € (K, K + ) are contaminated. 
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Typically, contamination occurs here because K was added to dp after the promise 
(a1, £,) had already been made. 

2.3.3. When K is singular, we shall also have the phenomenon of contaminated 
ordinals. It may occur, for singular K and conditions p with K £dp, that for some 
£, G U{K) C\5P(K), one of the following holds: 

(1) There are x\ ^ xj and cofinal subsets Y\, Yi of b^ such that for i — 1, 2 
and C e Yi we have gp{0 = x{, 

(2) ;' G {0, 1}, and for other reasons we are required to have gp{£) = i, but 
on a cofinal set of £ G b^, we have gp{£) = 1 - i (see (3.3) below, the 
definition of "forced to be z", for what these "other reasons" are). 

If gH{£) — !, then £ will be deactivated anyway. If, however, this fails, then £ is 
contaminated in q. Once again, contamination will occur only for a bounded set of 
£, though here this is a simple observation which does not require a special property 
of the conditions, as in the inaccessible case. Here again, typically, contamination 
arises due to the fact that an unbounded set of information below K was part of 
a condition before K was mentioned. 

In both the inaccessible and the singular case, 0P(K) is the supremum of the 
contaminated ordinals £, G (K, K + ) (see (3.4)(C)). Once pp(n) has been specified 
in a condition, no further contamination is allowed in any stronger condition q, 
since /??(K) = PP{K). In both the inaccessible and the singular case, we require 
(see (3.4)(B)), that if a is contaminated then gp{a) = ?. 

2.3.4. We can now specify how the a e Xy are used to code y. If y G dom gp, 
then we will have gp{y) G {0, 1}. In the inaccessible case, we will have that if 
a G Xy\p

p(K,), then gp(a) — gp{y) (see (3.4)(A), and one clause of the definition 
of "forced to be z"). In the singular case, things are somewhat more complicated, 
since even for a e Xy\ (IP(K), we can have gp(a) G {?, !}. However, as part of 
the definition of condition (3.4)(A), again, we will have that gp(a) •£ 1 - gp{y) 
for such a. We will show, by a density argument (see (6.1)(4)), that when JF is 
generic and G is the union of the gp for p G JF, there will be a cofinal set of 
a € Xy such that G(a) = G(y). Thus, in decoding, there is a common definition: 
decode for y the unique value i G {0, 1} such that we have value / on a cofinal 
subset of Xy. 

2.3.5. To conclude, we should mention the other way the weak deactivator ?, can 
occur. For singular K, in addition to occurring at contaminated a, it can occur at 
other a G U{K), but only if on a tail of ba the value ? occurs. The reason for this 
has to do with the density argument we just mentioned. As will become clearer 
in (2.4), the strong deactivator at a can contribute to deactivating larger ordinals. 
This is not the case for the weak deactivator ?. Thus, the weak deactivator ? can 
play the role of "safe, neutral filler", and does not present the "potential danger" 
of forcing us to deactivate ordinals we want to preserve as "active", to get value 
in {0, 1}, such as the cofinally many a G Xy we need for the preceding. 

2.4. The strong deactivator ! and the generic scales. Suppose that K is singular 
and a G U(K). We have already mentioned most of the elements of this discussion: 

(1) When gp(a) = !, not only a, but also all members of U{K) in the open 
interval (a, hp{a)) are deactivated (if gp{a) = ! and hp{a) = a, a 
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itself is still deactivated); this is one of the senses in which ! is the strong 
deactivator. 

(2) hp{a) = scale(V-Q). 
(3) If gp(a) = ! this can contribute to making gp(v) = !, for certain larger 

v e U(K); this is the other sense in which ! is the strong deactivator. 
(4) When a is a limit point of U(K), Ca is an additional, auxiliary coding 

area used for detecting strong deactivation. 
(5) Detecting strong deactivation and lengths of deactivated intervals (by (2), 

above, this amounts to the same thing as decoding the ap'a) is one of our 
major preoccupations. 

2.4.1. We now put these elements together and lay the groundwork for (3.5), 
omitting, for now, some of the finer points related to certain v > SP(K) for which 
ap,v will nevertheless be defined. We should say, at the outset, that ap-a will be 
defined whether or not we end up having gp(a) = !, but that this is just for 
convenience, since the only case in which it has any significance is when this occurs; 
when gp{a) / !, we ignore ap'a and take hp(a) to be a. As we have already 
mentioned, we are grateful to the referee for emphasizing the point of view that 
the ap'a are really potential members of generic scales which we are forcing as we 
do the coding. In almost all cases, we will have ap,a >* / * ; the exceptions are 
discussed in (3.5) and (3.6). 

2.4.2. We will have two other functions, op'a and np,a, and, in most cases, for 
k&DKC\dp, we takee r^U) := max(vp-a{2.), np>a{k)). Looking at vp-a amounts 
to considering what happens "from below", on ba. Looking at np,a amounts to 
considering what happens "to the left", on Ca. These are two of the ways in which 
a could be strongly deactivated, and are two of the places we have to look to detect 
strong deactivation. 

2.4.3. Before developing this, however, there is a third way in which a can be 
strongly deactivated, and we deal with this first, since it is simplest, and directly 
related to (1), above, a is /j-interval-strongly-deactivated if it is in a deactivated 
interval (v, hp{v)) for some f}p{n) < v < a. When this occurs, we take v least 
possible and set ap'a := ap-v, without considering the op'a and np'a. Thus, when 
a is />-interval-stronly-deactivated, "only this counts", even if it turns out that 
it is also deactivated in one of the two other ways we now discuss. In terms of 
Lemma 4.3, this corresponds to the a between S and the t%(«) of (4.2), and, 
roughly speaking, to limit stages of GOOD's winning strategy. 

2.4.4. a is />-strongly deactivated on ba ("from below") iff on a tail of £ £ ba we 
have gp{£,) — !. Typically, this occurs when a did not have to be deactivated, when 
we are strongly deactivating a intentionally, to be sure that we are able to strongly 
deactivate other, larger, a, which will be more problematical; see the discusssion 
of (*) in the Introduction. This corresponds to some of the work in (4.3) (beyond 
the ?2 («) of (4.3)) and all of the work of (6.1), and, roughly speaking, to successor 
stages in GOOD's winning strategy. 

2.4.5. a is /^-strongly deactivated on Ca iff it is a limit point of U(K) and on 
a cofinal subset of v e Ca we have gp(v) — !. Typically, this occurs in situations 
where we really needed to deactivate a and we are happy to find that we prepared 
for this by strongly deactivating enough members of Ca. This corresponds to the 
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portion of the work in (4.3) dealing with SP(K) and to the situation of a — S(K) 
in (4.5), and, roughly speaking, to limit stages in GOOD'S winning strategy. 

2.4.6. It remains only to give the main idea of the definitions of the up'a and the 
np'a (there are some fine points which can be deferred until the official definition 
in (3.5)). The main idea for the Dp-a{X) is that this should be hp{f*a{k)). The fine 
points arise when /*(A) > 5P{X). The main idea for the np'a(k) is that this should 
be sup {ap'v{X)\v e Ca}. The fine points arise because we want this supremum 
t o b e > / * U ) , but <8P{X). 

2.5. Overview of the decoding procedure. Let x = XA be the (class) characteristic 
function of A. Our forcing will produce a generic class function G with domain 
C OR and range C {0, 1, ?, !}. We will code A into G on odd ordinals, i.e., for 
nonsuccessor ordinals 5 and n < co we shall have G(S + In + 1) = x(S + n). 

Of course, we want to recover G from G\^ by decoding. This is done by recur
sion on cardinals K. The basic recursion step is to go from G \K to G \ (K, K+), when 
K e card. This will involve a nested recursion across (K, K+). The procedure for 
obtaining G | (K, K+) from G\K will be uniform within each of the following classes 
of cardinals: inaccessibles, singulars, and successors. Thus, at limit cardinals n, 
we can piece together G\ju from the G\K, K< JU, and continue. The recursion step 
for successor cardinals is provided by (2.1.4). As noted there, for inaccessibles, 
this also essentially gives the way we obtain G0, which we now discuss. 

For limit cardinals K, it will simplify matters if, in decoding G\(K, K+), we 
have available not only G\K, but also an auxiliary function G0, which represents 
the first stage in defining G\(K, K+). The role of Go can best be understood by 
discussing the broad outline of how we finally obtain G\(K, K+). For inaccessible 
cardinals, this is a"two-pass" process. For singular cardinals, it is a "three-pass" 
process. 

The first pass involves decoding the information provided by G \K on bn without 
regard to the analogous information for the v e (K, n). Go represents the outcome 
of this "first pass". For inaccessibles, even this first pass involves a recursion, 
since we have to decode the bn as we go. For singulars, however, there is no 
recursion involved in the first pass, but there definitely is a recursion involved in 
the second pass for singulars, where we deal with the strong deactivator ! and the 
generic scales. The second pass for inaccessibles and the third pass for singulars 
are analogous in that this is where we deal with contamination, and define G on 
the nonmultiples of K e {K, K+). 

§3. The coding conditions: definitions. We build to the definition of the class 
P of coding conditions in (3.5)—(3.6). In our original treatment we had stronger 
properties, which appear below as (4.1)(A) and (B+), in place of (3.5) (C) and (D). 
The latter are technical weakenings of the properties of (4.1), which are designed to 
allow us to prove, in (4.3), that the very tidy conditions, those with the properties 
of (4.1), are dense. 

3.1. We recall some terminology and conventions from the Introduction and 
(2.2). A cardinal K is s-like if it is singular or of the form HT, with r > 1 and 
odd. Next, let K be a regular uncountable cardinal and let a 6 (K, K+). Recall 
that a G E if a € U(K) and either K is inaccessible or K is s-like. Formally, for 
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conditions p and a € £ we shall have gp{a) e {0,1}, but recall the convention 
from (2.2.3) involving the use of a + 2 as an "extra bit" for a £ E. Naturally, we 
have taken care not to assign any other "coding duties" to the a + 2 when a £ E. 

DEFINITION 3.2. Suppose p = (g,/?,E) = (gp,pp,Z{p)) e i>(0), where P(0) is 
as in (2.2). Then p £ P iff the following properties, (A) and (B) are satisfied. 

(A) For all regular K', there are fewer than «' many a such that (a, E) £ a{p) 
for some £, < K (note: «' need not be a member of d). 

(B) If a £ dom gp, K = card a is singular, and a is a multiple of K2, then 
(1) f*<*Sp\DK, 
(2) if gP{a) £ {0,1}, then, on a tail of ba, gp(£) = gp{a), 
(3) if PP(K) < a and gp(a) = ?, then, on a tail of ba, gp(0 = ?. 

3.3. Suppose p e P. First, consider a such that K = card a is a limit cardinal, 
and suppose that a £ Xy. We say that gp(a) is forced to be 0 (resp. 1) if ^ ( y ) = 0 
(resp. 1). We also say that gp(a) is forced to be 1 if a £ Xy for some y £ R{p). 
Finally, drop the restriction on K. If a = 2a' + 1, then we say that gp(a) is forced 
to be 0 (resp. 1) if a' g A (resp. a' £ A). 

If K = card a is inaccessible and a is a multiple of K, then a is contaminated 
by x if T 6 W(/>), (T, £,) £ 3(/>) for some £ < K, 6r n ba is cofinal in «, and 
gp(a) is forced to be 0; a is contaminated iff for some T it is contaminated by T. 
Because the system of fca is tree-like for a € ^ (see (2.1.1)), it is easy to see that 
any x e W{p) contaminates at most one a 6 (K,K+). Therefore, (3.2)(A) says 
that there are fewer than K many a e («, K + ) which are contaminated. 

If K = card a is singular and a^ n I>K is cofinal in K, then a is contaminated 
iff a is a multiple of K2, gp(a) ^ !, and one of the following holds: 

(1) There are x\ / x2 and cofinal subsets Y\, Y2 C ba ndom gp such that 
gP(Z)=Xi forte Yt. 

(2) gp(a) is forced to be 0 (resp. 1), but on a cofinal subset of ba ndom gp 

we have gp(0 = 1 (resp. 0). 
Here, it is easy to see that at most K many a e (K, K+) are contaminated, since 

if a > scale(Sp\DK) then a cannot be contaminated. Also, note that a which are 
contaminated because of (2) are odd multiples of K1, since they are members of 
some Xy. 

DEFINITION 3.4. If p e P, then p e P* iff the following properties (A)-(E) 
hold. 

(A) If gp{a) is forced to be i and gp{a) € {0,1}, then gp(a) = i, 
(B) If a € dom gp and a is contaminated, then gp(a) = ?, 
(C) For limit K e d, PP{K) = sup {a e (K,K+) |a is contaminated}, 
(D) If K £ dp and K is inaccessible, we also define ySf (K) := sup {a £ 

(K,K2)\a is contaminated} and we require: 
(1) gp[pp + KCO) = 0, and gp(ySf + KG) = 1 for all limit ordinals a < K, 
(2) gp\(PP + KCO, K2) codes a well-ordering of K in type PP(K) on odd 

successor multiples of K in (ySf (K) + KGJ, /C2), and codes ADPP(K) 

on even successor multiples of K in (PP(K) + KCO, K2). 

(E) Suppose K £ d is s-like. Suppose that /^(/e) < a < SP(K), with a 
a multiple of K2. Let T( , ) denote the Godel pairing function. Let 
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H"(a) := {(£, 0 G re x #s|g'(a + re(l + r(& £))) - 1}- We then 
require that Hp{a) is a well-ordering of a subset of re which lies in 
L[A n re], and, if re is singular, we also require that it is the <L[A^K] -least 
well-ordering of a subset of re in its order type. 

We let hp(a) := the least multiple of re2 > the order type of Hp(a). 
We further require: 
(1) hp(a) >a. 
(2) If re is singular, fip(re) < fi < a, and /? is a multiple of re2, then 

/^ (a ) > hp{p), and if /^(y?) > a, then ^ ( a ) = hp{p). 
(3) If g p (a ) ^ !, then we require that hp{a) has the smallest value 

consistent with (1) and (2) (which, it will be easy to see from 
(3.5)(A), will be a). 

3.5. 
DEFINITION 3.5.1. Fix p e P* and singular re e dp. Suppose a € U(K) \PP(K). 

We are mainly interested in the case where a < SP(K), but it will be useful to 
have the definition in the more general context. This results in somewhat more 
complicated definitions; we will also give the simpler definitions that result when 
we restrict to a < SP(K). 

Let g = gp, h = hp, f = / * , 0 = PP(K). We first define the additional 
functions vp-a, np'a, op>a, with domain DKndp. 

First, for X e dom vp-a, if /(A) e dom g, we set op'a{l) = hp(f{X)); otherwise, 
vp,a{X) = dp(X). Note that if a € dom g, then on a tail of A e D« n d we have 
o^Q(A) = hp(f(X)) > /(A). Thus, if it is nor the case that / <* u'7'0, then a > 3P(K) 
and there is no tail of ba C dom g. 

We now define np'a, ap,a by simultaneous recursion on a; at the same time 
we define three properties, Prf, Pr2

p, Prj7, by recursion on a when Pr/^a) holds. 
We use Prp(o;) as an abbreviation for ~Pr[(a) or Pr2

/'(Q:) or Pr3
/,(a). We say that 

a is p-interval-strongly deactivated iff a < 8P{K) and Pr/ ,(a) holds. We say that 
a is p-strongly deactivated on ba iff a < <5/'(re) and Pr2

/'(Q;) holds. Finally, we 
say that a is p-strongly deactivated on Ca iff a < 3P(K) and Pr3

/'(Q;) holds. We 
say that a is p-strongly deactivated iff it is /^-strongly deactivated on 6a or it is 
/>-interval-strongly deactivated or it is ^-strongly deactivated on Ca. Thus, a is 
/^-strongly deactivated iff a < SP(K) and Frp(a) holds. 

We now turn to the recursive definition of the two above-mentioned functions, 
and the three properties. Prf(a) holds just in case there is v e U(K) n [/?, a), 
such that Prp(v) holds and scale(cr/''v) > a. If Pr /^a) holds, let v be the least 
witness to this. In this case, we set np'a := np'v, and ap'a := <T/,,V. 

Thus, for the definition of the two functions, we can assume Vx^(a) fails. 
In this case, for A e dom np<a we set n\a(A) := min(^U) , / (A)) , 7rfa(A) := 
sup {ap-v{X)\v e CQ}) and jr^(A) := max(7rfa(A),7rf*(A)). Finally, for A e 
dom cr^a, we set ap-a{X) = max{op-a{X),np'a{X)). 

We conclude by defining when the other two properties, Prj^a) and Prf{a), 
hold. P r / ( a ) holds iff Pr»(f(X)) holds on a tail of A e DK. Pr{(a) holds iff a is a 
limit of multiples of re2 and Za is cofinal in a, where Za = {v 6 CQ| Pr/'(v) holds}. 

Of course, more than one of these may be true for a. However, if P r ^ a ) , "only 
this counts", in terms of how ap'a is defined. It is also possible that, letting 6 = 
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8P{K), 8 is /j-strongly-deactivated. This is clear in the case of interval deactivation 
and deactivation on Q . Deactivation on bg is only possible if a tail of ba C dom g. 

The simplifications which arise when we restrict to a < 5P(K) are mainly that 
we can remove the definitions of Pr2

p(«;) and Pr/Ca) from the recursion which 
gives us the definitions of np'a and ap,a, by changing the definition of Pr2

/'(a) to 
be: "on a tail of X e DK, f(X) G dom g & g{f{X)) = !", and for Vif(a), by 
changing the definition of Za to: "{v G Ca\g(v) — !} . " The reasons will be clear 
from (A), below. We can also drop from the definition ofPrf(a) the requirement 
that Pr/,(v) holds. 

A disquieting possibility is that P r p (a ) holds for all a G U(K) \ PP{K). In 
Remark 2 of (4.3) we shall show that this cannot occur. We are now ready for 
the definition of P. 

DEFINITION 3.5.2. p G P iff p e P*, property (D), below, holds, and whenever 
K, a, etc., are as above, and 8 = 8P(K), the following properties (A)-(C) hold: 

(A) If a < 8, then g(a) = ! iff a is ^-strongly-deactivated, 
(B) lfa<S and g(a) = !, then hp{a) = s c a l e d " ) , 
(C) If ~^(8P\DK <* f * ) , then 8 is /^-strongly-deactivated, SP\DK <* ap-s; 

further, letting y — scale(crp'''), whenever r] e U(K) with 8 < rj < y, if 
bn n dom gp is cofinal in K, then on a tail of £ € bn n dom ^^ we have 

(D) If A G ̂  is s-like, the set {ap'a{X)\ap'a{X) is defined} has power < X. 
REMARK. The substantive part of (D) concerns those ap'a (X) which are > 8P (X). 

As indicated at the beginning of this section, our original definition of P required 
that all the ap'a{X) < 8P{X) and that, with the notation of (C), above, 8P\DK =* 
fg. Instead, we have opted to relax this requirement and show, in §4, that these 
properties hold on a dense set. With this in mind, condition (D) is clearly necessary 
for us to be able to extend p to a condition with these properties. (C) is a technical 
property, formulated with the same aim. 

DEFINITION 3.6. If p, q e P, we set p < q iff gp c gi, fip c y??, z(p) c E(q). 

REMARK 1. Note that if p < q then hp C hq. Note, also, that if a > 
PP{K) and a G d o m ^ n U(K), then up-a =* u^, nf'a =* nfa, i = 1,2, 
and therefore np-a —* nq'a and ap'a —* aq'a. It is also easy to see that if 
8 = 8"(K), then nf =* nf. It is possible that o^{X) > vp-s(X); this will 
occur exactly when 8P(X) < f*{X) < 8q(X). Similarly, nf(X) < nf(X) just in 
case 8p(X) < f;{X) < 8q{X). Thus, we could have uq-s(X) > vp'S(X) on a tail 
of A. It is also clear that 8 is /?-interval-strongly deactivated just in case it is 
g-interval-strongly deactivated, and similarly for deactivation on Q . However, it 
is possible that 8 is ^-strongly deactivated on bs without being /7-strongly deacti
vated on bs-

The situation is similar for a G U{K) \S + 1. It is easy to see that if ~Prf(a) 
holds then Prf (a) holds, and that vp'a <* vq-a, np'a <* nfa, and therefore np-a <* 
nq'a, ap'a <* aq'a. 

REMARK 2. In virtue of (3.5)(B), above, letting 8 — 8P(K), we define hp{8) by 
hp{8) := s c a l e d ) . 

REMARK 3. Let 8 — 8P(K), y = scale(8p\DK), and suppose that a e U(K) n 
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(a, y). Note that this occurs exactly when a G U(K), 8 < a, and ba n dom gp is 
cofinal in «. Thus, for such a there is already an unbounded set of information 
imposed by ponba, which might require us to deactivate a, and the question arises 
of how far this deactivation should go. However, if this occurs, then we have the 
hypotheses of (3.5)(C), above, and so 8 is /j-strongly deactivated. Further, since 
(3.5)(C) gives us that SP\DK <* ap'&, and a < y, i.e. a < scale(a^). Thus, Pr/^a) 
holds. Suppose now that q > p and 8 < 8q{K). By Remark 1, above, aPiS <* aq^. 
Thus, in such q > p, a will already be g-interval-strongly deactivated by 5. Finally, 
since a < scale(3P\D/C) and, by hypothesis, ba n dom gp is cofinal in K, it follows 
that hp{£,) < f*{card £) on a tail of £, e ba ndom gp. Thus, as far as such a are 
concerned, 8 already provides the essentials of the deactivation information. 

§4. The coding conditions: Basic lemmas. 
DEFINITION 4.1. If p £ P, p is tidy iff for all s-like K £ dp the following 

condition (A) holds and for all singular K G dp, (B) holds. 
(A) if a £ U{K) with PP{K) <a< 8P(K), then hp(a) < 8P(K). 

(B) 8p\DK <* / ; , where S = 3P(K). 

If p G P, then p is very tidy iff (A) holds for all s-like K G dp, and (B+), 
below, holds for all singular K G dp. 

(1) (B+) .J"!/),, =* / ; , where 8 = 8P{K). 

REMARK 1. Suppose that p is tidy. We argue that for all singular K G dp, all 
a G U(K) n [ £ P ( K ) , 5 P ( K ) , and all X G £>K n J p , o-^a(A) < ^(A) . It suffices, of 
course, to prove this for the hp,a and the np'a. For the hp'a, if / * U ) ^ dom g, then 
A'-0(A) = ^ ( A ) , so suppose that /*(A) G dom g. Then, A*°(A) = hp{f*{a)), and 
by (A) above (with A in place of K and /„(A) in place of a ) , the latter is < 8P{X), as 
required. For the np'a, we work by induction on a, with the induction hypothesis 
being the statement of the remark, i.e., the statement for the ap,v, with v < a. But 
then the conclusion is immediate by the definition of np'a: clearly, np'a{X) <8p{k), 
and nP'a (A) is the supremum of things all < 8P (A) and so the conclusion is clear. 

REMARK 2. If p is very tidy, then for singular K. G dp it is easy to see that, with 
the convention of Remark2of (3.6), hp{8p{n)) <8P(K). This is clear from Remark 
1 and the fact (which is just a restatement of (B+)) that 8P{K) = sca\a{8p\DK). 

REMARK 3. If p is very tidy, p < q, and, for all s-like, regular Xedp, hq{8p(X)) = 
8P{X), then hq{8p{K)) = 3P(K) for all s-like K G dp. This is easily argued by 
induction on the rank of K in the well-founded relation "A G DK" . The basis 
is the hypothesis. Let t] := 3P(K). By the induction hypothesis, we have that 
hq'" =* 8p\DK. Clearly wf1' =* np

2'\ and by Remark 2, np
2'

n =* 8P\DK. Clearly, 
nf =* 8P\DK, and the conclusion is then immediate. 

4.2. The following material will be helpful in both (4.3) and §5. If p G P, and 
Ms a function with dp C dom t, we say that / covers p iff whenever K G dp is 
singular, a G U(K) n [ ^ ( K ) , ^ ( K ) ] , and A G £>« n ^ , we have <r','Q(A) < t{X). 
If q £ P, we we say that q covers p iff p < q and <5? covers p. If q £ P and / 
is a function with dom t = dq, we say that <y dominates t iff for all s-like 1 £ dq 

we have /(A) <^<?(A). 
Next, we define still more functions associated with a p £ P. For singular K G 

dp, smdX£DKndp, we let /^(A) := sup {<r'>a(A)|a G C/(K) n[/?',(«;), 8P(K))}. 
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We note that, by (3.5)(D), f£, (A) < X+. For regular, s-like K G dp, we let tp(K) := 
sup {/^(aOla e {/(«) & a <<5^(K)} . Again, by (3.5)(D), for regular, s-like n€dp 

we have tp(K) < «+. For singular /c e d^, we let t\(K) := scale(^j). Clearly, for 
singular nedp we have tp{K.) <K+. We also define the f£2 and the /£ analogously, 
but based on the function Sp; thus, tp

2 :=<J^|DK C\dp, and ^ ( K ) := scale(/£2), 
for singular K G dp, while for s-like, regular /t e d ? we have / 2 ( K ) := 8P(K). 

Note that whenever these functions are defined, we have f£2W < *«iU) a n d 
/ ! («) < tP(K). 

Now, let 0, ^#, JV, etc., be as in (1.2), (1.3), and suppose that p € N. Then it 
is obvious that the tf e Sk^(N) and that the tp

Ki G Sk^ iV U {«}), and therefore, 
that 

(*) ff(«) < PX~r(K) f° r a n s-like K € </p, 

since (*) holds for any t G Skj?(N U {«}) in place of /f. 
LEMMA 4.3. If p e P, t is a function with dom / = dp, and r(/c) < K + /or a// 

K & dp, then there is a very tidy q G P with p <q and such that t{n) < S9(K) for 
all s-like K G dp. 

PROOF. We shall prove this in the way that will be most useful for (5.1). Choose 
regular 8 > N2, and let Jt, JV be as above for this 0. We have just observed that 
since p £ N, pj_jr is everywhere > tp; similarly, since t G N, if we construct very 
tidy q > p such that 

(*) dq{n) > PXJ^M for all s-like K G dp, 

then q will be as required. This is the approach we shall take; we shall choose 
such an JV, and construct q satisfying (*) and such that, whenever K G dp is s-like, 
gq{8p(K)) = !. Our approach to this will be to take y = PXJT, and to let y* be as 
given by (1.5) for this y, and to take d* = dp, E(q) = E(p), pi = pp, ^*(A) = y* (A) 
for all s-like X G dp, and 81 {X) = 8P(X) for all other X G dp. Recall that, for all 
singular K G dp, letting v = y*(«), we have y*\DK =* / * . This makes it clear that 
we will have (B+) of (4.1) and that q will satisy (*). Thus, in order to complete 
the proof, it will suffice to verify that (A) of (4.1) holds and that q G P, since it 
will then be clear that q > p. 

Before going further, it will be useful to exploit (4.1)(B+) some more. Suppose 
that u is a function with domain =* DK. We make the following observations: 

(A) Suppose that u{X) < y*{X) for all X G dom u. Then, clearly, scale(w) < v. 
(B) Suppose further that b is a cofinal subset of DK, and that u(X) = y*{k) 

for X G b. Then, again clearly, scale(w) = v. 
An important property of the way we will define q is: 

(C) gq{n) = !, for all 8P(K) < n < 8I(K), whether or not K is singular. 
By (C) and the definition of /2 if K is singular, then, 

(D) for t%(n) <n< 8I(K), with n G U(K), n will be ^-strongly deactivated 
on bn, if for no other reason. 

It remains to see that for singular « and 8P(K) < n < r2 (K), with n G U(K), 
we will still have that n is ^-strongly deactivated. It is here that we will appeal 
to (3.5)(C). Let<5 := 8P(K). If 8P\DK <* / ; , then tp(n) = 8, so there is 
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nothing to verify in this case. If, on the other hand, the above fails, then, by 
(3.5)(C), 8 is ^-strongly deactivated and 8P\DK <* ap-d'. Since it is clear that 
ap'& <* aq's, this means that 8 will be g-strongly deactivated and that we will have 
hq(8) > scale(8p\DK), and s c a l e d |£>K) is just t%(K). This in turn means that if 
8 < rj < t% (K), with y\ G U(K), then rj will be g-interval-strongly deactivated, as 
required. 

The preceding guarantees that we can carry out our plan of making (C) hold, 
while respecting (3.5). It remains to complete the definition of the gq\[8p

 {K),8I (K)) 

and to define the hq{rj), for SP(K) <rj < 8q(n), with rj G U(K). This will be done 
by recursion on the rank of K in the well-founded relation "A G DK", so the basis 
is when n is regular. In view of (C), we must carry out the following: 

(1) Define hq(tj) and gq\sn for rj as above. 
(2) Define gq{£) for 8P(K) < £, < 8q(K) which are not covered by (C) nor by 

(1). 
As far as (2) is concerned, in all cases, we shall have gq{n) := 1 unless it is 

forced to be 0. As far as (1) is concerned, once we have computed hq(rj), (3.4)(E) 
tells us how to define gq\sn. Thus, it remains to compute the hq{r\) and verify 
that the computed value is consistent with (3.4), (3.5) and (4.1)(A). It will then 
be clear that q is a very tidy condition, and, of course, that p < q, completing the 
proof of the lemma. Of course, (3.5)(B) tells us that for singular K, in order to 
compute the hp(tj), it suffices to compute the ap>n. This will be done by recursion 
on r\, within the recursion on K. 

We now appeal to (A) and (B). Our induction hypotheses are 
(E) For all relevant X < K and 8P(X) < rj' < 8q{X), we have hq{t]') < y*{k). 
(F) For all relevant 8P{K) <tj'<r\ and all, (not just on a tail of) X e DKndp, 

wehaveer'^ 'U) <y*{X). 
Now, (E) guarantees that h™(X) < y*{X) for all X € DK C\dp. Similarly, (F) 

guarantees that n\n{X) < y*(X) for all X e DK n dp and therefore, for all such 
X, (Tq,'1{X) < y*(X). This preserves the induction hypothesis (F), and then, by (A), 
scale(cr?''?) < y*(/c), which preserves the induction hypothesis (E), at least as far 
as 77. As indicated above, this completes the proof that q € P and p < q. • 

REMARK 1. The q we obtain depends, obviously, on p and on the JV we choose, 
so we naturally denote it by q(p, JV). A very plausible choice for JV is to take it to 
be some sort of Skolem hull in M of p, t, and possibly some additional elements, 
e.g., all the members of 9, for some cardinal 9. We return to this in (5.1) and (5.2), 
below. In this connection, it is also worth pointing out that if p e |yT|, JV* -< Jl, 
and, letting N* := \JT*\, if [N*]<9 UN U {JV} C \N*\, cardN" = 9, then clearly 
q&N*. 

REMARK 2. We are now in a position to show, as promised at the end of (3.5.1), 
that in no condition q e P does Pr*(a) hold for a tail of a e U{K) \Sq{n) + 1, 
where K G dq is singular. What we show, in fact, is that if p G P is very tidy, nedp 

is singular, and a G U(K) \SP(K) + 1, then ~Ptp{a) fails. This suffices, since, as 
noted in the last sentence of Remark 1 of (3.6), if q < p, then for a G U{K), if 
Pr*(a) holds then Prf (a) holds. 

This will also complement Remark 3 of (3.6), since if p G P is very tidy and K G 
dp is singular, then, letting 3 = 8P(K), we have that 8 — sca\e{8p\DK), so there are 
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no ordinals a. of the sort dealt with in Remark 3 of (3.6). We would like to know 
that no others share the property pointed out there, of being ^-strongly deactivated 
in any q > p with <5'(K) > a. Actually, this will follow from the extendability 
properties developed in (6.1), but showing that if ?Tp(a) holds then a < 5P{K) 
will in fact be quite useful for (6.1). 

If a e U(K) \ 8 + 1, since p is very tidy, there is a tail of ba disjoint from 
dom gp, so Prp(a) fails. Again, since p is tidy we cannot have hp{n) > a, for 
any rj < SP(K), and by Remark 3 of (4.1) we cannot have hp(8) > a. We conclude 
by induction on a, so suppose that ~Prp(y) fails for all y G (S, a) n U(K). Clearly, 
then Prf (a) cannot hold, and Pr/^a) cannot be witnessed by any y G (8, a). 
But we have already argued that Prf(a) cannot be witnessed by any n < 5, so the 
proof is complete. 

4.4. Factoring. Let 9 be a regular cardinal, 9 > K2, and let p G P. We set 
We(p):=W(p)\e+andaB(p) := {(a, maxfe 8))\(a, £) eE(p) & a e W„{p)}. 
We let W0(p) := W(p) n 8+, E0{p) := E(p) n W0(p) x 9, and R°{p) := 
U{^a n [4 0)|(a,£) 6 E(p) &£,?{a) < 9, 9+ < a } . We are now ready to define 
the upper and lower parts of P, relative to 8, which give the Factoring property 
of P. 

DEFINITION. For p and 6 as above, we set (p)g = (gp\dp \ 8, j3p\dp \ 9, Eg (/?)). 
Note that (p)e e P. We let P0 = {{p)e\p G P}, with the restriction of <. Thus, Pe 

is the class of conditions for coding down to a subset of 9+. Note that P = P«2, 
since (p)n2 = p for p £ P. 

We also define (p)0, for p € P: (p)B = (gp\9, fip\8, E0{p), Re{p)), and we 
let P" := {{(p)0, (p)o)\p G P}. Thus, P e is a (proper class) P#-name for a sub
set of {(p)0\p G P}. We have guaranteed that the latter is a set by replacing 
{(a, d;)| (a, £) G S(/?) &£<8, 9+ < a} by / ^ ( 0 ) . Of course, our intention is to 
have P" be the name of the underlying set of a partial subordering of ({{p)0\p G 
P},S)> where [p)e S {q)° IS gp\8 C gi, pp\8 C £*, R°{p) C fl»(9), a*(/>) C 
E0(q). We let P0 be the name for this subordering. 

In fact we can cut P0 down to a set name, as follows. Let n < co be such that 
all relevant notions about P are £„. Let / ^> 8 be such that (Hx, G) reflects all 
S„ formulas. The set name is then simply 
{((/0"> (/Off)!/* G P H / / z } , and whenever p € P, there is q € Hx such that 
(/>)* = (^)0- What makes P a name is the linkage between the "top" and the 
"bottom", which is what guarantees that P0 will code down to a subset of N3 
the subset B of 9+ added by PQ. The i?e(p) is one feature of this linkage. The 
following is then clear: 

LEMMA (Factoring). P = P() * P°. 
LEMMA 4.5. Let 9 be as in (4.4), and suppose that a < 8 is a limit ordinal 

and (pi\i < a) is an increasing sequence from Pg. Let d := U i ^ ' l ' < a}' 8 : = 

\J{g"'\i<a}, p := \J{fi"\i<a}, S := \J{E{Pi)\i <a). ForK£d,let S(K) 
:~ \J{Sp'(it)\i <o & K G dPi}. If K G d is singular, set n G Z{K) iffrj G Q(K) and 
g(^) = !. Le? / G / («) iff, for some i < j < a and some n G Z(K), 8P'{K) < n, 
and, for all XeDKC\ dp', 8P'{X) < opi*(X). 

Suppose, further, that {pt\i < a) has the following properties. 
(1) {i < o\pi is tidy} is cofinal. 
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(2) For all singular K G d, I{K) is cofinal in a {this, of course, implies that 
Z{K) is cofinal in 5{K)). 

Then, p := {g, p,a) G Pg and is the least upper bound for {pj\i < a). 
PROOF. We will concentrate on showing that (3.5)(C) holds. This is the heart 

of the matter for verifying that p G Pg, as verifying that the other clauses hold is 
totally routine, and once we know that p G Pg it is clear that it is the least upper 
bound. 

So, let K be as in the statement of the lemma, and adopt the other notation 
there. Also, let a := S{K), and note that Z{K) is just the Za of (3.5). As observed 
in the parenthetical remark to hypothesis (2) in the statement of the lemma, Za 

is therefore cofinal in a, which means that a is /^-strongly deactivated on Ca. So, 
it remains to verify the last clause of (3.5)(C). 

For this, we first note that for all X e DK n d we have 

(*) np
2
a{X)>S{X). 

This is because, since I{K) is cofinal in a, if X £ DK n d, then 5{X) = sup A, 
where A := {S{i){X)\i £ I{K) &X£ dp>}. Now, let i e I{K) with X € dPi. Let i < 
j < a and n £ Z(K) \SPi{K.) be as guaranteed by the fact that ;' G I(K). Then, 
np'a{X) >aPi"i{X) >SP<{X). 

We now complete the proof by verifying the last clause of (3.5)(C). So, 
let y := scale{ap'a). Note that by virtue of (*), and the fact that ap'a{X) > nP'Q(A) 
for all relevant X, we have that / , ; >* op>a >* np

2'
a >* S\DK. Now, if n e U{K) 

with a < n < y, if bn n dom gp is cofinal in K, and if £ G bn n dom gp, then 
<J < d{card^). But then there is / < <r with £ < 5Pi{card%), and by virtue of (1), 
we can assume that pt is tidy. But then hPi{C) < 8Pi{card£), by (4.1)(A), and 
since hp>{£) = hp{^), the conclusion is clear. • 

REMARK. In addition to the hypotheses of the lemma, suppose that a <6, that 
J( is as in (1.2) and (1.3), that JV -< JV* -< J( are such that, letting N := |^"| 
and N* := | ^ * | , we have pt £ N for all i < a, and that [N*]<0 UN U {JV} C TV*. 
Then p£N*. 

4.6. Decoding. We now complete the sketch of the decoding procedure given in 
(2.5) by supplying the details of the decoding for limit cardinals. For singulars, 
in addition to the case of decoding the generic, we also treat the case of decoding 
g\[n, 5*) from a g defined on a large enough domain below K. We will give the 
details of the situation when we encounter it. This case is needed in (6.1)(7)(b), 
below. We treat the inaccessible case first. 

4.6.1. Assume that K is inaccessible, and that we are given G, a function with 
range G C {0,1,?,!} and dom G = U{(^>^-+)l^2 < X < K, X a cardinal}, such 
that for some generic ideal J ^ i n P , G = \J{gp\n \p £ J"). 

We will first obtain an ordinal ft which will be the common value of the PP{K) 
for K £ dp, p £J*. Recall that, by Lemma 3 of the Introduction and the discussion 
preceding it, for all a £ {K, K+), if K < v < a and in L[A n v], card a = K, then 
we obtain {bn\n < n < a) canonically from a in L[A n v]. In particular, in L 
we have {ba : a < K2). So, we first decode G on U(K) n K2. For such a, we let 
Go (a) = 1 iff G(<J) = 1 on a tail of £ G ba. Otherwise, we set Go(a) = 0. Now, 
by (3.4)(D)(1), there is a largest v £ (U{K))' n {K, K2) such that G0(v) = 0 and, 
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further, this v is of the form r\ + KCO, where rj £ {«} U U{K). Also, by (3.4)(D)(2), 
we have that G01 {rj, K2) codes a well-ordering of K on odd successor multiples of K 
in this interval. We take p := the order-type of this well-ordering. By (3.4)(D)(2), 
again, we have that p is the common value of Pp(n) for K G dp, p £ <f and that 
A n P is coded by Go on even successor multiples of K in this interval. 

4.6.2. We can now define G(a) by recursion on a for a £ £/(«) \ /?. We first 
define v(a) and obtain ,4 n v(a). We shall have c#rc/ a = K in ZL4 n v(a)], so 
that we have ba available. If a is not a cardinal in L, we let v(a) := card1 a. 
Otherwise, we let v(a) = a. Recall from (2.3) that if K < £ < /c+ is a cardinal in 
L, then, for all nonmultiples of K, y with K < y < £, AT7 n C is cofinal in £. This 
allows us to define A n v(a) as follows. If v(a) < /?, then we already have AD p. 
Otherwise, i f / e < £ < v ( a ) , let y := 24 + 1. Then, y<v(a), so X7r\{p, v ( a ) ) ^ 0 , 
and we have ^ £ A iff, G(rj) = 1 for some (all) r\ £ Xy n (/?, v(a)). Thus, we have 
A n v(a), and therefore in LL4 n v(a)] we have ba. We set G(a) := 1 iff G(£) — 1 
on a tail of £ G 6Q; otherwise, G(a) = 0. This completes the recursion. 

4.6.3. We can then define G on (K, K+) \ U(K) by G(y) := i iff G(a) = i 
for some (all) a £ Xy \ p. Finally, we can go back and define G on U{K) n p 
as follows: Let y $ U(K) be such that a £ Xy. If G(y) — 1 and, on a tail of 
£ G 6a, G(^) = 1, define G(a) := 1. If G(y) = 0 and, on a cofinal subset of 
£, £ ba, G{£) = 0, then G(a) := 0. Otherwise, we set G(a) := ?. This completes 
the decoding procedure in the inaccessible case. 

4.6.4. So, assume next that K is singular. We first treat the generic case. Assume 
that G and S are as above. This time there are "three passes" in the definition of G. 
The first is relatively straightforward: we ignore deactivated intervals, deactivation 
on Ca, we ignore the np'a and the ap'a, and just organize the information "from 
below" provided by G. This is done simultaneously for all members of [/(«). No 
recursion is involved. Recall here that we have A n K at our disposal, and that 
all of the coding apparatus is present in L[A n n]. The second pass proceeds by 
recursion on a G U(K), and takes into account all of the above; we also define 
the G\sa. At the end of the second pass, we will have defined a function G\ on 
all multiples of K in (K, K + ) . In the third pass we go back, define G on the 
nonmultiples of K, detect contamination, define P (which, once again, will be the 
common value of the PP(K) for p £ J? with K £ dp), and revise the definition of 
G\ below p. 

For the first pass, if a £ U(K) and there is no tail of ba on which G is constant, 
set Go (a) :— ?; otherwise, if x £ {0, 1, ?, !} and G has constant value x on a 
tail of ba, set Go(a) := x. We also define T° at this time, by letting Ta(A) := 
the order-type of the well-ordering coded by G\sf.^, for X £ DK. 

4.6.5. For the second pass, we assume that we have defined G\ on all multiples 
of K below a in such a way that for K < v < a, with v £ U(K), G\\sv codes 
a well ordering of K in order type > v. We let H{v) := the order type of this 
well ordering. We also assume that we have defined functions n", av with domain 
DK, for such v, "correctly" (i.e., according to (3.5) and what now follows), so 
far. If there is such a v < a with H(v) > a, then we take the least such v and 
set G\(a) := !, era(A) — av{X), for all X £ DK, and we define Gi\sa to code the 
<L[AnK] -least well ordering of K in type H{v). 
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So, assume there is no such v. Let / := / * and define n" := f, and, for A e DK, 
define n%{X) := sup {av(X)\v e Ca} and na{X) := max(7if(A), rc£(A)), aa{X) = 
max(//a(A), TTQ(A)). If G(0 = ! on a tail of £, 6 6Q, then we already had G0(a) = ! 
and we maintain G\(a) := !. However we also set G\(a) := ! if a is a limit of 
multiples of /t2 and Z a is cofinal in a, where Z a := {v € Ca|Gi(v) = !}. In all 
other cases, we maintain G\(a) := G0(a). If G\{a) = !, we define G\\sa to code 
the <L[̂ riK] -least well ordering of K in type scale(<ra). In all other cases we define 
Gi|So, to code the <LAHK] -least well ordering of K in type a. This completes the 
recursive definition of Gi on the multiples of K. The following statement (whose 
verification is now totally straightforward and is left to the reader) makes precise 
the claim that this decoding procedure decodes correctly on a tail of U(K): 

(*) IfpGJ?, nedP, PP(K) < a <5P{K), and a <= U(K), then G,(a) =gp{a). 
4.6.6. Before turning to the remainder of the definition in the generic case, we 

turn to the decoding of g\[n, 3*) on the multiples of K only, from a g defined 
on a large enough domain below K, since in (6.1)(7)(b) we only need this for the 
multiples of K. Here, rather than having G defined on \J{(X, A+)|N2 < A = cardk < 
K}, we have a tail t of DK and a function 3 with domain t such that 3(X) e U(X) for 
X e ? with 2 <<5(A) < A+, such that g is defined on \J{{X, S(X))\X e ?} (of course, g 
will also be defined elsewhere, but only this is relevant for our decoding). We take 
3* = scale(5). Finally, to complete the description of the context of (6.1)(7)(b), 
below, we have that there is a very tidy p G P such that t = dp P\DK and that for 
Xe t, 

3»(X)<3(X), gP\(X, <5'(A)) = g|U, 3"(X)), 

and that for a e U(X) n [^(A), 3(X)) we will have g|s„ coding the <L[ADK] -least 
well ordering of A in type a, and g(a) = ? except possibly in the case of a = 3P(X) 
when it is also possible that g{8p(X)) = !. 

Now that we have described the context, the procedure is essentially identical 
to the above, with the obvious notational analogies, so we limit ourselves to 
describing the more substantial differences. These deal only with the definitions 
of the functions analogous to the Ha and n®, above. In both cases, we impose 
the requirement that ha{X), 7r"(A) < 5(X) by taking them as defined to be the 
minimum of 3(X) and the value defined as above. This completes the treatment 
of the singular nongeneric case. 

4.6.7. We complete the description of the decoding procedure by returning to 
the final phase of the singular generic case: defining G on the nonmultiples of K in 
(K, K + ) , detecting contamination, and revising the definition of G] on the bounded 
initial segment of multiples of K where there is contamination. In several places 
our argument will appeal to density arguments from (6.1). We should emphasize 
that there is no circularity here, since we have already completed the portion of 
the argument (the singular nongeneric case) needed in (6.1)(7)(b). 

So, let K < n < K+ with rj not a multiple of K. We argue that there is a tail 
T of Xn and an / e {0, 1} such that 1 — i 0 G\[T] and, for a cofinal set of 
a € T, Gi(a) = i. We first show that Xn n Gf ^{O}], and Xn n Gf '[{1}] cannot 
both be cofinal. To this end, let p e J" be such that K e dp and r\ < 3P{K) 
(such a p exists, by (6.1)(4) and (7)). Suppose, now, towards a contradiction, 
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that PP{K) < a0, a\ e Xn, and that (?,(«,) = j . Let / := gp{rj). By (6.1)(4), 
again, there are q, r e J with <5?(/c) > ao, 8r(n) > a\. Clearly we can assume 
that p < q < r. By (*), above, gr{otj) = j . But this contradicts (3.4)(A), since 
gr{ccj) is forced to be /. Finally, from (*), above and (6.1)(4), it is immediate 
that if a < K+ there is a < a' and p < q e J? with a.' e Xn n<S?(/c) such that 
gq{a') = i and PH{K) < a'. Then, by (*), again, G\{a') = i and we are finished. 

So, we define G(rj) := that i e {0, 1} such that G\(a) = i for a cofinal set of 
a e Xn. Finally, for a e U(K), we say that a is G\-contaminated iff (following 
(3.3)) G\{a) ^ ! and either there are cofinal subsets, F, C ba, i = 1, 2, and 
x\ ^ X2 such that G(£) = x, for £ e y, or, if a is an odd multiple of K2, letting 
y be such that a e A",,, we have Gi(a) e {0, 1} but G\{a) ^ G(y). We let 
9̂ := sup {a\a is Gi-contaminated}. It is totally straightforward (and left to the 

reader to verify) that if p e S and K e J^, then yff = <5/'(K;). Then we define G(a) 
for K < a < K+, a a multiple of K, by setting G(a) := G\(a) if fi < a, while 
for a 6 f/(«) n /? we set G(a) := ? and define G|sQ to code the <L[ADK] -least 
well-ordering of K in type a. This completes the decoding procedure. 

§5. Strategic closure and distributivity. 

5.1. The winning strategy. In this subsection we prove Lemma 5 of the Intro

duction. So, let 6 > N2 be regular and fix po e Pg, Jl, and JV as in (1.1). 

Further, assume that Jf is super ^-coherent, and recall the definition of the game 
G(9,yy,p0) in (1.1) (where Q = P and X is the class of very tidy conditions). 
Recall that BAD must play very tidy conditions. 

GOOD's strategy will be to use (4.3) at successor stages, so that, in the notation 
of (4.3), she will have p2a+2 := q{pia+\,-P), for an JV which we shall describe 
below. This will be chosen so as to guarantee that at limit stages we have the 
hypotheses of (4.5), so that, at limit stages a, GOOD will take pB to be given by 
(4.5). The other implicit assumption is that at all stages so far, BAD has succeeded 
in "catching" p2i, pn+\ inside |-/fQ(/)|. 

For the successor step, we take JV':— yVa^, p := P2a+i, JV '•— the Skolem hull 
in Jl of N' U {yV'}, and q := q(p, JV). Note that we easily have that PXJV 6 N, 
so that, for all s-like K € d{p), <5?(K) > pxjv > SP(K). This guarantees that we 
ha\egi(pxs>(K)) = !. 

Now, let a < 6 be a limit ordinal and let K &d{p) be singular, where p is as in 
(4.5). Let i'o be the least / < a such that K 6 dPi. Since pio £ |JVQ(/0)|, where jo is 
least such that / < 2j + 1, K is -^"a(/)- controlled for all 70 < J < <*• Then, letting 
5 := SP(K), we get that {px^a[j) (K)l7o < y < c} is a subset of (gp)~l[{l}] which is 

cofinal in S. Finally, the supercoherence of the model sequence yT guarantees that 
it is also a subset of Q , which means that it is a subset of Z#. It is then routine to 
see that we have the hypotheses of (4.5), and therefore that the strategy for GOOD 
is winning. To obtain the distributivity properties, we must see that BAD need not 
lose due to inability to "catch" ^2/, Pv+\ inside |^Q(,-)|, and, more importantly, 
that there are enough supercoherent sequences. These points are addressed in the 
next item; the latter draws on the work of our companion paper [17]. 
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COROLLARY 5.2. Pg is {9, oo)-distributive. 
PROOF. If po S Pg and (Dj\i < 9) is a definable-in-parameters sequence of open 

dense subclasses of Pg, begin by picking a singular v with cf v » 9, such that all 
parameters in the definition of {Dt\i < 8) lie in Hv and such that (Hv, e) reflects 
all Z„-formulas, where the definitions of ( A I' < 8) and Pg are 2„ and n is larger 
than the number of quarks in the physical universe. Let A = A n /fv • We take 
jf = (Hv+, e, • • •), we let JVo -< M, with 9 + 1 U {(A|* < 0), P<?|#v} C N0 (:= 
|>o|) and card No = 9, [NQ]< e C JV0. By the main result of our companion paper 
[17] (see (1.4)) we can find super .#-coherent {jVi\i < 9) starting from JV§. We 

then play a run of the game G(9, JV, p0), where GOOD plays by her winning 
strategy. 

We argue that BAD can produce a subsequence of JV which "catches" pu, pu+\ 
inside Na^y For successor i, given that /?2i-2> Pu-\ € Na(i-i)> the last sentence 
of Remark 1 of (4.3) immediately gives that if BAD chooses a{i) > a{i - 1), then 
Pu € Na(ty Then, if he chooses pii+\ from Na^y this is as required. For limit i, 
letting a* := sup {a(j)\j < i}, given that all the pj e iVQ«, y < /, the remark of 
(4.5) immediately gives that if BAD chooses a(i) > a*, then pt, the p of (4.5), 
will lie in NQ^y Once again, if he then chooses pi+\ from Na^y this will be as 
required. 

Thus, in a such a play, we will actually produce a pg. If, in addition to the 
above, BAD chooses p2i+\ € Dt n Na(,-), then clearly we will have pg e H{A I' < }̂> 
as required. D 

REMARK 5.3. 

(1) It follows from (5.1) and (5.2) that any iteration of P^ with supports of 
cardinality < 9 is (9, oo)-distributive. The reason is quite simply that (5.1), 
(5.2), and the results of [17] depend only on ground model properties. In 
fact, S. Friedman has informed us that prior to our work similar obser
vations had been made about Jensen's original coding and the variants of 
it mentioned in the Introduction. 

(2) As mentioned in the Introduction, by a simple variant of the proof of 
(5.1), we can show that GOOD has a winning strategy for the version of 
the game where we start from a po in P, which is not necessarily in Pg. 
We "freeze" gpa\9, (and therefore, also pP9\9) and never add any (v, £,) 
with £ < 8 to any S(/?;). We use this in (6.1)(7)(c). 

§6. Extendability and chain condition. 
LEMMA 6.1. Let K>~R\ be a cardinal, and let p e P. Then, in each of the cases 

1 < i < 7, below, there is a q & P, p < q, satisfying the conclusion of (/) {which 
follows the colon, in each case). 

(1) K is a successor cardinal, K £ dp : K € dq, 
(2) K is a regular cardinal, n£dp, n<a<5p{K), gp(a) = \, a £ W (p), and if 

K is inaccessible, then, letting ^\ be as in (3.4)(D), either f5p(n) < a<8p{K) 
or fi\ < a < K2 : a G W(q), 

(3) K is regular, K e dp, SP{K) < a < K+ : a < <5*(/c), 
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(4) K is singular, K G dp, K < y < SP(K), y is not a multiple of K, 8P(K) < 
a < K+: there is a' G Xy with a < a' < 5I(K) and gq(a') = gp(y), 

(5) K is regular, K G dp, K < a < SP(K), gp(a) — 0, a < K and if K = X+, 
where X is a limit cardinal, then X G dp: there is £ € ba\a with cardC, G 
dp, pi {card 0 < £ < S" (card £), and gq(£) = 0, 

(6) K is inaccessible, K g dp : K G dq, 
(7) K is singular, K 0 dp : K G dq. 

PROOF. The properties are given in order of increasing difficulty and/or depen
dence on earlier properties. The analogue of (5), where K = X+, X a limit cardinal, 
X g" dp, is achieved by first adding X to dp, via (6) or (7), as appropriate, then 
using (5). We deal with the cases in the given order. In all cases, by virtue of 
(4.3), we can assume that p is very tidy. In all cases except (5), when we have to 
define gq(a), we shall always make gq{a) = 1 unless it is forced to be 0, in which 
case we make it 0, except in the following cases: 

(a) card a is s-like and a is a multiple of card a, 
(b) K = card a is inaccessible, a. < / ? ? (K) , and a is a multiple of K. 

Thus, in what follows, except in case (5) we shall limit ourselves to treating the 
above cases. In case (5), we will find a £ which is not forced to be 1 and which 
is not in R(p), and for this £ we shall make gp(() = 0. £ will not be a multiple 
of cardi^. This will be the only exception to our general procedure, even in case 
(5). • 

For (1), if K ~ X+, we simply set dq = dp U {«} and 5(q) = 3{p); then we set 
Sq(K) = K2 andy^(/«) = K + 1. 

For (2), we shall have gq = gp. If K = X+, where X g dp, let £ = X. If K = X+, 
where X e dp, let £ = 8P{X). If K is inaccessible and K n dp = 0 , let £ = N2. 
Finally, if K is inaccessible and K n dp ^ 0 , let £ = sup(/c n dom gp). In the last 
two cases, if 6 < K and 6 is regular, we can always take £ > 6 as well. Then we 
let Sfo) = S( /0 U {(a, £)}. 

For (3), we will have d<> = dp, pq = pp, S{q) = S{p) and for all fi G 
dp \ {K\, Sq(ju) = dp{fi). We set 5 ? ( K ) = the least 0 > a which is a multiple of 
K2. Now, suppose ^ ( K ) < £ < <5?(«). The only case we have to treat is when « is 
s-like and regular, and £ is a multiple of K2; we set gq(£) = ?, and we take gq\s^ 
to be as required by (3.4) (E). Clearly q is as required. 

For (4), pick a' eXy, a'> a. We shall have dq = dp, fiq = 0P, 3{q) = S(p). 
If /i G dp, fig {K,} U AK, we shall also have Sq(ju) = Sp(ju). 

We set 8q{n) = a' + K2. For a tail of X G DK we have /I e dp and <5̂ (A) < 
A*"(K) W < / a ' (^ ) < /j"«(K) W- ^° le t ^o = ^o(o;') be sufficiently large so that the 
preceding holds for X G DK \ X0. Clearly, we may assume X0 g DK. For X G DK \ X0, 
let Sq(X) — fgq/K)(X). If « is a limit of singular cardinals and r > Xo is a successor 
point of DK, let v := 5q(x) and v' = fa>(T)- Then, as for K and SP(K), there is 
Ao(v') > Xo such that for all X0 < X G DT we have ̂ (A) < / ; p ( t ) U) < / ; , (A) < f;{X). 
For such Awe set 8q(X) := f*v(X). For all other X G A« C\dp we set^(A) =<5p(A). 

Suppose now that X e dp and ^(A) < ^?(A) (so, in particular X G {«} U AK). 
We deal first with defining gq(Sp(X)), so let £ = SP{X). If £ is /"-deactivated, we 
set gq{£,) = !; otherwise, we set gq{£) = ?. In both cases we take //*(£) = £, 
and define gq\s^ to satisfy (3.4)(E). By virtue of the rest of the definition of gq, 
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Remark 2 of (4.3) will guarantee that this is as required (recall that p is very tidy!). 
Next, suppose that C is a multiple of A2 with Sp(k) < £, < 5*(A). We shall have 

that gq{£) = ? unless one of the following occurs: 
(c) A = K and £ = a', 
(d) A e A . W a ' ) a n < U = / * , ( A ) , 
(e) K is a limit of singular cardinals and there is a successor point T of DK \ 

Ao(a') such that, letting v' :— f*,{r), we have A e Z>T \ A0(v') and C = 

In these cases, we set gq{£) = gp(y)- In all cases we have hq{£,) = C, and we 
define gi\Si to satisfy (3.4)(E). By Remark 2 of (4.3), and the fact that if A e dp 

is singular and SP(X) < v then / * >* Sp\Dz, it is then clear that q £ P and is as 
required. In fact, it is easily verified that q is very tidy, though we do not need 
this. 

For (5), suppose first that K = A+ and A G dp. In this case we have dq = 
dp, fiq = pp, E{q) = S{p). By (3.2)(A), for p and K' = K, we can find Co < K 
such that whenever (rj, £,) G 3(/?) and C < K, then baC\bn C Co- Without loss of 
generality, Co < <SP(A). Now let £ G 6Q \max (a, Co)- By our choice of Co, C 0 -#(/>)• 
Also, since C G 6Q and a G («, K + ) , where K is a successor cardinal, C is even, but 
not a multiple of A. Thus, C is not forced to be 1. Accordingly, we set gq{0 = 0. 
The remainder of the construction of q divides into cases, according to whether 
A is regular or singular. 

If A is regular, we proceed as in (3), with A in place of K and C in place of a and 
with the already-noted difference that gq(0 = 0. If A is singular, we proceed as 
in (4), with A in place of K and C in place of a, with the already-noted difference 
that gq{0 = 0; the argument here is simpler than in (4) since there are no y nor 
a' involved. Then q is as required. 

If K = A+, A 0 dp, then, by hypothesis, A is a successor cardinal, so we can 
use case (1) to obtain p < q' with A G dq , and then apply the immediately 
preceding argument to q' instead of p, to obtain the required q. Finally, suppose 
K is inaccessible. As above, we can find Co < « such that whenever (rj, £,) e S(/>) 
and C < «, then ba n bn C Co- Pick K' > max(cr, Co), «' = NT, and T an even 
successor. We take C := / a ( K ' ) - We note, once again, that, by our choice of 
Co, C ̂  ^ ( / 0 , and that, since C is even and cardC, is an even successor, C is not 
forced to be 1. Then we can proceed, as in (1) and (3), to add n' to dp, and make 
SI(K') > C, except that, as above, we can also make gq(£) — 0. Clearly q is as 
required. 

For (6), we take dq = dpU {«}, 2{q) = 3{p), and, for ju G dp, 5q(ju) =6"{n). 
By (3.2) (A), for p with K' = K, d = dp, we can compute /?*(«) according to 
(3.4)(C) and fi\ according to (3.4)(D), and they will be bounded in K + and K2, 
respectively. We take 8q{n) = the least multiple of n greater than Pq(n)- If 
K < a < [l\ or K2 < a < /? ? (K) and a is a multiple of K, we set gq{a) = ? iff a is 
contaminated. If it is not contaminated, we set gq(a) = 1, unless it is forced to 
be 0, in which case we make gq{a) = 0. If Pq{n) <a< Sq{K) and a is a multiple 
of K, we set gq{a) — 1 unless it is forced to be 0; in this case we set gq{a) = 0. 
Finally, we define gq on the multiples of K in [fi\, K2) to satisfy (3.4)(D), (1) and 
(2). Clearly this q is as required. 

Sh:340



A COMBINATORIAL FORCING FOR CODING THE UNIVERSE 33 

Case (7) divides into subcases, as follows: 
(a) DK Ddp is bounded in K (in some sense, the simplest subcase: we must add 

to dp a tail of AK, but there is no contamination). 
(b) DK C* dp {K will be the only new member of dq, but we must deal with 

contamination); we shall use the decoding procedure of (4.6). 
(c) (a) and (b) both fail (the most complicated case: we must combine the 

methods used for (a) and (b), and also appeal to (5.1) and (5.2)). 
In case (a), let Xo < K be such that DK n dp C XQ. Clearly, we may assume 

Xo & DK, and, anticipating the argument for (c), if 6 < K, 8 regular, we can take 
A0 > 0. We shall have S{q) = E{p) and dq = dp U {K} U (AK \ A0). For fi G dp, 
we take 8q{fi) = Sp(ju). For X G {«} U (AK \ A0), we take pq{X) = A + 1 if A is a 
successor cardinal, and Pq (X) = X2 if X is singular. 

We set Sq{n) = K2. For X G DK \ A0, we set Si(X) = f*2(X). If K is a limit of 
singular cardinals and X a successor point of DK, X > Xo, let 3 — 8q(X). Then, if 
T G Dx \ Xo, we set <5*(T) = / ; ( T ) . Then, for A G {«} U (AK \ X0), if X < a < 8q(X) 
and a is a multiple of K2, we set gq{a) = ?, we take hq(a) = a, as required by 
(3.4)(E), and we define gq\sa to code this, as required by (3.4)(E) (we can always 
find R e L[A n X] as required, since either X is singular, in which case (X+)L = X+, 
or X $ A, in which case (X+)L^-Ar]A] = X+). If A is s-like and regular, recall that / * 
was defined at the end of (1.2). This completes the proof in case (a) of (7). 

In case (b), we will have dq = dp U {«;}, 3{q) = S(p), and for fi £ dp also 
pi in) = pp(fi). If fie dp, fi £AK, we shall also have <?«(//) =8p(fi). 

We set <5«(K) = 5* = s ca l e^ l -D j . Let X0 < K be such that if X e DK \ A0, then 
A e dp & (5P(A) < fg.(X). Clearly, we may assume Ao £" AK and, anticipating the 
argument for (c) when K is a limit of singular cardinals, below, if 6 is regular, 6 < K, 
we can take Ao > 0. For A e DK \ Xo we set 8q (A) =/d*. (A). If K is a limit of singular 
cardinals, for such A, if A is a successor point of DK and So — SP(X) < 8q{X) = d\, 
then, on a tail of rj e D;., ^ e </p and (J^^) = /,,* (^) < / £ (?/). So, let ?7o = w(A) 
be such that, whenever rjo < t] € D;, rj edp and Sp{rj) = f£ (TJ) < f£ (rj). For such 
r\, set Sq{rj) = f% (tj). If T G D K n XQ, or (if K is a limit of singular cardinals), for 
some successor point A of DK n Ao, T G £);, or (if K is a limit of singular cardinals) 
for some successor point A of DK \ Xo, i e flj fl 770(A), set <5?(r) = Sp{r). 

For A G AK such thatSp(X) <8q{X), we handle the definition of gq\[8p(X), 8q(X)) 
as we did in case (4), except that, here again, as in (5), the argument is simpler 
since there are no y, a' involved. 

Thus, it remains to define Pq{x) and gq\(K,Sq(K,)). We define gq in the usual 
way on the nonmultiples of K in (K, 8*). We shall define /??(K) to satisfy (3.4)(C) 
with d = dp and q\n in place of p\n. Note that conceivably 8 < / ? * ( « ) < 8*, 
where 8 is the least multiple of K2, 8, with K < 8 <S* such that ->(/£ <* 8P\DK), 
since instances of contamination could arise due to the definition of the gq{X) for 
those A G DK \ X0 with 8P(X) < 8q(X) (if there are cofinally many such). 

For a a multiple of K2, n<a< Pq(n), we setgq(a) — ?, and we define gq\sa to 
satisfy (3.4)(E). For/?*(/t) <a<8*, a a multiple of K2, wedefineg?|({a}UiQ) by 
recursion on a, following the singular nongeneric case of the decoding procedure 
of (4.6), with g = gq\K. This completes the construction of q in case (b). 

Sh:340



34 SAHARON SHELAH AND LEE J. STANLEY 

For case (c), our strategy is to obtain p < p', p' e P, such that the hypothesis 
of case (b), above, holds for p' and K, and then apply (b) to p'. The construction 
of p' differs according to whether K = X+aj or K is a limit of singular cardinals. 
The former case is much easier, and we consider it first. Here, we obtain p' by 
simultaneously adding X to dp, following the procedure of (1), for X e any final 
segment of DK\dp. In particular, anticipating the argument when K is a limit of 
singular cardinals, the final segment can be taken to lie above 6, if 0 is regular, 
9 < K. The simultaneity is emphasized to make clear that we are not yet appealing 
to any strategic closure properties. We then proceed as in (b) with p' in place of 

P-
When K is a limit of singular cardinals, as a first step toward obtaining the 

desired p', we first simultaneously add to dp all the r e DA, for X a successor 
point of DK, x $ dp, according to the procedure for (1). This is a condition p0, 
intermediate between p and p'. 

To obtain p', we let (A,- : i < a) increasingly enumerate DK \ dp. We let 9 > b*2 
be regular, a < 9 < K. 

Let Jl be a master model, JH = {Hv+, G, • • •), v singular, v » n, such that 
po 6 Hv and (Hv, e) models a sufficiently rich fragment of ZFC, etc, as in (5.1). 
As in (5.1), we can assume that we have {Jv"i : i < 9) which is super .#-coherent, 
with p0 e |^o |- So, fix such {jVt : i < 9). We then play the following run of the 

variant of G(9, JV, p0), mentioned in (5.3). GOOD plays by the winning strategy 
of (5.1). BAD chooses a(i) as in (5.2), and obtains /»2/+i € |-^"Q(/)|, by adding 
Xj to dPli, following the procedure of case (a) of (7) (note that the hypothesis of 
case (a) will always hold for Xt and pu). Then, p' can be taken to be pa. This 
completes the proof for (c), when n is a limit of singular cardinals, and therefore 
completes the proof of (7) and the lemma. 

6.2. P0 has the 0+-chain condition. Let 9 > K2 be regular. The crucial obser
vation is: 

PROPOSITION 6.2.1. Suppose p, q e P, {p)e, {q)ti are compatible in P«, gp\9 = 
gq\9, and f$p\9 = fiq\9. Then p and q are compatible in P. 

PROOF. Let r GPg with (p)e, (q)e < r. Note that, without loss of generality, we 
may assume that W(r) = We{p) U We{q). We shall show that r* 6 P, p, q < r*, 
where r* = (grUgp\9, fir \J fip\9, E{r*)), where S{r*) = S(p) U S(q) U E{r). 
Of course, p, q < r* is clear, once we have verified that r* e P. 

For this, all clauses of (2.2) and (3.2) are clear, as are (3.4)(E) and all clauses of 
(3.5). We argue that there is no new contamination in r*, from which it will follow 
readily that we also have all (3.4)(A)-(D). This will complete the proof. Clearly 
there is no new contamination at singulars, and there is no new contamination 
at inaccessibles above 9. So, suppose that K is inaccessible, K < 9. Suppose that 
a 6 (K, K+) and that a is contaminated by a'. Let (a1, £) e E{r*) witness 
this, as in (3.3). Then a' e W(p) U W{q), and since £, < K < 9, clearly 
(a', £) G {E(p), S(^)}. But then, by the hypotheses of the proposition, a must 
be contaminated by a' either in p or in q according to whether (a', £,) is in E(p) 
or E(#). This completes the proof. D 

COROLLARY 6.2.2. In VPe, Pe has the 9+-chain-condition. 
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PROOF. This is clear from (6.2.1) and the easy computation that {{gp\0, fip\0)\ 
p e P} has power 6, for all regular 9 > H2- • 
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