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We prove, that in the world of constructible sets, there does not exist a space X 
with H" (X, Z) isomorphic to the rational numbers. The proof requires a result 
about the growth of Ext,( ,Z) inside of G6del's constructible universe L. 

We present here a result concerning the growth of the functor  E x t ~ ( - , Z )  

inside of G6del ' s  constructible universe L [4], and then discuss an interesting 

topological  consequence.  These ideas are, of course,  directly inspired by 

Shelah 's  recent  work on Whi tehead ' s  problem. Recall Shelah, [11], [12], (see 

also [2], [3], [10]), has proven:  

THEOREM A. ( V = L )  Every Whitehead group is free. 

(G is a Whi tehead  g roup  if ' -- i.e. short exact Extz(G, Z) 0, all sequences 

0--* Z - ~  E - ~  G - - ~ 0  split.) 

To bridge the gap between regular and singular cardinals, he proves a general  

compactness  result for singular cardinals. 

THEOREM B. If A is a singular cardinal and G is A-free then G is A +-free. 

(For any infinite cardinal K, G is K-free if all subgroups  of cardinality less than 

K are free; by convent ion,  N0-free means  torsion-free,  i.e. all f ini tely-generated 

subgroups are free.) The  theorem we refer to above  is closely related to Shelah 's  

Theo rem A and has a curious consequence  for homological  algebra. We refer to 

[5] for basic facts about  the Ext functors and other  homological  algebraic 

machinery.  As usual, we denote  by Z, Q, and R the integers, the rational 
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numbers, and the real numbers respectively. Also (V = L)  denotes the axiom of 

set theory asserting all sets are constructible. 

Kan and Whitehead in [8] mention that the status of the following "elemen- 

tary" proposition in algebraic topology is unclear. 

(1) There does not exist a topological space X and integer n >= 2 such that 

H " ( X , Z ) ~ Q ,  the rational numbers. ( H " ( - Z )  denotes ordinary singular 

cohomology with integral coefficients.) 

They prove though, using elementary homological algebra, that if 

H"-1(X, Z) = 0, then H"(X,  Z) ~ Q. Nunke and Rotman [9] improve this result 

slightly by weakening the hypothesis to H"  '(X, Z) is countable. Proposition (1) 

admits the following equivalent algebraic formulation: 

(2) There does not exist an abelian group G such that Ext,(G, Z) = Q. 

The study of this proposition led to the following: 

THEOREM 1. Suppose ( V  = L ). If K is a regular cardinal and G is a K-free 

group of cardinality K, that is not free, then Ext~(G,Z) has cardinality K*. 

(Actually for the following we need only bound the above Ext group below by ~1.) 

REMARK 1. The theorem for K ---- N0 is a well-known result of homological 

algebra [5], [15]. Historically this was precisely the status of Whitehead's 

problem before Shelah's work; we think of this as circumstantial evidence. 

REMARK 2. The assertion in Theorem 1 cannot be proved or disproved from 

the usual axioms of set theory. The latter assertion follows immediately from 

Theorem 1 and G6del [4]. To see it cannot be proven, one exhibits, as in [11], a 

certain l, ll-free abelian group G of cardinality 1,1~ which is not free. Under the 

assumption of Martin's Axiom and the negation of the continuum hypothesis, it 

is shown that Ext~(G,Z)= 0. The construction of the Solovay-Tennenbaum 

model [14] completes the argument. 

It is also easy to see that K * is, in general, a crude upper bound for the above 

Ext group, so the assertion of the theorem is that this upper bound is frequently 

realized. We prove firstly that (1) is equivalent to (2), then that Theorem 1 

implies (2), and finally Theorem 1. 

PRoPosmor~ 1. (1) is equivalent to (2). 

PROOF. ( ~ )  Assume (2) and suppose X is such that H " ( X , Z ) ~ Q .  Let 

G = H,  I(X, Z) and observe by the universal coeflScient formula: 

Sh:59



VOI. 26, 1977 SINGULAR COHOMOLOGY IN L 315 

Q ~ H ~ (X, Z) ~ Horn (H,  (X, Z), Z) �9 Ext~(H,_ ~(X, Z), Z). 

Since Q is indecomposable and the Horn group could not be divisible: 

Ext , (G,  Z ) =  Q, contradicting (2). 

( ~ )  Similarly, assume (1) and let G be such that Ext{(G, Z ) ~  Q. Let X be 

the Moore space M ( G ,  2), i.e. a topological space whose homology satisfies: 

/~ , (M(G,  2), Z) = { 0G i f * = 2 ,  
otherwise. 

Such spaces are easily constructed, see [l, p. 31]. Then: 

H S ( M ( G ,  2), Z) = Horn (H3(M(G,  2), Z), Z) (~ Ext[ (H2(M(G,  2), Z), Z) 

1 = Extz(G, Z) = Q, 

contradicting (1). 

We now prove a stronger form of (2) for torsion-free abelian groups, assuming 

Theorem 1, of course. 

PROPOSITION 2. ( V = L )  There does not exist a torsion-free abelian group G 

such that IExt~(G,Z)} = N,,. 

PROOf. Choose a group G contradicting the assertion and suppose the 

cardinality of G, say K, is regular. We can certainly assume G is not free, since 

Ext~(F,Z) = 0, for F a free abelian group. We also can assume K >N0, for 

otherwise Remark 1 above allows us to use the torsion-free hypothesis to 

conclude !Extz(G,Z)l  = N~. Similarly if G is K-free, Theorem I gives us 

I Extz(G,Z)l = K >N,~. So we can suppose G is not K-free and then pick a 

non-free subgroup H of G of minimal cardinality. If /3 is the cardinality of H, 

then H is /3-free, by our minimality assumption. We claim /3 is regular. 

Otherwise Shelah's Theorem B above would imply that H is/3 ~-free, hence free, 

contradicting the choice of H. If /3 is uncountable, Theorem 1 allows us to 

conclude I Ext~(H,Z)l = / 3 + >  ~t,,. If /3 is ~,,, then the torsion-free hypothesis 

gives us this same strict lower bound. Now consider the short exact sequence: 

0 --~ H -~ G --, G / H --~ 0 

which induces the long exact sequence: 

�9 . . ~  Ex t~(G/H,  Z)--, Ext ,(G, Z)---~ Ext{:(S, Z)---~ Ex t2 (G/H ,  Z)---~ �9 �9 �9 

Since Ex tz=  0, I Ext~(G,Z)] => I Ext~(H,Z)]>N0,  contradicting our original 

choice of G. 

Now suppose the counterexample G has singular cardinality X, Then let 
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G '  = G @ (@~+ Z). Thus Ext~(G', Z) ~ Ext '(G, Z) and G'  has regular cardinal- 

ity A +, contradicting the first part of the proof. The proof is now complete. 

The case of torsion groups can be treated easily within ZFC: 

LEMMA. There is no torsion group T such that I Ext~z(T,Z)l--N0. 

PROOF. Consider the short exact sequence: 

0--~ Z--~ R"~ R/Z--~ 0 

which induces: 

�9 .. --~ Horn (T, R ) ~  Horn (T, R/Z)--~ Ext,(T, Z)--~ Ext,(T, R ) - * . . .  

The extreme terms vanish since R is both torsion-free and divisible. Hence we 

obtain the well-known isomorphism: 

Ext~ (T, Z) ~ Horn (T, R/Z) .  

But the character group Horn (T, R/Z) is a compact group in the topology of 

pointwise convergence, so is either finite or uncountable. 

f Extz(G, Z)l--- THEOREM 2. ( V = L)  There is no abelian group G such that ' 

PROOF. Let G be a counterexample and consider the short exact sequence: 

0--~ tor (G)--~ G -* G / t o r ( G ) - ~ O  

where t o t (G)  denotes the torsion subgroup of G. This induces: 

-..  -~ Hom (tot (G), Z)--~ Ext~(G/tor (G),  Z)--~ Ext]:(G, Z)--~ Ext~:(t or (G), Z)-~ 0. 

(This short exact sequence even splits since Ext~ (G/tor  (G), Z) is divisible.) This 

now contradicts either Proposition 2 or the Lemma. 

REMARK. Using a result of C. U. Jensen [6, p. 64] one can obtain a similar 

"non-realizability" result for the functor lira', the first right derived functor of 

inverse limit. 

COROLLARY. (V = L)  implies (2). 

PROOF. Immediate, since Q is countable. 

Finally we come to the proof of Theorem 1. It is essentially a slight refinement 

of Shelah's original argument [11], using a splitting theorem due to R. Solovay 

[13]. Namely: 
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SOLOVAY'S THEOREM. I f  r is a regular cardinal and A is a stationary subset of 

K, then A = U~<. A~ where each A.  is a stationary subset of K, and the collection 

{A~}.<~ is pairwise disjoint. 

The proof below has been obtained independently by P. Eklof and A. Mekler. 

PROOF OF THEOREM 1, Suppose G is a counterexample and list representa- 

tive short exact sequences for all the elements of Ext]~(G,Z) (maybe with 

repetition), say" 

~v 

(S , )  0 ~  z - - ,  E.~ ~ G ~ 0  (3' < K) 

By the usual argument, see [10, p. 18], we can assume that each E~ is G x Z as a 

set and ~r~ is projection on the first factor. Working in the framework of [2], we 

can express G -- U ~<~ G,  with each G~ free and of cardinality less than K, and 

A = {or < K : G~+ l/G,~ is not free} 

a stationary subset of K [2, theor. 5.3]. Now Solovay's theorem provides us with a 

partition A = U~<,A~, with each A~ stationary. Define E~,~ = ~'~'(Go). 

We construct inductively a short exact sequence: 

(s) 0 ~ z  > U u~---~G ,o 

distinct from all the (S~)'s as an element of the group of extensions. As sets each 

B, will be G, z Z .  For each /3 < K, we have by O,(Ao) a collection of Jensen 

functions (see [2], [7], [10]): 

{f~,~:Eo,~ > B~: a C A~}. 

The critical case in the inductive construction is when a E A, say a E Ao, for 

some unique /3 < K, and f,..~ produces an isomorphism of the extensions: 

0 >Z >E,,,~ ( ~ E '%) G,, >0 

0 >Z >B~ > G,, >0 

Since Go+t is free we can find a splitting p: G~+,--~E.+,,~ for ( ~  I E.+,,~). Then 

(Pl G, )is a splitting for (Trt~ I E~.~), and also f~.~ o (p I G~) splits (or I B,~): B~ ~ G,~. 

By assumption Go+,/Go is not free, hence not a Whitehead group by Shelah's 
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T h e o r e m  A, so we can find a g roup  structure on B~+l such that f~,o o (p t Go) does 

not extend to a splitting of (~r lB ,+ , ) :  B~+I---~ G~+~, [2, l emma 4.3]. The  other  

cases in the construct ion are handled  in the routine fashion [2, p. 28]. It is now 

the usual d i amond-a rgumen t  [2, p roof  of 6.3] to see that our  new exact sequence 

(S) is "d iagona l ized"  out of the original listing (S,)  . . . .  Indeed  suppose f :  Eo ~ B 

is an i somorphism commut ing  with the respective project ions to the first factor. 

By ~ ( A B ) ,  there exists an a < K such that f~.~ = f lE~.~. Then  we have a 

commuta t ive  diagram: 

But then ~ l E ~ + ~ . o ) o o  provides a splitting extending B,0 ~ (oIGo) contradict-  

ing our  construct ion.  This contradict ion completes  the proof.  

CONCLUSION. Of course,  it is our  eventual  hope  that an independence  proof  

will be found of (2). The  results above  seem at least to be an indication of the 

possible variety of independence  problems in the realm of algebraic topology.  In 

any case we hope  that this paper  will fur ther  stimulate interest in the beautiful  

interplay between homological  algebra and  set theory.  
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