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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 44, Number 3, Sept. 1979 

HANF NUMBER OF OMITTING TYPE FOR SIMPLE 
FIRST-ORDER THEORIES 

SAHARON SHELAH1 

Abstract. Let T be a complete countable first-order theory such that every ultrapower of a 
model of T is saturated. If T has a model omitting a type p in every cardinality < Z"', then T has 
a model omitting p in every cardinality. There is also a related theorem, and an example show- 
ing the X,,, cannot be improved. 

Let L be a first-order countable language, Ta complete theory (in L), p a type 
(in L), that is p {(pj(x): n} where each (p(x) is a formula from L whose only 
free variable is x. If M is an L-model, a e IMI (= the set of elements of M) then 
a realizes p if for every n, M #S (o[a] (= the formula sop[a] is satisfied by M). If 
there is no element of M which realizes p, then we say M omits p. We define m(T, p) 
as the first cardinality in which T has no model omitting p, if there is such a car- 
dinality, and zero otherwise. We shall prove 

THEOREM 1. Suppose that for every model M of T, and every (nonprincipal) ul- 
trafilter D over a set I, MI/D is a saturated model. Then m(T, p) < n,,. 

(The assumption follows from: T is unidimensional; it is equivalent to: Tis stable, 
and if d E IMI, (p(X, y, d) is an equivalence relation in M, then the number of 
equivalence classes is IIMiI or finite (see [6])). 

THEOREM 2. If T is stable, countable and complete, m(T, p) > n,,, then in every 
cardinality Xa, Thas > min (IaIxo, 21al-i) nonisomorphic models. 

THEOREM 3. If T is superstable, countable, complete and m(T, p) ? n,,, then there 
are formulas (pjx, y) such that for every No < ? 0 < 21 < .. < i, < .. there is a 
model M of T and sequences an of elements of M such that I {c E IMI: [= qn[C, dn]}I 
= in for every n < co. 

REMARKS. (1) We shall only sketch the proofs of Theorems 2, 3 as they are 
similar to that of Theorem 1. 

(2) Theorem 2 is an improved version of Theorem 3 of the abstract [5], see also 
[7, ?0]. 

(3) If T is not superstable, it can also be proved that it has many nonisomorphic 
models in every cardinality. See [6, Chapter VIII, ?2]. 

(4) Saturated models are defined and investigated in Morley and Vaught [4] 
(or see [2]) where they are called universal-homogeneous models. In fact we need 
only the universality in Theorem 1. A model M is called universal if every model 
elementarily equivalent to M, of cardinality not greater than that of M, is iso- 
morphic to an elementary submodel of M. 
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320 SAHARON SHELAH 

(5) By Morley [3], m(T, p) < zd for any countable T. We shall generalize his 
proof, but use a smaller set of Skolem functions. 

(6) We can replace the omitting of one type by the omitting of countably many 
types. Also each type may be an m-type for some m < w. 

(7) The cardinality n, is defined by induction: no = =0, H, 
Notations. Cardinals (usually infinite) shall be denoted by i, ,i, ordinals by i, 

j, k, 1, a, AS, $, C, natural numbers by m, n, q, r, and formulas by qp, sb. 
PROOF OF THEOREM 1. For every i ? 0 we define a first-order language L2 whose 

nonlogical signs will be: 
(1) the nonlogical signs of L, 
(2) an individual constant Ck for every k < i, 
(3) for every formula sP = (YO, Y1,, Y) of L, a function-symbol f, , 

f'(Y15X* ** XYn)- 
(REMARK. In fact, this is defined not for every formula but for every pair <(p, 

<Yo,. . *,Yn>> where every free variable of SD belongs to YO, . .,Yn. But we shall not dis- 
tinguish strictly between sp and <p, <Yi, *-., Yn>>, similarly for terms.) 

The interpretation of those functions is, of course, Skolem functions. Let 

{,rm(Y Y~M5 * 
m 

S~)): m < w} be a list of the terms of Lo such that ym = f(l X ... 5,Zrq) 
implies al, ..., 5rq e {-c: n < m}. Let kl(n) = maxm"n k(m) < c. Clearly for every m, 
and every permutation 0 of {1, ..., k(m)}, there is n, such that 

'rYM m))= rn(ynt, ..., y 
(omw yd(1.X*..* Yom(k (m) ) 1=t~ Yk(n) ) 

It is clear that every constant term in LA is equal to Cm(cj,, ..., cl*(m) for some m and 
11 < * < I*(m) < i. Let BA be the set of constant terms of LA, and B(Q, n) be those 
df the form cn(c1, ...), where 11 < 12 < 

A function Ffrom the set Bj to a model M of Tis i-proper (1 < co) if 
(1) if k < j < A then F(ck) #0 F(cj); 
(2) if r E B(2, n), n < 1, r = f(, . ..., m) then 

M 1- (3yo) (p [yo, F(,rl)5 .., F(,rm)] -- ([F(,r)5 F(,rl)5 F(,rm)]. 

Fis strongly i-proper if in addition 
(3) if r c B(2, n), n < 1 il < .. < ik (n) < i5 il < .. < jk (n) < iand m <co 

then 

M l= (Pm[F(Zn(Cii, * Ci,(,)))] (Pm[F(rn(Cjj, . . o** ))] 

Letp = {(pm(x):m < (o}. 

Now let s denote a sequence of length co of natural numbers. Its length will 
be i(s), and its nth element sn = s(n). The sequence of its first n-element (n < I(s)) 

will be sin. 
A function Ffrom BA to a model M of Tis s-proper if 
(A) It is i(s)-proper, 
(B) for every il < ... < A, and m < I(s), M s(m) [F(zm(c,.) 

LEMMA 4. If l(s) = c, andfor every n there is an (sln)-proper function Fnfrom B~0 
into a model Mn of T, then m(T, p) = 0. 

PROOF OF LEMMA 4. By the compactness theorem, there is a model M of T and an 
s-proper function F from B., into M. By a second use of the compactness theorem, 
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HANF NUMBER OF OMITTING TYPE 321 

there is a model M1 and an s-proper function F1 from BA into M1 where A is any 
cardinal. Let A be the range of F1, and N a submodel of M1 whose set of elements is 
A. Clearly JAI < A as IBAI = A. On the other hand by condition (1) in the definition 
of i-proper function, k < j < A implies F1(ck) $ Fl(cj), hence AI 2 I {ck 
k <A} I = A. So the cardinality of N is A. By the second condition in the definition 
of an i-proper function, and by Tarski-Vaught test (see e.g. [2]), N is an elementary 
submodel of M1 and so also a model of T. By condition (B) of the definition of s- 
proper function, N omits p. So we clearly prove the lemma. 

LEMMA 5. Suppose m(T, p) 2 n,,, and for every model M of T, MI/D is saturated. 
Suppose l(s) = n and there is an s-proper function Ffrom B,0 into a model M of T. 
Let N be a model of T of cardinality ? A = Zk1(n)+1 which omits p. Then we can 
lengthen s to a sequence s' of length n + 1 such that there is an s'-proper function 
from L,0 into N. 

PROOF OF LEMMA 5. Let D be a (nonprincipal) ultrafilter on w (on ultrafilters and 
ultraproducts e.g. [2]). Let N1 = Nw/D. By our assumptions N1 is saturated. By the 
compactness theorem, there is a model M1 of T such that there is an s-proper func- 
tion F from BA to M1. By the downward Lowenheim-Skolem theorem we can 
assume the cardinality of M1 is A, and hence it is isomorphic to an elementary sub- 
model of N1. So there exists an s-proper function F' from BA into N1. By changing 
F' a little, we can assume in addition that for every r = f(ig ..., n) where (p = 
(p(x, y, ..., y) it holds that N1 1 (3x)gp(x, rl, ..., () -p(T, Z1, ., in). Let F'(z) = 
<a?, a', ... a, ... >m<w)/D. 

We define the function Fm from LA into N by Fm(j) = ar. 
Let us define an equivalence relation E among the increasing sequences of length 

kl(n) of ordinals < A:(i1, ..., ik1(n) >E<il, . ., *k, (n) > if 
(I) for every r < wo, Fr(cii) = Fr(ci2) iff Fr(cji) = Fr(cj2), 
(II)foreverym < n + 1,q < co andr < co, 

N l= (pq[Fr(rm(Cij, ..., ci(.)))] - N k= (pq[Fr(rm(cj., Cjk()))], 

(III) if r < co, m< n + 1, r = rtn(ci1, ..., Cik(n), ' = f,(rl, ..., rp), and w.l.o.g. 
Vq = Vq(cij, ...), and r* = zrm(cj,, ...), <q* = (c,1, ...), then 

N [ (3y)cfy, Fr(Zrl), ...] -- (i[Fr(Zr), Fr(rl), .] 

N = (3y) if [y, Fr(r*), *] (pi[Fr(r*), .] 

It is easy to see the number of equivalence classes is < 2xo. By Erd6s, Hajnal and 
Rado [1] there is an infinite subset I of A, such that any two increasing sequences of 
ordinals from I, of length kl(n) are E-equivalent. By renaming the ci's we can 
assume the natural numbers belong to I. Let Fr be Fr restricted to Bo. Now by Los' 
theorem for every m < n 

{r: r < o), N (Ps Os(m)[Fr(m(C1, C (m)))]} e D. 

This implies there are r's for which Fr satisfies condition (B) for being s-proper. 
By looking on the one hand at conditions (1), (2), for F to be strongly (n + 1)- 
proper, and conditions (A) and (B) for being s-proper, and on the other hand 
conditions (I), (II), (III) in the definition of E, it is easy to see the set of r's for which 
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322 SAHARON SHELAH 

Fr is (n + 1)-proper and s-proper, belongs to D. Let ro be such r. As Fr is a func- 
tion into N which omitsp, there is mo such that 

N l= (moFo(rn(Cl * , Ck.(n)))] 

Define s' = <so, s1, .-., Sn-1, MO>. Clearly Fro is an s'-proper function from L~o into 
N. So we prove Lemma 5. 

CONTINUATION OF THE PROOF OF THEOREM 1. We define by induction on n: sn-19 
Fn, Mn such that: Mn is a model of T, Fn is an <Sm: m < n>-proper function from 
B;o into Mn. 

For n = 0, MO will be any infinite model of T, and Fo any function from B~o into 
MO, such that r $ q implies FO(Cr) ; FO(cq). 

If Mn, Fn and <Sm: m < n> are defined, by Lemma 5 we can define Mn+l, Fn+l 
and sn such that Mn+1 is a model of T, and Fn+l is an <Sm: m < n + 1>-proper 
function from Bo into Mn+l. By Lemma 4, Theorem 1 follows. 

SKETCH OF THE PROOF OF THEOREM 2. For simplicity, we shall sketch only a proof 
of: 

(*) if m(T, p) > z:,, T is countable, complete and superstable, then A > so where A 
is from [6, V5.8]. The conclusion follows by [6, V5.8]. 

Assume T and p do not satisfy (*). 
Let M be a model of T of cairdinality > n,, which omits p. Clearly N = MW/D 

is 41-saturated (where D is any nonprincipal ultrafilter over W). Hence, by Shelah 
[6, V, ?5; IV, ?4], there are in N sets A, and {di: i < ar} for e < xo < 40 such 
that: 

(1) IA I < 2xo, 
(2) for each e < t0, {ai: i < at} is an indiscernible set over A U {di: i < ae, 

e < toe C$ 
(3) {ac: i < aor is a maximal indiscernible set over A U {ci: i < ca, e < C}, 
(4) Nis the x1-primary model over A U {4i: i < at, $ < tO} 
The last demand means that the set of elements of N is {bi: i < 80o} and, for every 

i < iO, bi realizes an 41-isolated type over Bi = A U {dj: i < at, e < to} U 
{bj: i < i}. That means that there is Bi c Bj, jBi < 80, such that if Dp(x, y) is a 
formula, b a sequence from Bj, then there is a formula c/(x, y) and sequence c 
from Bi, such that N [= Iambi b] implies N [= 0[bi, c] A (Vx) [b(x, c) -- p(x, b)]. 

Now let n1 be the first such that ae < n,,, implies ac < ,n, (exists as we assume 
A ? x0) 

Now examining carefully the proof of Theorem 1, it clearly suffices to show: 
for every sequence s, I(s) < w, that: 

(A) If there is an s-proper function from BA to M, then there is an s-proper func- 
tion from BA to N. 

(B) If there is an s-proper function F into N from BA, A > 3nj+2kj(1(s))?2 and t < 
2,0, then there is an s-proper function from B, into N. 

(C) If there is an s-proper function from BA into N. A ? Zn+ki(I(s))t19 then there 
is an s-proper, strongly (I(s) + 1)-proper function from B xn into M (for any n < w). 
By (A), (B), (C) we can easily define sm by induction, such that for every n < W, 
there is an <Sm: m < n>-proper function from B:nl?+2k1(n)+1 into M. Now (A) is 
self-evident, and (C) follows from the proof of Lemma 5. 
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Let us prove (B). In the description of N as an $,-primary model in (4) above, 
we can assume bj E B, => B' c Bi and bi ? B2. We expand N by the following re- 
lation, functions and constants: 

(i) an individual constant a for each a E A U {aj: j < oXe, e < $o and ac < zs}, 
(ii) a one-place relation Pe = {aj: j < aej for each e < 40 and a one-place 

relation Q = {bj: i < P0o, Q0 = A, 
(iii) a two-place relation < = {<bj, b,>:j < i < po}, 
(iv) one-place function symbols Gn, such that Bi = {Gn(bi): n < c)} 

(v) the functions, defined naturally (i.e. to "commute" with F). 
We get a model N*. By [1], the sequence <F(ci): i < A> has a subsequence of 

length a1, all of whose increasing subsequences of length < 2k1(l(s)) + 1 realizes 
the same type in N* (notice w.l.o.g. k(n) < 1). So we assume <F(c2): i < Wj> is 
such a subsequence and now we lengthen it naturally. 

PROOF OF THEOREM 3. Left to the reader who should use [6, IX, 2.3]. 
LEMMA 6. In Theorem 1, we cannot replace a,, by a smaller cardinal, even if T is 

also superstable. 
PROOF. On V = {V: , a sequence of ones and zeros of length wo} we define addi- 

tions !1 + V2 = 3 iff for each n, g1(n) + ,92(n) = 3(n) mod 2. Note that V is an 
abelian group, and in it v7 = - so subtraction is addition. Let k be a fixed natural 
number. Let us define a model M: 

MI = V U Vk+l, 
P = V (a one-place relation), 
P, = {I e V: V(n) = O} U {<Ko, .,7k>7 lk(n) =?} 

o the sequence of zeros of length w, 
+ a two-place function: on V as above, 

<vo, *- g o>V + V = V + <VO0 ... g V> <VO Vk g-1, Vk + > 

and 0 otherwise. 
F1 a one-place function, for 1 < k, F1(Vy) = Vy, F1(<V0, . >) = an 

E an equivalence relation, <K0, . . ., qk>E<V0, ..., Vk> iffyV = ,21 for each 1 < k. 
Now T = Th(M) is countable, complete, has elimination of quantifiers and is 

superstable and unidimensional. Let us define a type 

p = {P(xj), Fm(Yi) = Xl+i(m,l), i P(yl): 1 < k, m < k, i(m, 1) is 0 if m < 1 and 
1 otherwise} U {P"(y1) =P(yl+): n < d, 1 < k} U {I6A<? xI # Xm}. 

Now T has a model of cardinality A omitting p iff A -+ (k + l)%, iff A < Zk+1 
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