

Hanf Number of Omitting Type for Simple First-Order Theories Author(s): Saharon Shelah Source: *The Journal of Symbolic Logic*, Vol. 44, No. 3 (Sep., 1979), pp. 319-324 Published by: <u>Association for Symbolic Logic</u> Stable URL: <u>http://www.jstor.org/stable/2273125</u> Accessed: 15/06/2014 18:11

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

THE JOURNAL OF SYMBOLIC LOGIC Volume 44, Number 3, Sept. 1979

HANF NUMBER OF OMITTING TYPE FOR SIMPLE FIRST-ORDER THEORIES

SAHARON SHELAH¹

Abstract. Let T be a complete countable first-order theory such that every ultrapower of a model of T is saturated. If T has a model omitting a type p in every cardinality $< \exists_{\omega}$, then T has a model omitting p in every cardinality. There is also a related theorem, and an example showing the \exists_{ω} cannot be improved.

Let *L* be a first-order countable language, *T* a complete theory (in *L*), *p* a type (in *L*), that is $p = \{\varphi_n(x) : n\}$ where each $\varphi_n(x)$ is a formula from *L* whose only free variable is *x*. If *M* is an *L*-model, $a \in |M|$ (= the set of elements of *M*) then *a* realizes *p* if for every *n*, $M \models \varphi_n[a]$ (= the formula $\varphi_n[a]$ is satisfied by *M*). If there is no element of *M* which realizes *p*, then we say *M* omits *p*. We define m(T, p) as the first cardinality in which *T* has no model omitting *p*, if there is such a cardinality, and zero otherwise. We shall prove

THEOREM 1. Suppose that for every model M of T, and every (nonprincipal) ultrafilter D over a set I, M^{I}/D is a saturated model. Then $m(T, p) < \beth_{\omega}$.

(The assumption follows from: T is unidimensional; it is equivalent to: T is stable, and if $\bar{a} \in |M|$, $\varphi(\bar{x}, \bar{y}, \bar{a})$ is an equivalence relation in M, then the number of equivalence classes is ||M|| or finite (see [6])).

THEOREM 2. If T is stable, countable and complete, $m(T, p) > \beth_{\omega}$, then in every cardinality \aleph_{α} , T has $\geq \min(|\alpha|^{\aleph_0}, 2^{|\alpha|-1})$ nonisomorphic models.

THEOREM 3. If T is superstable, countable, complete and $m(T, p) \ge \beth_{\omega}$, then there are formulas $\varphi_n(x, \bar{y})$ such that for every $\aleph_0 \le \lambda_0 \le \lambda_1 \le \cdots \le \lambda_n \le \cdots$ there is a model M of T and sequences \bar{a}^n of elements of M such that $|\{c \in |M| : \models \varphi_n[c, \bar{a}^n]\}| = \lambda_n$ for every $n < \omega$.

REMARKS. (1) We shall only sketch the proofs of Theorems 2, 3 as they are similar to that of Theorem 1.

(2) Theorem 2 is an improved version of Theorem 3 of the abstract [5], see also [7, §0].

(3) If T is not superstable, it can also be proved that it has many nonisomorphic models in every cardinality. See [6, Chapter VIII, \S 2].

(4) Saturated models are defined and investigated in Morley and Vaught [4] (or see [2]) where they are called universal-homogeneous models. In fact we need only the universality in Theorem 1. A model M is called universal if every model elementarily equivalent to M, of cardinality not greater than that of M, is isomorphic to an elementary submodel of M.

319

© 1979 Association for Symbolic Logic 0022-4812/79/4403-0004/\$02.50

Received May 17, 1977; revised November 15, 1977.

¹The author thanks the United States-Israel binational foundation for partially supporting his research by Grant 1110.

SAHARON SHELAH

(5) By Morley [3], $m(T, p) < \beth_{\omega_1}$ for any countable T. We shall generalize his proof, but use a smaller set of Skolem functions.

(6) We can replace the omitting of one type by the omitting of countably many types. Also each type may be an *m*-type for some $m < \omega$.

(7) The cardinality \Box_{α} is defined by induction: $\Box_0 = \aleph_0, \ \Box_{\alpha} = \sum_{\beta < \alpha} 2^{\Box_{\beta}}$.

Notations. Cardinals (usually infinite) shall be denoted by λ , μ , ordinals by *i*, *j*, *k*, *l*, α , β , ξ , ζ , natural numbers by *m*, *n*, *q*, *r*, and formulas by φ , ψ .

PROOF OF THEOREM 1. For every $\lambda \ge 0$ we define a first-order language L_{λ} whose nonlogical signs will be:

(1) the nonlogical signs of L,

(2) an individual constant c_k for every $k < \lambda$,

(3) for every formula $\varphi = \varphi(y_0, y_1, \dots, y_n)$ of L, a function-symbol $f_{\varphi} = f_{\varphi}(y_1, \dots, y_n)$.

(REMARK. In fact, this is defined not for every formula but for every pair $\langle \varphi, \langle y_0, ..., y_n \rangle \rangle$ where every free variable of φ belongs to $y_0, ..., y_n$. But we shall not distinguish strictly between φ and $\langle \varphi, \langle y_1, ..., y_n \rangle \rangle$, similarly for terms.)

The interpretation of those functions is, of course, Skolem functions. Let $\{\tau^m(y_1^m, y_2^m, ..., y_{k(m)}^m): m < \omega\}$ be a list of the terms of L_0 such that $\tau^m = f(\tau_1, ..., \tau_q)$ implies $\tau_1, ..., \tau_q \in \{\tau^n: n < m\}$. Let $k_1(n) = \max_{m \le n} k(m) < \omega$. Clearly for every m, and every permutation θ of $\{1, ..., k(m)\}$, there is n, such that

$$\tau^{m}(y^{m}_{\theta(1)},...,y^{m}_{\theta(k(m))}) = \tau^{n}(y^{n}_{1},...,y^{n}_{k(n)}).$$

It is clear that every constant term in L_{λ} is equal to $\tau^m(c_{l_1}, \ldots, c_{l_{k(m)}})$ for some *m* and $l_1 < \cdots < l_{k(m)} < \lambda$. Let B_{λ} be the set of constant terms of L_{λ} , and $B(\lambda, n)$ be those of the form $\tau^n(c_{l_1}, \ldots)$, where $l_1 < l_2 < \cdots$.

A function F from the set B_{λ} to a model M of T is *l*-proper $(l \leq \omega)$ if

(1) if $k < j < \lambda$ then $F(c_k) \neq F(c_j)$;

(2) if $\tau \in B(\lambda, n), n < l, \tau = f_{\omega}(\tau_1, ..., \tau_m)$ then

$$M \models (\exists y_0) \varphi [y_0, F(\tau_1), \dots, F(\tau_m)] \to \varphi [F(\tau), F(\tau_1), \dots, F(\tau_m)].$$

F is strongly *l*-proper if in addition

(3) if $\tau \in B(\lambda, n)$, n < l, $i_1 < \cdots < i_{k(n)} < \lambda$, $j_1 < \cdots < j_{k(n)} < \lambda$ and $m < \omega$ then

$$M \models \varphi_m[F(\tau_n(c_{i_1}, ..., c_{i_{k(n)}}))] \equiv \varphi_m[F(\tau_n(c_{j_1}, ..., c_{j_{k(n)}}))].$$

Let $p = \{\varphi_m(x) : m < \omega\}.$

Now let s denote a sequence of length $\leq \omega$ of natural numbers. Its length will be l(s), and its *n*th element $s_n = s(n)$. The sequence of its first *n*-element $(n \leq l(s))$ will be s|n.

A function F from B_{λ} to a model M of T is s-proper if

(A) It is l(s)-proper,

(B) for every $i_1 < \cdots < \lambda$, and m < l(s), $M \models \neg \varphi_{s(m)} [F(\tau^m(c_{i_1}, \ldots))]$.

LEMMA 4. If $l(s) = \omega$, and for every *n* there is an (s|n)-proper function F_n from B_{\aleph_0} into a model M_n of *T*, then m(T, p) = 0.

PROOF OF LEMMA 4. By the compactness theorem, there is a model M of T and an *s*-proper function F from B_{80} into M. By a second use of the compactness theorem,

there is a model M_1 and an s-proper function F_1 from B_{λ} into M_1 where λ is any cardinal. Let A be the range of F_1 , and N a submodel of M_1 whose set of elements is A. Clearly $|A| \leq \lambda$ as $|B_{\lambda}| = \lambda$. On the other hand by condition (1) in the definition of *l*-proper function, $k < j < \lambda$ implies $F_1(c_k) \neq F_1(c_j)$, hence $|A| \geq |\{c_k: k < \lambda\}| = \lambda$. So the cardinality of N is λ . By the second condition in the definition of an *l*-proper function, and by Tarski-Vaught test (see e.g. [2]), N is an elementary submodel of M_1 and so also a model of T. By condition (B) of the definition of s-proper function, N omits p. So we clearly prove the lemma.

LEMMA 5. Suppose $m(T, p) \ge \beth_{\omega}$ and for every model M of T, M^I/D is saturated. Suppose l(s) = n and there is an s-proper function F from B_{\aleph_0} into a model M of T. Let N be a model of T of cardinality $\ge \lambda = \beth_{k_1(n)+1}$ which omits p. Then we can lengthen s to a sequence s' of length n + 1 such that there is an s'-proper function from L_{\aleph_0} into N.

PROOF OF LEMMA 5. Let D be a (nonprincipal) ultrafilter on ω (on ultrafilters and ultraproducts e.g. [2]). Let $N_1 = N^{\omega}/D$. By our assumptions N_1 is saturated. By the compactness theorem, there is a model M_1 of T such that there is an s-proper function F from B_{λ} to M_1 . By the downward Löwenheim-Skolem theorem we can assume the cardinality of M_1 is λ , and hence it is isomorphic to an elementary submodel of N_1 . So there exists an s-proper function F' from B_{λ} into N_1 . By changing F' a little, we can assume in addition that for every $\tau = f_{\varphi}(\tau_1, ..., \tau_n)$ where $\varphi = \varphi(x, y, ..., y)$ it holds that $N_1 \models (\exists x)\varphi(x, \tau_1, ..., \tau_n) \rightarrow \varphi(\tau, \tau_1, ..., \tau_n)$. Let $F'(\tau) = \langle a_{\tau}^0, a_{\tau}^2, ..., a_{\tau}^m, ... \rangle_{m < \omega} / D$.

We define the function F_m from L_{λ} into N by $F_m(\tau) = a_{\tau}^m$.

Let us define an equivalence relation E among the increasing sequences of length $k_1(n)$ of ordinals $\langle \lambda: \langle i_1, ..., i_{k_1(n)} \rangle E \langle j_1, ..., j_{k_1(n)} \rangle$ if

(I) for every $r < \omega$, $F_r(c_{i_1}) = F_r(c_{i_2})$ iff $F_r(c_{i_1}) = F_r(c_{i_2})$,

(II) for every m < n + 1, $q < \omega$ and $r < \omega$,

$$N \models \varphi_q[F_r(\tau^m(c_{i_1}, ..., c_{i_{k(m)}}))] \Leftrightarrow N \models \varphi_q[F_r(\tau^m(c_{j_1}, ..., c_{j_{k(m)}}))],$$

(III) if $r < \omega$, m < n + 1, $\tau = \tau^m(c_{i_1}, ..., c_{i_{k(m)}})$, $\tau = f_{\varphi}(\tau_1, ..., \tau_p)$, and w.l.o.g. $\tau_q = \tau_q(c_{i_1}, ...)$, and $\tau^* = \tau^m(c_{j_1}, ...)$, $\tau_q^* = \tau_q(c_{j_1}, ...)$, then

$$N \models (\exists y) \varphi[y, F_r(\tau_1), \ldots] \rightarrow \varphi[F_r(\tau), F_r(\tau_1), \ldots]$$

$$\Leftrightarrow N \models (\exists y) \varphi[y, F_r(\tau_1^*), \ldots] \rightarrow \varphi[F_r(\tau^*), \ldots].$$

It is easy to see the number of equivalence classes is $\leq 2^{\aleph_0}$. By Erdös, Hajnal and Rado [1] there is an infinite subset I of λ , such that any two increasing sequences of ordinals from I, of length $k_1(n)$ are E-equivalent. By renaming the c_i 's we can assume the natural numbers belong to I. Let F'_r be F_r restricted to B_{\aleph_0} . Now by Los' theorem for every m < n

$$\{r: r < \omega, N \models \neg \varphi_{s(m)}[F_r(\tau^m(c_1, \ldots, c_{k(m)}))]\} \in D.$$

This implies there are r's for which F'_r satisfies condition (B) for being s-proper. By looking on the one hand at conditions (1), (2), for F to be strongly (n + 1)proper, and conditions (A) and (B) for being s-proper, and on the other hand conditions (I), (II), (III) in the definition of E, it is easy to see the set of r's for which F'_r is (n + 1)-proper and s-proper, belongs to D. Let r_0 be such r. As F'_r is a function into N which omits p, there is m_0 such that

$$N \models \neg \varphi_{m_0}[F_{r_0}(\tau^n(c_1, ..., c_{k(n)}))].$$

Define $s' = \langle s_0, s_1, ..., s_{n-1}, m_0 \rangle$. Clearly F_{r_0} is an s'-proper function from L_{\aleph_0} into N. So we prove Lemma 5.

CONTINUATION OF THE PROOF OF THEOREM 1. We define by induction on $n: s_{n-1}$, F_n , M_n such that: M_n is a model of T, F_n is an $\langle s_m: m < n \rangle$ -proper function from B_{\aleph_0} into M_n .

For n = 0, M_0 will be any infinite model of T, and F_0 any function from B_{\aleph_0} into M_0 , such that $r \neq q$ implies $F_0(c_r) \neq F_0(c_q)$.

If M_n , F_n and $\langle s_m : m < n \rangle$ are defined, by Lemma 5 we can define M_{n+1} , F_{n+1} and s_n such that M_{n+1} is a model of T, and F_{n+1} is an $\langle s_m : m < n + 1 \rangle$ -proper function from B_{\aleph_0} into M_{n+1} . By Lemma 4, Theorem 1 follows.

SKETCH OF THE PROOF OF THEOREM 2. For simplicity, we shall sketch only a proof of:

(*) if $m(T, p) > \beth_{\omega}$, T is countable, complete and superstable, then $\lambda \ge \aleph_0$ where λ is from [6, V5.8]. The conclusion follows by [6, V5.8].

Assume T and p do not satisfy (*).

Let *M* be a model of *T* of cardinality $\geq \exists_{\omega}$ which omits *p*. Clearly $N = M^{\omega}/D$ is \aleph_1 -saturated (where *D* is any nonprincipal ultrafilter over ω). Hence, by Shelah [6, V, §5; IV, §4], there are in *N* sets *A*, and $\{a_i^{\xi}: i < \alpha_{\xi}\}$ for $\xi < \xi_0 < \aleph_0$ such that:

 $(1) |A| \leq 2^{\aleph_0},$

(2) for each $\xi < \xi_0$, $\{a_i^{\xi}: i < \alpha_{\zeta}\}$ is an indiscernible set over $A \cup \{a_i^{\xi}: i < \alpha_{\xi}, \xi < \xi_0, \xi \neq \zeta\}$,

(3) $\{a_i^{\xi}: i < \alpha_{\xi}\}$ is a maximal indiscernible set over $A \cup \{a_i^{\xi}: i < \alpha_{\xi}, \xi < \zeta\}$,

(4) N is the \aleph_1 -primary model over $A \cup \{a_i^{\xi}: i < \alpha_{\xi}, \xi < \xi_0\}$.

The last demand means that the set of elements of N is $\{b_i: i < \beta_0\}$ and, for every $i < \beta_0$, b_i realizes an \aleph_1 -isolated type over $B_i = A \cup \{a_j^{\xi}: j < \alpha_{\xi}, \xi < \xi_0\} \cup \{b_j: j < i\}$. That means that there is $B^i \subset B_i$, $|B^i| \le \aleph_0$, such that if $\varphi(x, \bar{y})$ is a formula, \bar{b} a sequence from B_i , then there is a formula $\psi(x, \bar{y})$ and sequence \bar{c} from B^i , such that $N \models \varphi[b_i, \bar{b}]$ implies $N \models \phi[b_i, \bar{c}] \land (\forall x) [\psi(x, \bar{c}) \rightarrow \varphi(x, \bar{b})]$.

Now let n_1 be the first such that $\alpha_{\xi} < \beth_{\omega}$ implies $\alpha_{\xi} < \beth_{n_1}$ (exists as we assume $\lambda \leq \aleph_0$).

Now examining carefully the proof of Theorem 1, it clearly suffices to show: for every sequence s, $l(s) < \omega$, that:

(A) If there is an s-proper function from B_{λ} to M, then there is an s-proper function from B_{λ} to N.

(B) If there is an s-proper function F into N from B_{λ} , $\lambda > \Box_{n_1+2k_1(l(s))+2}$, and $\mu < \Box_{\omega}$, then there is an s-proper function from B_{μ} into N.

(C) If there is an s-proper function from B_{λ} into N, $\lambda \geq \sum_{n+k_1(l(s))+1}$, then there is an s-proper, strongly (l(s) + 1)-proper function from B_{\sum_n} into M (for any $n < \omega$). By (A), (B), (C) we can easily define s_m by induction, such that for every $n < \omega$, there is an $\langle s_m : m < n \rangle$ -proper function from $B_{\sum_{n+2k_1(n)+1}}$ into M. Now (A) is self-evident, and (C) follows from the proof of Lemma 5.

322

Let us prove (B). In the description of N as an \aleph_1 -primary model in (4) above, we can assume $b_j \in B_i \Rightarrow B^j \subseteq B^i$ and $b_i \notin B_i$. We expand N by the following relation, functions and constants:

(i) an individual constant a for each $a \in A \cup \{\alpha_i^{\xi}: j < \alpha_{\xi}, \xi < \xi_0 \text{ and } \alpha_{\xi} < \beth_{\omega}\},\$

(ii) a one-place relation $P_{\xi} = \{a_j^{\xi}: j < \alpha_{\xi}\}$ for each $\xi < \xi_0$ and a one-place relation $Q = \{b_i: i < \beta_0\}, Q_0 = A$,

(iii) a two-place relation $\langle = \{ \langle b_i, b_i \rangle : j < i < \beta_0 \},\$

(iv) one-place function symbols G_n , such that $B_i = \{G_n(b_i) : n < \omega\}$,

(v) the functions f_{ω} defined naturally (i.e. to "commute" with F).

We get a model N^* . By [1], the sequence $\langle F(c_i): i < \lambda \rangle$ has a subsequence of length ω_1 , all of whose increasing subsequences of length $\leq 2k_1(l(s)) + 1$ realizes the same type in N^* (notice w.l.o.g. $k(n) \leq 1$). So we assume $\langle F(c_i): i < \omega_1 \rangle$ is such a subsequence and now we lengthen it naturally.

PROOF OF THEOREM 3. Left to the reader who should use [6, IX, 2.3].

LEMMA 6. In Theorem 1, we cannot replace \beth_{ω} by a smaller cardinal, even if T is also superstable.

PROOF. On $V = \{\eta : \eta \text{ a sequence of ones and zeros of length } \omega\}$ we define additions $\eta_1 + \eta_2 = \eta_3$ iff for each n, $\eta_1(n) + \eta_2(n) = \eta_3(n) \mod 2$. Note that V is an abelian group, and in it $\eta = -\eta$ so subtraction is addition. Let k be a fixed natural number. Let us define a model M:

 $|M| = V \cup V^{k+1},$

P = V (a one-place relation),

 $P_n = \{\eta \in V : \eta(n) = 0\} \cup \{\langle \eta_0, \ldots, \eta_k \rangle : \eta_k(n) = 0\},\$

0 the sequence of zeros of length ω ,

+ a two-place function: on V as above,

$$\langle \eta_0, ..., \eta_k
angle + \eta = \eta + \langle \eta_0, ..., \eta_k
angle = \langle \eta_0, ..., \eta_{k-1}, \eta_k + \eta
angle$$

and 0 otherwise.

 F_l a one-place function, for l < k, $F_l(\eta) = \eta$, $F_l(\langle \eta_0, ..., \eta_k \rangle) = \eta_l$,

E an equivalence relation, $\langle \eta_0, ..., \eta_k \rangle E \langle \eta^0, ..., \eta^k \rangle$ iff $\eta_l = \eta^l$ for each l < k.

Now T = Th(M) is countable, complete, has elimination of quantifiers and is superstable and unidimensional. Let us define a type

$$p = \{P(x_l), F_m(y_l) = x_{l+i(m,l)}, \neg P(y_l) : l \le k, m < k, i(m, l) \text{ is 0 if } m < l \text{ and} \\ 1 \text{ otherwise}\} \cup \{P_n(y_l) \equiv P_n(y_{l+1}) : n < \omega, l < k\} \cup \{\bigwedge_{l \le m \le k} x_l \ne x_m\}.$$

Now T has a model of cardinality λ omitting p iff $\lambda \nleftrightarrow (k+1)_{2\aleph_0}^k$, iff $\lambda \leq \beth_{k+1}$.

REFERENCES

[1] P. ERDÖS, A. HAJNAL and R. RADO, Partition relations for cardinal numbers, Acta Mathematica, vol. 16 (1965), pp. 93-196.

[2] C. C. CHANG and H. J. KEISLER, Model theory, North-Holland, Amsterdam, 1973.

[3] M. D. MORLEY, *Omitting classes of elements*, *The theory of models*, *Proceedings of the Berkeley Symposium*, 1962 (Addison, Henkin and Tarski, Editors), North-Holland, Amsterdam, 1965, pp. 256–273.

[4] M.D. MORLEY and R. L. VAUGHT, Homogeneous universal models, Mathematica Scandinavia, vol. 11 (1962), pp. 37-57.

SAHARON SHELAH

[5] S. SHELAH, On the number of nonisomorphic models of a theory in a cardinality, abstract, Notices of the American Mathematical Society, vol. 17 (1970), p. 576.

[6] —, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1978.

[7] —, Stability, superstability and the f.c.p., model theoretic properties of formulas in first-order theory, Annals of Mathematical Logic, vol. 3 (1971), pp. 271–362.

HEBREW UNIVERSITY JERUSALEM, ISRAEL