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Cantor proved in 1874 [Cantor G (1874) J Reine AngewMath 77:258–
262] that the continuum is uncountable, and Hilbert’s first problem
asks whether it is the smallest uncountable cardinal. A program
arose to study cardinal invariants of the continuum,whichmeasure
the size of the continuum in variousways. By Gödel [Gödel K (1939)
Proc Natl Acad Sci USA 25(4):220–224] and Cohen [Cohen P (1963)
Proc Natl Acad Sci USA 50(6):1143–1148], Hilbert’s first problem is
independent of ZFC (Zermelo-Fraenkel set theory with the axiom
of choice). Much work both before and since has been done on
inequalities between these cardinal invariants, but some basic
questions have remained open despite Cohen’s introduction of
forcing. The oldest and perhaps most famous of these is whether
“p= t,” which was proved in a special case by Rothberger [Roth-
berger F (1948) Fund Math 35:29–46], building on Hausdorff
[Hausdorff (1936) Fund Math 26:241–255]. In this paper we explain
how our work on the structure of Keisler’s order, a large-scale clas-
sification problem in model theory, led to the solution of this prob-
lem in ZFC as well as of an a priori unrelated open question in
model theory.
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In this paper we present our solution to two long-standing, and
a priori unrelated, questions: the question from set theory/

general topology of whether p= t, the oldest problem on cardinal
invariants of the continuum, and the question from model theory
of whether SOP2 is maximal in Keisler’s order. Before motivating
and precisely stating these questions, we note there were two big
surprises in this work: first, the connection of the two questions
and, second, that the question of whether “p< t” can be decided
in ZFC (Zermelo-Fraenkel set theory with the axiom of choice).
There have been few connections between general topology

and model theory, and these were exclusively in model theory:
a key example is Morley’s use of ideas from general topology
such as the Cantor–Bendixson derivative in proving his 1965 cat-
egoricity theorem (1), the cornerstone of modern model theory.
Here we have applications in the other direction: by our proofs
below, model theoretic methods solve an old problem in general
topology. It seems too early to tell what further interactions will
arise from these methods, but it is a good sign that Claim 1 below
will be generalized to PðNÞ=fin; see Discussion 21. Full details of
work presented here are available in ref. 2.

Cardinal Invariants of the Continuum
Cantor’s 1874 proof of the uncountability of the continuum (3)
focuses attention on the region between ℵ0, the cardinality of the
natural numbers, and the continuum 2ℵ0 , the cardinality of the
reals. A productive way to map this region is to consider prop-
erties of families of subsets of N that hold for any countable
family and fail for some family of size continuum. For any such
property of interest, call the minimum size κ of a family for which
the property may fail a cardinal invariant (or characteristic) of
the continuum. Theorems about the relative sizes and interde-
pendence of such cardinal invariants give fundamental structural
information about families of subsets of N and give precise ways
to test the strength of countability hypotheses. As a simply stated
example of such a cardinal, the bounding number b is the least
size of a family F ⊆ ωω that is not bounded, meaning that there is
no single g∈ ωω that eventually dominates all f ∈F; i.e., f≤pg for

all f ∈F. As an example of results, the Cicho�n diagram (ref. 4,
p. 424) gives implications between cardinal invariants relating
primarily to measure and category.
The study of cardinal invariants of the continuum is a flour-

ishing area, which lies at the intersection of set theory and general
topology; some properties reflect ideas from measure theory, al-
gebra, or combinatorics. The subject’s growth and development
from the 1930s and 1940s, in part a response to Hilbert’s problem,
to the present can be seen in the surveys of van Douwen (5),
Vaughan (6), and Blass (4).
By Gödel (7) and Cohen (8), Hilbert’s first problem (whether

2ℵ0 is the first uncountable cardinal) is independent of ZFC. In
light of this, the study of cardinal invariants of the continuum
becomes especially fertile. In most cases there are obvious ZFC
results and usually independence proofs are deep and hard
(using forcing, of Cohen). ZFC answers to problems that have
remained open for some time are rare and, so, surprising.
The problem of “p and t” appears throughout the literature.

In the seminal survey paper mentioned above, van Douwen
cataloged and consolidated much of the work on these cardinals
before 1984. He focused on six primary invariants: b, p, t [at-
tributed to Rothberger (9, 10)], d [attributed to Katetov (11)], a
[attributed to Hechler (12) and Solomon (13)] and s [attributed
to Booth (14)]. As of Vaughan (6), only two inequalities about
van Douwen’s cardinals remained open, that of a and d and that
of p and t, and “we believe [whether p< t is consistent with ZFC]
to be the most interesting” (ref. 6, section 1.1). Following She-
lah’s (15) proof of the independence of a< d, attention fo-
cused on whether p= t as both the oldest and the only
remaining open inequality about van Douwen’s diagram.
We now define p and t. Let A⊆pB mean fx : x∈ A; x∉Bg is

finite. Let D⊆½N�ℵ0 be a family of countable subsets of N. Say that
D has a pseudointersection if ∃A⊆N, with A infinite such that
ð∀B∈DÞðA⊆pBÞ. Say that D has the strong finite intersection
property (s.f.i.p.) if every nonempty finite subfamily of D has an
infinite intersection. Finally, say that D is a tower if it is linearly
ordered by ⊇* and has no infinite pseudointersection.

Definition 1: The cardinal p is the minimum size of a family
F⊆½N�ℵ0 such that F has the s.f.i.p. but no infinite pseudointer-
section. The cardinal t is the minimum size of a tower.
It is easy to see that p≤ t, since a tower has the s.f.i.p.

Hausdorff proved in 1936 (16) that ℵ1 ≤ p, and Rothberger
proved in 1948 (in our terminology) that p=ℵ1⇒ p= t. This
begs the question:

Question 2. Does p= t?
After Rothberger (10), there has been much work on p and t,

as noted in the surveys (4–6), the introduction to our paper (2),
and also refs. 17–21. As noted, given the length of time the
problem remained open, there was wide confidence of an in-
dependence result.
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Model Theory
From Morley’s Theorem to Keisler’s Order. Our solution to Question
2 arose in the context of our work on a model-theoretic classi-
fication program known as Keisler’s order. As a frame for these
investigations, we briefly discuss model theory, stability, and
ultraproducts. Model theory begins with the study of models,
which are given by the data of an underlying set along with an
interpretation for all function, relation, and constant symbols
in a fixed background language L; (complete) theories, sets of
L-sentences of first-order logic true in some L-model; and ele-
mentary classes, classes of L-models that share the same theory,
written ThðMÞ=ThðNÞ or M ≡N.
It is well known that any two algebraically closed fields of the

same characteristic and the same uncountable size are isomorphic.
Los could not find any countable first-order theory that had one
model, up to isomorphism, in some but not every uncountable
cardinality, and so conjectured there was none. The cornerstone
of modern model theory is the following affirmative answer:

Theorem A [Morley (1)]. If T is a countable theory, then either T is
categorical [= has one model, up to isomorphism] in every un-
countable cardinal or T is categorical in no uncountable cardinal.
Proofs of Morley’s theorem, due to Morley and later to Baldwin

and Lachlan (22), show, in an abstract setting, that whenever a
complete theory in a countable language is categorical in some
uncountable cardinal, then its models admit analogs of many
properties familiar from algebraically closed fields: for instance,
the existence of prime models, a well-defined notion of indepen-
dence generalizing algebraic independence in algebraically closed
fields, and the existence of a maximal independent set whose size
determines the model up to isomorphism. Often, model theoretic
arguments extract local structural information from global con-
straints on a given elementary class (e.g., the property of having
one model, up to isomorphism, in some uncountable size).
Model theory since Morley has developed in a number of ways;

a central theme (and one crucial for our work) is stability, which
we now describe. Let M be a model and A⊆M. The [1-]types
over A are the maximal consistent sets of formulas φðxÞ in one
free variable with parameters from A. Informally, types describe
elements that may or may not exist in a given model M but that
will always exist in some extension of M, e.g., a transcendental
element that will exist in field extensions of Qalg. A realization of
a type p in a model M is an element a such that φðaÞ is true in M
for all φ∈ p. When λ is an infinite cardinal and the model M
contains realizations of all types over all subsets of M of size <λ,
we call M λ-saturated. For instance, an algebraically closed field
of fixed characteristic is λ-saturated if and only if it has tran-
scendence degree at least λ. Alternatively and informally, if a
model M is considered as sitting inside a large universal domain
M, the 1-types over A⊆M are the orbits under automorphisms
of M fixing A pointwise, and M is λ-saturated if it contains
representatives of all orbits under all automorphisms of M fixing
some set A⊆M, jAj< λ pointwise.
We now define “stability” in a given cardinal λ, which led to a

fundamental structural dichotomy between theories that are stable
in many λ and those that are never stable, Theorem B below.

Definition 3: T is λ-stable if there are no more than λ-types over
any M⊨T, jMj= λ.

Example 4: If M is an algebraically closed field, the type of an
element over M is determined by the polynomials over M it does
or does not satisfy; this gives jMjtypes [“stable”]. If M = ðQ; < Þ,
the types overM include all cuts; this gives 2jMj types [“unstable”].
If M is the Rado graph, the types over M include all partitions of
the vertex set of M; this gives 2jMj types [unstable].
The remarkable fact is that the stability or instability of models

resolves into a very informative classification of theories (as in
Morley’s theorem above, much of the information comes from

the structural analysis that goes into the proof). In Theorem B,
κðTÞ≤ jTj+ is an invariant of the theory.

Theorem B [Shelah (23)]. A complete theory T is either

� stable, i.e., T is stable in all λ= λ<κðTÞ, or
� unstable, i.e., T is unstable in all λ.

Under this analysis, the stable theories are “tame” or well
behaved, admitting a strong structure theory, whereas the un-
stable theories are “wild”.

Discussion 5. Moreover, stability is local: T is unstable if and only
if it contains an unstable formula, i.e., a formula with the order
property. Also, instability hides a structure/randomness phenome-
non: Any unstable theory contains either a configuration close to a
bipartite random (Rado) graph or one close to a definable linear order.
Meanwhile, Keisler proposed a very different way of classify-

ing theories (and ultrafilters), from an asymptotic (ultrapower)
point of view. It is of particular interest that Keisler’s order
gives an outside definition of the stable theories; see Discussion
10 below.

An Asymptotic Classification. Keisler’s order, which we now ex-
plain, studies the relative complexity of theories according to
the difficulty of ensuring regular ultrapowers of some M⊨T that
are saturated.

Definition 6. The filter D on I, jIj= λ is called regular if it con-
tains a regularizing family; i.e., X= fXi : i< λg⊆D such that any
infinite subset of X has empty intersection.
It is consistent that all nonprincipal ultrafilters are regular.

Moreover, if D is regular and the background language L is
countable, then M ≡N⇒Mλ=D is λ+-saturated if Nλ=D is, so the
quantification over all models in Definition 7 below is justified.
An ultraproduct of models hMi : i∈ Ii with respect to the

ultrafilter D on I is the structure obtained by identifying elements
of the product ∏iMi that are “D-almost everywhere” equivalent
(24). An ultrapower is an ultraproduct in which all of the models
Mi are the same. Ultrapowers are large (and, in some sense,
generic) extensions of a given model M that remain in its ele-
mentary class. Their structure reflects and depends on the choice
of ultrafilter D in subtle ways that are not yet well understood.
However, precisely this dependence suggests it is informative
to compare two theories by comparing ultrapowers of their re-
spective models built using the same ultrafilter.

Definition 7 [Keisler’s order (25)]: Let T1;T2 be countable theories.
We say that T1 ⊴ T2 if, for all infinite λ, all D regular on λ, all
M1⊨T1, all M2⊨T2, if ðM2Þλ=D is λ+-saturated, then ðM1Þλ=D is
λ+-saturated.

Problem 1. Determine the structure of Keisler’s order.
Keisler’s order is a problem about constructing ultrafilters on

the one hand and understanding theories on the other hand. We
now give some intuition for this problem and some of the main
developments; for further details, see, e.g., ref. 26.
The power of Keisler’s order comes from the fact that we

may regard types as maps from ½λ�<ℵ0 into D. Los’s theorem
associates to each type p over A⊆Mλ=D, jAj≤ λ a monotonic [i.e.,
u⊆ v⇒ f ðvÞ⊆ f ðuÞ] map f : ½p�<ℵ0 →D given by fφi0ðx; ai0Þ; . . . ;
φinðx; ainÞg↦ �

t∈ λ : M ⊨ ∃xΛ
ℓ≤n

φiℓ

�
x; aiℓ ½t�

��

WhenD is regular, such a map can be chosen to be multiplicative;
i.e., f ðu∪ vÞ= f ðuÞ∩ f ðvÞ, precisely when the type p is realized;
see, e.g., ref. 26, section 1.2. Moreover, when D is regular, we
may choose the map so that its image is a regularizing family.
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Thus, in certain cases, the problem of ensuring saturation in
ultrapowers is directly reflected in a property of the underlying
ultrafilter.

Definition 8 (Keisler): D is λ+-good if every monotonic function
f : ½λ�<ℵ0 →D has a multiplicative refinement g; i.e., u; v∈ ½λ�<ℵ0

implies f ðuÞ⊇ gðuÞ∈D and gðuÞ∩ gðvÞ= gðu∪ vÞ.
Good regular ultrafilters exist on all infinite λ by a theorem of

Keisler assuming the generalized continuum hypothesis (27) and
of Kunen in ZFC (28). If D is regular and λ+-good, then Mλ=D is
therefore λ+-saturated for any M in a countable language. This is
half of proving that Keisler’s order has a maximum class. In fact,
in the paper defining the order ⊴, Keisler showed the following:

Theorem C [Keisler (25)].

Tmin ⊴⋯???⋯⊴Tmax;

i.e., Keisler’s order has a minimum class and a maximum class.
Example 9: It follows from Theorem A above that any uncountably

categorical theory, e.g., the theory of algebraically closed fields
of a fixed characteristic, is minimum in Keisler’s order. On the
other hand, one can show that any sufficiently rich theory, e.g.,
number theory, will code any failures of goodness into a non-
realized type and will therefore be maximal.
The only Keisler-equivalence classes characterized to date

were given by the following:

Theorem D [Shelah (ref. 23, chap. VI)].

T1◁T2◁⋯???⋯⊴Tmax;

where T1 ∪T2 is precisely the stable theories, and

� T1, the minimum class, consists of the theories without the finite
cover property (f.c.p.).

� T2, the next largest class, consists of stable theories with f.c.p.
� Tmax contains all linear orders, e.g., ThðQ; < Þ, although its
model-theoretic identity is not known. [Indeed, the weaker order
property SOP3 suffices for maximality, by Shelah (29).]

Discussion 10. In Theorem D the class of stable theories, characterized
in terms of counting types in Theorem B, is independently charac-
terized in terms of saturation of ultrapowers.

Discussion 11. From Theorems C and D we see that although Keisler’s
order has a maximum class, we have only weak upper and lower
bounds on properties for membership in this class.
In the intervening years, progress was slow, due in part to the

perceived complexity of ultrafilters. Beginning in 2009, Malliaris
advanced the problem of how ultrafilters and theories interact
in a series of papers (30–33), motivated by Discussion 10. That is,
given that Keisler’s order independently detects the jump in
complexity between stable and unstable theories, the goal was
to leverage Keisler’s order to describe gradations in complexity
among the unstable theories from a more uniform point of view.
See Malliaris (33) for a further discussion. For the present work,
we quote the following:

Theorem E [Malliaris (30)]. For regular ultrapowers in a countable
language, local saturation implies saturation. That is, Keisler’s order
reduces to the study of φ-types.

Theorem F [Malliaris (32)]. There is a property of filters, called flexi-
bility, which is detected by any theory that is nonlow (some formula
k-divides with respect to arbitrarily large k).

Theorem G [Malliaris (32, 33)]. There is a minimum Keisler class
among the theories with TP2, whose saturation is characterized by

existence in D of internal maps between small sets and by the
ultrafilter D being “good for equality”.

Discussion 12. Keisler’s order imposes a hierarchy on the structure/
randomness phenomenon from Discussion 5: The “structured” (in
some sense, rich) theories, those with linear (strict) order, are Keisler-
maximum whereas the “purest” random theory, that of the Rado
graph, is Keisler-minimum among the unstable theories. See ref.
33 or ref. 26, section 4. TP2=SOP2 is a randomness/structure phe-
nomenon in nonsimple theories with analogies to the independence/
strict order phenomenon in nonstable theories. Theorem G shows
that TP2, the “random side” of this more complex example, also
admits a Keisler-minimum class, of a particularly simple form.
The very interesting idea that Keisler’s order may further illumi-
nate randomness/structure trade-offs within instability is supported
by our Theorem 3 below.
Working together, Malliaris and Shelah have very recently

made significant progress on the problem of Keisler’s order in
the 2012 papers (26, 34–36). These theorems are not pre-
requisites for the current proofs, so we refer the interested
reader to the introduction of ref. 35 or ref. 36 for more details.
However, this work provided strong motivation for addressing
the long latent Question 16, which we now describe and solve
in connection with p= t.

The Current Approach: p, t, and SOP2
In this section we motivate and announce the main results of our
present work (2), with some comments on the proof.

Orders, Trees, and the Keisler-Maximal Class. As described above,
we have the following problem:

Problem 13. Give a model-theoretic characterization of the maxi-
mum class in Keisler’s order.
This is an old important problem in model theory, for which

we know lower bounds and upper bounds: instability on one
hand, and the strict order property, or even SOP3, on the other
(Discussion 11). The main theorems of our present work arose
as part of our solution to Question 16 below, which moves the
conjectured boundary of this class onto what appears to be a
major dividing line for which there are strong general indications
of a theory.
Before explaining this comment, let us define the following:
Definition 14: The formula φ has SOP2with respect to a theory

T if in some sufficiently saturated M ⊨T there are parameters
faη : η∈ ω>2g⊆ ℓðyÞM such that

for each 1≤ n<ω and η1; . . . ηn ∈ ω>2;

�
φ
�
x; aηi

�
: 1≤ i≤ n

	

is consistent if and only if (iff) η1; . . . ηn lie along a single branch.
We say the theory T has SOP2 if some φ does, with respect to T.

Example 15: In ðQ; < Þthe formula φ ðx; y; zÞ= y< x< z has
SOP2; SOP2 also arises in the generic Kn-free graph for any
n≥ 3, a theory well into the “independent” region of instability.
Recall from Theorem D that any theory that includes a defin-

able linear order, e.g., ðQ; < Þ, or even just SOP3 (which we leave
as a black box; see ref. 29 for details), is maximal. Whereas
SOP3 retains many features of linear order, SOP2 describes a
kind of maximally inconsistent tree so did not appear amenable
to the same kinds of arguments. We have the implications

not stable ← SOP2 ← SOP3 ← strict order property:

Following Shelah (29), the key question, which we solve below,
became the following:
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Question 16. Is every theory with SOP2 maximal in Keisler’s order?
Why is the move from SOP3 to SOP2 so significant? First,

there is the nontrivial matter of developing a framework to
compare orders and trees. Second, recent evidence suggests
that SOP2 may characterize maximality, Conjecture 29 below.
To set the stage for the framework that led to the solution

of both Questions 16 and 2, we present our strategy for solving
Question 16. The first key idea was to describe the realization of
SOP2 -types in terms of a property of an ultrafilter D, which
could then be compared against goodness for D, as by Theorem
D above D is good iff ðN; < Þλ=D has no ðκ1; κ2Þ-cuts for
κ1 + κ2 ≤ λ.

Definition 17: A subset Y of a partially ordered set ðX ; < Þ is
cofinal in X if ð∀x∈XÞð∃y∈Y Þðx≤ yÞ. We use the word coinitial
when the order is reversed. By the cofinality of a partially ordered
set we mean the smallest size of a cofinal subset. Call an infinite
cardinal κ regular if, considered as an ordinal, its cofinality is κ.
Note that in this paper, we have two different uses of the word

“regular”: as applied to ultrafilters, Definition 6 above, and as
applied to cardinals, Definition 17.

Definition 18: Let κ; θ be infinite regular cardinals and ðA;< Þ
be a total linear order. We say there is a ðκ; θÞ-cut or gap in
A when we can write A= A1 ∪ A2 such that ðaÞ A1 ∩ A2 =Ø,
ðbÞ ð∀a∈ A1Þð∀b∈A2Þða< bÞ, ðcÞ there is a cofinal κ-indexed
sequence in ðA1; < Þ, and ðdÞ there is a coinitial θ-indexed se-
quence in ðA2; < Þ. So in our terminology, cuts are not filled.

Definition 19: The regular ultrafilter D on λ has κ-treetops if,
wheneverM = ðT ; ⊴Þis a tree and N =Mλ=D is its ultrapower, any
⊴ -increasing sequence in N of cofinality < κ has an upper bound.
We now have the following measure of the complexity of D,

CðDÞ= fðκ1; κ2Þ : κ1; κ2 regular; κ1 + κ2 ≤ jIj;

and ðN;< ÞI=D has a ðκ1; κ2Þ−cutg;

recalling that CðDÞ=Ø iff D is good (“maximally complex”, that
is, able to saturate ultrapowers of linear order, which belong to
the Keisler-maximum class).
We have therefore translated Question 16 to

Question 20. Suppose D is a regular ultrafilter on λ with λ+-treetops.
Is CðDÞ=Ø?
To illustrate some simple properties of the cofinality spectrum

CðDÞ under λ+-treetops, and to motivate the later abstraction of
“cofinality spectrum problems”, we now sketch the proof of a
uniqueness result in this context.

Claim 1 [ref. 2, claim 3.3, in the Special Case of Ultrapowers]. Let D
be a regular ultrafilter on λ, κ= cfðκÞ≤ λ, and suppose D has
λ+-treetops. If ðκ; θ0Þ∈ CðDÞ and ðκ; θ1Þ∈ CðDÞ, then θ0 = θ1.

Proof: Let M = ðN; < Þ and let N =Mλ=D. Suppose that in N,�
ha0α : α< κi; hb0e : e< θ0i

�
represents a ðκ; θ0Þ-cut whereas

�
ha1α :

α< κi; hb1e : e< θ1i
�
represents a ðκ; θ1Þ-cut.

As ultrapowers commute with reducts, we may suppose, in
an expanded language [e.g., expanding M to ðHðℵ1Þ; eÞ], that M
includes a definable tree T of finite sequences of pairs of natural
numbers, strictly increasing in each coordinate, with ⊴ denoting
a definable partial order on T corresponding to an initial segment.
Identifying N with its induced expansion to the larger language, let
ðT N ; ⊴NÞ denote the D-ultrapower of this tree. For ease of read-
ing, write cðn; iÞ for the ith coordinate of cðnÞ.
By induction on α < κ, we choose cα ∈ T N and nα = max

domðcαÞ such that cαðnα; iÞ = aiα for i = 0;1. The base and suc-
cessor cases are easily done. In the limit case, we will have
defined a sequence hcβ : β < αi of elements lying along a single
branch in T N . The assumption of treetops gives an upper

bound c* ∈ T N for this sequence; i.e., cβ ⊴ c* for β < α. Then, in
our expanded language, the set

�
n≤ n* : c*ðn; 0Þ< a0α ∧ c*ðn; 1Þ< a1α

	

is a nonempty, definable, bounded subset of NN , and so it has
a maximal element m. To complete this step, set cα :=
c*↾m

hða0α; a1αÞ.
Having completed the definition of the sequence hcα : α< κi,

we may again by treetops find an upper bound for this sequence,
c∞ ∈ T N . Let n∞ =max domðc∞Þ. For i∈ f0; 1g and e< θi, let
nie =maxfn≤ n∞ : c∞ðn; tÞ< bieg. This is again a nonempty, de-
finable, bounded subset of the nonstandard natural numbers,
so each n0e ; n

1
e is well defined. However, now we have effectively

“sewn together” the two original cuts. The sequences hbie : e< θi
and hcðnie; iÞ : i< θi are mutually cofinal for i= 0; 1. Suppose for a
contradiction that, in NN , the sequences

�
hnα : α< κi; hn0e : e<

θ0i
�
and

�
hnα : α< κi; hn1e : e< θ1i

�
do not describe the same cut.

Without loss of generality, hn0e : e< θ0i is not cofinal in hn1e :
e< θ1i. So there is some e* < θ1 such that (recalling we have strict
monotonicity in each coordinate) c∞ðn1e

*
; 0Þ lies in what we as-

sumed to be a cut described by ðha0α : α< κi; hb0e : e< θ0iÞ, a con-
tradiction. Because we assumed θ0; θ1 are regular, θ0 = θ1,
as desired.

●

Discussion 21. In work in progress, we have an analog of Claim 1 for
PðNÞ=fin.
Before describing our approach in full generality, we recall

that the hypothesis p< t also connects to questions about cuts.

Peculiar Cuts in p and t. Here we describe a further useful in-
gredient that connects p< t to the appearance of a certain kind
of cut (gap), Definition 18. The * in ≤* means “for all but
finitely many”.

Definition 22 (peculiar cuts): For κ1; κ2 infinite regular cardinals, a
ðκ1; κ2Þ-peculiar cut in ωω is a pair ðhfα : α< κ1i; hgβ : β< κ2iÞ of
sequences of functions in ωω such that (a) α< α′< κ1 and β<
β′< κ2 implies fα≤* fα′ ≤* gβ′≤* gβ, (b) ð∀α< κ1Þðfα ≤* hÞ implies
ð∃β< κ2Þðgβ≤*hÞ, and (c) ð∀β< κ1Þðh≤ *gβÞ implies ð∃α< κ1Þ
ðh≤*fαÞ.

Theorem H [Shelah (37)]. Assume p< t. Then for some regular car-
dinal κ there exists a ðκ; pÞ-peculiar cut in ωω, where ℵ1 ≤ κ< p.
Looking ahead, in the context of forcing, we will connect Theo-

rem H to a general version of the “cut spectrum” CðDÞ, as follows:
Example 23: If G⊆½ω�ℵ0 is a generic ultrafilter, then writing

X =∏Gg0ðnÞ, we have that hfα=G : α< κ1i; hgβ=G : β< κ2i give a
ðκ1; κ2Þ-cut in X.

A Common Context for Both Problems. The right framework,
discovered in ref. 2, is more general than regular ultrapowers;
however, in defining it we draw on intuition from the proof of
Claim 1 sketched above. The abstraction captures the fact that
when studying regular ultrapowers of ðN; < Þ, because ultra-
powers commute with reducts, we may assume that the non-
standard copy of N in the ultrapower N continues to behave in
a “pseudofinite” way (e.g., all nonempty definable subsets of
NN have what N believes to be an <N-least element, and all
such bounded subsets have a <N-greatest element). Moreover,
we may expand the language to have available uniform defi-
nitions for relevant trees. Recall Definition 18 above.

Definition 24 (informal; for full details, see ref. 2, definition 2.1, pp.
7–8): Informally, we say that the triple M, M1, Δ has “enough
set theory for trees” when M°M1; Δ is a nonempty set of for-
mulas defining discrete linear orders in M1, such that every non-
empty M1-definable subset of any such order has a first and last
element; and for each instance of a formula φ in Δ (i.e., for
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each order) there is a definable tree of sequences, i.e., func-
tions from the order to itself.
We ask that for each such tree, length, projection, concate-

nation, the maximal element of the domain of a given function,
and the partial ordering ⊴ are definable; and we ask that Δ be
closed under Cartesian products.
Our true context is therefore the following:
Definition 25 (ref. 2, definitions 2.5–2.11): We say that s is a cofin-

ality spectrum problem (CSP) when
s= ðM;M1;M+;M+

1 ;ΔÞ, where Δ is a set of formulas of LðMÞ,
M°M1, and this pair can be expanded to M+°M+

1 such that
ðM+;M+

1 ;ΔÞ has enough set theory for trees. When M =M+ or
M1 =M+

1 , we may omit it.
In this context we define the following:

1) OrðsÞ=OrðΔs;Ms
1Þis the set of orders defined in M1 by instan-

ces of formulas from Δ.

2) CctðsÞ= fðκ1; κ2Þ : There is a∈Or ðs;M1Þ such that the linear
order ≤a on Xa has a ðκ1; κ2Þ-cut g.

Note that by definition of cut in Definition 18 above, κ1; κ2 are
regular.

3) Tr ðsÞ= fT a : a∈Or ðsÞgis the set of definable trees associ-
ated to orders in Or ðsÞ.

4) CttpðsÞ= fκ : κ≥ℵ0; a∈OrðsÞ and there is in the tree Ta a
strictly increasing sequence of cofinality cfðκÞ with no upper
bound g.

5) Let ts be min CttpðsÞ and let ps be minfκ :  ðκ1; κ2Þ∈ CctðsÞ
and κ= κ1 + κ2g.

Note that by definition of CctðsÞand CttpðsÞ, both ts and ps are
regular.
We focus on Cðs; tsÞ, where this means

6) Cðs; tsÞ= fðκ1; κ2Þ : κ1 + κ2 < ts; ðκ1; κ2Þ∈ CctðsÞg.

First Reduction. If for every CSP s, Cðs; tsÞ=Ø, then SOP2 is
maximal in Keisler’s order. Why? This simply translates Question
20 to this more general context: The issue is whether knowing
there are always paths through trees is sufficient to guarantee
that there are no cuts of small cofinality.
However, our new context also encompasses other problems.

Second Reduction. To deal with p and t in this context we look for a
cofinality spectrumproblemand for a cut, recalling TheoremHabove.
Suppose we are given M = ðHðℵ1Þ; eÞ, a forcing notion Q=

ð½ω�ℵ0 ;⊇pÞ, V a transitive model of ZFC, and G a fixed generic
subset of Q, forced to be an ultrafilter on the Boolean algebra
PðωÞV .
Consider N =Mω=G in the forcing extension V½G�. Recall that

first, the diagonal embedding is elementary, so M ° N; and
second, Q is t-complete so forcing with Q adds no new bounded
subsets of t, and pV < tV iff pV½G� < tV½G�.
We focus attention on the cofinality spectrum problem s* =

ðM;N;Δpsf Þ, where Δpsf is the set of definable linear orders in N
that are covered by G-ultraproducts of finite linear orders. We
assume p< t and prove several claims.

Claim 2 (ref. 2, claim 5.8, Assuming p< t). t≤ ts
*
.

Proof sketch: Without loss of generality, work in the tree T N =
ðω>ω; ⊴ÞN . Let h~f α=G : α< θi be a proposed path in N, θ< t. Let
B⊩ “h~f α=G : α< θi is ⊴N -increasing in T N”, and without loss of
generality B⊩ “~f α = fα” as there are no new sequences of length <t.
For each n∈B, look at the cone Yn

α above fαðnÞ in the index model
T M . Let Yα =

S
n∈BY

n
α . Then α< β⇒Yβ ⊆* Yα, as otherwise we

contradict the choice of B. Thus, fYα : α< θg is a tower of length

θ< t, and by definition of t as the tower number, there is an
infinite Y with Y⊆*Yα for all α< θ. From any such Y it is easy to
build an upper bound for our given path.

●

Claim 3 (ref. 2, claim 5.15, Assuming p< t). ps
*
≤ p.

The proof shows, using Theorem H and the definition of G,
that if p< t, then for some nonconstant g0 ∈ ωω, ∏Gg0ðnÞ
contains a ðκ; pÞ-cut, where κ is regular, ℵ1 ≤ κ< p.

Conclusion 26 (ref. 2, conclusion 5.16). If p< t then Cðs*; ts*Þ≠Ø.
We have shown that if for every CSP s, Cðs; tsÞ=Ø, then p= t.

This completes the second reduction.

Our Main Theorems. In Malliaris and Shelah (2) we prove the fol-
lowing. The first, main structure theorem is Theorem 2, proved by
model-theoretic means; some key lemmas are described in the next
section.

Theorem 2 (ref. 2, theorem 3.66). For any CSP s, Cðs; tsÞ=Ø.
By the first reduction described above, Theorem 2 gives the

following:

Theorem 3 (ref. 2, theorem 4.48). SOP2 is maximal in Keisler’s order.
By some further arguments in the case of ultrafilters, our methods

and Theorem 2 also give a new characterization of Keisler’s
notion of goodness:

Theorem 4 (ref. 2, theorem 4.49). For a regular ultrafilter D on λ, (a)
κ≤ λ⇒ðκ; κÞ∉ CðDÞ iff (b) CðDÞ=Ø iff (c) D is λ+-good.
By Theorem 3 and Theorem G above, we obtain the following:

Theorem 5 (ref. 2, theorem 4.51). The minimum TP2 class is the
minimum nonsimple class in Keisler’s order.
Finally, by the Second Reduction described above, Theorem 2

gives the following:

Theorem 6 (ref. 2, theorem 5.17). p= t
These results give insight into other structures, as well. For

instance, it is a corollary of these methods that in any model of
Peano arithmetic, if for all κ< λ the underlying order has no
ðκ; κÞ-cuts (gaps), then the model itself is λ-saturated.

Key Steps in the Proof.Here we state the intermediate claims in the
proof that Cðs; tsÞ=Ø, Theorem 2 above. [For the connection to
p; t, and SOP2, see First Reduction and Second Reduction above.]

Claim 4 (Uniqueness) (ref. 2, claim 3.3). Let s be a cofinality spectrum
problem. Then for each regular κ≤ ps, κ< ts:

1) ðκ; λÞ∈ CctðsÞ for precisely one λ .

2) ðκ; λÞ∈ CctðsÞ iff ðλ; κÞ∈ CctðsÞ.

This proof amounts to a generalization of Claim 1 above to the
general context of cofinality spectrum problems.

Claim 5 (Antisymmetry) (ref. 2, claim 3.45). Let s be a cofinality
spectrum problem. Then for all regular κ such that κ≤ ps, κ< ts, we
have that ðκ; κÞ∉ CctðsÞ.
The proof involves constructing a path through a tree of pairs

of natural numbers, in the spirit of Claims 1 and 4.

Corollary 27 (cf. ref. 2, corollary 3.9). Let s be a cofinality spectrum
problem. In light of the above we may, without loss of generality,
study Cðs; tsÞ by looking at
fðκ1; κ2Þ :ðκ1; κ2Þ∈ Cðs; tsÞ; κ1 < κ2g.
Corollary 27 summarizes the two previous claims.
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Claim 6 [on lcf (ℵ0) ] (ref. 2, claim 3.58). Let s be a cofinality spectrum
problem and suppose lcfðℵ1; sÞ≥ℵ2. Then ðℵ0;ℵ1Þ∉ Cðs; tsÞ⇒
ðℵ0; λÞ∉ Cðs; tsÞ for all regular λ≤ ps; λ< ts.
The proof of Claim 6 is an order of magnitude more compli-

cated and requires using (or developing) more general trees; to
always have these available, we prove from the definition that
cofinality spectrum problems always have available a certain
amount of Peano arithmetic. Claim 6may be read as saying that the
only case of concern for ℵ0 is a “close” asymmetric cut, ðℵ0;ℵ1Þ.
Indeed, in the general result, Lemma 1 below, the a priori most
difficult case to rule out was a ðκ; λÞ-cut when κ+ = λ and λ+ = ts.

Lemma 1 [Main Lemma (ref. 2, lemma 3.65)]. Let s be a cofinality
spectrum problem. Suppose that κ, λ are regular and κ< λ= ps < ts.
Then ðκ; λÞ∉ Cðs; tsÞ.
This lemma, which supercedes and substantially generalizes

Claim 6, is the core of the argument. Its proof requires for-
malizing a robust picture of how sets of large size may be car-
ried along one side of a cut to overspill into the other when the
cofinality on either side is small relative to the size of “tree-
tops”. We also show that cofinality spectrum problems have
available an internal notion of cardinality. So for suitably
chosen representations of cuts such overspill is enough for

a contradiction, which rules out the existence of cuts of the
given cofinality (2). Ref. 2, discussion 3.61 is an informal de-
scription of the proof.
With these results in hand we prove the paper’s fundamental

result:
Proof (of Theorem 2): If ts ≤ ps, then by definition of ps, Cðs; tsÞ=Ø.

So we may assume ps < ts. Let κ; λ be such that κ+ λ= ps and
ðκ; λÞ∈ Cðs; tsÞ. By Claims 4 and 5 and Corollary 27, κ≠ λ and
we may assume κ< λ= ps. Then the hypotheses of Lemma 1
are satisfied, so ðκ; λÞ∉ Cðs; tsÞ. This completes the proof.

●

Discussion 28. Regarding Keisler’s order, the work presented here is
related to the nonstructure side, giving sufficient conditions for
maximality.

Conjecture 29. SOP2 characterizes maximality in Keisler’s order.
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