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Volume 48, Number 4, Dec. 1983 

RANDOM MODELS AND THE GODEL CASE 
OF THE DECISION PROBLEM 

YURI GUREVICH AND SAHARON SHELAH1 

Abstract. In a paper of 1933 Godel proved that every satisfiable first-order V23* 
sentence has a finite model. Actually he constructed a finite model in an ingenious and 
sophisticated way. In this paper we use a simple and straightforward probabilistic argu
ment to establish existence of afinite model of an arbitrary satisfiable V23* sentence. 

§0. Introduction. We consider the usual first-order logic of textbooks. A first-
order formula is called a sentence if it has no free individual variables. In this 
paper we restrict our attention to formulas without function symbols or individual 
constants. Unless we explicitly note otherwise, our formulas are without occur
rences of equality. 

THEOREM 1. Let 0 = Vv1Vv23v3- • •3v/0(v1, . . . , v,) where 0 is quantifier free. If 
<j> has a model it has afinite model. 

Theorem 1 was proved in Godel [3]. It was proved independently in Schutte 
[9], [10]. Godel's proof is much cleaner and easier than that of Schutte. Still it is 
very sophisticated. Its overall scheme is simple, however. Godel formulates a 
syntactical criterion and proves that the criterion is necessary for satisfiability and 
sufficient for finite satisfiability. It is the proof of sufficiency that is difficult. In §1 
we give the simple part of Godel's proof. In §2 we define random finite structures 
and prove the sufficiency result in a straightforward way. Let us mention that the 
idea of random structures is not a perfect novelty: see Fagin [2]. 

COROLLARY. There is an algorithm that decides satisfiability o/V23* sentences. 
The Corollary was independently proved in Kalmar [6]. 
When our proof gives an easier proof of Theorem 1, Godel's proof gives a better 

upper bound on the size of a minimal model of 0. Additional information about 
models of V23* sentences can be found in Dreben and Goldfarb [1]. Lewis [8] 
gives lower and upper bounds on the computational complexity of algorithms that 
decide satisfiability of V23* sentences. 

Both Theorem 1 and the Corollary are easily generalized to 3*V23* sentences, 
which form one of the maximal decidable for satisfiability classes of prenex sen
tences that is defined by type of prefix; see Lewis [7]. Even the V33 class with unary 
predicates and at most one binary predicate is undecidable for satisfiability. In 
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GODEL CASE OF THE DECISION PROBLEM 1121 

particular a satisfiable V33 sentence can have no finite models. Here is an example: 
VxVyVz3u[(Rxy & Ryz -* Rxz) & ~ Rxx &Rxu]. 

In §3 we generalize Theorem 1 for certain V*3* sentences. 
Godel [3] mentioned that Theorem 1 remains true if we allow equality to appear 

in <j>. This claim of his remains unproved. Goldfarb [4] showed that there is no 
primitive recursive procedure that decides satisfiability of V23 sentences with 
equality and at most binary predicates. The reader may wonder where the proof of 
Theorem 1 breaks down in the case with equality. An answer can be found in §4. 

More about the Godel class with equality will appear in Goldfarb, Gurevich and 
Shelah [5]. 

We thank Warren Goldfarb for useful comments on a draft of this paper. 

§1. Godel's criterion. In this section we describe Godel's scheme for proving 
Theorem 1, and we prove the easy part of the scheme. 

LEMMA. A first-order sentence Vv1Vv23v3- • •3v;<p(v1, . . . , v,) is equivalent to the 
sentence 

VvlVv23v3- • -3v,3v3- • -3v;[v! # v2 -• 0(vb v2, v3, . . . , v,) 
& 0(v 1 ; Vi, V3,. . . V,')] 

in any structure for the language of<f> containing at least 2 elements. 
PROOF is obvious. 
Let (j> be a first-order sentence Vv1Vv23v3- • -Sv^vj ^ v2 -> 0(v1? ..., v,)) where 

0 is quantifier-free. In order to prove Theorem 1 it suffices to show that <j> has a 
finite nonsingleton model if it has any nonsingleton model at all. (Nonsingleton 
means containing at least two different elements.) Without loss of generality / > 3. 

DEFINITION. A k-table is a structure for the language of (j> whose universe is the 
set {1, . . . , k). 

DEFINITION. Let M be a structure for the language of <f) and a = (#i, . . . , ak) 
a sequence of elements of M. The table tbM(a) of a is the unique &-table A such 
that the map{(7, a,): 1 < i <, k} is an isomorphism from A onto a substructure of 
M. 

If <j> is satisfiable, and M is a nonsingleton model of <j>, and 

P = {tbjKa): a e M), Q = {tbM(a, b): a, b e M), 

then P, Q are nonempty and satisfy the following conditions: 
(Gl) ForalMj, /12 e Pthereisfl 6 0 withtbB(l) = ^j,tbB(2) = /f2;and 
(G2) For every AeQ there is an /-table B such that tbB(l, 2) = A, and tbB(0 6 P 

for 1 < / < /, and tbB(/,y') e Q for 1 < i,j < I, and B |= 0(1, 2, . . . , /). 
THEOREM 2. Suppose that a nonempty set P of l-tables and a set Q of 2-tables 

satisfy conditions (Gl) and (G2). Then <j> has a finite nonsingleton model. 
It remains to prove Theorem 2. 

§2. Proof of Theorem 2. Let p, q be the cardinalities of P, Q, respectively. For 
n > I we construct an n^-table M. The truth values of &-place atomic formulas 
are defined as follows. 

Case k = 1. If a = ip + j for some 0 < / < n, 1 < j < p, define tbM(a) to be 
equal to the /th table in an a priori fixed order on P. 
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1122 YURI GUREVICH AND SAHARON SHELAH 

Case k = 2. Suppose 1 < a < b < np. By (Gl) the set [A e Q: t b^ l ) = tbM(a), 
tb„(2) = tbM(b)} is not empty. Choose at random a table ^ in this set and define 
tbM(a,b) = A. 

Case 3 < k < I. If R is ay-place predicate letter in ^, and (a^ . . . , aj) is a 
y'-tuple of elements of M containing at least 3, and at most /, distinct members, 
define the truth-value of R(a.\, • • •, a,) at random. 

Case k > I. If R is ay-place predicate letter in $, and (a\, ..., aj) is ay-tuple of 
elements of M containing more than / distinct members, define R(ah ..., a,) to 
be false. 

Let S„ be the collection of possible values for M. We consider S„ as a probability 
space with 

Prob[M = Mx] = Prob[A/ = M2] for Mh M2 in S„. 

Thus M is a random member of S„. Let a b . . . , at range over {1, ..., np\. 
By (G2) there is a function Fun assigning an appropriate /-table B = Fun(^) 

to each A eQ. Given an /-table B we say that a3, . . . , a, witness B for a\, a2 if the 
truth value of R(ah ,..., a;i) in A/ coincides with the truth value of R(ih . . . , ik) 
in 5 for every 1 < k < I, every /c-place predicate letter /? in <f> and every £-tuple 
i"i, . . . , / '* of numbers such that {/], . . . , /*} is included into {I, . . . , / J and 
meets {3, . . . , /}. In the case when the predicate letters in <f> are at most binary, 
elements a3, .. .,at witness flfor ah a2 iff tbM(a,, a,) = tbB(/, /') for all distinct 
/,y'e {1, . . . , / } such that either i > 3 ory > 3. 

Let £ = (\/qY • (l/2)s, where r = {'f) + 2(1 - 2) and .v is the number of 
atomic formulas R(viv . . ., vik) where 3 < k < I, R is a /r-piace predicate letter in 
^, and(<i, . . ., /'*)is a A:-tuple of numbers among I, . . ., /containingat least three 
distinct members. (If / = 3 then r = 2.) 

LEMMA 1. Suppose that A eQ, B = Fun(A) and ah .. ., w, are different elements 
ofM with tbM(a,) = tbg(7) for I < ( ' < / . Then 

Prob[a3, . . ., at witness B for a,, a2\ > e. 

PROOF is clear. 
Let m be the integer part of (n — 2)/(/ — 2). 
LEMMA 2. Let ah a2 be different elements of M. Then 

Prob[3v3 • • -3vi0(ai, a2, v3, . . ., v,) fails in M] < (I - e)m. 

PROOF. Let A be a possible value for tbM(au a2) and B = Vun(A). It suffices to 
prove that 

Prob[no v3, . . . , v, witness B for ah a2] < (I — e)m. 

There are different elements a-j e Af — {tfl7 a2} with tb(a{) = tbB(/') for 3 < i < / 
and 1 < j < m. The events 'V3, . . . , â  witness B for ah a2" a r e independent and 
the intersection of their complements includes the event "no v3, . . . , v, witness 
5fora1,a2"-Now use Lemma 1. • 

Now, 

[M does not satisfy <f>] 
= (J [3v3- ••3v,0(ah a2, v3, . . ., v,) fails in M]. 
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This and Lemma 2 give 

Prob[M does not satisfy <j>] < pn(pn — 1)(1 — e)m. 

Suppose that n is big enough so that pn(pn — 1)(1 — e)m < 1. Then the prob
ability that M satisfies (j> is positive. Since the probability space S„ is finite it means 
that some member of S„ satisfies <j>. Theorem 2 is proved. 

Our proof gives an upper bound np on the size of a minimal nonsingleton model 
of (j> where n satisfies 2(1 — 2)log(np) < e(n — I) log e and e is the basis of natural 
logarithms. 

For, suppose this inequality is satisfied. Since m > (n — 2)1(1 — 2) — 1 = 
(n — /)/(/ — 2), we have \og(np)2 < em log e. Use the college calculus to check that 
.vloge < - l o g ( l - x)forO < x < 1. Hence 

\og(np)2 < -m log(l - e), 

.'. \og(np)2 + m log(l - e) < 0, 

/ . (np)2(\ - e)m < 1, 

which suffices in the proof of Theorem 2. 
Godel [3] gives a better upper bound on the size of a minimal nonsingleton model 

of (j). It is 1L where L satisfies the inequality 2(1 — 2)q,(log2(7L) + 1) < L. 
In order to improve our bound we can be more cautious in defining a random 

structure M. In particular we can be more restrictive in defining fc-place predicates 
for k > 3. A real sophistication is needed, however, to get Godel's bound. 

§3. A generalization for the V*3* case. It may seem that the proof of Theorem 1 
is straightforwardly generalizable for the V*3* case. The sentence 

VxVyVzlu[(Rxy & Ryz -> Rxz) & ~ Rxx & Rxu] 

has, however, only infinite models. Where does the would-be generalization of 
Theorem 1 break down when <j) is this sentence? To answer this question note 
that the definition of a random structure fails to ensure "/? is transitive". Techni
cally speaking we lose independence of events that were used to prove Lemmas 
1 and 2 in §2. 

THEOREM 3. Let § be a sentence Vvx- • •Vv*3vlH_1- • •3v/0(v,, . . . , v,) where 0 
is quantifier free. Suppose that M is a model of <j> such that for every 1 < j < k, 
the table tbA/(a1, . . . , aj) of arbitrary j-tuple a1; . . ., aj of elements of M is uniquely 
defined by ibM(a{), ..., tbM(aj). Then <j> has a finite model. 

The proof of Theorem 3 is a straightforward generalization of the proof of 
Theorem 1. 

§4. A note on equality. As we mentioned in §0, it is still unknown whether every 
satisfiable dyadic V23 sentence with equality has a finite model. Why is equality 
so important? Where did we use the fact that equality does not appear in <fi? 

The situation appears to be even more intriguing if one notices that we do en
sure in the proof of Theorem 2 that the desired witnesses a3, ..., a, are different 
between themselves and different from a b a2. Moreover, the proof of Theorem 2 
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1124 YURI GUREVICH AND SAHARON SHELAH 

does not use absence of equality at all. However, absence of equality was used in 
§1 to prove necessity of (Gl). 

DEFINITION. Let M be a structure. An element a of M is a king if there is no 
other element b of M with tbM(b) = tbM(a). 

Any satisfiable first-order sentence <fi without equality has a model without 
kings. We demonstrate that statement in an example. Suppose that a dyadic pre
dicate symbol R is the only nonlogical constant in dj. If M is a model of </> and 
a 6 M throw into M a new element a' (a duplicate of a) and define Ra'b «-» Rab, 
Rba' +-» 7?tar for all b e M. Evidently the new model satisfies <jj and neither a nor 
a' is a king in the new model. 

If we allow equality in ̂  but suppose that (j> has a model without kings then 
Theorem 1 remains valid. 

See also Goldfarb, Gurevich and Shelah [51. 
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