
The Journal of Symbolic Logic
http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

The combinatorics of combinatorial coding by a real

Saharon Shelah and Lee J. Stanley

The Journal of Symbolic Logic / Volume 60 / Issue 01 / March 1995, pp 36 - 57
DOI: 10.2307/2275508, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200018880

How to cite this article:
Saharon Shelah and Lee J. Stanley (1995). The combinatorics of combinatorial coding by a real . The
Journal of Symbolic Logic, 60, pp 36-57 doi:10.2307/2275508

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JSL, IP address: 141.216.78.40 on 19 May 2015

Sh:425



THE JOURNAL OF SYMBOLIC LOGIC 

Volume 60, Number 1, March 1995 

THE COMBINATORICS OF COMBINATORIAL CODING BY A REAL 

SAHARON SHELAH AND LEE J. STANLEY 

Abstract. We lay the combinatorial foundations for [5] by setting up and proving the essential properties 
of the coding apparatus for singular cardinals. We also prove another result concerning the coding 
apparatus for inaccessible cardinals. 

§0. Introduction. In this paper, we lay the combinatorial foundations for the 
work of [5]. For the most part, this involves setting up the coding apparatus for 
singular cardinals, and proving its essential properties, most notably the result 
about the existence of supercoherent sequences, Lemma 3 (the lemma of (1.4) of 
[5]). The sole exception occurs in (11.2), where, as promised in (2.1.1) of [5], we 
show that we can assume some additional properties for the system of ba with 
card a inaccessible. 

The combinatorial apparatus for singular cardinals is based on our work in 
Part I, where, working in L, we prove that the "Squarer Scales" principle holds. 
This is Theorem 1, below; the proof stretches across §§1-6. This material is based 
on (and improves) that of [2]; [2] bears the same relationship to the material of 
[1], which is where many of the basic ideas of this construction made their first 
published appearance. §2, in particular, reviews the constuctions of §§1-2 of [2], 
without proofs. In §7, we quote a "classical" result of Jensen [3], which, again in 
L, gives a square system on singular cardinals. The last section of Part I hints at 
things to come in that it steps outside of L to remark that the methods of §§1-6 
allow us to build "local versions" of the combinatorial system of (1.2) between 
T and T+CO working in L[XT], where XT C r + . As noted there, the XT we have in 
mind are the A n T+CO, where A is as given by Lemma 3 of [5]. 

In Part II, we assume that V = L[A] for this A (and that 0" does not exist). 
We show, in §9, how to transfer the combinatorial systems of Part I to V. This 
culminates in (9.4), where we define a fine system of squares and pseudoscales to be 
one which satisfies properties (A)-(D); these are restatements of similarly labelled 
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THE COMBINATORICS OF COMBINATORIAL CODING BY A REAL 37 

items of (1.2) of [5]. We observe (the crucial fact having already been noted in 
(9.3.2)) that the system obtained in (9.1)—(9.3) is indeed a fine system. This is 
Corollary 2, below. 

Of course, it is here that we make essential use of the Covering Lemma. This 
is used to guarantee that L "gets the successors of singular cardinals (cardinals of 
V) right", but also that our L-scales remain something close enough to F-scales. 
Ostensibly, what is required for Part II is that if d is a club subset of K, a singular 
limit of limit cardinals, such that o.t. d < mf,d, and g e V is a function with 
domain d such that g(X) < X+ for X e d, then there is a function / in our L-scale 
such that, g{X) < f(X) for sufficiently large X e d. In fact, something more 
is needed for the result of (11.1), namely that the preceding holds when d is any 
Easton set. While it is "folklore" that this follows from the Covering Lemma when 
0" does not exist, it is tempting, but false, to think that this remains true without 
restriction to an Easton set, as the referee pointed out. This theme of restriction 
to an Easton set is also implicit in §10 (the restriction to "controlled" cardinals, 
see (10.1.2) and (10.3)). 

In §10, we prove Lemma 3, below, the lemma of (1.4) of [5], which states, 
roughly, that for the system of §9, there are enough supercoherent sequences. This 
is the centerpiece of this paper, and, in many ways, of [5] as well, as the whole 
approach to [5], the precise formulation of the definition of the forcing conditions, 
for example, was driven by the plan of using Lemma 3 to underly the proof of 
distributivity. 

Lemma 3 is proved in two stages, first, by proving, in (10.2), that there are 
enough strongly coherent sequences, and then, in (10.3)—(10.5), that if {JVi\i < 0) 
is strongly coherent then {JVW; \i < 9) is supercoherent. The arguments of (10.3)-
(10.5) use the most intricate properties of the system of §§1-6. In §11, we close by 
proving two other, smaller results needed in [5]: in (11.1), we prove the proposition 
of (1.5) of [5] which plays an important role in the proof, in (4.3) of [5], that the 
"very tidy" conditions are dense, and in (11.2) we prove the result mentioned above 
about the ba for a such that card a is inaccessible. 

Before stating Theorem 1, Corollary 2, and Lemma 3, we should say that our 
notation is intended to either be standard or have a clear meaning, or is introduced 
as needed. It may, however, be worth pointing out that we use the same definitions 
of U{K), for K a limit cardinal, as in [5]; for singular K this is reintroduced in (9.2), 
and for inaccessible K this is reintroduced in (11.2). One instance where notation 
is required to do double duty is Sa; throughout most of Part I this is the notion 
introduced in (1.1), but on two occasions in the proof of (3.1), explicitly noted 
when they occur, the same notation refers to Jensen's auxiliary hierarchy of [3]. 

We turn now to the statements of our main results. 
THEOREM 1 (V = L). The Squarer Scales principle of(1.2), below, holds. 
COROLLARY 2 (0" does not exist and V = L[A], where A is as given by Lemma 

3 of [3]). There is a fine system of squares and pseudoscales, i.e., one satisfying 
(A)-(D) 0 / (9.4) . 

LEMMA 3 (Same assumptions as in Corollary 2). The system of Corollary 2 
has the additional property that whenever Jt', v, and 0 are as in (10.1), below, and 
C C [Hv+f is club, then there is a super J!-coherent {jVi\i < 9), with each |^J | e C. 
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38 SAHARON SHELAH AND LEE J. STANLEY 

Part I: Life in L. 
In Part I, comprising §§1-8, we develop the L-combinatorics summarized in 

the Squarer Scales principle of § 1. This is a strengthening of the Squared Scales 
principle from [2], In §2 we review material from §§1 and 2 of [2]. In §3 we pause 
to give a more explicit (and perhaps clearer) development of certain crucial ideas 
implicit in §§2 and 3 of [2]; we then return to reviewing the material of §3 of [2]. In 
§4 we introduce a new fine structure parameter, and prove some of its important 
properties. Finally, in §5 we rework the construction of §§2-3 of [2] based on this 
new parameter, and we prove the important lemmas which are the analogues of 
those of §4 of [2]. This culminates, in §6, in the proof of: 

THEOREM 1. Squarer Scales holds in L. 
In §7, we recall Jensen's construction from [3] of a square system defined on 

ordinals, which, in L, are singular cardinals. Finally, in §8, we note that the 
techniques of §§1-6 allow us to construct "local versions" of the squares and 
scales obtained there. More precisely, for T — N2 or r a limit cardinal, if XT C T + 

is such that HM = LM[XT], where [i = r+w, then, in L[ZT], working as in §§1-6, 
we construct a scale between ju and /u+, and, for cardinals X with x < X < fi, a 
square system between X and X+, which will enjoy all the properties of the "global" 
system constructed in L. In fact, we will not really need all of the properties here, 
and, notably, not the Condensation Coherence properties, but the construction is 
the same, and they fall out anyway. Of course, the Xz we have in mind are the 
A n T+CO, where A is as guaranteed by [4], and as in Lemma 3 of [5]. 

As in [2], it will simplify notation if we assume, throughout §§1-7, that V = L. 
As there, however, this is purely a matter of notational convenience. 

§1. Squarer scales. We state Squarer Scales, and point out how it is stronger 
than the principle of [2]. We state the strengthened principle in a notation designed 
to be suggestive of that of [5] rather than in the notation of [2]. Thus, we write 
fojv where <PV was used in [2], etc. We have, however, kept the same organization 
of items as in (4.11), of [2]. The principal difference in the principles is that our 
(B)(5) is stronger than that of (4.11) of [2], as our (B)(5) handles the g G £{K) 
(see below) and not just subfunctions of such g whose domains are cofinal subsets 
of K of small cardinality. We need some preliminary definitions, which will carry 
over to the rest of Part I. 

DEFINITION (1.1). S will denote the class of ordinals v such that there is an a, 
co < a < cov, for which Jv |= "a is the largest cardinal". For v e S, av is the 
unique such a and Sa is {v e S\av = a}. For limit cardinals, K, S(K) is the 
set of functions g such that domg is a final segment of the uncountable cardinals 
smaller than K, and g(«) e (K, K+) for K e domg. As usual, if / , g e <£(«), we 
write / <* g if for some KQ, CO < K0 < «, for all cardinals, K with KQ < K < K, 
we have / ( « ) < g(«); and / <* g iff the final " <" is replaced by " <". 

We should note that the above is the "official" definition of Sa, but that in §3, 
below, we use this notation for a different notion. This will noted when it occurs. 

(1.2) The principle. There is a sequence (Cmv\v e S), and, for each limit cardinal 
K, a sequence {fwv\v G SK & o.t. Cm, < K) such that: 
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THE COMBINATORICS OF COMBINATORIAL CODING BY A REAL 39 

(A) For all v G S, letting a = av: 
(1) COJV is a closed subset of {cor\x G Sa} n cov, and sup Cmv < cov => 

cf cov = co; 
(2) coy G Cwv =>• Cro), = coy n Crov; 
(3) o.t. Con, < a, and if a is a singular cardinal, then for sufficiently 

large v G SQ the inequality is strict. 
(B) For all limit cardinals K and all v G S^, o.t. C v̂ < « => /«, , G <£(«) 

and: 
(1) « G dom / „ v => (/<uv(«) is a limit ordinal and V G SW, where 

cov =/cul,(7c)); 
(2) K G dom /„ , , => (Vco/l G Cmv)K_ G dom y^;. and /„;.(«) < / ^ ( K ) ; 
(3) (VT G 5*K n v)o.t. q„T < K =>• / W T <* /fflV; _ 
(4) if sup Cmv = cov & 7c G dom f0JV, then if (/„;;(«) |e»A G Cmv) is not 

eventually constant then fmv{K.) = sup {/„;.(«)|a>A G CMV}; 
(5) if K is singular, then whenever g G <£(«), there is v0 G 5K such that 

o.t. Ccuvo < « and g <* / O T | . 
(C) For limit cardinals, K, & v G 5"K, if o.t. Cwv < K and K G dom fmv, 

then, letting cov" = / ^ . ( K ) and O = {/ra;.(K)|coA G Crov}: 
(1) O is a final segment of CWv (we take this to include the case where 

CMj is bounded in cov and O = 0) ; 
(,2j / a , ? = 7<UVIK; 

(3) O e A whenever / ^ j= "0)7 is not a cardinal". 
REMARK. We only use the scales for K which are singular cardinals, but the 

construction gives them for inaccessibles as well. In §9, we ignore the scales for 
inaccessibles. 

§2. Review of §§1 and 2 of [2]. 
(2.1) The collapsing structures. 
DEFINITION (2.1.1). For v e S, if cov is not a cardinal, then /?(v) denotes the 

least p > v such that Jp+\ |= "cov is not a cardinal". 
Let p = /?(v); then, for some « there is an / that is Z„+i-definable over /^ (in 

parameters from //?) and / is a map onto cov from a subset of a smaller ordinal. 
DEFINITION (2.1.2). n(v) is the least n such that there is such an / which is 

£„+i-definable over Jp (in parameters from Jp). Let « = «(v); then /?(v) is p"n, the 
nth-projectum of /?, A(v) — Anp = the nth-master-code of /?, and (writing /? = />(v) 
and /4 = A(v)), s/(v) = (Jp, G, A). It can be shown that />»+1 < av and v < p, 
so that, for some finite set of ordinals p C co/?, all elements of Jp are Zi-definable 
in sf(v) (i.e., are unique solutions in J / ( V ) of Ej-formulas in one free variable) 
using parameters from av U p. 

We abbreviate this last assertion by writing Jp = h"{co x (av Up)), where n = 
«^(v,) = hv is the canonical Si-Skolem function for srf{v). We let p(v) be the least 
such p with respect to the lexicographic ordering of the decreasing enumeration 
of p. Then, stf+{v) = (sf(v), p(v)) (p(v) is a new individual constant). This is 
the collapsing structure for v. 
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An important and useful fact is provided by Corollary (1.8) of [2]: if n = 0 
then there is a largest cardinal y in the sense of Jp, and p{v) % y; further, if 
{X, G) -tx, (J/j, e) and p{v) G X, then y e X. 

(2.2) Closing the class of collapsing structures. We close off the class of collapsing 
structures under transitive collapses of (constructible) rudimentarily-closed sub­
structures. 

DEFINITION. cf+ := {sf+{v)\v G S, cov is not a cardinal}. We let {38, q) G <f+ 
iff \38\ is transitive and, for some {$$, p) G cf+, {38, q) is isomorphic to a 
(constructible) rud(j^)-closed substructure of {st, p). 

Thus, if {38, q) G &+, 38 is amenable and of the form {Jp>, G, A'). Fur­
ther, cf+ is closed for taking transitive collapses of constructible rud(^)-closed 
substructures of (&, q) G @+; in particular, it is closed under amenable initial 
segments and transitive collapses of constructible 21-elementary substructures. 

(2.3) A square system on <#+. For s = {sf, p) — (J,,, G, A, p) G ff+, a closed 
subset Cs C cop is constructed; Cs is cofinal in cop if cf cop > co. Crucial in the 
definition and structure of Cs are the sets A(£, s) for £, < cop, where cod G A(£, s) 
iff cod < cop and, for some P, cod — suphs"{co x {p u {£}))• Recall that for a 
set X of ordinals, X' is the set of limit points of X below supX. First, consider 
A(0, s): if this is empty, then cf cop = co and Cs = 0 . If this is cofinal in cop, then 
Cs = (A(0, s))'; of course, if A(0, s) is cofinal in cop, then Cv is cofinal in cop if 
cf cop > co. The remaining case is when A(0, s) has a largest element cod. Then, 
for some p, cod = sup{ORnhs"{co x /?)), but cop = sup(OT? n /» / ' (« x {p + 1))); 
note that this can occur even if cf cop > co, since we must consider all the unique 
solutions in s of ^-formulas <J>{VQ, £,\, • • • , 4„, p), where 4i> ••• , £« < P', so 
all we have for certain is that cf cop < cf p. 

In this case, we set p — P®, and d — dl
s (8° = 0 for all s). We have the same 

trichotomy for A{co8}, s): if A{cod}, s) = 0 , then cf cop = co and, in this case, 
Cs = (A(0, s))'; if A(axSJ, s) is cofinal in cop then Q = (A(0, s))' U {A{co8l, s))'. 
Finally, if A{co8], s) has a largest element cod, then we have P = P\, 8 — 8] such 
that coS] is the largest element of A{w8], s), 

co82
s = sup{OR n /!,"(« x {p U {o^,1}))), 

and 
co/? = sup{ORnhs"{co x {{p+ \)u{co8l}))). 

The crucial observation, proved in (2.40) of [2], is that, in this case, p® > /?'. 
Thus, the process terminates after a finite number mx > 1 of steps; in all cases, 
Cs = \J{{A{co8's, s))'\i < ms}. If i = m,_i, 8 = S's, then Cx has a (possibly 
empty) final segment {A{co8, s))', and if cf cop > co then {A{co8, s))' is cofinal in 
cop, since otherwise A{co8, s) would have a largest element (the other possibilities 
are eliminated by the cofinality hypothesis), which is impossible since the process 
terminates after ms steps. 

It is not really necessary to "thin out" by taking only the limit points of the 
A{co8l

s, s), but this slightly facilitates the proof of the coherence property of the 
Cs : if cod G Cs, then, setting s' = s\Jg, we have Cs, = Cs (~)co8. As an important 
preliminary step it is shown that if for te<f+we let a, = {co8't \i < m,}, then, for 
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all s e <#+ and all coS e Cs, letting s' = s\Js, we have as, = as flcod. Of course, if 
we chose not to thin out, then the coherence property would hold for cod 6 (Cs)', 
and we could, by choosing constructible cofinal co-sequences in the appropriate 
cases, guarantee that Cs is always cofinal in cop. Jensen took this approach in [1], 
where the cofinal co-sequences are chosen in a canonical and natural fashion. 

§3. A closer look at the X^t 0, s, and §3 of [2]. We prove three lemmas related 
to the structure of the X^t 0, .«• The first, in (3.1), guarantees that when p is a 
singular cardinal, v € SM, and v is sufficiently large that s/(v) \= "p is singular", 
then, letting s — stf+(v), we have that X^% 0, s is cofinal in cop for some p' < p. This 
is certainly well known to fine-structure experts, but was never stated explicitly in 
[2]. For completeness, we give it here. Some of the ideas involved in (3.1) and 
(3.2) appear in the proofs of (4.1) and (4.3) of [2]. 

The second lemma, in (3.2), shows that when p' is as guaranteed by (3.1), 
then, under two additional, mild assumptions, Cs c XM>t o, s- The third lemma, 
in (3.3), explores what occurs when XM>t o, s is not cofinal in cop. Essentially, it 
shows that if s' = s\S" £ (f+, then, at least as far as l ^ o y is concerned, we 
can assume without loss of generality either that S" = p(s) or that 6" e X^, o, s-
These lemmas will be heavily used in §§5 and 6, below. 

LEMMA (3.1). Assume that p is a singular cardinal and v G SM is sufficiently 
large that s/(v) |= "p is singular", and let s = stf+(v). Then, for some p' < 
>". XJX\ o, .v is cofinal in cop(v). 

PROOF. Let / : a —>onto cov be E I ( J / ( V ) ) in parameters y e Jp{v)- Suppose, 

e.g., that cj) is a Si formula such that £ = / ( £ ) -» sf(v) \= c6(C, £,, y). Let 6 be 

the S0 formula such that <p is 3v09(v0, (, £,, y). Let 0'(rj, £,) be 

y e s„ A Ov0 e s,)(3C < n)8(v0, c, £, y). 

In the above, Sn is the nth stage in Jensen's auxiliary hierarchy, not the notion defined 
in (1.1), above. Note that if B'{n, £) and n < n*, then d'{n* £,)• Let g{£) ~ the 
least n such that 9'{n, £,). Thus, g is So. 

Well-known arguments (involving the downward extension of embeddings 
Lemma) then show that 

(V// < ,a)[cov = s u p / " ( a f~l p') ^> cop = sup g"(a Dp')]. 

Thus, if there is p' < p with cop = supg"(a n p'), (3.1) holds; so, towards a 
contradiction, assume that g"{a n //') is bounded in p for all ^ ' < p. For such 
/ / , let o(p') = supg"(a n ^ ' ) - Also, let gM- = g\p', so g^ C p' x a(p') and g^-
is definable over Sa( ,) (Jensen's auxiliary hierarchy again). 

This makes it clear that each g^ e J,,(v), and, in fact, that p' H-> g^/ is Si ( J / ( V ) ) 

in parameters y. But then the same holds for p' H^ a(p'), and, denoting this last 
function by a, we see that a is nondecreasing with domain p. Now let g* e Jp(v) 
be a map of a subset of some p' < p cofmally into p. Then the function a o g* 
is S I ( J ^ ( V ) ) and maps a subset of / / cofmally into cop(v), a contradiction. This 
completes the proof. • 
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REMARK. If p, v, s are as in (3.1), then (3.1) clearly gives that o.t. A(0, s) < p, 
and therefore o.t. A(£, s) < p for all £ G «.?• But then, clearly o.t. Cv < /*. 

LEMMA (3.2). If p, v, etc., are as in (3.1), then, whenever p1 < p is as guaranteed 
by (3.1), (a, C A>, o, , & o.t. C, < A*') =>• C, C A>, o, .,. 

PROOF. Let f ^\ o, s = (s~, \f\, s), where | / | is the inverse of the transitive 
collapsing map for s\XM>} o, v We first argue in the case where Cv is cofinal in cop. 
Then, applying (2.31)(b) of [2] to f/lri o, s, we get that Q is cofinal in cop, where 
p = />(J). But then, since range | / | is cofinal in a>/>, in fact, |/|"CV is cofinal in 
cop, and, by (2.31)(c) of [2], | / | "C? C Cv, so 1"^, 0, .»• H Cv is cofinal in «/>. But 
then let cod e XM>t o, ,s n Cs. Since C,^ is an initial segment of Cv, o.t. Cx\s < M'-
Finally, by (2.25) of [2] (whose statement contains a typo; the statement should 
read: " . . . , 8 < p{s) and s\S G &+ then . . . "), it easily follows that C^g £ XM>: o, v 
But then, since o.t. Cs\s < /J-', in fact Cs\$ = Cs PicoS C A-^, o, .*•• Thus, arbitrarily 
large initial segments of Cs are included in X^: o, *•• 

This completes the proof when C, is cofinal in a>/>. When C, = 0 , there is 
nothing to prove. So, suppose that Cy has a greatest element. Since X^t 0, ,s is 
cofinal in cop, it follows from (2.31) and (2.38) of [2] that if fflti o, v is as above, 
then Cj has a largest element and that | / | (max CV) = max Cs. Then, if we argue 
as above, and appeal once again to (2.31) and also (2.38) of [2], the conclusion 
becomes clear. • 

(3.3). In dealing with the situation where A-^, o, s is not cofinal in cop(s), it 
will facilitate some of the arguments to replace p' by p' + 1, so that, letting / = 
l/V+i, o, s\, we have f(p', p' + 1) = (p', p' + 1). This also is faithful to the 
context in which we shall apply this material, in §§5 and 6, below. We adopt the 
same notation as in (3.1) and (3.2), but with 8 = 8(fM'+ii o, .,) < p(s). 

LEMMA. Whenever 8" < p{s) and s\8" G <f+, there is 8* G {p(s)} U A^'+i, o, .*• 

such that s\8* G ff+ and | / > + i , o, s\S"\ = | />+i , o, s\s*\-

PROOF. Suppose, first, that<5 <8" < p(s). By (2.23) of [2], / = \fM>+], 0, s\s»\-

Next, suppose that f(co8 ) = coS* > sup/"co<S , where ~s\8 G ̂ + . Let g = 

(s\8*, f\Jr, s\8"). By (2.32) of [2], s\8* £ ^ + and / | ^ . : s\6* ^ s\8*. 

But then we clearly have that X' ,+i 0 -,$• is cofinal in cod iff A^+i, 0, x\s* is 

cofinal in coS*. However, since XM,+i: 0 S\S* Q X/l>+\, o, « f l ^ . and sup f"cod = 

sup(A>+i, o, snJs.), clearly XM,+U 0 ^ * is not cofinal in o*T, i.e., S(fM,+u 0i ^j*) 

< r . Let ̂  = ^ ^ 0> J | r ) , and let «J' = \f\(S). By (2.30) of [2], 5' = 
3(f/i' + \, 0, j|d'*)-

Then, 8' < 8(g) = s u p / ' W * . Finally, if 8' < 8" < 8*, applying (2.23) of [2], 
with s\8* in place of s, g in place of / , and 8' = 8{g) in place of 8{f) (in the 
notation of (2.23) of [2], 8= 8(f)), we have | /> . M , o, *\<s>'\ = l/^'+i, o, s\s-\- This 
completes the proof. • 

(3.4) "Projecting" a tail of Cs to a subset of cov. In §3 of [2], CUJV is denned for 
v £ S, cov not a cardinal. First, a final segment of Cs is chosen, where s = srf+(v). 

DEFINITION (3.4.1). Let co8 G Cy, ax5 > av, let 5' = s\Js, and let F = Ys, „ = 
hsi"(co x a„). Then ox5 G C,, iff av G F. 
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It is shown in (3.2) (b) and (3.3) of [2] that if cop — cov, then Cv — Cs. For 
cod e Cv it is shown in (3.2)-(3.4) of [2] that there is unique k such that k £ Sa 

and s/+W*s'\Ys,v=s\Ys,v. 
DEFINITION (3.4.2). For cod e Cv we set k{8, v) = the unique k e Sa such that 

sf+W<*s'\Ys,v = s\Ys,,. 
If p = v, then k = 8, as is shown in (3.3) of [2]. An important observation is 

made in (3.2)(a) of [2]: Y#t „ is cofinal in coS. 
DEFINITION (3.4.3). Cm — {cok{8, v)\coS e Cv}. 
It is then shown in (3.6)—(3.8) of [2] that the C,, have the correct properties, 

i.e., those of (A) in (1.2), above. 

§4. A new parameter. Our main tool in proving the strengthened version ((B)(5) 
of (1.1), above) of the (B)(5) of [5] is a small but potentially quite useful lemma, 
stated below, involving a new parameter which we now introduce. Then, in §5, we 
supply the arguments which replace those of §4 of [2], making the changes and 
improvements enabled by this lemma. 

DEFINITION (4.1). Let v e S, p = p(v), si = s/(v), a = av, a < x < cop. 
Let Rv(p, T) be the property p e [cop]<0'& h^"(co x ( t U p)) — Jp. Let Pv(p) 
be the property Rv{p, a); let Qv(p) be the property Rv(p, a + 1). So p(v) = 
the least p such that Pv(p), with respect to lexicographic order of the decreasing 
enumeration of finite subsets of cop. Analogously, define q(v) = the least q such 
that Qv{q), with respect to the same ordering. 

REMARK. (1) p{v) n av = 0 and q{v) n av + 1 = 0 , 

(2) q{v) = p(v) <& av e /j^(v)"(co x (a„ U ^(v))), 
(3) Wv(r) => Qv{r)), SO q{y) <* p(v), 
(4) Pv({av} U q{v))\ thus p(v) <* {a,} U q(v). 
LEMMA (4.2). Either p{v) — q{v) or p(v) — q(v) U {av}. 
PROOF. Let p = p{v), q = q(v), a = av. Note that, by Remark 3, if p ^ q, 

then there is c c p which is a common final segment of/? and q, and either c = q or 
else the largest member of q \ c is less than the largest member of p \ c. However, 
by Remark 4, there is d C q u {a} which is a common final segment of p and 
q U {a}, and if d ^ p, then d ^ q U {a} and the largest member of p \ d is less 
than the largest member of (q U {a}) \ d. In the latter case the largest member 
of {q U {a}) \ d must be greater than a, so it is simply the largest member of 
q \ d, and we have a contradiction. Thus, we must have that d = p. If a $ p, 
then p C q, which is also impossible. Thus, a e p and p = q U a. • 

The main difference between the arguments in §§5 and 6, below, and those of 
§4 of [2] is that for s — s/+(v), below, we use 

K', 0, -v = -*> + !• °. •' = h"^° X W + l^' 

whereas in §4 of [2] we used X^, o, s = hs"(co x p.'). Of course, XM>: o, v Q 
X*, 0 v & p' e X*, 0 v. By the above lemma, either p{v) = q(v) or else av £ p(v). 
One main observation is that none of this really depends on p'. 

§5. Reworking §4 of [2]. In this section, we rework the material corresponding 
to (4.5)-(4.10) of [2]. There is no analogue of (4.8), however, because of our use 
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of the X*, 0 5. (5.1) corresponds to (4.5) of [2]. (5.2) corresponds to (4.7), of [2], 

in ideas if not in statement. In (5.3), we define the /„ , , (the analogous definitions 
in [2] were (4.6) and (4.9)). (5.4) corresponds to (4.10) of [2] and establishes the 
Condensation Coherence property, (C)(1) of (1.2). 

LEMMA (5.1). Ifv£ SM, p is a limit cardinal, s = srf+{y), and if p.' < p., p.' is a 
cardinal, and /* , 0 v = (J, \f\, s), where \f\ : 1 —> s\X*, 0 v is the inverse of the 
transitive collapsing map, then there is a unique v G SMi such that either cov — OR n \s\ 
or J (= "cov is a cardinal"; further, either X^, o, v = X*, 0 v & J = s>?+{v), or 

*>, o, s ? x;., o, s> * = (-^(v). ?(v)) & / e k v ) \?(v).' 
PROOF. The existence and uniqueness of v are immediate from the fact that 

fi' < supX*, 0 s. To get the rest of the lemma, we shall apply the downward 
extension of embeddings lemma to | / | . Let n = n{v), and let 1 = {Jj, A, ~p). 
The downward extension of embeddings gives us /? and / : J-g —>L„+I Jp(v), \f\Qf, 
such that p~ = pS- and A = A^. Since hj"{co x (p.1 + I)) = Jj, as usual we have 
P = /?(v) and « > n(v). 

For the reverse inequality, if n = 0 there is nothing to prove, so suppose n > 0. 
Then, if « > «(v), exactly as in (3.1), (3.3), and (3.4) of [2], we would have 
p(v) > Pj1)+1 > p on the one hand, but /£ ( ? ) + 1 < p' + 1 < v < p on the other 
hand, a contradiction. 

Thus, s = {stf(v), ~p). Of course, | / | ( p ) = p(v) and, by construction, Jj = 
^j/(v)"(co x ((/"' + 1) u 7>)); i-e- Qv(~P) holds. If </ G /p, q <* />, and for some 

/ < co and 1 e [(p' + \)]«°, p = h^ii, 1, q), then p = AJ/(v)(/, | / | ( £ ) , \f\(q)) 
and | / | (#) <* /?. This, however, contradicts the definition of p = p(v), since 

| / | ( f ) _ = £ e [//]<" (recall that \f\(p') = pJ). Thus, p = </(v). By (4.2), 
either /? = />(v) and Jj = h^^"(w x (( / / U p)), in which case p' G A -̂, 0, .?, 
so Ay, o, 4- = Ay 0 5 and s = stf+{v); or /»(v) ^ ~p, in which case p' =a„ £~p and 
/>(v) = {o^} Up = {//}Up. Then, / / £ / ^ " ( c o x (p.'Up)), so /*' G X*,fis \A>,0,.v 
and i = (^(v), q{v)). Noteherethatp'Llp{v) = {p' + l )Up = {p' + l)U^(v). D 

PROPOSITION (5.2). Let v, p, s be as in (5.1). Assume that C„ ^ 0 , anc? fe/ 
COSQ — inf C„. /« addition to our hypotheses on p! from (5.1), suppose further that 
p G 2 > + l ! o, ,v|,50- £e* X*,t 0> ,, /*, ; 0_ s, | / | , 5, e?c. fre as in (5.1). Le? v be as 
guaranteed by (5.1). Let cod G C„. Le^ F = yi-, ,, anc? let X = X{3, v). Suppose 
that S e X*,t 0 s, and let \f\(S) = 5. Let X be as guaranteed by (5.1) with X in the 
place of v. Then X — X(S, V). 

PROOF. Note that our additional hypothesis on p' guarantees that the analo­
gous statement holds for any con G C„ in place of COSQ. The only real difficulty in 
proving the lemma is that, in general, X*. 0 ,g c X*, 0 , n ^ . 

Let n : (Jp>, A', p') —* (s\S)\Y be the isomorphism, and let s' = {Jp>, A', p'), 
so, by §3 of [2], s' = srf+{X). As remarked after (3.4.2), n"cop' is cofinal in cod. 
By (5.1), I — ($/(v), q{v)), with the dichotomy of the conclusion of (5.1). 

Clearly, JT, Q __ = \f\-y[X;^ 0 s]S\, and so, letting Y = JT, Q _|?, we see that 

Y is cofinal in cod; this follows immediately from (2.30) and (3.2)(a) of [2]. Also, 
here we have p' e Y. 
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The following easy observation will be important in establishing (B)(4) and 
(C)(1) of (1.2), above; this will be done in (5.4), below. 

Y = XM,t o, j , where 7 = {sf(y), p{v))\J^- So, depending on the 

dichotomy of (5.1), either 7 = J\Jj or 7 = (s/(v), {p'}U~p)\Jj. 

It is clear from (*) that cod G CV, in either case. Let n : [Jy, A , />') —> (l\5)\Y 
be the inverse of the transitive collapse. So J' := (Jj>, A , ~p') = {snf(k), q{X)), 
and either p(J) = q[k) or p(k) = {ju'} Uq(k). In either case, (J1, \f\ on, s\S) = 
f*M>, o, ,|,5- T h e n > clearly, range \f\onC Y, and (s', n~l o \f\07i, I) = f*, 0 ? . 
It then follows easily that k = k(d, v), as required. D 

DEFINITION (5.3). Let,«, v, s be as in (5.1). Let p\{v) = the least uncountable 
cardinal p' < p such that p G X*,+x 0 <s for all cod e Cv. Thus, if Cv — 0 , then 
/i*(v) — ti\. Otherwise, as remarked at the beginning of the proof of (5.2), this 
is just the least ju' such that p. G X* 0 ,So, where 30 is as in (5.2). For cardinals 

fi' e [[*\{v), fi), let f(x,v{p') = cov, where v is as guaranteed by (5.1). 
PROPOSITION (5.4) (Condensation Coherence). If v, ju, s, etc., are as in (5.1) 

and p\{v) < p.' < p, fi' a cardinal, then, letting cov — fmv(p'): 
(a) p*(k) < fi' for all cok e C0JV; 
(b) let O = {fmx(p')\cok G Cmv}; then O is a final segment of C^ {we take 

this to include the case where Cmy is bounded in cov and O = 0 ) ; 
(c) if p' is a limit cardinal, then p! > p* (v), p* (v) = p.* (v), and f01y = fmv \p'. 

PROOF, (a) is clear, and (c) follows easily from (*) of (5.2), above. For (b), 
let s = j /+(v) = (Jp, A, p), and let / = /;,_ 0_ , = (s, \f\, s). Let d=S(f). If 
range | / | is not cofinal in cop, then, as we have already noted in arguing for (3.3), 
above, A'*, 0 v = X*, 0 .s c Ys, v; so, composing with n~x, the isomorphism 
between s\8 and stf+(k(S, v)), we transport the whole situation down to k* — 
k(S, v). Now, if (b) holds between k* and v, as we shall argue that it will, we can 
use (3.3), above, to conclude that it holds between v and v, since (3.3) gives that 
* ={Lx {fi')\cok&CwX.}. 

Thus, we may assume that S — p, i.e. that range \f\ = X*,t 0 s is cofinal in cop. 
This allows us to appeal to (2.31) of [2] to conclude that, letting J = {Jj, A,~p), Cs 

is cofinal in cop iff Cj is cofinal in cop, that Cs = 0 iff Cj = 0, and that if cod, cod 
are the maxima of Cs, Cj, respectively, then d — \f\{$). Now, since p*(v) < p', 
it follows that p G X*, 0 v, so let Ji be such that p = \f\{ji). Recalling the last 
clause of (5.1), above, it is then easy to see that: 

(*) Cv 7^ 0 iff there is cod e C? such that p G h^+(v)\j-"(^> x /*')• 

Thus, if Cv = 0 , then CWy is bounded in cov and O is the empty final segment of 
C„y. So, for the remainder of the proof, we assume that Cv ^ 0 . 

Let cod G C„ and let A = k(S, v). By (3.3), above, we may suppose that, as 
in (5.2), d = \f\(d). Adopt the notation of (5.2), above. We proved there that 
cod G CV and that fw>.{p') = (̂̂ > v), so fmx{p') G C^ for all cok e Crav. It 

Sh:425

file:///f/onC
file:///f/07i


46 SAHARON SHELAH AND LEE J. STANLEY 

remains only to show that, if we let W = {coS\cod e Cv n X*, 0 v } , then W 

is a final segment of CT. This, however, is clear, since W = CV \ oxSo, where 

| / | (o5 0 ) = infCvnjr; , i 0 j J . n 
REMARK (5.5). We should point out that /„,.(/*') = Pif^, o, J -

§6. Completing the proof of Squarer scales. (A) of (1.2) is immediate from the 
material of §§1-3 of [2], summarized in §§2 and 3, above. (B)(1) is clear from 
construction. (B)(2) follows easily from the definition of fi\ in (5.3), above, the 
remark about /** in (5.3) prior to the definition of fmv, and the proof of (3.3), 
above. (C)(1) and (C)(2) follow easily from (5.4). (C)(3) follows from (5.4) and 
the analogous statement about Cwj, but the latter follows readily from (2.25) and 
(2.33) of [2], 

We argue for (B)(4). Let cov = /„„(«) . We should note that the hypothesis 
that <1> has limit order type will hold if X~ 0 s is cofinal in cop(y), by (3.2), above, 
where s = j /+(v) . Let f*K 0_ , = (s, | / | , ' s). As in (5.1), J = (j/(v), q(v)). 
Applying (C)(1), we have that O is a final segment of CCJy. However, since <1> has 
limit order type, by hypothesis, it must therefore be cofinal in cov. 

It remains to verify the scale properties, (B)(3) and (B)(5). We first argue for 
(B)(5); we shall appeal to a part of its proof in arguing for (B)(3). So, let K be 
singular and let g e <S(K). Clearly there is v0 € SK such that g €•/„„, and of course, 
taking vo sufficiently large, we may suppose that Jro |= "K is singular". But then, 
as in the arguments for (3.1) and (3.2), above, o.t. COJVo < K. Since Jvo C Jp(n), 
it will suffice to prove: 

if K is a singular cardinal, r\ e SK, o.t. C0}l] < K, and g e S(K) n J,,(n), 
{*) 

then g<* fn. 

PROOF OF (*). Let s = stf+{rj) and let 7t < K be such that g e hs"(a> x K). 

Let 7t, /u\(rj) < K' < K, be a cardinal. We shall argue that gin') < /, ,(«')• 
The main observation is that since K' £ X*, 0 s, we also have g(n') G X*, 0 s-
But then, since s (= "card gW) — «'", clearly g{n') + 1 C X*, 0 s and so 
| / | | (g ( K ' ) + 1) = id\(gW) + 1). Thus, letting f*K, 0_ .,_= (s, \f\, s), we see that 
J |= "card gin') = K"\ and so gin') < /?(/«', o, v) = fiW)- The last equality is 
by (5.5), above. This completes the proof of (*) and therefore of (B)(5). 

We finish by arguing for (B)(3). In view of (*), and since /„ C Jp(v), it will 
clearly suffice to show that if r € SK D v and o.t. Cmx < K, then fvn e Jv. Now, 
under these hypotheses, it is clear that /?(T) < v, and therefore that srf+{t) e /,, 
and so, letting s = srf+(r), hs e Jv. But then the function K' H-> /?(/*, 0 s) is also 
an element of Jv. Finally, in virtue of (5.5), fmx is the restriction of this function 
to the set of cardinals in a final segment of its domain, and therefore f(0T £ Jr, 
as required. • 

§7. A square on singular L-cardinals. We simply recall that in [3], Jensen con­
ducted a system (DK\n is a singular L-cardinal) with the properties that DK c K 
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is a club of « such that o.t. DK < minDk and such that if X e (DK)', then A is a 
singular L-cardinal and D, — DK f~l X. 

§8. Local systems in L[XT], Prior to (1.1) we outlined the thrust of this section, 
so we limit ourselves to the statement of the result. 

LEMMA. Suppose that T = N2 or T is a limit cardinal, and let ju = z+co. Sup­
pose that XT C T + is such that HM = LM[XT]. Let ST = ( J{^ I T < ^ — 
fi and X is a cardinal } . Then, in L[XT], there are systems {Cmv \ v € ST) and (fmv\v £ 
Sp & o.t. CMV < /u) which satisfy (A)-(C) of (1.2), except that, in addition, we require 
that if X £ dom fmv, then X > x. 

Of course, the XT we have in mind are the A n r+w. 

Part II. Life in a sharpless V. 
In Part II, which comprises §§9-11, we transfer the combinatorial structures of 

Part I to a sharpless V, and prove the results required for [5], notably Corollary 
2 and Lemma 3 (Lemma (1.4) of [5]). As in [5], we work in the context provided 
by [4], i.e., we assume that 0' does not exist and we work in L[A], where A C OR 
is such that (a) HK — LK[A] for all uncountable cardinals K, and (b) A = (A n 
(02) U \J{A n (K, K+)\K G A}, where A is the class of limit cardinals together with 
K2. Further, if K = N2, or K is inaccessible, then (cardS)L^-AnS] = K for<5 e (K, «+) . 

In §9, we show how to transfer the combinatorial systems of Part I to V, 
indicating briefly how the necessary modifications are performed. We culminate, 
in (9.4), with the definition of a fine system of squares and pseudoscales and the 
observation that the system obtained in (9.1)—(9.3) is indeed a fine system. This 
proves Corollary 2 and corresponds to (1.2) of [5]. In §10 we prove Lemma 3. 
We finish, in §11, by proving two lesser results, used in (1.5) of [5] and (2.1.1) of 
[5]-

In the remainder of this paper, notions such as "cardinal", "singular cardinal", 
etc., mean "cardinal in the sense of V", "singular cardinal in the sense of V", etc. 

§9. From L to V. 
(9.1) Obtaining the DK from the DK. First, for singular cardinals ju of the form 

n+OJ, we let A be as above, we let n* be the unique member of A such that n = 
(n*)+w, and we define DM := {NT € (n*,fi)\x is odd}. 

So, assume that K is a singular limit of limit cardinals. Let EK be the set of 
singular cardinals in DK, where DK is as in §7. If (ER)' is cofinal in K, let D* = 
K n (EK)' and set X e I(K) iff A is a successor point of D*. If (EK)' is bounded 
in K, set D* = 0 and / («) = {«;}. Note that if X < K, X e I(K), then X is a 
singular limit of limit cardinals and X e I(X). Also, note that if A G I(X), then 
cf X — co. Thus, for all singular limits of limit cardinals X such that X £ I(X), 
choose x(X) = {Xj\j < co], cofinal in X, (Xj\j < co) increasing, such that: 

(1) m i n ^ < X0; whenever X' e X n E', X' < X0, 
(2) for all j < co, there is 8(j), not a successor ordinal, such that Xj = 

Then, for all K which are singular limits of limit cardinals, let DK = D* U 
[j{x(X)\X€ / (« )} . 
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Note that by construction, {DK\K a singular limit of limit cardinals) has the 
usual coherence property; further, letting SK — o.t. DK, we obtain SK < o.t. DK < 
min DK < min DK, and, letting (Af \i <5K) increasingly enumerate DK, if A*' = A*2, 
then /'i = i2. Further, note that {SK\k e L \ } C A for all A. 

(9.2) Modifying the Ca. If K is a singular cardinal, then, by Covering, K+ = 
( K + ) L , so that the system {Cwv\v G SK) is very close to being a square-system 
between K and K+. In fact, by virtue of (3.1) and (3.2), above, except for an 
initial segment / of a G SK, we always have o.t. Ca < K. Recall that, as in [5], 
for singular K we let U(K) be the set of multiples of K1 in (K, K+). Let <f>K be 
the continuous order-isomorphism between {cov\v e 5K \ / } and the set of limit 
multiples of K2 in (K, K + ) . We transfer the system to live on the latter set, via <f>, 
by taking C^a) := 0"C a . Finally, the Ca constructed in Part I are not necessarily 
club: they have been thinned by removing successor points. These are restored, in 
a canonical way, by recursion on the well-founded relation "a G Cp" by supplying 
cofinal co-sequences above sup Ca to those a whose CQ is not cofinal. We have 
abused notation by using Ca to denote this modified system as well. 

(9.3) Modifying the / „ . There are several kinds of modifications we carry out. 
The first is to transfer the scales to live on the ([/(«)) ' , as we did for the squares 
in (9.2). Here it is a bit more complicated, since we must also transfer the values, 
via different continuous order-isomorphisms. Also, at least in the first few stages 
of the modifications, we continue to deal with certain L-cardinals which may not 
be cardinals of V. 

So, if K is an L-cardinal, we let <f>K be the order-isomorphism of {a G SK|o.t. Ca 

< K} to an initial segment TK of the set of limit multiples of K1. Note that if K is 
actually a cardinal, then TK = (£/(«))'. Further, if K is actually a singular cardinal, 
then </)K is as in (9.2). Finally, if K is actually a regular cardinal, then <f>K is only 
< K-continuous—but, as will be clear, that is all that is required. 

DEFINITION (9.3.1). Now, suppose that K is actually a singular limit of limit 
cardinals. We define fn for r\ G (U{K))', with domain the set of L-cardinals 
between Hi and K. Let a G SK with o.t. Ca < K be such that rj — <j>K{a). First, 
suppose that A G dom/OTQ. We then set fn{X) := (/>;.(/waW)- If Ni < A < K, A 
is an L-cardinal, and A 0 domf0]a, we set fnW '•= ^2co. 

If T = U2 or T is a limit cardinal and fi = r+0J, the procedure is similar: for 
t] G (U(fi))', letting a G S^ with o.t. Ca</i be such that i/ = 0/ i(a), if AG dom/ m Q , 
we set fn{k) := <t>x{fa,a{^)), but we only extend the domain to be the set of 
cardinals between x and ju, again, using 2.2co as the default value. 

Next, we must define the scale functions fn, for rj e U(K) \ (U{K))', where K 
is a singular cardinal. This is rather straightforward. First, if K is a singular limit 
of limit cardinals, let A e X iff A is an L-cardinal and Hi < A < K; SO suppose 
that K is an co-successor. If K — Hm, let x = H2; otherwise, let x be the unique 
limit cardinal with K = x+m. In both of these cases, let A e X iff x < A < K and 
A is a cardinal. If 0 < n < co and rj = n2n, for all A G X we let fn{X) :— 2?2n. 
Otherwise, let a be a limit ordinal, 0 < n < co, and suppose that r\ — K2(CT + n). 
Then, for all I s l . w e set / ,(A) := fa{X) + A22«. 

REMARK (9.3.2). It is easy to see that the transferred system of Cn and fn for 
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tj G {U{cardij))' satisfies the obvious analogues of (A)-(C) of (1.2), above. We 
shall use this observation in (9.4) and in §10, without additional comment. 

DEFINITION (9.3.3). Finally, we define the / * for rj £ U(K), where K is a singular 

cardinal. These are simply fn\DK, where DK is as given by (9.1). 
(9.4) A fine system. We now define the notion of a fine system of squares andpseu-

doscales as one which satisfies properties (A)-(D), below (these are restatements 
of the similarly labelled items of (1.2) of [5]). When this is done, it will be clear 
(by (9.3.2)) that since we are assuming that 0" does not exist and that V = L[A], 
where A is as given by Lemma 3 of [5], the combinatorial system developped in 
(9.1)—(9.3) is a fine system of squares and pseudoscales. This proves Corollary 2. 

DEFINITION. A fine system of squares and pseudoscales is a system {DM\/i is a 
singular limit of limit cardinals), {Ca\a e (U(K))' n K+ & K is a singular cardinal), 
(f*\a G U(K) & K is a singular cardinal) satisfying the following properties (A)-
(D). 

(A) For singular cardinals /u, D^ is a club subset of the set of cardinals less 
than /u such that if fi is a limit of limit cardinals, then all members of 
DM are singular, while if ((T = K2 or T is a limit cardinal) and ju = T+ro), 
then A G Dfi iff (T < A < [i & A = N,j, where £ is odd), and: 
(1) o.t. Dn < minD^, 
(2) if X is a limit point of DM, then D, = DM n X, 
(3) if X G DM is not a limit point of DM, then X is not a limit of limit 

cardinals, and 
(4) suppose that X e DKi, i = 1,2, and let _/',• be such that X is the y',th 

member of DKj; then j \ = ji. 
(B) For singular cardinals K and a G (£/(«))' n K + ) , Ca is a club subset 

of the set of even multiples of K2 below a, of order type less than K, 
and such that if /? G Ca but is not a limit point of Ca, then fi is not a 
limit point of U(K), and with the usual coherence property: if y? is a 
limit point of Ca, Cp = Ca n p. 

(C) For singular cardinals K and a G U(K), with domf* — DK, for X G 
AcJ / a W is an even multiple of A2 and: 
(1) if K < a < fJ and a, f} G C/(K), then / * <* / ^ , i.e., for some 

X0 < K, whenever X G DK \ X0, we have f*{X) < fp{X); further, if 
a G Cp, then the preceding holds for all X G DK, 

(2) whenever g is a function with dom g = DK and g (A) < A+, for all 
X G .DK, for some a G £/(«) we have g <* / * , 

(3) if K is a singular limit of limit cardinals, X e DK, a G U{K), a' = 
f* (X), and X' G DK n A, then / * (A') = / * , (A'), and if K is not a limit 
of limit cardinals and a, /? G C/(K), A G D«, and /*(A) = fp(X), 
then f*\X = f*\X, 

(4) for limit points a of £/(«), and A G DK, the set 0(a,A) :— 
{f}W\P G CQ} is a final segment of Cy»(;g; further, 0 ( a , A) has 
limit order type on a tail of DK. 

We recall the observation made in (1.2) of [5] to the effect that even though the 
/ * are not defined when card a is a successor cardinal, nevertheless the property 
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of the second clause of (3) allows us to define them in a conventional way so that 
we will then have the property of the first clause of (3), even for K which are not 
limits of limit cardinals. 

(D) Decodability of (A)-(C): For all singular K, DK and the systems {Ca\a G 
'K+ n (U(K))' and {f*\a e £/(«)) are canonically definable in L[A <~\K]. 

To make it completely clear why this follows from (9.3.2), it will be useful to 
give the correspondence between items of (B) and (C), above, and the items of 
the Squarer Scales principle of (1.2). (B) corresponds to (A) of (1.2). (C)(1) 
corresponds to the conjunction of (B)(2) and (B)(3) of (1.2). (C)(2) corresponds 
to (B)(5) of (1.2). (C)(3) corresponds to (C)(2) of (1.2). (C)(4) corresponds to 
the conjunction of (B)(4) and (C)(l)of (1.2). (D) corresponds to (C)(3) of (1.2). 

§10. The existence of supercoherent sequences. In this section we prove Lemma 
3 (Lemma (1.4) of [5]). This lemma states that there are "enough" supercoherent 
sequences. We do this by first showing, in (10.2), that there are "enough" strongly 
coherent sequences, and then, in (10.5), showing that if (jVt\i < 9) is strongly 
coherent then {jVmi\i < 9) is supercoherent. The proofs of (10.3)—(10.5) exploit 
the most subtle combinatorial properties of the Squarer Scales. For convenience, 
we begin by restating the definitions of strongly coherent and supercoherent, and 
some preliminary related notions from (1.1) and (1.3) of [5]. At the end of (10.2) 
we lay out the plan for the proof carried out in (10.3)—(10.5). 

(10.1) Model sequences and coherence. Let 9 > % be regular. Let JK = (Hv+, € 
, ...), where v is a singular cardinal, v » 9, and {Hv, G) models a sufficiently 
rich fragment of ZFC. Let a <9, and let (JVt : / < a) be an increasing continuous 
tower of elementary substructures of M'. 

DEFINITION (10.1.1). We say that {JVt\i < a) is {Jt, #)-standard of length a + 1 
if, letting Ni := \jVt\ for all i < a, we have cardN, = 9, 9 + 1 C N0, and for 
/ < a, [A^,+i]< e C Ni+i, and, if / is even, JVI e Ni+i. 

DEFINITION (10.1.2). For such 9 > Hi and J( = (Hv+,€,...), suppose that 
JV -< M, where, letting N := \jV\,cardN = 8, and let K be a cardinal with 
9 < K, K € N. Let ; O ( K ) = sup(7V n (K, K+)). 

Recall that an Easton set of ordinals is one which is bounded below any inac­
cessible cardinal. For such JV and singular cardinals K with 9 < K < v, we say 
that K is JV-controlled if there is an Easton set d with K G d G N. 

We define PXJV, an analogue of XJT, defined on all singular cardinals K which are 
yK-controlled. The definition makes sense for all cardinals K G [8, v], but we will 
only use it for yf-controlled singulars. If K G N, then of course K is yf-controlled, 
and in this case px^M := x^rM- Otherwise, 

PXAK) :=sup(K + nSk^({K}UA0) . 

The reason why we only consider controlled n is that (10.3), below, gives an 
alternative characterization of pxAK) which is central in proving (10.5). The 
alternative characterization is equivalent only for controlled K. AS we noted in 
[5], the restriction to such K is benign, for our purposes. 

"Characteristic" functions of a model JV like XJV and pxjr often appear in the 
work of the first author in a slightly different formulation, defined to be "pressing 
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down" functions: the value at a cardinal K is the supremum below K of some set 
of ordinals associated with JV. Thus, in this formulation, our x^(K) and PXJV{K) 

would become values at K+ of these functions, and we would also have at our 
dispostion the corresponding suprema below limit cardinals. In this connection, 
see the second remark following the proof of the proposition in (10.3). 

DEFINITION (10.1.3). Suppose K e \Jl\, K is a singular cardinal, JV and N are 
as in (10.1.2), and K G" N. Let /*#(«) = the least ordinal £, G N such that £ > K 
(clearly such exists, since v G N). Clearly JUN(K) is a limit of limit cardinals, and 
either JUN{K) is inaccessible, or 9 < cf[IN{K) < «• 

REMARK (10.1.4). If K is JV-controlled but K £ N, then JUN{K) is singular. 
To see this, suppose that ju > K and ju G N, with ju inaccessible. Since K is 

./^-controlled, let K G d G iV, where J is an Easton set. Thus, sup d C\fi < JU, and 
clearly supd <1 ju e N. Now K G d n /*, so K < supc? n //. But then, it is easy 
to see that n ^ /I^(K), since if equality held, we would have N n [K, /I) = 0 , 
contradicting that K < supd e N n ju. 

(10.1.5). Now let (yKi\ i < 9) be {Jl, 0)-standard of length 9 + 1. For 
/ < 8, let Xi = X^> PXi = PXJ^r Let JV = jrg = ( J{^- | / < 0}, and let / = / 0 , 
/>* = PXth so dom / = U{dom / , | / < 6}, and / (« ) = sup{/,(«;)|«; G N,} for 
K G dom x- Also, for yf-controlled singular cardinals K G [9, v], PX(K) = 
sup{pxi(n)\i < 0 & K is TV,-controlled}. 

Let K be a singular cardinal, K G dom %• Note that since cf 9 = 9 > co, there is 
a club D c 9 such that /,-(«) G C/ ( KJ for all i e D. This motivates the following. 

DEFINITION. Let Jl, 9 be as above, and let {JVi \ i < 9) be {Jl, #)-standard of 
length 9+1. Let JV = JIQ. Let JV, JV,-, %> Z7/) //> / % be a s above. 

Let K > 9 be a singular cardinal, K e N. {jVi\i < 9) is Jl-coherent at K 
iff for all limit ordinals S < 9 with K G iVd there is a club DCS such that 
/ /(«) G C^ (KJ for all i € D. {JV-,\i < 9) is Jl-coherent if, for all singular cardinals 
K € N \9, {yVj\i < a) is ^-coherent at K. {JVi\i < 9) is strongly Jl-coherent iff 
for all / < 9 and all singular cardinals K e Nj, /,-(«) G C (K). Finally, (yf}|i < 0) is 
.sw/>er Jl-coherent iff (y^}|/ < 0) is strongly ^-coherent and for all limit ordinals 
a < 9 and all ^-controlled singular cardinals K, for sufficiently large i < a we 
have pxi{K) G CpXaM. 

REMARK (10.1.6). Let {jVj\i < 8) be {Jl, 0)-standard of length 9 + 1. For 
/ < 9, let JUJ := fijri, and let // := jio- Note that if / < j then dom /ij C dom ^u,, 
and that if K G dom /ij, then ///(/c) < /U,-(K). Thus, dom // = p|{dom //,-|/ < 0}, 
and, for K G dom //, /I(K) is the eventually constant value of the //,(«), / < 9. 

LEMMA (10.2). Let 9 be regular, 6>^.\. Let v > cf v > 9 be such that {Hv, e) |= 
a sufficiently rich fragment of ZFC. Let Jl = (//,,+ , G, . . . ) . Let C C [//v+]0 ^e 
c/wi. T/!e« ?/ze/-e is a strongly Jl-coherent {JVi\i < 9) with each \JVJ\ G C. 

PROOF. Without loss of generality, we may assume that X e C => Jl\X •< 
Jl. We first build {Jlj\j < 9+), an increasing continuous tower of elementary 
submodels of Jl, with each \JHj\ G C, Jlj G \Jlj+i\, and \Jlj+\\ closed under 
sequences of length < 9, for j < 9+. Let xj = XMr X = XM0+ be as in (10.1.5). 

For singular K > 9, K G \Jlo+\, let E{K) C 0+ be club such that y G £ ( K ) => 
K G l^f/l and Xj(K) e ^/W- F° r ' < ^+> le t 
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Ei = C\{E{K)\K G \JZi\, K> 9, K is singular}, 

so each Et is a club of 9+. Let E = A^g+Ej = the diagonal intersection of the 
Eh Thus, j€E=> (Vi < y)(V« G l - ^ D t t M € C/(((). Let Ee = {a e E\da = 9}, 
let E* = E° U ((£•")' n 0+), and let (;',|/ < 9+) be the increasing enumeration of 
E*. Thus cf j i + \ = 9 for all i < 9+. For / < 9, let ^ = Jlh. Then ( ^ | / < 0) is 
strongly .J'-coherent. All properties are clear from construction, except possibly 
that [ l ^ + i l ^ e C \JVI+\\ for i < 9. This, however, is an easy consequence of the 
fact that, for successor £, \JHQ\ is closed under sequences of length < 9, and that 
cf j i + l =9. D 

Discussion. We are now in a position to lay out the ideas behind the proof, in 
(10.3)-(10.5), that if {jrt\i < 9) is strongly „#-coherent then {Jfwi\i < 9) is super 
.#-coherent. Let a < 9 be a limit ordinal, and 9 < K < v a singular cardinal. 
We say that a is K-good if K is JVn -controlled. Now suppose that S < 9 is a 
limit of limit ordinals, 0 < K < v is a singular cardinal, and <5 is K-good. Let 
?7 = PXJVS{K)- Our aim is to show that, for sufficiently large K-good limit ordinals 
a <5, PXJT„{H) G Cn. 

If we "go up" to ju — njrs and let n' = XJT6 (ju), then, since (J/~,\i < 9) is strongly 
.#-coherent, we have XJTAP)

 e Q ' f° r i <<>• Is there some way of "projecting" 
this fact back down to "level K"? One such way would be to evaluate at K the 
L-scale functions from "level /u" (the f's). And, in fact, by (C)(1) of (1.2), if we 
let n* = / V ( K ) , then { / T (K) |T G Cy} will be a final segment of Cn-. But what is the 
relationship between n and n*, and, for / < S, between px^M and / ^ . ( ^ ( K ) ? 

The argument would be complete if we knew we had equality in the first case, 
and equality in the second case for sufficiently large K-good limit ordinals. This is 
exactly what will be proved in (10.4). (10.3) supplies a technical result underlying 
the argument of (10.4). In (10.5) we fill in the last few missing details of the above 
sketch, in the presence of the result of (10.4). 

(10.3). If K is JV-controlled, set g G 'Sjr iff / G \JV\, f is a function, dom / 
is a set of L-cardinals, and x < f{r) < {x+)L for all r G dom / . We also set 
S # := S > n L . 

PROPOSITION. If K is JV-controlled, then 

PXAK) = sup { / ( K ) | / G £> , K G dom / } = sup { / ( K ) | / G g ^ , K G dom / } . 

PROOF. Clearly, 

PXA*) > sup {/(*e)|/ G S>, K G dom / } > sup {f{n)\fe &%•, K G dom / } , 

so we show that 

P/AK) < sup { / ( K ) G S>, K G dom / } < sup {f(n)\f € &A K€ dom / } . 

Since K is yf-controlled (this is the whole point of the notion), the last inequality 
is clear by covering, so we prove the first. 
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Let £ < K+ be definable in JU, by y/, from x\, ..., x^ e \JV\ and K. Let 
/ ( T ) ~ the least a < {r+)L such that Jl |= y/(a, x\, ..., Xk, t ) , for L-cardinals 
r. Clearly / ( « ) = £ and, for all 77 < v, f\rj G |^#|. Also, // H-> / | ^ is .#-definable. 
Thus, if rj G |^f|, then / | / / e |-/T|. But clearly v G | ^ | . Thus / | v G |yT|, and so 
£ = (/»(«). • 

REMARKS. (1) We could also have defined S'J- to be the set of / e S> such 
that dom / is an Easton set, and "§^E to be ^ n L, thereby "building in" the 
restriction to controlled K. 

(2) In connection with the alternative definition of the XJT
 a n d PXJV

 a s "pressing 
down" functions, mentioned at the end of (10.1.2), the above proposition remains 
true with these alternative definitions and the appropriately modified definition of 
the various S/'s: for / G S> and « G dom / , / ( « ) would be required to be less 
than K. 

(10.4). Suppose now that J? is as in (10.2) and that JV1 -< J!', card \JV'\ = 6, 
and let x = XJT1 , px = PXJT' Let K be a singular cardinal which is yT'-controlled. 
Let / /(K) = JUJT,(K), SO that, by (10.1.4), /I(K) is a singular cardinal. Let ju =/I(K), 

let v' = X(M)> 1 = PX(K)> a n d suppose that Cn> n |-/T'| is cofinal in 77'. This will 
hold in all cases of interest. 

LEMMA. r\ = /,,<(«). 
PROOF. We will end up applying (1.2) (B)(4) (here, and in what follows, recall 

(9.3.2)!), so we must first show that here we have the hypothesis that ( / T ( K ) | T € 
Cn>) is not eventually constant. We begin with two easy observations, which we 
shall use at various places in the proof. 

(1) For T a limit ordinal in (JU,JU+), fT is canonically definable from r in Jl, 
so fT G \yf'\ for T G Cn< n \JV>\. 

(2) If / , g G I J " |, where / , g are functions with domain the set of un­
countable L-cardinals < ju and / <* g, then the least Xo such that 
(VA > Xo)f{X) < g(X) is definable from / , g and is therefore in |./f'|. 
So, since Ao G l-^'l and Ao < ju, we must have X0 < K. 

We are now in a position to argue that (/T (K) |T G CV/ ) is not eventually constant. 
Let O = { / I ( « ) | T G CV<}. We will do this by proving that for T\ < T2, both in 
Cn' (~l |^"'|, and for all X > K, we have /T , W < /T 2U)- In particular, this means 
that the map from Cy n |yT'| to <I> given b y n - > / T (« ) is order preserving, so O 
has limit order type, as required, since clearly Cn> does. So, suppose T\, T2 are 
as above. Applying (1), we have fx. e \JV'\ for i = 1, 2. But then we have the 
desired conclusion, by applying (2), with / = / T l , g = fT2. 

As we have just proven, the hypotheses of (1.2)(B)(4) hold, so, by (1.2)(B)(4), 
f,>{it) = sup { / \ ( K ) | T G Cn,}. Further, by (1.2)(B)(2), sup { / T (K) |T G C„,} = 
sup { / T (K) |T G Q n \JV'\}. Again, by (1), if r is as in (1), / T ( K ) < / ? / ( K ) so 
finally, / , ' ( K ) < /;. 

Clearly // = sup { / ( K ) | / G |^"'| n LA+} = sup {/( /s) | / G K ' | n Zy} . Thus, 
it suffices to show: 

(*) If / G |-/f'| n L^/,dom / is the set of uncountable L-cardinals < ju, 
and f{X) G (A, (X+)L) for A G dom / , then there is a y G | ^ ' | (~l Z,,> such 
that 
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(a) / <* /,,, and 
(b) for all X > K, f{X) </. .(A). 

Now, the existence of a y 6 \JV'| n Ln> satisfying (a) is an easy consequence of 
JV' -< J? and the fact, which holds in Jl, that {f(\£ e {fi,fi+)) is an L-scale, by 
(B)(5) of (1.2). But then, for such a y, fy e \JV'\, and then (b) follows immediately 
from (2), with g = fy. D 

LEMMA (10.5). If{jVt\i < 6) is strongly ^-coherent, then [jVwi\i < 8) is super 
^-coherent. 

PROOF. We fill in the details of the argument sketched in the discussion follow­
ing (10.2). We adopt the notation and terminology established there. Let 8 < 0 be 
a limit of limit ordinals. Suppose that 6 < K<V and that<5 is K-good. By (10.1.6), 
there is ;'o < d such that if ;'o < i <8, then jujr.(K) — / /^( /e) . Let /u,n, n', n* be 
as in the discussion. 

Now let JV' = JV&. Since (JVj\i < 6) is strongly jf-coherent, it is easy to see 
that Cn> n \JV'\ is cofinal in n', so we have the hypotheses of (10.4). Thus, by the 
lemma of (10.4), n = / , ' ( « ) ( = n*). 

Suppose, now that io < a < S, where a is a /c-good limit ordinal. Since 
i'o < a, fijfa{n) = H- Therefore, we can apply (10.4), again, but with JV' = JV„; 
just as in the preceding paragraph, this gives us that PX^(K) = fXjr [M)(K). The 
conclusion is now clear, as in the discussion: { / T (K) |T € Cn>} is a final segment 
of Cn, for all / < S, we have x^Xf1) e Q'> a n d f° r a ^ «-good limit ordinals a 
with i0 < a < 8, we have px^„ («) = fx,r (P)M> so for all sufficiently large «-good 
limit ordinals a with i0 < a < 8, we finally obtain px^„(K) 6 Cn, as required. • 

Now, clearly, combining (10.2) and (10.5), we have proved Lemma 3. 
(10.6). We now expand somewhat on the proof of (10.4). We have already noted 

that ,u(«) is a limit of limit cardinals. Suppose first that K is of the form X+w'. 
Then, for all such X, and all JV' < M, K<£ \JV'\ =J> [X, K] n \JV'\ = 0 . Thus, in 
this setting fi(X) — JU{K) for all X e DK. 

If K is a singular limit of limit cardinals and K n \JV'\ is bounded in K, then 
/u(X) — JU(K) on a tail of DK. Let us then examine the most difficult case, where 
« is a singular limit of limit cardinals, K £ \JV'\, but « n \JV'\ is cofinal in K; note 
that if \JV'\ is closed for sequences of length < 0 (as was the case, in the context 
of (10.5), taking JV' = JVQ), this means that cf n = 9. Note also that we may even 
have DK C \JV'\. Recall that, in this latter case, px(X) = xW f° r ^ £ DK. Even 
if A e DK \ \JV'\, we still have JU(X) < K < JU{K). 

Our principal aim is to show that one inequality of the lemma of (10.4) remains 
true when we replace n = px(K) by cr = px(X) and /,< (K) by fn> {X), but maintain 
n' — X(/*(K)), instead of using a' = x{p{X)). Of course, by (10.4) with X in place 
of K, we do have a = fai [X), and this is our point of departure in proving: 

LEMMA, a > fn'{X) on a tail of X e DK. 
PROOF. We follow the proof of (10.4). Obtaining < seems problematical since 

the proof of the analogue of (*) of (10.4) does not seem to go over. 
First, take X sufficiently large that fi*(rj') < X, where ju*{r/') is as in (5.3). This 

is possible, since in (10.4) we showed that n\{n') < K. Now, for such X, the proof 
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in (10.4) that f^{n) < n, goes over verbatim to show that fn>(X) <a. D 

§11. Odds and ends. We close by providing the proofs of two small results 
needed for [5]. In (11.1) we prove the proposition of (1.5) of [5] needed for the 
construction of the very tidy conditions. In (11.2) we show, as promised in (2.1.1) 
of [5], that, without loss of generality, the system of ba for a which are multiples 
of card a, which is inaccessible, can be taken to be tree-like. 

PROPOSITION (11.1). Let #>Ki and let v and Jt be as in (10.2). Letd c [0,v) be 
an Easton set of cardinals, and let y be a function with domain d such that y(/c) < K+ 

for all K G d. Then there is a function y* with domain d such that (a) for all K G d 
which are either singular or of the form Kr, with T > 1 and odd, y*(«) > y(«), and 
(b) for all singular K G d, f* =* y*\DK, where a = y*(«). Further, if JV -< J£ 
with (9 + 1) U {y} C \jr\, then y* G \^\. 

PROOF. We first define a function y\ as follows. If 0 < K < v, where K 

is of the form NQ+C0, we let yi(«) = the least n G (?(«)> «+) such that n is 
a multiple of K2 and y|[NQ, K) <* fn (where we define y{X) to be the usual 
default value, X22, for X G [Ha, K) \ d). For regular cardinals X G d n [9, v), 
we let y\(X) = max(y(A) + I2, / y ^ ^ U ) ) . For all other K G [#, v), we let 

yi(«) = y(«) + «2-
To obtain y* from y\, we first define, by recursion on « < co, ordinals v„, n„ 

and a function / „ . We will have that if v„ > 9, then v„+i < v„, so there will be 
an m < co such that vm+\ < 9 < vm. We stop the recursion at this m. 

Let vo = v. Having defined v„, if v„ is a singular limit of limit cardinals with 
v„ G (0, v], we let n„ G [yi(v„), v+) be the least n which is a multiple of v2 such 
that 

(*„) fn>*y\\dV\vn, 

and we let / „ = fnn U {(v„, n„)}. Once again, this is possible by Covering, because 
we have taken the precaution of restricting to an Easton set d. 

So, having defined v„, n„, f„, satisfying (*)„, we define v°+1 = the least cardinal 
v' G [9, v„) such that y\ (K) < / „ (« ) for singular K G d n [v', v„). Having defined 
v«+i' ^ v«+i - >̂ w e s e t v«+i = >̂ m =n, and we stop. If v^+1 > # is a singular 
limit of limit cardinals, we set vn+\ = v^+1. If v^+1 > # is either a successor cardinal 
or of the form Nr+(U, we set v^1, = the largest limit of limit cardinals < v'n+l. 
Finally, if v'n+x > 9 is inaccessible, we set v'n~^\ = sup d n v^+1. 

Clearly there is an / < co such that v„+! = v'n+l and either v^+1 < 9 or v^+1 is a 
singular limit of limit cardinals. In all cases, we let an = {K G (V„+I, V°+1]|K is a 
singular cardinal}; note that «„ rW is finite, and no K G a„ n <i is a limit of limit 
cardinals. When vn+\ > 9, we have m > n, and we continue, to define n„+\ and 
v„+2. Clearly m < co, i.e., for some «, v„+i < 9. 

We now define y*: if K & d, n is singular, and K g" U{a«lM — m}> w e se* 
7*(K) = /„ («) , where n is such that v„+i < K < v„. If K G a„, where n < m, we 
let 7*(K) = 7i(«). Finally, if A = NT with r odd, /I G d, we set K = HT+(U and we 
set y*{X) — max(yi(A), fy*(K){X)). For all other X G cf, we set y*(A) = 71(A). 
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It is clear that: 

Jl is as in (10.1), JV' -< J?, N' := \jr'\, 0 + ICN', card N' = 
(#) 

6, [NY 0 C N', and d, y G TV', then y* £ N'. 

But then, clearly, y* is as required. • 
(11.2) Getting "tree-like" ba. We begin by recalling some notions from the 

Introduction and (2.1) of [5]. First, recall that, for inaccessible K, U{K) is the set of 
multiples of /tin (K, K+). Let« be inaccessible. Recall that a system (ba\a G £/(«)) 
of almost-disjoint cofinal subsets of K was called decodable if 

for all 6 G (K, K + ) , (fta|a < 0) G LL4 n 9], 
(*) 

and is "canonically definable" there. 

Recall that Corollary 4 of the Introduction of [5] says that for all inaccessible K, 

there is a decodable b — (ba\a G £/(«)) of cofinal almost-disjoint subsets of K as 
above. 

In (2.1.1) of [5], we defined % :— (J{U{K)\K is inaccessible}, and we consid­
ered the following additional property of the system {bn\n £ It) which we called 
tree-like: Whenever n\, r]2 G %, if £, G bm n ^72, then ft,, n <̂  = 6V2 n ^. 

We promised there to show here that 
LEMMA. Without loss of generality, we can assume that {bn\n G ^ ) is tree-like 

and has the following additional property: bn = range gn, where gn is a function 
with dom gn — {HT |KT < cardn & r is an even successor ordinal}; further, for all 
£, £ by,, £ is a multiple of A but not of 8. 

PROOF. This is actually a rather simple observation; for the record, the fol­
lowing is one way it can be established. 

For inaccessible K and a G U(K), and X < K of the form Nr, where T is an 
even successor, let Ca(A) be the rank of ba n k in <L[Anx+], and let ga{X) = the 
£a(X)ih n such that X < n < X+ and tj is a multiple of 4 but not of 8. Then let 
ft* = range ga. It is clear that the ft* are decodable, since the ftQ were, and that 
they have the desired tree-like property. • 
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